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Chapter 1 
Overview 

1.1 GNSS Development 

The emergence of the Global Navigation Satellite System (GNSS) has revolutionized 
human navigation and positioning. Over time, several satellite navigation systems 
have been developed, including global, regional, and augmented systems. 

1.1.1 GPS 

The Global Positioning System (GPS) is the first satellite navigation system to be offi-
cially operated on a global scale. It remains the most mature and widely used system 
to date. The United States Department of Defense initiated the research and develop-
ment of GPS in the 1970s and completed its basic construction in the 1990s. By 1995, 
the United States Department of Defense officially declared GPS operational. In its 
early stages, GPS was designed with two types of pseudo-random codes: the precision 
code (P-code) and the coarse acquisition code (C/A code). The P-code was restricted 
to military and special users from the United States and its allies, while the C/A 
code was made available to civilian users worldwide, providing standard positioning 
services. Currently, the GPS modernization program is an ongoing, multibillion-
dollar initiative aimed at enhancing the system features and overall performance. 
The upgrades include new civilian and military GPS signals [1, 2]. 

GPS consists of three main segments: the space segment, the control segment, 
and the user segment. The space segment comprises a constellation of satellites that 
transmit radio signals to users. The United States is committed to maintaining at 
least 24 operational GPS satellites under most circumstances. Table 1.1 provides the 
nominal GPS constellation parameters. Specifically, the system includes 24 satellites 
evenly distributed across six orbital planes, each inclined at 55°, with four satellites 
per plane [3]. In recent years, the total number of satellites in the constellation has
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Table 1.1 Nominal GPS 
constellation parameters Parameter Value 

Number of operational satellites t = 24 
Number of orbital planes p = 6 
Number of satellites in a plane t/p = 4 
Orbit type Near circular 

Eccentricity e < 0.02 
Inclination i = 55◦ 

Nominal orbital altitude h = 20,180 km 

Period of revolution T = 11 h 58 m 

Longitude of ascending node between planes �� = 60◦ 

Ground track repeat cycle 2 orbit/1d sid 

increased to 31. Of these, more than 24 are placed in expandable slots within the 
baseline 24-satellite constellation [4]. Surplus satellites (beyond the 27th operational 
satellite) are typically positioned near satellites that are expected to require replace-
ment soonest [4]. The control segment consists of a global network of ground facilities 
responsible for tracking GPS satellites, monitoring their transmissions, performing 
analyses, and sending commands and data to the constellation. The current Opera-
tional Control Segment (OCS) includes a Master Control Station (MCS), an alternate 
MCS, 11 command and control antennas, and 16 monitoring sites. The user segment 
primarily receives navigation signals transmitted by the satellites. It recovers the 
carrier signal frequency and synchronizes with the satellite clock. Additionally, it 
demodulates satellite ephemeris data, satellite clock correction parameters, and other 
relevant information from the navigation message. Using this data, users can deter-
mine navigation parameters such as geographic longitude, latitude, altitude, speed, 
and precise time. 

Signal is an essential part of all satellite navigation systems, for GPS, the standard 
frequency of electromagnetic waves emitted by GPS satellites is f0 = 10.23MHz. 
Currently, there are both traditional and new signals on L1, L2, and L5, where 
the frequencies are f1 = 1575.42MHz, f2 = 1227.6MHz, and f2 = 1176.45MHz, 
respectively. 

1.1.2 BDS 

China’s BeiDou Navigation Satellite System (BDS) is another GNSS, and it has 
progressed through three major stages since the 1990s. The initial BeiDou Demon-
stration Navigation System (BDS-1) was established in 2003. It originally consisted 
of two geostationary orbit (GEO) satellites, with an additional GEO satellite serving 
as a backup. Initially, BDS-1 was considered a regional positioning system rather 
than a full navigation system, as it only provided user positioning information. In
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2012, the BeiDou Regional Navigation Satellite System (BDS-2) was launched. It 
featured a constellation of 14 satellites: 5 GEO satellites, 5 inclined geosynchronous 
orbit (IGSO) satellites, and 4 medium Earth orbit (MEO) satellites [5]. BeiDou 
Global Navigation Satellite System-3 (BDS-3), which was developed following the 
stable service provided by BDS-2, began to offer global services in 2020. It mainly 
covers the Asia-Pacific region with triple-frequency signals and provides global 
navigation services [6]. 

Similar to other GNSS, the BDS-3 architecture is composed of three main parts: 
the space segment, the Ground Control Segment (GCS), and user terminals. The space 
segment consists of 3 GEO satellites, 3 IGSO satellites, and 24 MEO satellites, with 
additional backup satellites in orbit. The GEO satellites are positioned at an altitude 
of 35,786 km and located at longitudes of 80°, 110.5°, and 140°, respectively. The 
IGSO satellites also have an altitude of 35,786 km, with an orbit inclination angle of 
55°. The MEO satellites have an altitude of 21,528 km and an orbit inclination angle 
of 55°. 

The GCS includes the MCS, which incorporates the OCS, Monitor Stations (MSs), 
and Uplink Stations (ULSs). The primary tasks of the MCS are to collect tracking 
data from monitoring stations, process this data to determine satellite orbits and 
clock biases, and generate the satellite navigation messages. The MCS of BDS-
3 also supports user position determination via the Radio Determination Satellite 
Service (RDSS) mode and provides short message communication services. The 
MSs are strategically distributed across mainland China. They provide code and phase 
observations to the MCS for satellite orbit determination and for generating wide-
area differential products. The ULSs transmit the generated navigation messages and 
wide-area differential corrections to the satellites for broadcast to users [7]. 

BDS uses the China Geodetic Coordinate System 2000 (CGCS2000), which is 
a geocentric geodetic coordinate system. CGCS2000 is realized through the China 
Terrestrial Reference Frame (CTRF). The definition of this coordinate system follows 
the criteria established in the 1996 conventions of the International Earth Rotation 
and Reference Systems Service (IERS). The relevant parameters of the CGCS2000 
coordinate system are listed in Table 1.2. The BDS time system is based on BeiDou 
Time (BDT), which is a continuous navigation time scale without leap seconds and 
uses the SI second as its basic unit. BDT is typically expressed in terms of BeiDou 
week number (WN) and seconds of week (SoWs), with values ranging from 0 to 
604,799. The reference epoch of BDT is 00:00:00 on January 1, 2006, at which point 
both WN and SoW are 0 [8]. 

Table 1.2 Fundamental 
parameters of the CGCS2000 
system 

Parameter Value 

Semimajor axis a = 6378137.0 m  

Flattening f = 1/298.257222101 
Gravitational coefficient 
(incl. atmosphere) 

GM⊗ = 398600.4418 × 109 m3/s2 

Angular velocity ω⊗ = 7.292115 × 10−5 rad/s
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In addition to the traditional positioning, navigation, and timing (PNT) func-
tions, the BDS user terminal supports six additional featured services. These 
services include: Global Short Message Communication Service (GSMCS), and 
MEO Satellite-Based Search and Rescue (MEOSAR) service. These two services 
are based on MEO satellite features. Regional services offered include: Regional 
Short Message Communication Service (RSMCS), RDSS, BDS Satellite-Based 
Augmented Service (BDSBAS), and satellite-based precise point positioning (PPP) 
service via B2b signal (B2b-PPP). These regional services are based on GEO satellite 
features [9]. 

It is also worth noting that the BDS-2 can provide three public service signals, 
i.e., B1I, B2I and B3I, where the center frequencies of B1, B2, and B3 bands are 
1561.098, 1207.140, and 1268.520 MHz, respectively [6]. Whereas in BDS-3, six 
public service signals B1I, B1C, B2a, B2b, B2a+b, and B3I are provided. Among 
them, the center frequencies of B1I, B1C, B2a, B2b, B2a+b, and B3I are 1561.098, 
1575.420, 1176.450, 1207.140, 1191.795, and 1268.520 MHz, respectively [6]. 

The Satellite Navigation Interface Control Document (ICD) defines the signal 
interface relationship between the satellite navigation system and the user. It is an 
essential technical document for developing manufacturing specifications and chips. 
The BDS ICD establishes and standardizes the communication interface protocol 
for the radio link between the space segment and the user segment. It serves as 
the standard document that user terminals must follow to receive, capture, track, 
demodulate, and decode BDS navigation satellite signals. While BDS has developed 
rapidly, it offers unique functions, particularly with BDS-3, which meets the design 
index requirements for orbit determination accuracy, satellite clock accuracy, signal-
in-space accuracy, and PNT service performance [10]. However, its development 
still faces significant challenges, which can be categorized into four key areas: inter-
national competition, lack of national policy, limited initiative in service concepts, 
and gaps in certain technologies [11]. 

1.1.3 Galileo 

The enormous potential benefits of satellite navigation have led the European Space 
Agency (ESA) and the European Commission (EC) to collaborate on the development 
and deployment of the European Navigation Satellite System, named after the Italian 
astronomer Galileo. The Galileo system is a strategic initiative that not only supports 
security, defense, and military applications but also plays a significant role in the 
aerospace sector, offering substantial social and economic benefits. Construction of 
Galileo began in 2005, and by 2016, it achieved the capability of providing regional 
independent services following continuous development. In 2017, Galileo entered the 
operational phase, with the Full Operational Capability (FOC) slated for 2020. This 
includes the system daily operations, constellation maintenance, and the operation of 
the ground segment [12]. To meet the corresponding PNT requirements, the Galileo 
ground segment consists of the Ground Control Segment and the Ground Mission
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Table 1.3 Nominal Galileo constellation parameters 

Parameter Value 

Reference constellation type Walker 24/3/1 + 6 in-orbit spares 
Semimajor axis 29,600.318 km 

Inclination 56° 

Period 14 h 04 m 42  s  

Ground track repeat cycle 10 sidereal days/17 orbits 

Segment (GMS). The core facilities of both segments are located at two Galileo 
Control Centers (GCC) in Oberpfaffenhofen, Germany, and Fucino, Italy [13]. 

The Galileo constellation consists of 30 satellites, including 24 operational satel-
lites and 6 spare satellites in orbit. These satellites are evenly distributed across 
3 orbital planes, with each plane containing 8 operational satellites and 2 spare 
satellites. The detailed nominal parameters of the Galileo constellation are listed in 
Table 1.3. 

In addition to its global navigation and positioning functions, Galileo also offers 
other capabilities, such as global search and rescue (SAR). As a fourth service, the 
Galileo satellite system supports the international satellite search and rescue system 
Cospas-Sarsat, which was established by the United States, Russia, Canada, and 
France. The satellites are equipped with transponders to relay distress signals from 
emergency beacons to rescue coordination centers, which then initiate rescue oper-
ations. At the same time, the system is designed to notify users through emergency 
beacons that their distress signal has been detected and that help is on the way. Each 
Galileo satellite transmits navigation signals (L-band) across three frequencies. The 
Galileo system offers three different location services: Open Service: This service is 
available to all users and offers free access to satellite signals on the E1-B/C, E5a-I/ 
Q, and E5b-I/Q frequencies. Authorized Services (Government Services): This is 
a publicly regulated service available on the restricted E1-A and E6-A frequen-
cies. Commercial Services: This service utilizes the E6-B/C frequencies (navigation 
signals on a third frequency, with optional encryption) and is designed to provide 
future value-added services. Thus, there are five frequencies used by Galileo. The 
center frequencies of E1, E5a, E5b, E5, and E6 are 1561.098, 1575.420, 1176.450, 
1207.140, 1191.795, and 1268.750 MHz, respectively [13, 14]. 

1.1.4 GLONASS 

In the last century, the GLObal Navigation Satellite System (GLONASS) was devel-
oped as a second-generation satellite navigation and positioning system by the former 
Soviet Union and is now managed and maintained by Russia. Similar to the GPS, 
GLONASS also follows the principle of space-based trilateration, providing users
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anywhere on Earth and in near-Earth space with continuous and accurate three-
dimensional coordinates, speed, and time information. From the launch of the first 
GLONASS satellite in October 1982 to December 1995, a total of 73 GLONASS 
satellites were launched. Ultimately, a constellation of 24 operational satellites was 
established, which was officially completed in 2012 [15]. 

Similar to GPS, GLONASS consists of three segments: the space segment, the 
ground segment, and the user segment. GLONASS uses a Walker-type constellation 
structure. Specifically, the orbital inclination of GLONASS satellites is approxi-
mately 10° higher than that of other GNSS satellites. This design provides improved 
observation conditions for the Russian region. GLONASS users worldwide also 
benefit from its excellent sky coverage, particularly in polar regions, where more 
GLONASS satellites are visible than from other systems. The plane positions of each 
GLONASS satellite are distributed across three orbital planes [16]. The parameters 
of the GLONASS constellation are provided in Table 1.4. 

The ground segment is a crucial component of the GLONASS system. Following 
the disintegration of the Soviet Union, it is now primarily managed by the Russian 
Space Agency (RSA), and as a result, this segment is largely confined to Russia. 
Its core components include a System Control Center (SCC) responsible for plan-
ning and coordinating all elements of the ground segment, and central clocks (CCs) 
that synchronize with Coordinated Universal Time (UTC). Additionally, telemetry, 
tracking, and command stations (TT&C), along with uplink stations, are used to 
receive status information from GLONASS satellites, transmit control commands, 
and determine satellite orbits. The ground segment also includes one-way monitoring 
stations that collect one-way pseudo-range and carrier-phase measurements [17].

Table 1.4 Nominal GLONASS constellation parameters 

Parameter Value 

Number of operational satellites t = 24 
Number of orbital planes p = 3 
Number of satellites in a plane t/p = 8 
Phasing parameter f = 1 
Orbit type Near circular 

Eccentricity e < 0.01 
Inclination i = 64◦ ± 0.3◦ 

Nominal altitude h = 19100 km 

Period of revolution T = 11h 15m 44s ± 5s 
Longitude of ascending node between planes �� = 120◦ 

Argument of latitude difference �u = 45◦ 

Latitude shift between planes �uf /n = 45◦ 

Ground track repeat cycle 17 orbits/8 d  
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Unlike the previous satellite systems, GLONASS is based on the Frequency Divi-
sion Multiple Access (FDMA) technology. That is, the frequencies of signals trans-
mitted by different satellites are slightly different, and different signals use different 
signal channels. The GLONASS provides two types of services. The first one is the 
public service for unencrypted signals. It usually includes two frequency signals L1 
and L2 (f1 = 1.6GHz and f2 = 1.2GHz). In recent years, the system has added a third 
frequency signal L3 (f3 = 1202.025MHz). The unencrypted signals are available to 
users worldwide. The second one is the services for authorized users. Specific users 
are currently served using encrypted signals in two frequency bands (L1 and L2) 
[18]. 

