Nature Communications
Home Exciton–phonon coupling strength in single-layer MoSe2 at room temperature
Exciton–phonon coupling strength in single-layer MoSe<sub>2</sub> at room temperature
Exciton–phonon coupling strength in single-layer MoSe2 at room temperature

Article Type: research-article Article History
Abstract

Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton–phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton–phonon coupling strength has not been measured at room temperature. Here, we use two-dimensional micro-spectroscopy to determine exciton–phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time induced by the coupling between A excitons and A1 optical phonons. Analysis of beating maps combined with simulations provides the exciton–phonon coupling. We get a Huang–Rhys factor ~1, larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton–phonon coupling also in other heterogeneous semiconducting systems, with a spatial resolution ~260 nm, and provides design-relevant parameters for the development of optoelectronic devices.

The exciton–phonon coupling (EXPC) affects the opto-electronic properties of atomically thin semiconductors. Here, the authors develop two-dimensional micro-spectroscopy to determine the EXPC of monolayer MoSe2.

Keywords
Li,Trovatello,Dal Conte,Nuß,Soavi,Wang,Ferrari,Cerullo,and Brixner: Exciton–phonon coupling strength in single-layer MoSe2 at room temperature

Introduction

Layered materials (LMs)14, such as single-layer (1L) transition metal dichalcogenides (1L-TMDs)58, are a promising platform for new photonic and optoelectronic devices. Bulk semiconducting TMDs consist of covalently bound layers of type MX2, where M is a metal (e.g., Mo, W) and X is a chalcogen atom (e.g., S, Se), held together by van der Waals interactions3. When they are exfoliated, or grown as 1L, quantum confinement induces an indirect-to-direct bandgap transition5,6. The reduced dimensionality is also responsible for high exciton binding energies (hundreds of meV)7,8, making 1L-TMDs excellent candidates for optoelectronic devices at room temperature (RT)2.

Exciton–phonon coupling (EXPC) plays a key role in determining the temperature-dependent optoelectronic and transport properties of 1L-TMDs911. It is responsible for, e.g., non-radiative exciton decay9,10,12, limiting the fluorescence quantum yield11, the formation of dark-exciton phonon replicas13, and it mediates spin-flip processes, thus decreasing the lifetime of spin/valley-polarized charge carriers14. For temperature < 100 K, the interaction between excitons and acoustic phonons induces linewidth broadening and dominates the excitonic resonances of 1L-TMDs9,15,16. The situation is different for higher temperature. Ref. 17 suggested that the coupling between excitons and optical phonons induces sidebands in the absorption spectrum of 1L-MoSe2 at RT. Yet the spectral signature of this coupling is obscured by inhomogeneous broadening17. The presence of EXPC was inferred from resonant Raman scattering18,19, as well as time-resolved transmission measurements20,21, where the A1 optical phonon mode was observed to couple with the A excitonic resonance. While the exciton energies can be obtained from photoluminescence (PL) and those of (ground state) phonons from Raman measurements, this does not fully characterize the system. To obtain the complete Hamiltonian, one also requires the displacement along the phonon coordinate of the exciton-state potential energy minimum versus the ground state. This displacement is the EXPC strength, and determines how strongly phonons are excited upon an optical transition to the exciton state. To the best of our knowledge, the EXPC strength was not measured for any 1L-TMDs at RT, because overtone bands of the optical phonon mode were not detectable1821. We determine this missing quantity in the present work.

Optical four-wave-mixing experiments in semiconductors provide access to coherent dynamics of excitons10,2224. In photon echo experiments the polarization state of incident photons (circular or linear) allows one to uncover different mechanisms behind the signal formation25,26. Different levels can be distinguished by the polarization dependence2628. Two-dimensional electronic spectroscopy (2DES) is a powerful tool to analyze light-induced coherences in molecular systems2932 and semiconductors33,34. It is a generalized version of transient absorption spectroscopy, providing frequency resolution not only for the probe step, but also for the pump3539. Coherent broadband excitation of several quantum energy levels leads to wave packets that may be detected as oscillations of specific peaks in the 2d maps as a function of waiting time T30,40. Analysis of frequency, decay time, and the position of such oscillations allows one to explore the underlying energy structure and the coupling mechanism leading to level splittings30,40,41. Ref. 41 theoretically proposed that an additional Fourier transform along T and cutting the resulting 3d spectrum at certain beating frequencies could lead to 2d maps that are sensitive to the EXPC strength.

It is challenging to apply 2DES on micro-scale samples or heterogeneous materials with localized structural domains on a μm lateral scale, because the standard phase-matching geometry requires the exciting beams to be non-collinear with respect to each other37. This cannot be realized simultaneously when focusing with a high-numerical-aperture (NA) objective, in which all incident light arrives at the sample from the same solid angle. As a result, if one chooses to employ phase matching, this necessarily requires longer focal lengths, leading to larger spot sizes and unwanted averaging over different spatial regions or crystal orientations42. Instead, one can also select the signal by phase cycling4345, which relies on detecting population-based signals as a function of inter-pulse phase combinations43,45,46. The collinear geometry accessible with phase cycling enables 2d micro-spectroscopy, i.e., the combination of 2DES with fluorescence microscopy, to gain additional spatial resolution42,47.