1.1.5 Other Systems 

Currently, several regional or augmented navigation satellite systems are developing 
rapidly, including the Quasi-Zenith Satellite System (QZSS), Indian Regional Navi-
gation Satellite System (IRNSS), and various Satellite-Based Augmentation Systems 
(SBAS). 

QZSS is a space-based navigation augmentation system developed and built by 
Japan. It represents the first step in Japan’s construction of an autonomous regional 
navigation satellite system. Initially, the system was planned to be developed in two 
stages. The first stage involved the construction of a QZSS consisting of 3 satellites, 
and the second stage involved the addition of 4 more quasi-zenith satellites, along 
with 3 GEO satellites, creating a regional navigation satellite system with a total of 
7 satellites. The first QZSS satellite was successfully launched on September 11, 
2010, and has been in operation, significantly enhancing Japan’s satellite navigation 
services [19]. The satellite uses a geostationary communication satellite platform 
independently developed by Japan, with a mass of 4,100 kg and a design life of 
10 years. 

The QZSS signal includes L1, L2, L5, and LEX frequencies. Once fully deployed, 
QZSS will greatly improve the visibility of Japan’s satellite navigation signals, 
especially addressing the urban canyon effect, increasing the availability of navi-
gation signals, and meeting Japan’s growing demand for satellite navigation services 
[20–22]. 

The IRNSS, also known as Navigation with Indian Constellation (NavIC), is 
designed to improve positioning accuracy for users to better than 20 m in its main 
service area. It consists of 7 satellites located in GEO and IGSO orbits, along with a 
GCS and user segment, covering India and surrounding areas within a 1500 km radius. 
This system provides improved positioning accuracy [23]. The IRNSS satellites are 
based on the same platform used for India’s Kalpana-1 weather satellite. The payload 
includes two solid-state power amplifiers, clock management and control units, 
frequency generation and modulation units, navigation processors, signal genera-
tors, and atomic clocks. India has completed the launch of all seven satellites needed
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for the navigation system, and the system is gradually taking shape. The devel-
opment of IRNSS positions India to become the fourth country in the world with 
autonomous satellite navigation capabilities, meeting its military satellite naviga-
tion needs. However, due to the limitations of the constellation configuration and 
the number of satellites, its positioning accuracy and service range are still less 
comprehensive than GPS, GLONASS, or BDS. 

The IRNSS uses S-band (2492.08 MHz) and L-band (L5, 1176.45 MHz) frequen-
cies. Additionally, the GPS-Aided GEO Augmented Navigation (GAGAN) system, 
developed jointly by the Indian Space Research Organization and the Aviation 
Authority of India, uses a space segment consisting of 3 GEO satellites over the 
Indian Ocean. The C-band is mainly used for measurement and control, while 
the L-band broadcasts navigation information, compatible with GPS. The system 
covers the entire Indian subcontinent, providing GPS signals and differential correc-
tions to improve GPS positioning accuracy and reliability, particularly for aviation 
applications in Indian airports. 

To further enhance GNSS positioning accuracy and integrity, especially to correct 
or suppress errors such as ephemeris errors, satellite clock errors, and ionospheric 
delays, SBAS has been developed and is actively used. The principle of SBAS 
involves using GEO satellites as communication satellites to forward positioning 
enhancement information to users, while also broadcasting navigation signals to 
improve user positioning accuracy. SBAS works by employing a large number 
of distributed monitoring stations with precisely known locations to continuously 
observe navigation satellites, calculate correction data (including orbit errors, satel-
lite clock errors, and ionospheric delays), and assess integrity. This information is 
then transmitted to GEO satellites, which forward it to user terminals. These termi-
nals use the correction data to adjust their positioning and use the navigation signals 
from GEO satellites to improve accuracy and integrity for users. 

Typically, SBAS consists of three parts: the space segment (GEO satellites), the 
ground segment (monitoring stations, main control stations, and injection stations), 
and the user segment (devices that receive SBAS signals). Several SBAS systems 
are already in use, including BDSBAS, GAGAN, the U.S. Wide Area Augmen-
tation System (WAAS), the European Geostationary Navigation Overlay Service 
(EGNOS), Japan’s Multi-Functional Satellite Augmentation System (MSAS), and 
Russia’s System for Differential Corrections and Monitoring (SDCM). Notably, the 
GEO satellites of BDS-3 provide SBAS services to users in China and surrounding 
regions, following International Civil Aviation Organization (ICAO) standards, with 
the goal of achieving APV-I and CAT-I precision approaches [9, 24]. Currently, 
BDSBAS uses two signals, SBAS-B1C and SBAS-B2a, to offer single-frequency and 
dual-frequency services, meeting the high accuracy requirements of BDS [25–28].
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1.2 Techniques for Precise Positioning 

Positioning techniques have evolved rapidly over the past few decades, with signifi-
cant improvements in accuracy, reliability, and efficiency. Today, precise positioning 
technologies show a trend of diversification, ranging from code-based to phase-
based methods, single-station to multi-station setups, post-processing to real-time 
applications, and undifferenced to differenced approaches. 

Single point positioning (SPP) is the first and still widely used positioning method 
within the GNSS community. Among all positioning modes, SPP is the simplest to 
implement, although its accuracy is relatively low. SPP uses code observations and 
broadcast navigation data calculated by the global reference network. Due to the 
limited precision of orbits and clocks and the relatively simple error processing, the 
accuracy of SPP is typically at the meter level. 

PPP is another positioning method that operates on a global scale and offers 
absolute positioning. Unlike SPP, PPP uses phase observations in addition to code 
observations. It also incorporates more precise data, such as precise orbits and clock 
corrections. When systematic errors, such as ionospheric and tropospheric delays, are 
properly addressed, PPP can achieve accuracy at the centimeter or even millimeter 
level. For errors that can be modeled accurately, such as phase center offset (PCO), 
phase center variation (PCV), phase windup, relativistic effects, solid Earth tides, 
ocean loading, and Earth rotation, models are applied. Significant errors are handled 
by adding parameters. Moreover, if uncalibrated phase delays (UPDs) or observable-
specific biases (OSBs) are estimated in advance, PPP with ambiguity resolution 
(PPP-AR) can be applied, significantly reducing convergence time. 

In contrast to global-based absolute positioning modes, real-time differenced posi-
tioning (RTD) and real-time kinematic positioning (RTK) are becoming increas-
ingly popular. These positioning technologies are typically used on a regional scale, 
covering areas with radii of a few hundred kilometers or less. Positioning is relative 
to reference stations. RTD is a code-based technique, while RTK is phase-based. If 
there is only one nearby reference station, typically with a baseline of about 20 km 
or less, the techniques are called single-baseline RTD (SRTD) and single-baseline 
RTK (SRTK), respectively. These are essentially local-scale methods, with the main 
advantage being that, after double differencing, clock errors and hardware delays at 
both the receiver and satellite ends are eliminated, and ionospheric and tropospheric 
delays can often be neglected. 

When multiple reference stations are used, network RTD (also known as wide-
area DGNSS) or network RTK (NRTK) comes into play. These methods can extend 
coverage up to hundreds of kilometers. Atmospheric corrections are determined by 
the network and transmitted to users. In NRTK, ambiguity resolution is crucial, as 
it is necessary to fix the ambiguities of very long baselines in real time. Ambiguity 
resolution is typically achieved by using observation data from multiple reference 
stations and their known coordinates. With accurately known reference station coor-
dinates, prior information or other methods can be employed to correct observational
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errors. As a result, real-time decimeter-level accuracy can be achieved with RTD, 
and centimeter-level accuracy can be attained with RTK. 

A new positioning technique, called PPP-RTK, has emerged. PPP-RTK can be 
considered a hybrid of PPP and RTK. Based on traditional PPP, PPP-RTK uses UPDs 
or OSBs to resolve ambiguities in PPP (i.e., PPP-AR). After resolving ambiguities, 
ionospheric and tropospheric delays can be estimated using a global or regional 
network, similar to NRTK. By applying atmospheric correction data at the user end, 
PPP-RTK can achieve centimeter-level accuracy in a short time. 

1.3 RTK Benefits 

As mentioned earlier, RTK, especially SRTK, is the most popular method in the 
current GNSS community. It has been widely applied in various fields, such as 
deformation monitoring and autonomous driving. Compared to other high-precision 
positioning methods, RTK offers several unique advantages, as illustrated in Fig. 1.1. 

First, RTK has an exceptionally fast convergence time. Specifically, for short base-
lines, centimeter-level accuracy can be achieved within just a few seconds to a minute, 
with convergence typically taking less than one minute. In some cases, integer ambi-
guities can be correctly resolved within a single epoch, allowing for instantaneous 
high-precision positioning. In contrast, PPP and PPP-AR require several minutes to 
tens of minutes to converge, making them unsuitable for applications demanding 
real-time results. 

Second, RTK is cost-effective in terms of infrastructure. Generally, it requires only 
a nearby reference station, keeping deployment costs low. In comparison, PPP-RTK

Fig. 1.1 Illustration of RTK and NRTK 
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Table 1.5 Advantages and disadvantages of all current mainstream high-precision methods 

Methods Fast covergence 
time (< 1 min) 

No network 
required and low 
cost 

Concise parameters 
and convenient 
algorithm 

Broad coverage 
area (>30 km) 

SRTK
√ √ √ × 

NRTK
√ × × √ 

PPP × √ × √ 

PPP-AR × √ × √ 

PPP-RTK 
√ × × √ 

typically relies on a regional reference network, increasing construction costs. Addi-
tionally, NRTK and PPP-RTK require a robust communication network and high-
performance servers, whereas SRTK operates without such dependencies, further 
reducing implementation costs. 

From a technical perspective, RTK is the most convenient high-precision posi-
tioning method due to its concise parameterization. In RTK, receiver and satellite 
clock errors, along with corresponding hardware delays, are effectively eliminated 
through the process of double differencing, provided the baseline length is not exces-
sively long. Additionally, ionospheric and tropospheric delays are significantly miti-
gated and can even be ignored in short-baseline scenarios. Furthermore, the phase 
ambiguities exhibit integer properties, making them relatively easy to resolve using 
appropriate methods. In contrast, other high-precision positioning methods involve 
more complex parameterization. For example, PPP requires a greater number of 
parameters, and its ambiguities are typically float solutions unless PPP-AR or PPP-
RTK is applied. Similarly, NRTK and PPP-RTK require additional calculations to 
determine atmospheric corrections, often through interpolation. 

The primary limitation of RTK is its restricted coverage area. As the baseline 
length increases, residual atmospheric delays can degrade the float solution, making 
ambiguity resolution less reliable. However, this technical challenge can be largely 
mitigated through NRTK or by employing additional correction techniques. In fact, 
addressing this issue is one of the key motivations behind writing this monograph. 
Table 1.5 summarizes the advantages (

√
) and disadvantages (×) of all current 

mainstream high-precision positioning methods. 

1.4 Structure of This Monograph 

This monograph fully introduces the principles, methods, and applications of RTK 
for the first time. At first, the brief introduction of currently existent GNSS is given. 
Then the typical error sources in RTK are discussed and analyzed, and the esti-
mation methods widely used in RTK are given in detail. As the most important 
error, the ambiguity is studied systematically in this monograph. At second, several
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crucial issues are studied comprehensively, including cycle slip, stochastic model, 
unmodeled error, and quality control. Last but not least, almost all important RTK 
modes are presented. Specifically, they are the long-range RTK (LRTK), Extra-wide-
lane RTK (ERTK), RTK with BDS short-message communication (SMC-RTK), 
antenna-array aided RTK (ARTK), cost-effective RTK (CRTK), and state-space-
representation-based RTK (SSR-RTK). Highlights of each chapter are summarized 
as follows. 

This chapter provides an overview of GNSS. It begins with an introduction to the 
major satellite navigation systems, focusing on global navigation systems such as 
GPS, BDS, Galileo, and GLONASS, as well as regional or augmented navigation 
systems like QZSS, IRNSS, and SBAS. Each system has its own unique structure, 
functions, and signal specifications, contributing to the global satellite navigation 
landscape. Next, the chapter traces the evolution of positioning technology, from SPP 
to PPP and RTK, leading to their derivative technologies, such as NRTK and PPP-
RTK. Their respective operating principles are also discussed. Finally, the chapter 
highlights the unique advantages of RTK and provides a comparative analysis of the 
strengths and weaknesses of mainstream high-precision positioning methods. 

Chapter 2 discusses the GNSS error sources in RTK. This chapter mainly intro-
duces some errors that affect the RTK accuracy. The GNSS observation equations 
are given firstly, where the errors are all given. The errors can be mainly divided into 
three parts: the satellite-related errors (satellite ephemeris error, satellite clock offset, 
satellite hardware delay, phase windup, PCO, and PCV of the satellite antenna), the 
path-related errors (ionospheric error and tropospheric error) and the receiver-related 
errors (receiver clock offset, receiver hardware delay, multipath effect and receiver 
noise, phase windup, PCO, and PCV of the receiver antenna). Due to the charac-
teristics of RTK, orbit error and clock offset, ionospheric delay, and tropospheric 
delay are discussed in detail. Finally, since other errors can be basically eliminated 
or ignored, multipath effect cannot be mitigated. This chapter will dedicate relatively 
substantial coverage to multipath effects. 

Chapter 3 systematically studies the estimation methods in RTK. It first establishes 
the mathematical foundation through least squares adjustment, with rigorous anal-
ysis of its statistical characteristics and geometric interpretation. The discussion then 
progresses to sequential adjustment techniques, where the approaches are formulated 
for time-independent scenarios, while a parameter estimation framework is devel-
oped for time-dependent cases. The core focus resides in Kalman filter theory, which 
not only elucidates the conventional Kalman filter derivation but also introduces 
an enhanced window-recursive estimation algorithm incorporating sliding window 
mechanisms. The chapter objectively assesses the dynamic adaptability, computa-
tional efficiency, and precision stability of these methods, ultimately establishing 
their complementary relationships in modern navigation system implementations. 

Chapter 4 offers an in-depth examination of integer ambiguity resolution in 
GNSS positioning, a key process for achieving high-precision solutions. It begins by 
presenting the mixed-integer GNSS model, which serves as the foundational frame-
work for all integer ambiguity resolution methods. The chapter then explores various 
strategies for integer estimation, addressing how unmodeled errors affect ambiguity
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resolution. Following this, the chapter outlines methods for evaluating and validating 
integer solutions. It also highlights the practical benefits of partial ambiguity reso-
lution techniques, particularly in real-world GNSS applications. In response to the 
growing adoption of multi-frequency and multi-GNSS systems, the chapter further 
discusses methods for resolving multi-frequency ambiguities, providing valuable 
theoretical insights for GNSS users. 

Chapter 5 establishes a comprehensive methodological framework for cycle slip 
detection and repair. Commencing with multi-frequency signal processing archi-
tecture, the chapter develops a geometry-based ionosphere-weighted estimator that 
innovatively integrates single-differenced ionospheric biases for effective cycle slip 
and data gap repair, validated by extensive experiments. Progressing to single-
frequency scenarios, the analysis introduces a dual-domain detection paradigm 
combining positional polynomial fitting in coordinate domain with partial cycle slip 
resolution in ambiguity domain. The results demonstrate significant improvements 
in accuracy and reliability, ensuring continuous high-precision positioning across 
various conditions. 

Chapter 6 constructs a rigorous theoretical framework for advanced stochastic 
modeling in RTK. The discussion first introduces a variance and covariance compo-
nent estimation method, where an efficient approach is also given. This technique 
meticulously quantifies measurement noise, ensuring that least squares adjustments 
yield unbiased estimates with minimal variance. The chapter argues for approaches 
that address the unique constellation and signal characteristics of BDS. Compre-
hensive experimental validations confirm that these tailored models significantly 
improve positioning reliability under diverse applications. 

Chapter 7 establishes a systematic approach to addressing unmodeled errors in 
GNSS observations, recognizing their inevitable presence due to their complex 
spatiotemporal characteristics. Building on prior findings that suggest the exis-
tence of such errors, the chapter focuses on both their detection and mitigation. 
Commencing with an in-depth analysis of error detection, advanced methodolo-
gies to identify unmodeled disturbances within GNSS measurements is introduced 
firstly. Following this, compensation strategies are explored, presenting innovative 
techniques to minimize their impact on positioning accuracy. Through a combina-
tion of theoretical insights, experimental validation, and practical applications, the 
chapter provides a comprehensive framework for understanding, quantifying, and 
addressing unmodeled errors, ultimately enhancing the positioning performance. 

Chapter 8 studies the quality control methods for RTK, introducing robust esti-
mation and the detection, identification, adaptation method for outlier management. 
Outliers in GNSS data necessitate specialized processing to mitigate their biasing 
effects on least-squares estimators. Two principal outlier detection frameworks are 
outlined, categorized by based on whether outliers follow a non-stochastic (mean shift 
model) or stochastic (variance inflation model). It also emphasizes the importance 
of realistic stochastic models in statistical reliability testing, which can minimize 
false alarms and enhance detection accuracy. Proper modeling of physical correla-
tions, such as those related to satellite elevation and observation time, is shown to 
significantly improve the reliability of GNSS positioning tests.
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Chapter 9 presents the LRTK: long-range RTK. It explores the capability of long-
range single-baseline RTK with multi-frequency multi-constellation observations in 
high-precision positioning from both theoretical and practical aspects. Regarding 
the big city with Shanghai-like area, Tongji real-time kinematic (TJRTK) is able to 
provide centimeter-level positioning service in Shanghai based on multi-frequency 
and multi-constellation LRTK instead of NRTK. The costs of the LRTK infrastructure 
maintenance needed by NRTK will be dramatically reduced by TJRTK. 

Chapter 10 presents the ERTK: extra-wide-lane RTK. It dedicates to fully exploit 
the RTK capability of virtual extra-wide-lane (EWL) signals over long baselines, 
which is referred to as ERTK. Ionosphere-ignored and ionosphere-float models which 
are two ERTK models are formulated. And then the ionosphere-smoothed ERTK 
model is introduced. In addition, the ERTK equivalence of using any two EWL 
observations is proven, and the condition of selecting either ionosphere-ignored 
or ionosphere-float model is discussed. Through the experiment and analysis, we 
find some useful remarks. The ERTK is promising and can be applied in many 
applications. 

Chapter 11 presents the SMC-RTK: RTK with short-message communication. 
This chapter introduces the SMC-RTK method, which can realize high-precision 
positioning. And the SMC-RTK technique overcomes the problem of communication 
at sea by sending corrections through the BDS short message service based on an effi-
cient encoding and broadcasting strategy. Moreover, SMC-RTK reduces the depen-
dence on reference stations by using only a single reference station. The service radius 
of the single reference station is extended to 300 km by applying an asynchronous, 
time-differenced, precise ephemerides-aided and ionosphere-weighted positioning 
model. 

Chapter 12 presents the ARTK: antenna-array aided RTK. It explores the potential 
benefits of antenna-array aided PPP to the long-range RTK, which is referred to as 
array-aided RTK. We formulate the platform array model and show how its data can 
be reduced. Then, three different ionosphere-weighted differential array models are 
described, and closed-form formulae for their ambiguity variance matrices are 
presented. These matrices determine the success rates for estimating the integer 
ambiguities. Finally, the ARTK model for platforms is outlined, where -static and 
kinematic experiments are also presented. 

Chapter 13 presents the CRTK: cost-effective RTK. It addresses the challenges 
and factors influencing ambiguity resolution in smartphone-based RTK. The chapter 
begins by formulating the methods for estimating smartphone observation preci-
sions, followed by a detailed explanation of the experimental setup and datasets used 
throughout the study. It then analyzes how smartphone brands, operating systems, 
and antenna attitudes impact the ambiguity integer property, data quality, and posi-
tioning performance. Two kinematic experiments are presented to demonstrate the 
ambiguity resolution and positioning performance for different smartphone models 
with both embedded and external antennas. 

Chapter 14 presents the SSR-RTK: RTK with SSR corrections. This chapter 
proposes a novel SSR-RTK method achieving fast ambiguity resolution through 
PPP with B2b and supplementary SSR corrections. A full-rank undifferenced and
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uncombined PPP-B2b model is formulated. After analyzing PPP-B2b product char-
acteristics, satellite-specific phase biases and atmospheric corrections from a single 
reference station are integrated to augment positioning. This enables single-station 
SSR-RTK within PPP-B2b infrastructure. Kinematic experiments validate the posi-
tioning performance, with discussions on ambiguity resolution and atmospheric 
augmentation methods. 
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Chapter 2 
GNSS Error Sources in RTK 

2.1 GNSS Observation Equations 

To generate pseudorange observations, a Global Navigation Satellite System (GNSS) 
receiver measures the apparent signal travel time from the navigation satellite to the 
user. The receiver delay lock loop (DLL) generates a replica of the signal code 
based on its internal frequency source and aligns it with the received signal. The 
required time shift represents the apparent transit time, modulo the code chip length. 
This shift is then combined with the number of complete code chips, complete code 
repeats, and additional information from the satellite navigation data to determine 
the unambiguous apparent signal travel time. Multiplying this by the speed of light 
yields the pseudorange. 

In addition to pseudorange measurements, the receiver also measures the signal 
carrier phase using its phase lock loop (PLL). The receiver generates a replica of 
the carrier signal, aligns it with the incoming carrier from the satellite, and measures 
the fractional phase shift between the two signals. When the range between the user 
and the satellite changes by more than one wavelength cycle, the receiver counts the 
full cycles, providing a continuous measurement. Due to the short wavelength of the 
carrier phase, approximately 19–25 cm, depending on the frequency, carrier-phase 
measurements are significantly more precise than pseudorange measurements. 

Typically, the undifferenced and uncombined (UDUC) GNSS observation equa-
tions for receiver r and satellite s on frequency j at epoch k are expressed as follows 
[1, 2] 

Ps 
r,j(k) = �s 

r(k, k − δ) + cdtr(k) − cdts (k − δ) + Dr,j(k) 
− ds 

j (k − δ) + ιs r,j(k) + τ s r (k) + M s r,j(k) + εs r,j(k) (2.1) 

Φs 
r,j(k) = �s 

r(k, k − δ) + cdtr(k) − cdts (k − δ) + Br,j(k) 
− bs j (k − δ) + λja

s 
r,j − ιs r,j(k) + τ s r (k) + ms 

r,j(k) + εs r,j(k) (2.2)
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The notations in (2.1) and (2.2) are as follows. 

Ps 
r,j denotes the code/pseudorange observation (m), 

Φs 
r,j denotes the phase/carrier phase observation (m),

�s 
r denotes the satellite-to-receiver range (m), 

δ denotes the signal travel time (s), 
c denotes the speed of light in a vacuum (m/s), 
dtr denotes the receiver clock offset (s), 
dts denotes the satellite clock offset (s), 
Dr,j denotes the receiver code hardware delay (m), 
ds 
j denotes the satellite code hardware delay (m), 
Br,j denotes the receiver phase hardware delay (m), 
bs j denotes the satellite phase hardware delay (m), 
ιs r,j denotes the ionospheric delay (m), 
τ s r denotes the tropospheric delay (m), 
λj denotes the wavelength (m/cycle), 
as r,j denotes the phase ambiguity (cycle), 
M s r,j denotes the code multipath effect (m), 
ms 

r,j denotes the phase multipath effect (m), 
εs r,j denotes the code noise (m),
εs r,j denotes the phase noise (m). 

Unlike the constellations that transmit signals based on the Code Division Multiple 
Access (CDMA), the frequency in constellation based on the Frequency Division 
Multiple Access (FDMA) like GLONASS is different per channel, hence there exist 
inter-frequency code bias and inter-frequency phase bias, which are not shown in 
Eqs. (2.1) and (2.2). The other error terms such as phase center offset (PCO) and 
phase center variation (PCV), phase windup, solid earth tide, ocean tide loading, pole 
tide, relativistic effect, and earth rotation are assumed to be corrected in advance. 
It is worth noting that there may exist unmodeled errors in GNSS code and phase 
observations mainly due to the complicated mechanism and limited knowledge on 
them, which will be discussed in the following chapters. 

According to Eqs. (2.1) and (2.2), there are various error sources that may contam-
inate the GNSS observations. They can be divided into four parts, the satellie-related 
errors, the signal propagation errors, the receiver-related errors, and other errors. 
Specifically, the satellite-related errors refer to the errors introduced during the orbit 
and clock determination and the signal production of the satellites, which mainly 
include the ephemeris error, the satellite clock offset, the satellite hardware delay, 
and the phase windup, PCO, and PCV of the satellite antenna. The signal propagation 
errors refer to the errors introduced during the propagation of satellite signals, which 
mainly include the ionospheric delay and the tropospheric delay. The receiver-related 
errors refer to the errors introduced during the signal reception, demodulation and 
interpretation of the receiver, which mainly include the receiver clock offset, the 
receiver hardware delay, the multipath effect, and the phase windup, PCO, and PCV 
of the receiver antenna. The other errors refer to various additional factors that may 
affect GNSS observations, such as solid earth tide, ocean tide loading, pole tide,
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relativistic effect, earth rotation, and other geophysical or environmental influences. 
Table 2.1 and Fig. 2.1 are the error table and error diagram of GNSS observations, 
respectively. 

Considering two receivers observing the same satellites at the same nominal 
times, three types of differences can be computed from these observations. The

Table 2.1 Various error sources that may contaminate the GNSS observations 

Error source Main error classification 

Satellite Ephemeris error 

Satellite clock offset 

Satellite hardware delay 

Phase windup, PCO, and PCV of the satellite antenna 

Signal propagation Ionospheric delay 

Tropospheric delay 

Receiver Receiver clock offset 

Rceiver hardware delay 

Multipath effect and receiver noise 

Phase windup, PCO, and PCV of the receiver antenna 

Other Solid earth tide 

Ocean tide loading 

Pole tide 

Relativistic effect 

Earth rotation 

Fig. 2.1 The various GNSS error sources 
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first is the between-receiver difference, obtained by differencing the observations 
of two stations tracking the same satellites. Another is the between-satellite differ-
ence, which results from differencing observations from the same station but across 
different satellites. The third type, known as the between-time difference, is the 
difference between observations from the same station tracking the same satellite at 
different epochs. 

A double difference can be formed when two receivers observe two satel-
lites simultaneously, or at least near simultaneously. One can either difference 
two between-receiver differences or two between-satellite differences. In real-time 
kinematic (RTK) positioning, thanks to the between-receiver and between-satellite 
double differenced (DD) operator, the DD GNSS observation equations for CDMA 
constellations read [1, 2] 

Psq 
rg,j(k) = �sq 

rg (k, k − δ) + ιsq rg,j(k) + τ sq rg (k) + M sq rg,j(k) + εsq rg,j(k) (2.3) 

Φ
sq 
rg,j(k) = �sq 

rg (k, k − δ) + λja
sq 
rg,j − ιsq rg,j(k) + τ sq rg (k) + msq 

rg,j(k) + ε
sq 
rg,j(k) (2.4) 

The new notations in (2.3) and (2.4) are as follows. 

s denotes the reference satellite, 
q denotes the common satellite, 
r denotes the base station, 
g denotes the rover station. 

Compared with the UDUC GNSS observation equations, the receiver and satellite 
clock offsets, the receiver and satellite code hardware delays, and the receiver and 
satellite phase hardware delays can all be eliminated in RTK. However, in practical 
RTK applications, perfect simultaneity is often not achievable due to slight time 
offsets between observations at the base and rover stations. These asynchronous 
measurements arise from factors such as processing delays. To mitigate this issue, 
interpolation techniques or high-rate synchronized data logging can be employed, 
ensuring that the time offsets remain within acceptable limits for precise positioning. 
In addition, some error sources such as ionospheric and tropospheric delays are 
mitigated to a great extent. Therefore, in RTK, the orbit error and clock offset, 
ionospheric delay, tropospheric delay, and multipath effect are the main error sources 
which will hinder the precision and reliability of RTK. To have a insight into the 
effects of these errors on RTK, we try to introduce them in detail in the following 
texts.
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2.2 Orbit Error and Clock Offset 

The orbits of GNSS satellites are theoretically well-known with high precision; 
however, discrepancies often exist between the real satellite orbits provided by satel-
lite ephemerides and their calculated counterparts. According to the theory of arti-
ficial satellite orbits, if a satellite orbit is precisely known, its position and velocity 
in space can be determined. Conversely, if the position and velocity of a satellite are 
known, its orbit can be determined. 