Here, we develop 2d micro-spectroscopy to resolve the spectral features of the phonon sidebands in 1L-MoSe2 at RT and determine the EXPC. We observe oscillations in 2d maps that arise from the coupling between the A1 optical phonon mode and the A exciton. From comparison with simulated 2d beating maps, we deduce a Huang–Rhys factor S ~ 1. This implies a large EXPC strength for 1L-MoSe2, when compared with other inorganic semiconductor nanostructures, such as CdSe quantum dots48 and rods49, ZnSe quantum dots50, and single-wall carbon nanotubes51, most of which fall in the range ~ 0–0.552, providing design-relevant information for the development of photonic devices based on 1L-MoSe2. Our method can be extended to other 1L-TMDs and LMs and to other important semiconducting systems, for which the ~260-nm spatial resolution of micro-spectroscopy is required, e.g., single-wall carbon nanotubes, LM heterostructures, layered perovskites, bulk heterojunctions, or microcavities with embedded semiconductors.

Results and discussion

The experimental setup is sketched in Fig. 1a. A Ti:sapphire oscillator emits 12-fs pulses at 80 MHz repetition rate. A pulse shaper generates a collinear four-pulse sequence, focused by a high-NA = 1.4 objective, so that a spatial resolution ~ 260 nm is achieved. To image the sample, the laser focus is mapped by a piezo scanning stage, and the PL signal is detected by an avalanche photodiode (APD). For the 2d map, the PL intensity is detected while scanning a first coherence time τ (delay between the first two pulses), a waiting time T (delay between second and third pulse), and a second coherence time t (delay between third and fourth pulse, Fig. 1a). Fourier transformation over τ and t results in a 2d map for every T (see Methods for data acquisition details). Nonlinear signals are obtained by systematically scanning through a number of discrete phase steps for each pulse and for each pulse-delay combination. Rephasing and nonrephasing signals are retrieved as linear superpositions of differently phase-modulated data45.

Overview of setup and the sample.
Fig. 1

Overview of setup and the sample.

a Fluorescence-detected 2d micro-spectroscopy setup. Four collinear laser pulses are generated by a pulse shaper with controllable inter-pulse time delays (τ, T, t) and phases (φi, i = 1, 2, 3, 4) and focused by a high-NA objective (Obj). The position of the sample is controlled by a piezo scanning stage (PSS). The dichroic mirror (DM) under the objective transmits the excitation beam (red) and reflects the PL signal (yellow). A long-pass filter (LP) is used to block the remaining excitation beam. The PL signal is detected by an avalanche photodiode (APD). b PL map obtained with the setup of panel a. c PL and d Raman spectrum for 514 nm excitation. The peak in the PL spectrum corresponds to the A exciton. The Raman spectrum shows the out-of-plane A1 mode ~ 241 cm−1, and the in-plane E′ mode ~ 288 cm−1.

We investigate mechanically exfoliated 1L-MoSe2 on a 200-μm fused silica substrate (see Methods for details). Figure 1b is a PL map, taken with the setup of Fig. 1a, for a representative sample. 1L-MoSe2 has a direct bandgap at the K point of the Brillouin zone leading to two excitonic transitions A and B ~1.57 and 1.75 eV53. The PL spectrum (Fig. 1c) shows a single peak ~1.57 eV, due to the radiative recombination of A excitons54. The signal of the trion is much weaker than that of the neutral exciton at RT24,55. In our experiment we detect predominantly the neutral exciton. This is confirmed by the linear PL spectrum of our sample (Fig. 1c), in which the main peak is located at a position that agrees with that found for neutral excitons54. The Raman spectrum measured at 514 nm (Fig. 1d) shows the out-of-plane A1 mode ~241 cm−1 with full width at half maximum (FWHM) ~ 4 cm−1, and the in-plane E′ mode ~288 cm−1 (FWHM ~ 6 cm−1). Both PL and Raman spectra confirm that the sample is 1L-MoSe218,54.

The rephasing 2d maps in the region around the A exciton are shown in Fig. 2a for various T, while the nonrephasing and absorptive 2d maps are in Supplementary Figs. 1 and 5, respectively. The peak linewidth along the diagonal direction of the rephasing map (orange double arrow in upper left panel) is plotted versus T in Fig. 2b. Closer analysis of the systematic variation of this linewidth with T (Supplementary Note 2) indicates that there are three components along the diagonal, marked with purple crosses in the lower left panel of Fig. 2a, whose amplitudes oscillate, but not in phase. Thus, when T ~ 1500 fs, the amplitude of the middle component is much higher than the other two, minimizing the effective diagonal linewidth (minimum in Fig. 2b). The measured 2d maps capture the fourth-order nonlinear optical response, as sixth-order contributions are negligible (see Supplementary Note 3).

Beating signal in the rephasing 2d maps.
Fig. 2

Beating signal in the rephasing 2d maps.

a Rephasing 2d maps at different T, normalized to the maximum absolute value of the real part of the map at T = 500 fs. b Diagonal linewidth (FWHM, indicated by the orange double arrow at T = 50 fs in panel a) versus T. The error bars depict 95% confidence bounds from fitting the diagonal slices by a Gaussian function. c Amplitude evolution (green diamonds) of one pixel (marked by the green diamond at T = 50 fs in panel a) and fit (solid green curve). The error bars are evaluated by calculating the fluctuations within a region containing background noise (see Supplementary Note 4).