Since satellite positions are determined through continuous tracking and moni-
toring by ground-based systems, orbit errors primarily stem from inaccuracies 
in satellite ephemerides. As these orbit errors affect receiver-to-satellite distance 
measurements, the satellite range can be expanded accordingly 

ρs 
r = ||Xr − Xs|| + loss r · recr + orbs r (2.5) 

The new notations in (2.5) are as follows. 
Xr denotes the given coordinates of the receiver r. 
Xs denotes the given coordinates of the satellite s. 
loss r denotes the line-of-sight (LOS) vector. 
recr denotes the receiver coordinate error. 
orbs r denotes the satellite orbit error introduced by the satellite ephemeris error. 
|| · || denotes the operator of calculating the quadratic norm. 
GNSS satellite ephemerides contain correction terms for satellite orbits and 

clock errors. There are two main types of ephemerides. The first is the broadcast 
ephemeris, which is predicted and provides meter-level orbit accuracy to users. 
It is directly modulated onto the satellite signal and is accessible worldwide. The 
second is the precise ephemeris, which includes ultra-rapid, rapid, and final prod-
ucts. These precise products can be obtained from International GNSS Service (IGS) 
Analysis Centers (ACs) as of 2025, including Natural Resources Canada (EMR), 
Wuhan University (WHU), Geodetic Observatory Pecny (GOP), the Space Geodesy 
Team of CNES (GRG), the European Space Agency (ESA), GeoForschungsZentrum 
(GFZ), Geospacial Information Authority of Japan and Japan Aerospace Explo-
ration Agency (JGX), the Center for Orbit Determination in Europe (CODE), the Jet 
Propulsion Laboratory (JPL), the Massachusetts Institute of Technology (MIT), the 
National Geodetic Survey (NGS), the Scripps Institution of Oceanography (SIO), 
and the U.S. Naval Observatory (USNO). Additionally, the Tongji BeiDou Analysis 
Center (TJBAC), established by the authors, provides precise orbits with centimeter-
level accuracy and clock offsets with 0.1-ns-level precision. Although broadcast 
ephemerides offer lower precision, their direct modulation onto satellite signals 
ensures global availability. 

As shown in Fig. 2.2, the satellite position calculated from the ephmerides has a 

discrepancy to the real satellite position. The discreancy is denoted as
⇀

ϑ , then the 
projection of

⇀

ϑ on the LOS from the satellite s to the receiver r is the orbit error
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Fig. 2.2 Orbit error of a baseline 

orbs r . For a baseline in the RTK application, the observations from two receivers are 
subtracted. Hence, the orbit errors of two receivers are combined for the single differ-
enced (SD) observations. The between-receiver SD orbit error can be approximated 
as below 

orbs r1r2 =
⇀
r 

D
|| ⇀

ϑ || (2.6) 

where
⇀
r is the vector from the receiver r1 to r2 and D is the approximated distance 

from the satellite to the receiver. If we take D = 20,000 km, || ⇀
r || = 20 km and 

|| ⇀

ϑ || = 1m, the SD orbit error of the satellite s is about 1 mm, which is ignorable 
for RTK. However, when the baseline extends to more than 100 km, the orbit error 
can be centimeter-level. In such case, the precise ephemerides are recommended to 
minimize the effects of the orbit error. 

In RTK, it is theoretically assumed that the observations from the rover and base 
stations are perfectly synchronized, meaning they share identical observation times-
tamps. However, in practice, real-time synchronization is rarely achieved due to 
inevitable time delays or asynchronicity, commonly referred to as the age of differen-
tial. RTK operating under these conditions is known as asynchronous RTK. Because 
the rover and base stations record observations at different epochs, positioning errors 
in asynchronous RTK differ from those in traditional RTK, with satellite clock offsets 
being a primary source of error. Furthermore, in asynchronous RTK, single differ-
encing between stations effectively mitigates the impact of satellite orbit errors, 
ionospheric delays, and tropospheric delays. However, satellite clock offsets cannot 
be eliminated and will introduce additional positioning errors.
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2.3 Ionospheric Delay 

The ionosphere, located at altitudes between approximately 50 and 1000 km above 
the Earth surface, is a region where neutral gas molecules are ionized under the 
influence of solar ultraviolet rays, X-rays, γ -rays, and high-energy particles. This 
ionization process results in a high concentration of free electrons and positive ions, 
forming an ionized layer. The electron density in the ionosphere depends on the 
intensity of solar radiation and atmospheric density. Moreover, it is influenced by 
factors such as altitude, solar and celestial radiation intensity, seasonal variations, 
and geographical location [3]. 

In atmospheric physics, a medium is considered dispersive if the propagation 
speed of electromagnetic waves within it depends on their frequency. This dispersion 
phenomenon arises due to the interaction between the medium internal electric field 
and the external electric field of the incident wave. Like other electromagnetic signals, 
GNSS signals are affected by the dispersive properties of the ionosphere. As they 
travel through this region, signal paths experience bending (although this curvature 
has a negligible impact on ranging results and is generally ignored), and propagation 
speeds are altered, leading to measurement errors known as ionospheric delays. 

In GNSS measurement, the code pseudorange measurement is related to the group 
velocity, and the carrier phase measurement is related to the phase velocity. When 
the electromagnetic wave passes through the ionosphere, the propagation path error 
of code pseudorange measurement 
ρP and carrier phase measurement 
ρφ caused 
by the change of the refractive index can generally be expressed as [4, 5]


ρP = 
40.3 

f 2 

S∫

0 

NedS + 
2.2566 · 1012 

f 3 

s∫

0

∫
NeB cos θdS 

− 
2437.4 

f 4 

s∫

0

∫
N 2 e dS (2.7)


ρφ = −  
40.3 

f 2 

S∫

0 

NedS − 
1.1283 · 1012 

f 3 

s∫

0

∫
NeB cos θdS 

− 
812.47 

f 4 

s∫

0

∫
N 2 e dS (2.8) 

where f denotes the frequency value; S and Ne denote the propagation path and 
electron density, respectively; B denotes magnetic field strength of the geomagnetic 
field; θ denotes angle between the geomagnetic field direction and the electromag-
netic wave propagation path. Actually, ∫S 

0 NedS is the total electron content (TEC) of 
the electromagnetic wave on its propagation path. For the same ionosphere, the TEC 
in the direction from a station to each satellite is different. The smaller the satellite
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elevation, the longer the propagation path of the satellite signal in the ionosphere, and 
the larger the TEC value. That is, when the propagation direction of the electromag-
netic wave deviates from the zenith direction, the TEC will increase obviously. There 
is a minimum value in the TEC in all directions of the station, that is, the TEC in the 
zenith direction, which is called vertical total electron content (VTEC). VTEC has 
nothing to do with the satellite elevation, and can reflect the overall characteristics 
of the ionosphere above the station, hence the concept of VTEC is widely used. In 
GNSS positioning and navigation, the ranging difference caused by the ionospheric 
delay can reach up to 50 m in the zenith direction, and exceed 150 m when the eleva-
tion is 5°. Therefore, the ionospheric delay must be carefully corrected in GNSS 
applications including RTK. 

There are three main approaches to mitigate the ionospheric delay. The first 
approach is to utilize the dual-frequency correction method. As aforementioned, 
the ionospheric delays have dispersion characteristics, hence the ionospheric delays 
between frequencies i and j can be expressed as follows [6] 

ιs r,j = 
f 2 i 

f 2 j 

ιs r,i = 
λ2 
j 

λ2 
i 

ιs r,i (2.9) 

This method leverages the ionospheric dispersion properties to establish a dual-
frequency ionospheric correction model, commonly known as the ionosphere-free 
(IF) model. High-precision satellite positioning typically uses the IF model to miti-
gate the impact of ionospheric delay, achieving effectiveness of no less than 95%. It 
is important to note that different dual-frequency combinations yield varying correc-
tion effects on the ionospheric impact. Moreover, because higher-order ionospheric 
delays are neglected, a residual error, up to the centimeter level, remains even after 
dual-frequency correction. This residual error becomes significantly larger if the 
observations are made at noon when sunspot activity peaks. 

The second approach involves using the DD operator to mitigate or even elimi-
nate ionospheric delays. When the baseline between two stations is relatively short 
(usually less than 30 km) and the atmospheric conditions along the satellite-to-station 
propagation paths are similar, the systematic error introduced by the atmosphere, 
including the ionosphere, can be largely canceled out by differencing the observa-
tions. Typically, the residual ionospheric delay between these observations does not 
exceed 10−6 times the baseline length. However, for very long baselines, ionospheric 
delays become significant and must be explicitly estimated in the mathematical 
model. 

The third approach is model correction, which can be divided into two main types. 
The first type is the empirical ionospheric model, usually developed on a global scale. 
Such models rely on mathematical formulas to describe the spatiotemporal varia-
tions of parameters such as electron density, ion density, electron temperature, ion 
temperature, ion composition, and TEC in the ionosphere. By fitting these formulas to 
extensive observational data gathered over long periods from ionospheric monitoring 
stations around the world, an empirical ionospheric delay correction model can be
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established. Commonly used global empirical models include the Klobuchar model, 
the International Reference Ionosphere (IRI), the Global Ionospheric Map (GIM), 
the BeiDou Global Ionospheric Model (BDGIM), and NeQuick. The second type is 
based on measured observations. GNSS data consist of decimeter-level pseudorange 
measurements and millimeter-level carrier phase measurements, both affected by 
the ionosphere. However, because the phase observations include unknown ambi-
guities, the absolute ionospheric delay cannot be directly determined. Instead, the 
phase-smoothed pseudorange (PSP) method is typically used to indirectly calcu-
late the VTEC at the ionospheric pierce point (IPP). Since VTEC varies over time 
and space, directly introducing numerous parameters for its estimation can increase 
computational complexity and instability. To address this, VTEC is often modeled 
as a function of time and space, with the function parameters being solved for 
rather than VTEC itself. This approach reduces the number of parameters in the 
observation equation and enhances computational efficiency. Common mathematical 
models used to describe ionospheric VTEC include polynomial functions, spherical 
harmonic functions, trigonometric series, and multifaceted function models. 

In RTK, methods such as the IF model are commonly used to reduce the impact 
of first-order ionospheric delay. However, the interference from second-order and 
higher-order ionospheric delays is often overlooked. These higher-order delays 
tend to manifest as more complex, nonlinear disturbances, which are especially 
pronounced at high latitudes or under extreme weather conditions. The impact of 
higher-order ionospheric delays is typically accounted for using the final GIM prod-
ucts provided by the IGS Analysis Center CODE. However, there is limited research 
on using TEC derived from GNSS observations themselves for correction, and even 
less discussion on the alignment between geomagnetic models and TEC. Addition-
ally, phenomena such as scintillation, magnetic storms, and plasma bubbles can occur 
in the ionospheric environment, causing severe fluctuations in the signal and further 
degrading positioning accuracy. 

2.4 Tropospheric Delay 

The tropospheric delay in GNSS positioning and navigation refers to the signal delay 
caused when the electromagnetic wave passes through the non-ionized neutral atmo-
sphere, including the troposphere and stratosphere, at altitudes below 50 km. Nearly 
99% of the mass of the entire atmosphere is concentrated in this layer. The troposphere 
is in direct contact with the ground and receives radiant energy from it. Since more 
than 80% of the neutral atmospheric delay occurs in the troposphere, the signal delay 
in the neutral atmosphere is collectively referred to as the tropospheric delay [7]. The 
density of the atmosphere in the troposphere is higher than that in the ionosphere. 
Similar to the ionosphere, electromagnetic waves bend and delay their propaga-
tion paths as they travel through the troposphere, distorting distance measurements.
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Because the troposphere is neutral, it can be considered non-dispersive for electro-
magnetic wave frequencies below 30 GHz. Thus, the propagation velocity of electro-
magnetic waves in this neutral atmosphere is independent of frequency. Unlike iono-
spheric delay, both code pseudorange and carrier phase measurements are equally 
affected by the neutral atmosphere. For GNSS measurements, the dual-frequency 
observation method cannot be used to eliminate tropospheric delay. Instead, the 
tropospheric delay can only be estimated by integrating the atmospheric refraction 
coefficient along the entire signal propagation path. 

The refractive index of the troposphere is closely related to atmospheric pressure, 
temperature, and humidity. Due to the strong convective effect of the atmosphere in 
this layer, and the complex changes of atmospheric pressure, temperature, humidity, 
and other factors, it is still difficult to accurately model the tropospheric refractive 
index and its changes. In general, the refraction index of tropospheric delay NT reads 
[8, 9] 

NT = Nh + Nw (2.10) 

where Nh and Nw denote the hydrostatic and wet components, respectively. According 
to (2.10), it shows that the observed delay caused by tropospheric delay can be 
divided into two parts: hydrostatic delay and wet delay. When the electromagnetic 
wave propagates along the zenith direction of the ground observation station, the 
zenith tropospheric delay (ZTD) 
ρZ reads [10–12]


ρZ = 
S∫

0 

NT dS = 
ρZ 
h + 
ρZ 

w (2.11) 

where 
ρZ 
h and 
ρZ 

w denote the ZTD caused by the hydrostatic delay and wet delay, 
respectively. 

In GNSS applications, a mapping function is typically used to project the 
ρZ 

ZTD onto the signal propagation path at any given satellite elevation. The variation 
range of the tropospheric delay in the zenith direction at sea level is approximately 
2.30–2.60 m. At a satellite elevation of 3°, the tropospheric delay can reach 50 m. 
The contribution of the wet component of the atmosphere is usually much smaller 
than that of the hydrostatic component, which accounts for approximately 90% of 
the total tropospheric delay. While water vapor is primarily concentrated within 2 km 
above the ground, its changes over time and space are complex and irregular, making 
it difficult to accurately describe or estimate the influence of the hydrostatic compo-
nent. Given that the tropospheric delay is frequency-independent and the complex 
variations of the troposphere, especially the wet delay, it is a significant factor limiting 
future multi-frequency and multi-constellation GNSS precise positioning, including 
RTK. 

Three main approaches exist to mitigate tropospheric delays. The first is to use 
external data to directly estimate tropospheric delays. To calculate the tropospheric



2.4 Tropospheric Delay 27

delay along the signal path, it is necessary to know the atmospheric refractive index at 
every point along the path. This requires information about meteorological elements, 
such as temperature, air pressure, and water vapor pressure, at various locations 
along the propagation path. Available data sources include microwave radiometer 
observation data, radiosonde data, and numerical weather model data. However, it 
is challenging to measure the meteorological elements along the signal path, and 
typically only the meteorological data at ground stations are available. 