We then extract the amplitude evolution of a typical pixel (marked by the green diamond in the 2d map at 50 fs) as a function of T (Fig. 2c). The number of points is restricted, due to the long measurement time (26 h for one point). A long-lived (>2 ps) oscillation with amplitude above the noise level is observed. The reproducibility of the data is confirmed by a second measurement for the same T in Supplementary Note 4.

We now analyze the origin of the oscillations in the 2d maps with the goal to deduce the EXPC strength. Previous experiments reported that the trion signal in 1L-MoSe2, located ~0.03 eV below the neutral exciton peak55, gradually dies out both in PL and absorption, when the temperature increases from 15 to 295 K, while the signal intensity of neutral excitons remains nearly unchanged24,55. Thus, the signal of the trion is much weaker than the neutral exciton at RT and in our experiment we detect predominantly the neutral exciton. This implies that wave packets involving trions can be excluded as a source of the long-lived (>2 ps) RT oscillations in Fig. 2c. Biexciton signals can be excluded in our 2d measurements due to their thermal dissociation at RT and cancellation of excited-state absorption pathways in fluorescence-detected 2d spectroscopy (see Supplementary Note 5). Vibrational wave packets were reported at RT in Refs. 20,21, with a dephasing time ~4.5 ps for 1L- and few-layer WSe220 and ~1.7 ps for 1L-MoS221. Therefore, EXPC can explain the oscillations in our 2d maps. We extract the phonon energy from a fit (Fig. 2c, solid green curve) and obtain, even for our undersampled data (less than one data point for each oscillation period as a result of a compromise arising from finite available data acquisition time), an oscillation period ~136 ± 2 fs (see Supplementary Note 6 for the fitting procedure). This corresponds to an energy splitting between the participating states ~30.4 ± 0.4 meV, matching the optical A1 phonon mode’s energy ~29.9 meV, i.e., 241 cm−1, as measured in the Raman spectrum of Fig. 1d.

We define the EXPC strength using the Huang–Rhys factor, S, in the framework of the Franck–Condon coupling model56 (see Supplementary Note 7 for a definition of S), with the minimum number of states needed to describe the observed data (Fig. 3a). The model of Fig. 3a delivers 3 transition energies, as observed experimentally (purple crosses in Fig. 2a). We assign component 1 (with the lowest energy ħω1) to the transition between g1 and e0 (blue in Fig. 3), component 2 (with a higher energy ħω2) to the two degenerate transitions between g0 and e0 and between g1 and e1 (black and green, respectively), and component 3 (with the highest energy ħω3) to the transition between g0 and e1 (red).

Analysis of beating signals.
Fig. 3

Analysis of beating signals.

a Schematic diagram of displaced harmonic oscillators (Franck–Condon coupling model56) with two vibrational levels (g0, g1) in the electronic ground state, and two in the electronic excited state (e0, e1). The horizontal shift between the two potential minima, d, characterizes the EXPC strength. Transitions g0e0, g0e1, g1e0, and g1e1 are color-coded in black, red, blue, and green, respectively. b Dependencies of Franck–Condon amplitudes χij (i, j = 0 or 1) on S, which scales, d2/2. c, d Feynman pathways giving rise to the beating signals with c negative beating frequency −ωB, and, d positive frequency +ωB. e Beating-map locations of numbered Feynman pathways from panel c. f Beating-map locations of numbered Feynman pathways from panel d.

Transitions between g0 and ei2 states are not observed in the 2d maps. This agrees with resonance Raman scattering18,19 and their time-domain analogs20,21, where the A1 overtone was not detected. This may imply an efficient non-radiative decay channel for the e2 state, which results in a fast dephasing time for the hot vibronic band transitions. Transitions between gi2 and e0 are also not observed in the 2d maps, which can be explained as a negligible thermal population of gi2 due to a small Boltzmann factor at RT. The transition amplitudes between different vibronic sublevels (blue, black, green, and red arrows in Fig. 3a) are proportional to the overlap of the vibrational wave functions of initial and final state, i.e., the Franck–Condon amplitudes χ57, plotted as a function of S in Fig. 3b. At S = 0, the red and blue curves are zero, indicating that it is not possible to excite e1 starting from g0 or to reach g1 from e0, thus the electronic/excitonic excitation is decoupled from vibrations.

We now correlate S with the oscillatory signals. We perform an additional Fourier transformation of the 2d maps with respect to T. This gives rise to a 3d spectrum, which is a hypercube as a function of ħωτ, ħωT and ħωt. 2d cuts at ħωT =+ħωB and ħωT =ħωB result in two 2d beating maps, where ωB is the beating frequency induced by EXPC.

Figure 3c lists all possible rephasing Feynman pathways that can result in contributions at negative beating frequency −ωB. Their individual positions in the 2d beating maps are in Fig. 3e. Figure 3d contains the contributions at positive ωB, and Fig. 3f their positions in the 2d map. The determination of all peak positions of individual Feynman pathways in 2d beating maps is introduced in Supplementary Note 8. Adding all pathways, we expect the beating map to be located on the lower right of the diagonal for negative beating frequency (Fig. 3e), and on the upper left for positive (Fig. 3f). The precise shape of the overall beating map depends on the relative amplitudes of the individual Feynman pathways. Those depend on the initial populations of g0 and g1, hence on the sample temperature, and on the products of the Franck–Condon amplitudes of the four involved transitions (colored arrows in Fig. 3c, d) that in turn depend on S (Fig. 3b). Thus, analyzing the shape of the beating maps allows us to estimate S.