The second approach involves using the DD operator to mitigate or eliminate 
tropospheric delays. Like ionospheric delays, if the baseline between two stations 
is relatively short (usually less than 30 km) and the tropospheric conditions along 
the propagation paths are similar, the systematic error caused by the troposphere can 
be minimized through the difference between the observations. However, for long 
baselines, tropospheric delays cannot be ignored and need to be estimated in the 
mathematical model. 

The third approach is model correction, which includes two main types. The 
first type is the tropospheric empirical model. This model uses ground station mete-
orological data (such as temperature, air pressure, and water vapor pressure) and 
location information (e.g., latitude, longitude, height) to calculate the tropospheric 
delay along the signal path. The tropospheric empirical model consists of two parts: 
the ZTD model and the mapping function. Common ZTD models include the Saas-
tamoinen, Hopfield, and New Brunswick 3 (i.e., UNB3) models. The widely used 
mapping functions include the Ifadis, Chao, Neill, Davis, Herring, Black, and Vienna 
Mapping Function 1 (VMF1)/Vienna Mapping Function 3 (VMF3). To account for 
the asymmetry of the atmosphere, gradient mapping functions can also be applied. 
The second type of model uses measured observations. ZTD estimators are often 
modeled as functions of time and space, similar to the modeling of VTEC. 

However, in RTK, the traditional tropospheric delay model primarily addresses 
the dry component of the tropospheric delay, while the wet component is more diffi-
cult to handle. The wet delay is mainly caused by water vapor, which is difficult to 
model. Water vapor varies with climate, meteorological conditions, and geograph-
ical location, resulting in strong temporal and spatial variability. In the case of long 
baselines or large height differences, residual tropospheric delay can become quite 
significant and can be corrected using precise products and refined parameter esti-
mation. However, introducing tropospheric parameters alongside coordinates can 
result in a serious ill-conditioned model due to its strong correlation with the height 
parameter. As a result, precise solutions require sufficient observation accumulation 
[13]. Additionally, tropospheric delays can sometimes lead to abnormal phenomena 
such as turbulence, bubbles, and cyclones, which further affect positioning accuracy.
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2.5 Multipath Effect 

Theoretically, what the receiver should receive is only the signal directly from the 
satellite, but because the signal tends to be reflected, diffracted, and even occluded 
near the station and generate an indirect signal, the signal received by the receiver not 
only contains the direct signal, indirect signals are also included, which can be called 
multipath effect. As usual, the multipath effects include traditional multipath, diffrac-
tion, and even none-line-of-sight (NLOS) reception [14]. In GNSS carrier phase 
observations, there always exist unmodeled errors mainly due to their spatiotem-
poral complexity [15–17]. Unlike the other types of unmodeled errors, the multipath 
cannot be effectively mitigated by the DD technique. Therefore, the multipath is one 
of the major concerns for high-precision GNSS applications. 

Multipath effects will directly affect the accuracy of pseudorange and phase obser-
vations. The influence of multipath on pseudorange observations is usually between 
10 and 20 m, and even up to 100 m in severe cases [18, 19]. In addition, when multi-
path is severe, it will also cause signal loss of lock. For the phase observations, the 
multipath is usually between a few millimeters and a few centimeters. For instance, 
multipath caused by reflection can reach a quarter cycles of the wavelength at most, 
while the multipath caused by diffraction can be as large as one cycle of wavelength 
or even more. Therefore, according to the needs of positioning accuracy, it is neces-
sary to pay attention to whether this error can be ignored in practical applications. 
However, the NLOS reception has a larger range of variation, and the amplitude can 
reach hundreds of meters, and there is no upper limit in theory. 

Apart from the NLOS reception, the multipath falls into two categories: the reflec-
tive multipath and the diffractive multipath. In general, the multipath signal Sm can 
be formulated as [20–22] 

Sm = Ad cos ϕ + Ai cos(ϕ + 
ϕ) (2.12) 

where Ad and Ai denote the amplitudes of direct and indirect signals, respectively; 
ϕ denotes the phase of the direct signal, and 
ϕ denotes the phase shift delayed by 
the indirect signal. It leads to the relations as follows


ϕm = arctan
(

Ai sin
ϕ 
Ad + Ai cos
ϕ

)
(2.13) 

Am =
√
A2 
d + A2 

i + 2Ad Ai cos
ϕ (2.14) 

where 
ϕm and Am denote the phase shift and amplitude influenced by the multipath 
(i.e., the composite signal). 

Based on (2.13) and (2.14), it can be found that the multipath is influenced by the 
phase shift, which can be determined in the case of a horizontal reflector
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Fig. 2.3 Schematic diagram 
of typical multipath 

S = BO − AO = BO(1 − cos 2θ ) = 
h 

sin θ 
(1 − cos 2θ ) = 2h sin θ (2.15)


ϕ = 
2π 
λ 
s = 

2π 
λ 
2h sin θ (2.16) 

where S and λ denote the path delay and wavelength, respectively; h denotes the 
vertical distance between the antenna phase center and ground, and θ denotes the 
elevation. Obviously, the phase shift is a function of wavelength and receiver-satellite 
geometry, which can be shown in Fig. 2.3. 

Since the multipath is difficult to eliminate, the multipath evaluation is essen-
atial and widely used since one can mitigate or even corret these errors more effi-
ciently while ensuring accuracy in the meantime. Four multipath assessment methods 
that are especially suitable for the low-cost receivers are comprehensively deduced 
and assessed. First, two traditional methods are given, i.e., the geometry-free (GF) 
and IF method, the geometry-based (GB) and ionospheric-corrected (IC) method. 
Second, two easy-to-implement methods, including the geometry-fixed (GFix) and 
IC method, the GF and IC method are deduced. Specifically, the first method is the 
GF and IF method, which are the most widely used methods to assessing multipath 
effects. This method requires at least two frequencies of phase observations, which 
can be expressed as [1] 

M 
s 
r,i = Ps 

r,i − 
f 2 i + f 2 j 

f 2 i − f 2 j 

Φs 
r,i +

2f 2 j 

f 2 i − f 2 j 

Φs 
r,j + 

f 2 i + f 2 j 

f 2 i − f 2 j 

λiai 

− 
2f 2 j 

f 2 i − f 2 j 

λjaj − Dr,j + ds 
j + εM 

s 
r,i 

(2.17) 

where s and r denote the satellite and receiver, i and j the frequencies, P and Φ the 
code and phase observations, λ and a the wavelength and ambiguity, and D/d and 
ε the code hardware delay and observation noise. M denotes the equivalent code 
multipath consisting of the ambiguities of two frequencies, and receiver and satellite 
code hardware delays. Without cycle slips, the above error terms can be regarded as
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a constant during some period. Hence, the code multipath can be obtained 

M s r,i = M 
s 
r,i − 

1 

n 

n∑
k=1

[
M 

s 
r,i(k)

]
(2.18) 

where n denotes the epoch number. The GF and IF method is widely used due to 
its high reliability. However, there are mainly two limitations. First, only the peak-
to-peak behaviors of the code multipath can be estimated. Second, it can only work 
when there are two or more frequencies for a certain constellation. 

The second method is the GB and IC method based on the relative or standalone 
mode. In the precise relative mode that is more suitable for low-cost devices, the satel-
lite and receiver clock errors and hardware delays can all be eliminated after double 
differencing. If coupled with a relatively short baseline, the residual atmospheric 
delays can also be ignored. Hence, the DD code and phase observation equations are 
derived as [1] 

Psq 
rg,i = �sq 

rg + M sq rg,i + εsq rg,i (2.19) 

Φ
sq 
rg,i = �sq 

rg + λia
sq 
rg,i + msq 

rg,i+sq 
rg,i (2.20) 

where� denotes the satellite-to-receiver range, M and m the code and phase multipath 
effects, ϵ the phase observation noise, and 〈·〉ks qr,i = 〈·〉s r,i − 〈·〉k r,i − 〈·〉s q,i + 〈·〉k q,i, with 
the reference satellite q, and the master receiver g. To apply the GB model, the 
satellite-to-receiver range needs to be converted to coordinate components x, y and 
z. Also, the multipath effects and observation noise need to be combined. Thus, the 
DD multipath can be assessed according to the DD residuals. 

Although the GB and IC method is precise enough, it has several limitations. 
The first one is that a nearby base station is often needed that limits the availability 
of the method. Also, the ambiguities should be fixed precisely, requiring the non-
linear model to be used, which will lead to the potential problems with changes 
in the number of satellites and selection of the reference satellite. The other main 
limitation is that the multipath effects from the master receiver and reference satellite 
are usually included. 

The third method is GFix and IC method, in which the observation need to be 
preprocessed. Specifically, the satellite clock errors should be corrected according to 
the broadcast or precise ephemeris. After the atmospheric delays are corrected, the 
code and phase observation equations can be deduced as 

Ps 
r,i = �s 

r + dtr + Dr,j + M s r,i + εs r,i (2.20) 

Φs 
r,i = �s 

r + λia
s 
r,i + dtr + Br,j − bs j + ds 

j + ms 
r,i + εs r,i (2.21)
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where dtr and B/b denote the receiver clock error and phase hardware delay, respec-
tively. Since the receiver clock error and hardware delay need to be eliminated, the 
between-satellite single differencing is formed 

Psq 
r,i = �sq 

r + M sq r,i + εsq r,i (2.22) 

Φ
sq 
r,i = �sq 

r + λia
sq 
r,i − bsq,i + dsq,i + msq 

r,i + ε
sq 
r,i (2.23) 

Based on the precise coordinates of the test station and satellites used, the GFix 
model is applied. When estimating the coordinates of the satellite, the broadcast or 
precise ephemeris can be used according to the demands of the users. Hence, the 
code multipath can be estimated as 

E
(
M sq r,i

) = Psq 
r,i − �sq 

r (2.24) 

where “E(·)” denotes the expectation operator. For the phase multipath, the bias term 
b = λia

sq 
r,i − bsq,i + dsq,i can be treated as a constant when there are no cycle slips. 

The bias term can be removed by averaging over a certain period. Accordingly, the 
phase multipath effects are estimated as 

E
(
msq 

r,i

) = Φsq 
r,i − �sq 

r − b (2.25) 

with b = 1 n
∑n 

t=1

[
Φ

sq 
r,i(t) − �

sq 
r (t)

]
. 

The biggest advantage of the GFix and IC method is that it can still work even if 
there is only one observable satellite in addition to the reference satellite. However, 
the accuracy is highly dependent on the precision of the coordinates of the test 
station and used satellites. As usual, the accuracies of orbit and satellite clock are 
approximately 100 cm and 5 ns when using the broadcast ephemeris. For the precise 
ephemeris, these values can reach approximately 2.5 cm and 75 ps. Hence it is better 
to apply the precise ephemeris. Besides, the multipath effects of the reference satellite 
are also included. 

The last method is GF and IC method, and its preprocessing is like that of the 
GFix and IC method. After preprocessing, the time-differenced operator is used, thus 
the hardware delays and the phase ambiguities can be regarded as eliminated in case 
of no cycle slips. The corresponding code and phase observations are deduced as


Ps 
r,i = 
�s 

r + 
dtr + 
M s r,i + 
εs r,i (2.26)


Φs 
r,i = 
�s 

r + 
dtr + 
ms 
r,i + 
εs r,i (2.27) 

where “
” denotes the time-differenced operator. Since the above observation 
models are rank deficient, the parameters need to be combined as
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Ps 
r,i = 
�̃s 

r + 
M s r,i + 
εs r,i (2.28)


Φs 
r,i = 
�̃s 

r + 
ε̃s r,i (2.29) 

with 
�̃s 
r = 
�s 

r + 
dtr , 
ε̃s r,i = 
ms 
r,i + 
εs r,i. Hence, the time-differenced code 

multipath effects can be estimated as 

E
(

M s r,i

) = 
Ps 
r,i − 
Φs 

r,i (2.30) 

This method is also convenient and can work under any conditions, but the method 
also has several limitations. First, only the time-differenced code multipath effects 
can be depicted, where the undifferenced multipath is missing. Second, the phase 
multipath effects cannot be obtained. 

In real-world applications, there are three main approaches to mitigate multipath 
effects. The first approach is selecting an ideal observation environment. The simplest 
way to suppress multipath is to place the station in a low-multipath environment. For 
instance, it is beneficial to choose an open area that avoids signal reflectors. Users 
should avoid urban canyon areas with many high-rise buildings. When selecting a 
station location, opt for areas with rough terrain, such as bushes or grass, and avoid 
places with high reflection coefficients, such as water, snow, or glass walls. However, 
this approach is often impractical in real GNSS applications, as ideal environments 
are rarely available. 

The second approach involves using advanced receiver and antenna hardware. 
If the satellite signal employs right-handed circularly polarized (RHCP) electro-
magnetic waves, the reflected signal will become left-handed circularly polarized 
(LHCP). RHCP antennas help attenuate LHCP signals. If possible, a choke ring can be 
installed beneath the antenna to suppress multipath signals at lower elevations. Addi-
tionally, improvements in signal processing methods within the receiver can enhance 
performance in mitigating multipath effects. Techniques such as narrow correlation, 
multipath estimation, and multipath elimination using DLL can all improve receiver 
performance. 