For a quantitative evaluation, we simulate the 2d beating maps by numerically solving a Lindblad master equation58 for a system described by the Franck–Condon model illustrated in Fig. 3a (see Methods for details). S is varied from 0.25 to 2 with a step size of 0.25. Figure 4a plots the simulation for S = 0.5, 1, 1.5 from top to bottom. Data for other S are in Supplementary Fig. 13. We recognize the expected features of Fig. 3e, f. The pathway contributions overlap with each other, due to line broadening along the diagonal and anti-diagonal directions. For S = 1.5, the four underlying subpeaks create a square lineshape. For smaller S, the anti-diagonal linewidth changes strongly because of the varying relative contributions of the different Feynman pathways, leading to one asymmetric peak in each 2d beating map, whose center is located below (above) the diagonal line for negative (positive) beating frequency as predicted in Fig. 3e, f. The change in linewidth can be understood by considering that χ11 (Fig. 3b, solid green curve) crosses zero (the dashed gray line) for S = 1, such that only Feynman pathways 1, 7, 11, 13, e.g., without g1e1 transition (green arrow in Fig. 3c, d), contribute. Therefore, the anti-diagonal linewidth reaches a minimum for S = 1.

2d beating maps.
Fig. 4

2d beating maps.

a Simulated 2d beating maps for –ωB (left) and +ωB (right) and S = 0.5, 1, 1.5 from top to bottom rows. b Measured 2d beating maps with −ωB (left) and +ωB (right). c D between measured and simulated 2d beating maps versus S used in the simulation.

Figure 4b shows the experimental 2d beating maps at –ωB (left) and +ωB (right), obtained as cuts through the rephasing 3d spectrum at the same beating frequency as in the simulations, ωB = 4.6 × 1013 s−1. The asymmetry with respect to the diagonal is visible, and the elliptical shape [rather than roundish (small S) or squarish (large S)] points at an intermediate S by comparison with simulations. The lowest contour lines of experimental and simulated beating maps in Fig. 4a, b show some “jagged” behavior. The factors that could contribute to this are discussed in Supplementary Note 9.

To determine the EXPC strength quantitatively, we calculate the deviation D between measured and simulated 2d beating maps:

where N is the pixel number in each dimension of the 2d beating maps, Aij (A~ij) is the amplitude of the pixel in column i and row j of the simulated (experimental) 2d beating map. Figure 4c plots D versus S. We find the best agreement for S = 1. We then compare the experimental absorptive, rephasing, and nonrephasing 2d maps for T = 50 fs (Fig. 5a) with the simulation using the optimal S (Fig. 5b) and find good agreement, confirming the reliability of our Franck–Condon model.
Absorptive (left), rephasing (middle), and nonrephasing (right) real-valued 2d maps at T = 50 fs.
Fig. 5

Absorptive (left), rephasing (middle), and nonrephasing (right) real-valued 2d maps at T = 50 fs.

a Experiment. b Simulation using the deduced optimal S = 1.

We note that large S on the order of 1 in 1L-TMDs are supported by theory5961, but were never previously experimentally measured, to the best of our knowledge. The exciton coupling with longitudinal optical phonons in 1L-TMDs was studied by ab initio calculations59,60. These found that polar LO phonon vibrations give rise to a macroscopic electric field that couples to the charge carriers. Such a coupling, named “Fröhlich interaction”, is fundamentally affected by the dimensionality of the system. When the dimensionality of the system decreases from 3d to 2d, a 3-fold increase of S is predicted, see, e.g., Fig. 7 in Ref. 62. Taking into account Fröhlich interactions in a 2d model, Ref. 61 calculated S for LO phonons as a function of the polarization parameter for 1L-MoSe2, finding ~1.93–2.24. Defects may also have a strong influence on S63,64. The electric fields induced by local charges at interfaces increase the non-vanishing part of the electron and hole polaron clouds in the exciton state64 and, as a result, S as large as ~1 can be found64.

In conclusion, we carried out spatially resolved, fluorescence-detected 2d micro-spectroscopy on 1L-MoSe2. We identified phonon sidebands upon excitation of the A exciton, due to coupling to the optical phonon mode A1. While the phonon is not resolved in linear absorption or PL spectra at RT, analysis of the 2d beating frequency as a function of waiting time allowed us to assign the phonon mode via comparison with Raman data. We determined the exciton–phonon coupling strength, i.e., the displacement along the phonon coordinate of the excited-exciton oscillator potential with respect to the ground state, and found a Huang–Rhys factor, S ~ 1, by comparison with simulations of 2d beating maps. The measured S ~ 1 is larger than most reported values (S ~ 0–0.5) of other inorganic semiconductor nanostructures52, such as CdSe quantum dots48 and rods49, ZnSe quantum dots50, single-wall carbon nanotubes51, indicating a strong EXPC. This finding may benefit, amongst others, the development of TMD-based polariton devices65, in which the polariton-relaxation process strongly depends on the EXPC strength66.