The third approach is applying appropriate data processing methods. Given the 
time-space complexity and unpredictability of multipath changes, data processing is 
currently the most widely used mitigation technique. One common method is sidereal 
filtering (SF), which leverages the temporal repeatability of satellite constellations. 
SF can be implemented either in the coordinate domain or the observation domain. 
Multipath tends to exhibit periodic repeatability in a static environment, due to the 
temporal repeatability of GNSS satellites. Another method that can be adopted is 
the multipath hemispherical map (MHM). The fundamental concept of MHM is 
that multipath effects exhibit spatial repeatability as long as the station surroundings 
remain unchanged or relatively stable. However, the original MHM method cannot 
precisely correct multipath errors. Recent studies have focused on refining MHM for 
better accuracy. Additionally, multipath can be processed using techniques such as 
carrier-to-noise power density ratio (C/N0) analysis, wavelet analysis, ray-tracing,



References 33

and support vector machine. With the advent of multiple frequencies, multipath errors 
can also be parameterized and reduced in the observation domain [23]. 
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Chapter 3 
Estimation Methods in RTK 

3.1 Least Squares Adjustment 

Least squares (LS) adjustment is a mathematical optimization technique that esti-
mates unknown parameters by minimizing the sum of squares of errors. This method 
has a wide range of applications in statistics, regression analysis, and curve fitting. In 
Global Navigation Satellite System (GNSS) real-time kinematic positioning (RTK), 
without loss of generality, the multi-GNSS functional model can be simplified as 
follows [1–3] 

y = Ax + e (3.1) 

where y denotes the observation vector; A denotes the design matrix of the unknown 
parameters; x denotes the vector of unknown parameters including coordinate 
components, ambiguities, and others, while e denotes the observation noise. Then 
the corresponding stochastic model reads 

D = σ 2 Q (3.2) 

where σ denotes the variance factor, and Q denotes the cofactor matrix. Let the 
estimate of x as x̂, then 

v = Ax̂ − y (3.3) 

where v denotes the vector of LS adjustment residuals. According to the law of 
covariance propagation, the variance-covariance matrix of the observation vector l 
can be expressed as D. LS, that is, the estimation x̂, is required to minimize the 
quadratic form ϕ(x̂) as follows 

ϕ(x̂) = vT D−1 v = min (3.4)
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Since x̂ is an independent parameter, to find the extremum of ϕ(x̂) with respect 
to x̂, and set its first derivative to zero, we get 

∂ϕ(x̂) 
∂ ̂x 

= 2vT D−1 ∂v 
∂ ̂x 

= 2vT D−1 A (3.5) 

Then (3.5) can be reformulated as follows 

AD−1 v = AD−1 (Ax̂ − y) = 0 (3.6) 

AD−1 Ax̂ = AD−1 y (3.7) 

The estimated unknown parameters x̂ can be derived as follows 

x̂ = (
AT D−1 A

)−1 
AT D−1 y (3.8) 

The corresponding variance-covariance matrix Dx̂ can be derived as follows 

Dx̂ =
(
AT D−1 A

)−1 
(3.9) 

Since the measurement errors are random, we have 

E(e) = 0 (3.10) 

Therefore 

E(l) = Ax (3.11) 

E(x̂) = (
AT D−1 A

)−1 
AT D−1 E(y) = x (3.12) 

Based on (3.12), the x̂ is unbiased. Therefore, the LS adjustment is an unbiased 
estimator. Essentially, the LS adjustment is derived from the deterministic principles 
of orthogonality and minimum distance. That is, no probabilistic considerations 
are involved. The LS estimators do not inherently possess optimal properties in a 
probabilistic sense. They are merely unbiased estimators, independent of the choice 
of the weight matrix, and their variance can be minimized by selecting the weight 
matrix as the inverse of the covariance matrix of the observations. Moreover, they 
are linear estimators if they are based on the linear functions of the observations. As 
is well known, estimators that are linear, unbiased and have minimum variance are 
called best linear unbiased estimators (BLUEs), where “best” in this case refers to 
having minimum variance. The LS estimators are BLUEs when the weight matrix 
equals the inverse of the covariance matrix of the observations [4–6]. 

In RTK, the float solution can be obtained using (3.7) and (3.8). Then, the real-
valued ambiguities must be resolved to integer values. After validating the integer
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ambiguity solution, the baseline is updated to obtain the final estimated coordinate 
parameters, as discussed in Chap. 4. 

3.2 Sequential Adjustment 

The mathematical model consisting of (3.1) and (3.2) applies to a single-epoch case. If 
multiple epochs are considered and the observations between epochs are independent, 
the mathematical model can be expressed as follows 

Y = BX + E (3.13) 

DYY = 

⎡ 

⎢ 
⎣ 
Dy1y1 · · · 0 

... 
. . . 

... 
0 · · ·  Dyk yk 

⎤ 

⎥ 
⎦ (3.14) 

with Y = [
yT 1 , . . . ,  yT K

]T 
, B = blkdiag(B1, . . . ,  Bk ), X = [

xT 1 , . . . ,  xT k
]T 
, E =

[
eT 1 , . . . ,  eT k

]T 
. According to the (3.14), we can find that the variance-covariance 

matrix DYY consisting of the variance-covariance matrices of each epoch Dyk yk is 
a block diagonal matrix (i.e., Dyiyj = 0(i �= j)). Therefore, the kinematic solutions 
(i.e., x1 �=  · · · �= xk ) of epoch k can be deduced as follows 

x̂k =
(
BT 
k D

−1 
yk yk 

Bk

)−1 
BT 
k D

−1 
yk yk 

yk (3.15) 

Based on (3.15), the corresponding variance-covariance matrix Dx̂k can be derived 
as follows 

Dx̂k =
(
BT 
k D

−1 
yk yk 

Bk

)−1 
(3.16) 

If the parameters to be estimated remain unchanged during this period (i.e., 
x1 =  · · ·  =  xk ), it is a static solution at this time. Then one can use the overall 
solution or the superposition solution of the normal equations. For the convenience 
of calculation in real applications, the sequential adjustment can be adopted. The 
sequential adjustment processes measurement data in time or space order, and each 
time a set of measurement data is processed, the results of the previous processing 
are used to update the parameter estimation. This section introduces it from the 
perspective of time. 

The prior expectation and variance of x are 

E(x) = x̂0, D(x) = D0 (3.17)
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And the prior expectation and variance of E are 

E(ei) = 0, D(ei) = Dei (i = 1, 2, . . . ,  k) (3.18) 

When filtering based on the generalized LS principle, the variable x can be 
regarded as nonrandomized, and its prior expectation x̂ can be regarded as a virtual 
observation with variance of Dx̂0 . Then, by the method of indirect adjustment, the 
error equation can be written as follows 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

Vx0 = x̂ + x̂0 
V1 = B1 x̂ + y1 
V2 = B2 x̂ + y2 

· · ·  
Vk = Bk x̂ + yk 

(3.19) 

Based on the above model, the x̂1 and Dx̂1 obtained from the first adjustment of 
sequential filtering with the method of sequential indirect adjustment.

{
x̂1 =

(
BT 
1 D

−1 
e1 B1 + D−1 

x̂0

)−1(
BT 
1 D

−1 
e1 y1 + D−1 

x̂0 x̂0
)

Dx̂1 =
(
BT 
1 D

−1 
e1 B1 + D−1 

x̂0

)−1 (3.20) 

By applying the matrix inversion formula, we obtain the following result

{
x̂1 = x̂0 + Dx̂0B

T 
1

(
B1Dx̂0B

T 
1 + D−1 

e1

)−1(
y1 + B1 x̂0

)

Dx̂1 = Dx̂0 − Dx̂0B
T 
1

(
B1Dx̂0B

T 
1 + D−1 

e1

)−1 
B1Dx̂0 

(3.21) 

After obtaining x̂k−1 and Dx̂k−1 from the (k − 1)-th adjustment, the result of the 
k-th adjustment is 

⎧ 
⎨ 

⎩ 
x̂k =

(
BT 
k D

−1 
ek Bk + D−1 

x̂k−1

)−1(
BT 
k D

−1 
ek yk + D−1 

x̂k−1 
x̂k−1

)

Dx̂k =
(
BT 
k D

−1 
ek Bk + D−1 

x̂k−1

)−1 (3.22) 

Similarly, we obtain the following result

{
x̂k = x̂k−1 + Dx̂k−1B

T 
k

(
BkDx̂k−1B

T 
k + D−1 

ek

)−1(
yk + Bk x̂k−1

)

Dx̂k = Dx̂k−1 − Dx̂k−1B
T 
k

(
BkDx̂k−1B

T 
k + D−1 

ek

)−1 
BkDx̂k−1 

(3.23) 

In case of white noise, (3.23) is the recursive formula for static sequential filtering. 
If there is also an estimation signal x′, the prior expectation and prior variance be 

set as follows 

E
(
x′) = x̂′

0, D
(
x′) = D′

0 (3.24)
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The covariance of x′ between x and ei is
{
cov

(
x′, x

) = C0 

cov
(
x′, ei

) = 0 (i = 1, 2, . . . ,  k) 
(3.25) 

The observation equation of yk can be written as follows 

yk =
[
Bk 0

][xk 
x′
k

]
+ ek (3.26) 

Then, we obtain the following result

[
x̂k 
x̂′
k

]
=

[
x̂k−1 

x̂′
k−1

]
+

[
Dx̂k−1 C

T 
k−1 

Ck−1 D′
x̂k−1

][
BT 
k 

0

]{
[
Bk 0

]
[
Dx̂k−1 C

T 
k−1 

Ck−1 D′
x̂k−1

][
BT 
k 

0

]
+ Dek

}−1

(
yk − Bk x̂k−1

)
(3.27) 

where D′
x̂k−1 

denotes the variance of the k − 1-th estimation x̂′
k−1 of x, and Ck−1 

denotes the covariance between x̂′
k−1 and x̂

′
k . Expanding (3.27), we can obtain 

x̂′
k = x̂′

k−1 + Ck−1BT 
k

(
BkDx̂k−1B

T 
k + Dek

)−1(
yk − Bk x̂k−1

)
(3.28) 

It can also be obtained according to (3.23)

[
Dx̂k C

T 
k 

Ck D′
x̂k

]
=

[
Dx̂k−1 C

T 
k−1 

Ck−1 D′
x̂k−1

]

−
[
Dx̂k−1 B

T 
k 

Ck−1 BT 
k

](
BkDx̂k−1B

T 
k + Dek

)−1[
BkDx̂k−1 BkCT 

k−1

]
(3.29) 

Therefore 

D′
k = D′

k−1 + Ck−1BT 
k

(
BkDx̂k−1B

T 
k + Dek

)−1 
BkCT 

k−1 (3.30) 

with 

Ck = Ck−1 − Ck−1BT 
k

(
BkDx̂k−1B

T 
k + Dek

)−1 
BkDx̂k−1 (3.31) 

Then, (3.31) can be rewritten as follows 

Ck = Ck−1 + Ck−1D
−1 
x̂k−1

(
Dx̂k − Dx̂k−1

)
(3.32) 

Thus, we have 

Ck = Ck−1D
−1 
x̂k−1 

Dx̂k (3.33)
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Also, it can be obtained from (3.33) 

Ck = C0D
−1 
x̂0 Dx̂k (3.34) 

In the case of white noise, the sequential extrapolation formulas are the above 
(3.28) and (3.31). 

On the other hand, residual systematic errors exist in GNSS observations; hence, 
the GNSS observations are time-correlated. In this case, the sequential adjustment 
mentioned above cannot be applied. Instead, a sequential adjustment method that 
accounts for time correlations in the observations must be adopted. First, we study 
the time-correlated observation model without between-epoch common parameters. 
For instance, this applies to GNSS pseudorange or carrier phase measurements with 
fixed ambiguities used for kinematic positioning. The corresponding observation 
equation and its variance-covariance matrix are given as follows 

Y = BX + E (3.35) 

DYY = 

⎡ 

⎢ 
⎣ 
Dy1y1 · · ·  Dy1yk 

... 
. . . 

... 
Dyk y1 · · ·  Dyk yk 

⎤ 

⎥ 
⎦ (3.36) 

Since the between-epoch observations are dependent, i.e., Dyiyj �= 0, the  
methods of decorrelation transformation, differential transformation, and maximum 
a posteriori (MAP) estimation are applied in this section. 

The first method is the decorrelation transformation. The LDLT decomposition 
method is applied to transform the variance-covariance matrix DYY , and set the 
decomposition form as DYY = UDUT , where U is a unit lower triangular matrix. 
The corresponding recursive formula reads [7]. 

Dj = Djj − 
j−1∑

k=1 

UjkDkUT 
jk , Uij =

(

Dij − 
j−1∑

k=1 

UikDkUT 
jk

)

D−1 
j , 1 ≤ j < i 

(3.37) 

where Uij denotes the i-th row and the j-th column sub-matrix of the unit lower 
triangular matrix, and D = blkdiag(D1, . . . ,  Dk ) is the block diagonal matrix. We 
set LDYYLT = D, where the Lij is as follows 

Lij = −  
i∑

k=j+1 

LikUkj, 1 ≤ j < i (3.38) 

The basic idea of the decorrelation transformation is to obtain a new set of inde-
pendent observations by transforming the time-correlated observations. Specifically,
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by multiplying the matrix L, the new observation model is obtained 

Y = AX + E (3.39) 

with Y = LY = [
yT 1 , . . . ,  yT K

]T 
, yi = yi + ∑i−1 

k=1 Likyk , E = LE =
[
eT 1 , . . .  , eT K

]T 
, ei = ei + ∑i−1 

k=1 Likek , A = LB = [
AT 
1 , . . . ,  AT 

K

]T 
, Ai =[

Li1B1, . . . ,  Li,i−1Bi−1, Bi, 0, . . .
]
. The variance-covariance matrix of the trans-

formed observation vector y reads 

Dyy = LDyyLT = D (3.40) 

where Dyiyi = Di. Since D is a block diagonal matrix, it is obvious that the observa-

tions are independent. Set xi−1 =
[
xT 1 , . . . ,  xT i−1

]T 
, and the observation equation and 

the variance-covariance matrix of all the epochs read

[
li 
yi

]
=

[
Ai 0 
Ei Bi

][
xi−1 

xi

]
+

[
εi 

ei

]
, cov

[
εi 

ei

]
=

[
Dli li 0 
0 Dyiyi

]
(3.41) 

with li = [
yT 1 , . . . ,  yT i−1

]T 
, Ai = 

⎡ 

⎢⎢⎢ 
⎣ 

B1 

L21B1 B2 
... 

... 
. . . 

Li−1,1B1 · · ·  Li−1,i−2Bi−2 Bi−1 

⎤ 

⎥⎥⎥ 
⎦ 
, Ei =

[
Li1B1, . . . ,  Li,i−1Bi−1

]
, εi = [

eT 1 , . . . ,  eT i−1

]T 
, Dli li = blkdiag(D1, . . . ,  Di−1). It  

is worth noting that all the i parameters are included in (3.41) at this time. The 
corresponding LS normal equation is as follows

[
A 
T 
i D

−1 
li li 
Ai + ET 

i D
−1 
yiyi 

Ei ET 
i D

−1 
yiyi 

Bi 

BT 
i D

−1 
yiyi 

Ei BT 
i D

−1 
yiyi 

Bi

][
x
∧

i−1 

x̂i

]

=
[
A 
T 
i D

−1 
li li li + ET 

i D
−1 
yiyi 

yi 
BT 
i D

−1 
yiyi 

yi

]

(3.42) 

with D−1 
x̂i−1 x̂i−1 

= A T i D
−1 
li li 
Ai, A 

T 
i D

−1 
li li 
li = D−1 

x̂i−1 x̂i−1 
x̂i−1. Then xi−1 is eliminated by using 

the normal equation reduction, and the LS estimates of the i-th epoch can be derived 
as follows 

x̂i =
(
BT 
i D

−1 
yi |xi−1 

Bi

)−1 
BT 
i D

−1 
yi |xi−1

(
yi − Eix

∧

i−1

)
, Dx̂i x̂i =

(
BT 
i D

−1 
yi |xi−1 

Bi

)−1 
(3.43) 

with Dyi |xi−1 = Dyiyi + EiD x
∧

i−1x
∧

i−1 

ET 
i . 