Our space-, time-, and excitation/detection-frequency-resolved spectroscopy provides a unique tool to measure EXPC also in other TMDs. hBN encapsulation can lower inhomogeneous broadening of 1L-TMDs67,68, we thus expect better resolved peaks for hBN-encapsulated samples. S may be influenced by the substrate, by changing the macroscopic electric field induced by the polar LO phonon at the interface60. E.g., SiO2 increases the screening of the Fröhlich interaction strongly at small momenta60. Therefore, we expect that a different substrate might result in a different S, hence, hBN encapsulation might also influence it. Our method can be extended to other semiconducting systems for which phonon-induced subbands are expected in the excitonic lineshape, such as single-wall carbon nanotubes69, layered perovskites70, bulk heterojunctions71, or other organic crystals. Because of the high spatial resolution ~260 nm, our technique can also be used to study excitonic coupling in layered materials heterostructures or microcavities with embedded semiconductors. The determination of EXPC will provide design-relevant parameters for the development of photonic and optoelectronic devices based on these semiconducting systems.

Methods

Samples fabrication

The samples are prepared by micromechanical cleavage72 of bulk MoSe2 from HQ Graphene. This is performed with polydimethylsiloxane (PDMS) and, after inspection under an optical microscope, 1L-MoSe2 is dry transferred in ambient conditions to a 200-μm fused silica substrate73. After transfer, the samples are characterized by Raman and PL with a Renishaw Invia spectrometer at 514 nm and with a ×50 objective. Metallic frames (Cr/Au) are fabricated around selected 1L-MoSe2 flakes on fused silica by laser-writer lithography to facilitate the identification of the samples’ position for subsequent 2DES characterization.

Data acquisition

A femtosecond oscillator (Venteon Laser Technologies GmbH, Pulse One PE) provides a laser spectrum ranging from 650 to 950 nm, confined by a hard aperture in the Fourier plane of a 4f-based pulse shaper in front of the liquid-crystal display (LCD, Jenoptik Optical Systems GmbH, SLM-S640d). The aperture acts as a short-pass filter at 808 nm, so that the longer-wavelength PL can be detected without scattering from the pump light. A Schott KG5 color filter further modulates the spectrum into a smooth shape, which ensures the absence of pronounced side peaks and other irregularities in the temporal pulse profile. The laser focus in the microscope is mapped by a piezo scanning stage (P-517.3CL, PI, Germany). Excitation occurs through a focusing objective (Nikon Plan Apo, 100×/1.40). PL is collected through the same objective, transmitted through a dichroic beam splitter (DBS, AHF Analysentechnik, F48-810) and an additional emission filter (EF, AHF Analysentechnik, F76-810), and detected by an APD (Perkin Elmer, SPCM-CD 2801).

We compress the laser pulses by (1) using chirped mirrors to pre-compensate some second-order phase dispersion; (2) employing the pulse shaper to compensate any remaining dispersion. A two-photon photodiode (TPPD) is placed in the focus of the microscope objective to generate a nonlinear feedback signal that is a measure of pulse intensity and pulse duration. We then utilize the algorithm of Ref. 74 to maximize the peak intensity, leading to a transform-limited laser pulse. To characterize the result of pulse compression, an autocorrelation trace is measured using the same TPPD, as shown in Supplementary Fig. 15. This agrees well with a simulated one assuming the experimentally measured laser spectrum and a flat spectral phase. This correspondence indicates successful phase-dispersion compensation and ~12 fs pulses at the sample position, as discussed in Refs. 47,74.

Linearly polarized light, acting as a superposition of left- and right-handed circularly polarized light, is used to simultaneously excite both the transitions in the K and K’ valleys. The pump fluence is ~2 μJ/cm2. We estimate the heating through laser irradiation during the experiment as discussed in Supplementary Note 10. The sample temperature increases from 300 to ~308 K within the first 100 ns, then remains constant. Thus there is no unwanted heating, thermal instabilities or damage.

We obtain the 2d maps by scanning τ and t in steps of 3 fs each from 0 to 99 fs, for T = 50, 250, 500, 750, 1000, 1250, 1500, 1750, 2000 fs, using the spectral modulation function75:

at a center frequency ω0 = 2.5 × 1015 s−1. We avoid undersampling with time steps of 3 fs by employing a partially rotating frame with γ = 0.2. The third pulse is fixed at time 0, so that when 2d maps are measured at a certain T, only the first and fourth pulses are delayed. By setting the phase of the first pulse to 0, three relative phases, i.e., φ12, φ13, and φ14, are scanned in a 27-step phase-cycling scheme, where each relative phase takes values of 0, 2π3, 4π3. This allows us to select rephasing and nonrephasing contributions individually from the complete raw data47,76. We obtain absorptive 2d maps by summing the real parts of the rephasing and nonrephasing 2d ones, canceling dispersion terms, leaving a pure absorptive lineshape39. Due to the finite response time of the liquid crystals of our pulse shaper, we wait ~500 ms after changing the phase mask before taking data. PL is averaged over ~1 ms for each APD acquisition period. Including additional averaging (2000 times for each pulse shape), the total measurement time for one 2d map is ~26 h. During the measurements the PL intensity of the sample is constantly monitored every ~80 s. We observe no systematic decay during the measurement time. This indicates a long-term chemical, thermal, and photostability of the sample. The group delay dispersion at the sample position is compensated by adding an additional phase to the modulation function47.