Then the second method is the differential transformation. The (3.35) is separated 
by the first i epochs and the i-th epoch, and the equation of the first i epochs is as
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follows 

li = Cixi−1 + eli (3.44) 

with Ci = blkdiag(B1, . . . ,  Bi−1), eli = [
eT 1 , . . . ,  eT i−1

]T 
. The variance-covariance 

matrix of (3.36) reads 

cov

([
εli 
ei

])
=

[
Dli li Dliyi 
Dyi li Dyiyi

]
(3.45) 

with Dyi li = DT 
liyi 

= [
Dyiy1 , . . . ,  Dyiyi−1

]
. 

The observation vector of the i-th epoch is transformed as yi = yi − GT li, then 
the new observation equation is obtained 

yi = Bixi − GT Cixi−1 + ei (3.46) 

with ei = ei −GT eli . According to the covariance propagation law, the new variance-
covariance matrix reads 

cov

([
eli 
ei

])
=

[
Dli li Dliyi − Dli liG 

Dyi li − GT Dli li Dyiyi + GT Dli liG − GT Dliyi − Dyi liG

]
(3.47) 

Apparently, if G = D−1 
li li Dliyi , the observation vectors yi and li are independent. 

At this time, the new observation equation and the variance-covariance matrix can 
be written as follows

[
li 
yi

]
=

[
Ci 0 

−GTCi Bi

][
xi−1 

xi

]
+

[
eli 
ei

]
, cov

[
εi 

ei

]
=

[
Dli li 0 
0 Dyiyi

]
(3.48) 

with Dyiyi = Dyiyi − Dyi liD
−1 
li li 
Dliyi . The corresponding LS normal equation is as 

follows
[
D−1 

x̂i−1 x̂i−1 
+ CT 

i GD
−1 
yiyi 

GTCi −CT 
i GD

−1 
yiyi 

Bi 

−BT 
i D

−1 
yiyi 

GT Ci BT 
i D

−1 
yiyi 

Bi

][
x̂i−1 

x̂i

]

=
[
D−1 

x̂i−1 x̂i−1 
x̂i−1 − CT 

i GD
−1 
yiyi 

yi 
BT 
i D

−1 
yiyi 

yi

]

(3.49) 

with D−1 
x̂i−1 x̂i−1 

= CT 
i D

−1 
li li 
Ci, CT 

i D
−1 
li li 
li = D−1 

x̂i−1 x̂i−1 
x̂i−1. The  xi−1 is eliminated by using 

the normal equation reduction, and the LS estimates of the i-th epoch is derived as 
follows
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x̂i =
(
BT 
i D

−1 
yi |xi−1 

Bi

)−1 
BT 
i D

−1 
yi |xi−1

(
yi + GT Ci x̂i−1

)
, Dx̂i x̂i =

(
BT 
i D

−1 
yi |xi−1 

Bi

)−1 

(3.50) 

with Dyi |xi−1 = Dyiyi + GTCiDx̂i−1 x̂i−1 
CT 

i G. 
Compared with the decorrelation transformation, it can be found that we have 

GT Ci = −Ei and Dyiyi − Dyi liD
−1 
li li Dliyi = Dii. That is, the estimations of the decorre-

lation transformation and the differential transformation are equivalent. However, the 
differential transformation requires that the observation type and the dimension of the 
observations between epochs are the same, whereas the decorrelation transformation 
is not. 

Finally, we can use the MAP estimation. The essence of MAP estimation theory 
is to modify the prior x with the observation y, and the modification is determined 
by the observation variances and the correlations between the observations and the 
parameters [8]. First, the standard form of MAP estimation is presented, where the 
prior statistical information of variables x and y are as follows 

E

([
x 
y

])

=
[
x 
y

]
, D

([
x 
y

])

=
[
Dxx Dxy 

Dyx Dyy

]
(3.51) 

where E denotes the expectation operator. According to the MAP estimation theory, 
when the sample (real observation) y of the random variable y exists, the estimation 
x̂ corresponding to the random variable x can be derived [8]

{
x̂ = E

(
x
) + DxyD−1 

yy

(
y − E

(
y
))

= x + DxyD−1 
yy (y − y) 

Dx̂x̂ = Dxx + DxyD−1 
yy Dyx 

(3.52) 

where the underlined variables x and y denote the random variables, and the un-
underlined variable y denote the sample of y. 

Then the MAP estimation is applied to derive kinematic solutions for time-
correlated observations, and the block observation equation is used via the differential 
transformation. As a result, we have yi → x, li → y, l̂i → y, and obtain the new 
observation of the i-th epoch 

ỹi = yi − Dyi liD
−1 
li li

(
li − ̂li

) = yi − GT êli (3.53) 

Dỹi ỹi = Dyiyi + GT Dêli êli 
G − Dyi ε̂li 

G − GT Dêli yi 
(3.54) 

Since the observation vectors li and yi are correlated, the observation vector yi 
should be updated. At the same time, the updated observation vector ỹi actually 
considers the time correlations, so the updated observation ỹi can obtain the equiv-
alent parameter estimation of the i-th epoch compared with the overall parameter 
estimation
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x̂i =
(
BT 
i D

−1 
ỹi ỹi 

Bi

)−1 
BT 
i D

−1 
ỹi ỹi 

ỹi, Dx̂i x̂i =
(
BT 
i D

−1 
ỹi ỹi 

Bi

)−1 
(3.55) 

Since it has been proved that the decorrelation transformation is equivalent to 
the differential transformation, only the equivalence between the kinematic solution 
(3.55) and (3.50) is discussed. Since Dêli êli 

= Dli li − CiDx̂i−1 x̂i−1 
CT 

i , Dyi êli 
= Dyi li − 

GTCiDx̂i−1 x̂i−1 
CT 

i , we can substitute them into (3.54) 

Dỹi ỹi = Dyiyi − Dyi liD
−1 
li li 
Dliyi + GT CiDx̂i−1 x̂i−1 

CT 
i G (3.56) 

Considering Dyiyi = Dyiyi −Dyi liD
−1 
li li 
Dliyi and Qyi |xi−1 

= Dyiyi +GTCiDx̂i−1 x̂i−1 
CT 

i G, 
we have 

Dỹi ỹi = Dyi |xi−1 (3.57) 

In addition, since ỹi = yi − GT
(
li − Ci x̂i−1

)
and yi = yi − GTli, then 

ỹi = yi + GT Ci x̂i−1 (3.58) 

In the end, we can obtain (3.50) by substituting (3.57) and (3.58) into (3.55), 
thus proving that the kinematic solutions of the MAP estimation and differential 
transformation are equivalent. Similarly, the MAP estimation does not require that 
the observation type and the dimension of the between-epoch observations are the 
same, whereas the differential transform is not. 

On the other hand, the time-correlated observation model with between-epoch 
common parameters is presented. The traditional multi-epoch adjustment method 
often leads to low efficiency. Therefore, in order to ensure that the solutions remain 
consistent and, at the same time, maximize the efficiency of the solution, we will 
explore the kinematic data processing method of the time-correlated observation 
model with between-epoch common parameters. Suppose the observations of consec-
utive K epochs have time correlations. At this point, there are parameter X and 
between-epoch common parameters ξ . Then the observation equation of K epochs 
is defined as follows 

Y = BX + Cξ + E (3.59) 

where C = [
CT 

1 , . . . ,  CT 
K

]T 
, and the variance-covariance matrix is defined as (3.19). 

Since the equivalence of decorrelation transformation, differential transformation and 
MAP estimation methods has been proved in the previous section, this monograph 
uses the decorrelation transformation method to derive as an example. 

By multiplying the matrix L, the new observation model is obtained that is similar 
to (3.39) 

Y = AX + Cξ + E (3.60)
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with C =
[
C 

T 
1 , . . . ,  C T K

]T 
, Ci = Ci + ∑i−1 

k=1 LikCk . Apparently, the observations 

are independent of each other after the transformation, and the transformed i-th 
observation equation contains the parameters of all the i epochs. In order to reduce 
the normal equation, the i-th observation equation and its variance-covariance matrix 
are reorganized

[
li 
yi

]
=

[
Ai Fi 0 
Ei Ci Bi

]
⎡ 

⎣ 
xi−1 

ξ 
xi 

⎤ 

⎦ +
[

εi 

ei

]
, D

([
εi 

ei

])
=

[
Qlili 0 
0 Qyiyi

]
(3.61) 

where Fi =
[
C 

T 
1 , . . . ,  C T i−1

]T 
, and the other variables are defined as (3.40). Obvi-

ously, ζ i−1 =
[
xT i−1, ξ 

T 
i−1

]T 
, and ξ i−1 denote the estimates of the parameter ξ of the 

previous i-1 epoch observations. Let the parameters obtained from the previous i-1 
epoch observations be evaluated as follows 

ζ̂ i−1 = Dζ̂ i−1

[
A 
T 
i D

−1 
li li li 

FT 
i D

−1 
li li 
li

]

, Qζ̂ i−1 
=

[
A 
T 
i D

−1 
li li Ai A 

T 
i D

−1 
li li Fi 

FT 
i D

−1 
li li 
Ai FT 

i D
−1 
li li 
Fi

]−1 

(3.62) 

Then the second equation of (3.61) and (3.62) is fused by the LS criterion, and 
the normal equation is obtained

[
D−1 

ζ̂ i−1 
+ HT 

i D
−1 
yiyi 

Hi HT 
i D

−1 
yiyi 

Bi 

BT 
i D

−1 
yiyi 

Hi BT 
i D

−1 
yiyi 

Bi

][
δi−1 

x̂i

]
=

[
D−1 

ζ̂ i−1 
ζ̂ i−1 + HT 

i D
−1 
yiyi 

yi 
BT 
i D

−1 
yiyi 

yi

]

(3.63) 

with Hi =
[
Ei Ci

]
, δi−1 =

[
x̃T i−1, ξ̂ 

T
]T 
. It is worth noting that the x̃i−1 denotes the 

estimate of xi−1 according to all the i epochs, which is different from the x
∧

i−1. By  
using the normal equation reduction, we derive the LS estimates of the i-th epoch 

x̂i =
(
BT 
i D

−1 
yi |ζ̂ i−1 

Bi

)−1 
BT 
i D

−1 
yi |ζ̂ i−1

(
yi − Hi ζ̂ i−1

)
, Dx̂i x̂i =

(
BT 
i D

−1 
yi |ζ̂ i−1 

Bi

)−1 
(3.64) 

with Dyi |ζ i−1 
= Dyiyi + HiDζ̂ i−1 ζ̂ i−1 

HT 
i . 

Although the above theoretical formulas are rigorous and accurate, they involve 
a large number of matrix operations, making the calculations complicated and inef-
ficient. A compromise approach is to use a variance-covariance matrix that is as 
simple as possible yet effectively describes the time correlations, balancing calcu-
lation efficiency with the actual time-dependent characteristics. Assuming that the 
variance-covariance matrix of each observation is the same, the time correlation coef-
ficient is estimated using the autocorrelation function (ACF). If the time correlation 
coefficient between adjacent epochs is ρ, the original variance-covariance matrix is 
as follows
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Dyy = 

⎡ 

⎢⎢⎢ 
⎢⎢⎢⎢ 
⎣ 

1 ρ ρ2 · · ·  ρK−1 

ρ 
. . . . . . 

... 
... 

ρ2 ρ 1 
. . . ρ2 

... 
... 

. . . . . . ρ 
ρK−1 · · ·  ρ2 ρ 1 

⎤ 

⎥⎥⎥ 
⎥⎥⎥⎥ 
⎦ 

⊗ Q = R ⊗ Q (3.65) 

where the symbol ⊗ denotes the Kronecker product. The above variance-covariance 
matrix can also be called partial continuation mode [9]. The corresponding decompo-

sition LRLT = D, with L = 

⎡ 

⎢⎢⎢ 
⎣ 

1 
−ρ 1 

. . . . . . 
−ρ 1 

⎤ 

⎥⎥⎥ 
⎦ 
, D = diag

([
1, 1 − ρ2, . . . ,  1 − ρ2

])
. 

Taking the observation Eq. (3.35) as an example, the decorrelation transformation 
method is applied for derivation. Specifically, by left multiplying matrix for obser-
vation equation L ⊗ I, the variables in the observation Eq. (3.39) corresponding 
to the decorrelation transformation change to yi = yi − ρyi−1, ei = ei − ρei−1, 
Ai = [

. . . ,  0, −ρBi−1, Bi, 0, . . .
]
. The variance-covariance matrix of the obser-

vations changes to Dyy = D ⊗ Q with Dyiyi = (
1 − ρ2

)
Q. According to Ei =[

0, . . .  0, −ρBi−1
]
, substitute the corresponding variables into (3.42), then 

x̂i =
(
BT 
i D

−1 
yi |x̂i−1 

Bi

)−1 
BT 
i D

−1 
yi |x̂i−1

(
yi + ρBi−1 x̂i−1

)
, Dx̂i x̂i =

(
BT 
i D

−1 
yi |x̂i−1 

Bi

)−1 

(3.66) 

with Dyi |x̂i−1 =
(
1 − ρ2

)
Q + ρ2Bi−1Dx̂i−1 x̂i−1B

T 
i−1. Obviously, the ACF-based degra-

dation form is extremely simple. Specifically, Ei, GTCi and ỹi can be simplified by 
ρ by using ACF. Besides, the x

∧

i−1 is reduced to x̂i−1, where the relationship between 
epochs are simplified. Therefore, the reduced form can not only meet the actual time-
dependent error characteristics, but also significantly improve the computational 
efficiency. 