Simulations

To simulate the 2d maps, we solve the Lindblad quantum master equation58

where the time evolution of the density matrix ρt of the quantum system under a Hamiltonian Ht is treated in the Liouville–von Neumann formalism, with the extension of dissipative and pure dephasing effects, Ht is expressed as the sum of a time-independent Hamiltonian H0=ħωmmmm and an interaction Hamiltonian HIt=γexEtmnμm,nmn+nm, where m (or n) are the unperturbed eigenstates with eigenenergies ħωm (or ħωn), γex is the field coupling strength for excitation with external electric field Et, μm,n is the transition dipole moment between states m and n, Tj represents the time associated with a pure dephasing or population relaxation process, and the Lindblad operators Lj are defined as Lj=anan for pure dephasing and Lj=aman, with mn for a population relaxation process, where am. and an denote the creation and annihilation operators, respectively.

We assume a four-level system, with two vibrational levels in the ground electronic state (g0 and g1) and two vibronically excited states (e0 and e1), as in Fig. 3a. The splittings within the subbands are taken to be identical, i.e., we use the same energy separations (30 meV20) between g0 and g1 as well as between e0 and e1. The Franck–Condon amplitudes between gi and ej, i.e., χij. (i, j = 0 or 1) depend on S as for Fig. 3b. The initial populations of g0 and g1 are determined by the temperature, according to the Boltzmann distribution. In Supplementary Note 10 we estimate the heating through laser irradiation during the experiment. We find the sample to remain close to RT.

The excitation laser field is calculated from the experimentally utilized laser spectrum assuming a flat phase and then adding the transfer function:

where Toff is an offset of the position of the first pulse in time domain, set at 100 fs to avoid cutting off the first pulse at time zero. In the experimental modulation function of Eq. (2), time zero is set at the maximum of the third pulse, leading to a different mathematical expression. However, this difference does not affect the resulting 2d maps, since only relative time delays between the pulses are relevant. τ and t in the simulation are scanned with the same parameters as in the experiment, from 0 to 99 fs in steps of 3 fs with γ = 0.2, whereas T is scanned from 0 to 200 fs in steps of 25 fs.

Inhomogeneous broadening due to a Gaussian distribution of excitonic transition frequencies is taken into account by obtaining the inhomogeneously broadened response function, SI(τ, t), from the homogeneous response, S(τ, t), by solving Eq. (3), via:

where Δ is a parameter linearly proportional to the inhomogeneous linewidth broadening,—is applied for the rephasing signal, and + for the nonrephasing signal. Equation (5) is used under two assumptions. (1) Spectral diffusion can be ignored within the T = 2 ps window of the measurements. Typically, spectral diffusion is caused by environmental fluctuations around the transition dipoles, inducing a broadening along the anti-diagonal direction for the absorptive 2d maps as T increases39. This is not observed in our experiments (see Supplementary Fig. 5), indicating a much slower than 2 ps modulation time constant of the environment, justifying the use of Eq. (5). (2) The vibrational frequency does not change with the excitonic transition energy, also assumed for the model of Fig. 3a and Eqs. (13). If this was not fulfilled, a tilt of elongated peaks in the 2d beating maps relative to the diagonal would be observed40, unlike in our measurements (Fig. 4b).

Peer review information: Nature Communications thanks Jacek Kasprzak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information is available for this paper at 10.1038/s41467-021-20895-0.

Acknowledgements

We thank Pavel Malý for support with computations of 2d maps. We acknowledge funding by the European Research Council (ERC)—Grants No. 614623, Hetero2D, GSYNCOR; EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, and EP/L016087/1; and the EU Graphene and Quantum Flagships.

Author contributions

D.L., C.T., and M.N. performed spectroscopic measurements. D.L. analyzed the 2DES data and conducted the 2DES simulations. S.D.C. supervised C.T.; T.B., G.C., and A.C.F. initiated and supervised the project. G.S. and G.W. prepared and characterized the samples. All authors discussed results. D.L., C.T., G.C., T.B., and A.C.F. wrote the paper with input from all coauthors.

Data availability

The data that support the findings of this study have been deposited in Mendeley Data with the embargo date of 1 March 2021. The data are available at the following link: 10.17632/52yj8d9p4t.1

Competing interests

The authors declare no competing interests.

References

1. 

    Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat. Photon.2010. 4: 611-622 doi: 10.1038/nphoton.2010.186

2. 

    Koppens FHL, . Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol.2014. 9: 780-793 doi: 10.1038/nnano.2014.215

3. 

    Ferrari AC, . Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale2015. 7: 4598-4810 doi: 10.1039/C4NR01600A

4. 

    Romagnoli M, . Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater.2018. 3: 392 doi: 10.1038/s41578-018-0040-9

5. 

    Splendiani A, . Emerging photoluminescence in monolayer MoS2. Nano Lett.2010. 10: 1271-1275 doi: 10.1021/nl903868w

6. 

    Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010. 105: 136805 doi: 10.1103/PhysRevLett.105.136805

7. 

    Qiu DY, da Jornada FH, Louie SG. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett.2013. 111: 216805 doi: 10.1103/PhysRevLett.111.216805

8. 

    Chernikov A, . Exciton binding energy and nonhydrogenic Rydberg series in monolayer. Phys. Rev. Lett.2014. 113: WS2 doi: 10.1103/PhysRevLett.113.076802

9. 

    Selig M, . Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun.2016. 7: 13279 doi: 10.1038/ncomms13279

10. 

    Jakubczyk T, . Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Materials2018. 5: 031007 doi: 10.1088/2053-1583/aabc1c

11. 

    Yuan L, Huang L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale2015. 7: 7402-7408 doi: 10.1039/C5NR00383K

12. 

Paradisanos, I. et al. Efficient phonon cascades in hot photoluminescence of WSe2 monolayers. Nat. Commun. 10.1038/s41467-020-20244-7 (2021).

13. 

    Li Z, . Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2. Nat. Commun.2019. 10: 2469 doi: 10.1038/s41467-019-10477-6

14. 

15. 

    Moody G, . Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun.2015. 6: 8315 doi: 10.1038/ncomms9315

16. 

    Shree S, . Observation of exciton-phonon coupling in MoSe2 monolayers. Phys. Rev. B2018. 98: 035302 doi: 10.1103/PhysRevB.98.035302

17. 

    Christiansen D, . Phonon sidebands in monolayer transition metal dichalcogenides. Phys. Rev. Lett.2017. 119: 187402 doi: 10.1103/PhysRevLett.119.187402

18. 

    Soubelet P, Bruchhausen AE, Fainstein A, Nogajewski K, Faugeras C. Resonance effects in the Raman scattering of monolayer and few-layer MoSe2. Phys. Rev. B2016. 93: 155407 doi: 10.1103/PhysRevB.93.155407

19. 

    Carvalho BR, Malard LM, Alves JM, Fantini C, Pimenta MA. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett.2015. 114: 136403 doi: 10.1103/PhysRevLett.114.136403

20. 

    Jeong TY, . Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano2016. 10: 5560-5566 doi: 10.1021/acsnano.6b02253

21. 

Trovatello, C. et al. Strongly coupled coherent phonons in single-layer MoS2. ACS Nano 14, 5700–5710 (2020).

22. 

    Webb MD, Cundiff ST, Steel DG. Stimulated-picosecond-photon-echo studies of localized exciton relaxation and dephasing in GaAs/AlxGa1-xAs multiple quantum wells. Phys. Rev. B1991. 43: 12658-12661 doi: 10.1103/PhysRevB.43.12658

23. 

    Fischer AJ, . Femtosecond four-wave-mixing studies of nearly homogeneously broadened excitons in GaN. Phys. Rev. B1997. 56: 1077-1080 doi: 10.1103/PhysRevB.56.1077

24. 

    Scarpelli L, . Resonantly excited exciton dynamics in two-dimensional MoSe2 monolayers. Phys. Rev. B2017. 96: 045407 doi: 10.1103/PhysRevB.96.045407

25. 

    Kosarev AN, . Microscopic dynamics of electron hopping in a semiconductor quantum well probed by spin-dependent photon echoes. Phys. Rev. B2019. 100: 121401 doi: 10.1103/PhysRevB.100.121401

26. 

    Poltavtsev SV, . Polarimetry of photon echo on charged and neutral excitons in semiconductor quantum wells. Sci. Rep.2019. 9: 1-9 doi: 10.1038/s41598-019-42208-8

27. 

    Mermillod Q, . Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy. Optica2016. 3: 377-384 doi: 10.1364/OPTICA.3.000377

28. 

    Hao K, . Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun.2017. 8: 15552 doi: 10.1038/ncomms15552

29. 

    Turner DB, Wilk KE, Curmi PMG, Scholes GD. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett.2011. 2: 1904-1911 doi: 10.1021/jz200811p

30. 

    Butkus V, Zigmantas D, Valkunas L, Abramavicius D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett.2012. 545: 40-43 doi: 10.1016/j.cplett.2012.07.014

31. 

    Song Y, Clafton SN, Pensack RD, Kee TW, Scholes GD. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends. Nat. Commun.2014. 5: 4933 doi: 10.1038/ncomms5933

32. 

    Thyrhaug E, . Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex. Nat. Chem.2018. 10: 780-786 doi: 10.1038/s41557-018-0060-5

33. 

    Hao K, . Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2. Nano Lett.2016. 16: 5109-5113 doi: 10.1021/acs.nanolett.6b02041

34. 

    Tempelaar R, Berkelbach TC. Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nat. Commun.2019. 10: 3419 doi: 10.1038/s41467-019-11497-y

35. 

    Mukamel S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem.2000. 51: 691-729 doi: 10.1146/annurev.physchem.51.1.691

36. 

37. 

    Cho M. Coherent two-dimensional optical spectroscopy. Chem. Rev.2008. 108: 1331-1418 doi: 10.1021/cr078377b

38. 

    Ginsberg NS, Cheng Y-C, Fleming GR. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res.2009. 42: 1352-1363 doi: 10.1021/ar9001075

39. 

Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).

40. 

    Seibt J, Pullerits T. Beating signals in 2D spectroscopy: electronic or nuclear coherences? Application to a quantum dot model system. J. Phys. Chem. C2013. 117: 18728-18737 doi: 10.1021/jp406103m

41. 

    Seibt J, Hansen T, Pullerits T. 3D spectroscopy of vibrational coherences in quantum dots: theory. J. Phys. Chem. B2013. 117: 11124-11133 doi: 10.1021/jp4011444

42. 

    Tiwari V, . Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria. Nat. Commun.2018. 9: 4219 doi: 10.1038/s41467-018-06619-x

43. 

    Tian P, Keusters D, Suzaki Y, Warren WS. Femtosecond phase-coherent two-dimensional spectroscopy. Science2003. 300: 1553-1555 doi: 10.1126/science.1083433

44. 

    Tekavec PF, Lott GA, Marcus AH. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys.2007. 127: 214307 doi: 10.1063/1.2800560

45. 

    Tan H-S. Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy. J. Chem. Phys.2008. 129: 124501 doi: 10.1063/1.2978381

46. 

47. 

    Goetz S, Li D, Kolb V, Pflaum J, Brixner T. Coherent two-dimensional fluorescence micro-spectroscopy. Opt. Express2018. 26: 3915-3925 doi: 10.1364/OE.26.003915

48. 

    Baker JA, Kelley DF, Kelley AM. Resonance Raman and photoluminescence excitation profiles and excited-state dynamics in CdSe nanocrystals. J. Chem. Phys.2013. 139: 024702 doi: 10.1063/1.4812499

49. 

    Lange H, . Optical phonons in colloidal CdSe nanorods. Phys. Status Solidi B2010. 247: 2488-2497 doi: 10.1002/pssb.201046042

50. 

    Gong K, Kelley DF, Kelley AM. Resonance Raman spectroscopy and electron–phonon coupling in Zinc Selenide quantum dots. J. Phys. Chem. C2016. 120: 29533-29539 doi: 10.1021/acs.jpcc.6b12202

51. 

    Lüer L, . Coherent phonon dynamics in semiconducting carbon nanotubes: a quantitative study of electron-phonon coupling. Phys. Rev. Lett.2009. 102: 127401 doi: 10.1103/PhysRevLett.102.127401

52. 

    Kelley AM. Exciton-optical phonon coupling in II-VI semiconductor nanocrystals. J. Chem. Phys.2019. 151: 140901 doi: 10.1063/1.5125147

53. 

    Li Y, . Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B2014. 90: 205422 doi: 10.1103/PhysRevB.90.205422

54. 

    Tonndorf P, . Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express2013. 21: 4908-4916 doi: 10.1364/OE.21.004908

55. 

    Ross JS, . Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun.2013. 4: 1474 doi: 10.1038/ncomms2498

56. 

Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

57. 

van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific Publishing Co. Pte. Ltd., 2000).

58. 

    Lindblad G. On the generators of quantum dynamical semigroups. Commun. Math. Phys.1976. 48: 119-130 doi: 10.1007/BF01608499

59. 

    Kaasbjerg K, Thygesen KS, Jacobsen KW. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B2012. 85: 115317 doi: 10.1103/PhysRevB.85.115317

60. 

    Sohier T, Calandra M, Mauri F. Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: theoretical modeling and first-principles calculations. Phys. Rev. B2016. 94: 085415 doi: 10.1103/PhysRevB.94.085415

61. 

    Wang Z-W, Li R-Z, Dong X-Y, Xiao Y, Li Z-Q. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides. Front. Phys.2018. 13: 137305 doi: 10.1007/s11467-018-0786-y

62. 

    Kundrotas J, . Impurity-induced Huang–Rhys factor in beryllium δ-doped GaAs/AlAs multiple quantum wells: fractional-dimensional space approach. Semicond. Sci. Technol.2007. 22: 1070-1076 doi: 10.1088/0268-1242/22/9/016

63. 

    Nomura S, Kobayashi T. Exciton–LO-phonon couplings in spherical semiconductor microcrystallites. Phys. Rev. B1992. 45: 1305-1316 doi: 10.1103/PhysRevB.45.1305

64. 

    Türck V, . Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots. Phys. Rev. B2000. 61: 9944-9947 doi: 10.1103/PhysRevB.61.9944

65. 

    Schneider C, Glazov MM, Korn T, Höfling S, Urbaszek B. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun.2018. 9: 2695 doi: 10.1038/s41467-018-04866-6

66. 

    Coles DM, . Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater.2011. 21: 3691-3696 doi: 10.1002/adfm.201100756

67. 

    Jakubczyk T, . Coherence and density dynamics of excitons in a single-layer MoS2 reaching the homogeneous limit. ACS Nano2019. 13: 3500-3511 doi: 10.1021/acsnano.8b09732

68. 

    Boule C, . Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. Phys. Rev. Mater.2020. 4: 034001 doi: 10.1103/PhysRevMaterials.4.034001

69. 

    Murakami Y, . Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels. Phys. Rev. B2009. 79: 195407 doi: 10.1103/PhysRevB.79.195407

70. 

    Mauck CM, Tisdale WA. Excitons in 2D organic–inorganic halide perovskites. Trends Chem.2019. 1: 380-393 doi: 10.1016/j.trechm.2019.04.003

71. 

    Street RA. Electronic structure and properties of organic bulk-heterojunction interfaces. Adv. Mater.2016. 28: 3814-3830 doi: 10.1002/adma.201503162

72. 

    Novoselov KS, . Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA2005. 102: 10451-10453 doi: 10.1073/pnas.0502848102

73. 

    Bonaccorso F, . Production, processing and placement of graphene and two dimensional crystals. Mater. Today2012. 15: 564 doi: 10.1016/S1369-7021(13)70014-2

74. 

    Pawłowska M, . Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective. Opt. Express2014. 22: 31496-31510 doi: 10.1364/OE.22.031496

75. 

    Galler A, Feurer T. Pulse shaper assisted short laser pulse characterization. Appl. Phys. B Lasers Opt.2008. 90: 427-430 doi: 10.1007/s00340-007-2924-z

76. 

    Draeger S, Roeding S, Brixner T. Rapid-scan coherent 2D fluorescence spectroscopy. Opt. Express2017. 25: 3259-3267 doi: 10.1364/OE.25.003259