3.3 Kalman Filter 

In real-world applications of navigation and positioning, the state vector can be 
estimated using both the predicted state and the system observations. In this context, 
the Kalman filter can be employed, as it utilizes a series of observations and the system 
dynamics model to estimate the state vector. To achieve high-precision results, the 
Kalman filter is widely used in RTK. The conceptual basis of the Kalman filter 
is a weighting method, where the optimal estimator is obtained by correcting the 
weight of the estimated value and the observed value. Furthermore, the Kalman filter
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is suitable for linear Gaussian systems, where linearity refers to superposition and 
homogeneity. 

Actually, internal or external constraints are often available. If these constraints 
can be precisely determined, equality constraints, such as the state equation, can 
be applied. The general principles of the Kalman filter primarily include uncon-
strained extremum and constrained extremum. Based on these two principles, the 
solutions of the Kalman filter can be classified into two categories. According to the 
dynamic model and observation equations, different filter solutions can be obtained 
by using various estimation criteria. The Kalman filter is a minimum mean square 
error estimation method, which is equivalent to the LS estimate. 

To solve the LS solution of the state parameters, the dynamic system equation 
and the observation equation are rewritten in the form of error equations, that is

{
vxk = x̂k − xk 
vk = Ak x̂k − lk 

(3.67) 

where vk and vxk denote the matrix of residual of lk and xk , respectively; xk denotes 
the predicted parameters 

xk = Φk,k−1 x̂k−1 (3.68) 

where Φk,k−1 denotes the state transition matrix of adjacent epochs k and k − 1. 
Then the variance matrix of xk can be derived as follows

∑

xk 

= Φk,k−1

∑

xk−1 

ΦT 
k,k−1 +

∑

wk 

(3.69) 

where wk denotes the state noise vector. 
According to the LS algorithm, the following objective function can be constructed 

as follows

�(k) = vT k Pkvk + vT xk Pxk vxk = min (3.70) 

where Pk = ∑−1 
k and Pxk =

∑−1 
xk denotes the weight matrices of lk and xk , respec-

tively. Considering (3.67), and take the derivative of (3.70) and let it to be zero, we 
have: 

d�(k) 
dx̂k 

= 2vT k PkAk + 2vT xk Pxk = 0 (3.71) 

Then, we can obtain (3.72) by substituting (3.71) into (3.67) as follows

(
AT 
k PkAk + Pxk

)
x̂k =

(
AT 
k Pk lk + Pxk xk

)
(3.72) 

Therefore, the LS solution of the state vector of xk can be derived as follows
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x̂k =
(
AT 
k PkAk + Pxk

)−1(
AT 
k Pk lk + Pxk xk

)
(3.73) 

Based on (3.73), the corresponding variance-covariance matrix x̂k can be derived 
as follows

∑

x̂k 

= (
AT 
k PkAk + Pxk

)−1 
σ̂ 2 0 (3.74) 

where σ̂ 2 0 denotes variance factor. Considering Px̂k = AT 
k PkAk + Pxk , we have

∑

x̂k 

= P−1 
x̂k σ̂ 2 0 (3.75) 

where Px̂k denotes the weight matrix of x̂k . Through the identical transformation of 
matrices, we have 

x̂k = xk + Kk (lk − Akxk ) (3.76) 

where Kk = ∑
xk A

T 
k

(
Ak

∑
xk A

T 
k +

∑
k

)−1 
denotes the gain matrix. According to the 

law of covariance propagation, the variance-covariance matrix of x̂k in (3.76) can be 
derived as follows

∑

x̂k 

=
∑

xk 

AT 
k 

⎛ 

⎝Ak

∑

xk 

AT 
k +

∑

k 

⎞ 

⎠ 
−1 

AkPk (3.77)

∑

x̂k 

= (Ik − KkAk )
∑

xk 

(3.78) 

It also can be obtained by the identical transformation of matrices of (3.74). 
The Kalman filter solution can also be obtained by the method of constrained 

extremum, and the objective function can be constructed as follows

�(k) = vT k Pkvk + vT xk Pxk vxk − 2λT (Ak x̂k − lk − vk ) = min (3.79) 

where λ denotes Lagrange multiplier vector. Take the derivative of �(k) in (3.79) 
with respect to vk and x̂k , respectively, and let them be zero 

d�(k) 
dvk 

= 2vT k Pk + 2λT = 0 (3.80) 

d�(k) 
dx̂k 

= 2vT xk Pxk − 2λT Ak = 0 (3.81) 

According to (3.80)
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vk = −P−1 
k λ = −

∑

k 

λ (3.82) 

According to (3.81) 

vxk = P−1 
xk 
AT 
k λ (3.83) 

After substituting (3.82) and (3.83) into (3.67), we have 

−
∑

k 

λ = Ak x̂k − lk (3.84)

∑

xk 

AT 
k λ = x̂k − xk (3.85) 

Specifically, by left multiplying the matrix Ak , (3.85) can be rewritten as follows 

Ak

∑

xk 

AT 
k λ = Ak x̂k − Akxk (3.86) 

After subtracting (3.84) from (3.86), λ can be derived as follows 

λ = 

⎛ 

⎝Ak

∑

xk 

AT 
k +

∑

k 

⎞ 

⎠ 
−1 

(lk − Akxk ) (3.87) 

We can substitute (3.86) into (3.85), the estimated unknown parameter x̂k can be 
derived as follows 

x̂k = xk +
∑

xk 

AT 
k 

⎛ 

⎝Ak

∑

xk 

AT 
k +

∑

k 

⎞ 

⎠ 
−1 

(lk − Akxk ) (3.88) 

Obviously, (3.88) is equivalent to (3.77). In addition, (3.73), (3.77) and (3.88) can 
also be rewritten as follows 

x̂k = (Ik − KkAk )xk + Kk lk (3.89) 

Since xk and lk are uncorrelated, according to the law of covariance propagation, 
the variance-covariance matrix of x̂k is

∑

xk 

= (Ik − KkAk )
∑

xk

(
Ik − AT 

k K
T 
k

) + Kk

∑

k 

KT 
k (3.90)
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From a computational perspective, the covariance matrix for estimating the state 
parameter vector obtained by (3.90) or (3.73) exhibits higher numerical stability 
than that of (3.78), because the covariance matrix in (3.78) may be negative or non-
positive definite, whereas (3.73) and (3.90) can ensure that the matrix is non-negative 
definite. By substituting (3.87) into (3.82), the observation residual vector vk can be 
derived as follows 

vk = −
∑

k 

⎛ 

⎝Ak

∑

xk 

AT 
k +

∑

k 

⎞ 

⎠ 
−1 

(lk − Akxk ) (3.91) 

Obviously, the solutions of the unconstrained extremum and the constrained 
extremum are strictly equivalent. In addition, (3.77) can also be written as follows 

x̂k = Φk,k−1 x̂k−1 − Kkvk (3.92) 

vk = Akxk − lk (3.93) 

The above equation indicates that the state parameter vector estimated by the 
Kalman filter is equivalent to the predicted state vector at time tk plus a correction 
vector −Kkvk , which is the product of the gain matrix and the innovation vector. 

However, the above dynamic model predicts the current state based on only the 
previous single epoch. In principle, the states of the most recent multiple epochs 
can provide more information for a more reliable prediction of the current position, 
thus improving the solution. The window-recursive approach (WRA) is introduced. 
Assuming that the vehicle motion is stable over a short period (a short time window), 
the state of the current epoch can be predicted more reliably using multiple recent 
epochs rather than just one. Suppose that the time-window length contains n epochs, 
and then, the dynamic model of current epoch k is expressed as follows 

xk = Φ(k,k−n:k−1)x(k−n:k−1) + wk (3.94) 

where xk denotes the state vector to be estimated; Φ(k,k−n:k−1) denotes the transition 
matrix that transfers the state information of the previous n epochs into that of 
the current one, x(k−n:k−1) =

(
xT k−n, xT k−n+1, . . . ,  xT k−1

)
denotes the vector consists 

of the stacked state vectors from the epoch (k − n) to the epoch (k − 1) and the 
corresponding covariance matrix is Dx̂(k−n:k−1) ; wk ∼ N

(
0, Dwk

)
denotes the process 

noise with zero mean normal distribution. The predicted state x̂k and its covariance 
matrix Dxk read [10, 11] 

xk = Φ(k,k−n:k−1) ̂x(k−n:k−1) (3.95) 

Dxk = Φ(k,k−n:k−1)Dx̂(k−n:k−1) Φ
T 
(k,k−n:k−1) + Dwk (3.96)
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The linearized GNSS observation model at epoch k reads 

lk = Hkxk + εk (3.97) 

where Hk denotes the design matrix connecting the state vector xk with the obser-
vation vector lk ; εk ∼ N (0, Dk ) denotes the observation noise with also zero-mean 
normal distribution. Moreover, the noises wk of dynamic model and the noise εk of 
observations are assumed noncorrelated. The Bayesian risk function is established 
in the sense of generalized LS principle 

minxk : vT k D−1 
k vk + vT xk D

−1 
xk 
vxk (3.98) 

The Kalman filter type of sequential solution for (3.98) is formulated as follows 

x̂k = xk + Kk (lk − Hkxk ) (3.99) 

Dx̂k = (I − KkHk )Dxk (3.100) 

Kk = Dxk H
T 
k

(
HkDxk H

T 
k + Dk

)−1 
(3.101) 

where x̂k and Dx̂k denote the estimated state and its covariance; Kk denotes the 
so-called gain matrix and I denotes the identity matrix which has the same dimen-
sion with state vector. The correlation between x̂k and x̂(k−n:k−1) must be rigorously 
handled when the time-window moves forward. Inserting (3.95) into (3.99) and 
applying the error propagation law yields the covariance matrix Dx̂k x̂(k−n:k−1) between 
x̂k and x̂(k−n:k−1) as follows 

Dx̂k x̂(k−n:k−1) = (I − KkHk )Φ(k,k−n:k−1)Dx̂(k−n:k−1) (3.102) 

where Dx̂(k−n:k−1) denotes the covariance matrix of states x̂(k−n:k−1) of the first n epochs 
in the window. Then, the covariance matrix of states x̂(k−n:k) of all (n + 1) epochs in 
the window is symbolized as follows 

Dx̂(k−n:k) =
[

Dx̂(k−n:k−1) DT 
x̂k x̂(k−n:k−1) 

Dx̂k x̂(k−n:k−1) Dx̂k

]

(3.103) 

with the window moving forward by one epoch, it is easy to analogously derive the 
filtering solution and its covariance matrix x̂(k−n+1:k+1) and Dx̂(k−n+1:k+1) . 

It points out that the computational burden of the WRA does not strongly depend 
on the window length, because the only inversion computation in (3.101) is needed 
and it is not related to the window length. As a special case when the window length 
n = 1, the WRA reduces to the Kalman filter. The main difference between the 
WRA and the conventional Kalman filter is that the more information from multiple
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historical epochs is employed than using only one epoch. The key is how to construct 
a transition matrix to transform the information of these multiple historical epochs 
into the current epoch, namely how to predict the state of current epoch using the 
states of multiple historical epochs. The current dynamic characteristics of vehicle 
motion can be adequately identified by its motion trajectory in the most recent epochs 
of a window. Therefore, the dynamic model construction can be realized by fitting 
the vehicle trajectory. In this study, polynomial fitting is used to model the vehicle 
trajectory. Two important factors are involved in the polynomial fitting with states of 
multiple epochs in a time-window, which are the window length and the polynomial 
order. Let the window length be n, the polynomial order m(m ≤ n) and the between-
epoch sampling interval δt, then the polynomial model of trajectory can be established 
as follows 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x̂k−n = a1 + η1 

x̂k−n+1 = a1 + a2δt + a3δt2 +  · · ·  +  amδtm−1 + η2 

· · ·  
x̂k−1 = a1 + a2((n − 1)δt) + a3((n − 1)δt)2 +  · · ·  +  am((n − 1)δt)m−1 + ηn 

(3.104) 

where ai = [
aiX aiY aiZ

]T 
is the column parameter vector to be estimated; ηi is 

the normal distributed noise vector, i ∈ {1, 2, . . . ,  m}. The compact matrix form of 
(3.104) is  

x̂(k−n:k+1) = Ma + η (3.105) 

with 

M = 

⎡ 

⎢⎢ 
⎣ 

1 0 · · · 0 
1 δt · · · δtm−1 

· · ·  · · ·  · · · · · ·  
1 (n − 1)δt · · ·  ((n − 1)δt)m−1 

⎤ 

⎥⎥ 
⎦ ⊗ I3; 

a = 

⎡ 

⎢⎢ 
⎣ 

a1 
a2 
· · ·  
am 

⎤ 

⎥⎥ 
⎦; η = 

⎡ 

⎢⎢ 
⎣ 

η1 

η2 

· · ·  
ηn 

⎤ 

⎥⎥ 
⎦. Treating x̂(k−n:k−1) as the measurement vector, the LS 

estimate of a is 

â =
(
MT Q−1 

x̂(k−n:k−1) 
M

)−1 
MT D−1 

x̂(k−n:k−1) 
x̂(k−n:k−1) (3.106) 

Then the state vector at epoch k is predicted as follows 

xk = uâ + wk (3.107)
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with u = (
1, nδt, . . . ,  (nδt)m−1

) ⊗ I3. Inserting (3.106) into (3.107) yields 

xk = u
(
MT D−1 

x̂(k−n:k−1) 
M

)−1 
MT D−1 

x̂(k−n:k−1) 
x̂(k−n:k−1) + wk (3.108) 

The corresponding transition matrix becomes 

Φ(k,k−n:k−1) = u
(
MT D−1 

x̂(k−n:k−1) 
M

)−1 
MT D−1 

x̂(k−n:k−1) 
(3.109) 

It should be noticed that when n = m, Eq.  (3.16) reduces to Φ(k,k−n:k−1) = uM−1 , 
which indicates that the transition matrix is independent with the covariance matrix 
of states in the time-window. In this case, one can alternatively use the Newton’s 
forward differential extrapolation model instead of (3.16) for the higher computation 
efficiency [10, 11]. 
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Chapter 4 
Integer Ambiguity Resolution 

4.1 Introduction 

The process of resolving carrier-phase integer ambiguities in Global Navigation 
Satellite System (GNSS) is known as carrier-phase ambiguity resolution. It involves 
determining the carrier-phase ambiguities as integer values. This process is crucial 
for fast and precise GNSS parameter estimation and is widely applied across various 
GNSS models used in fields such as navigation, surveying, geodesy, and geophysics. 
The underlying theory of GNSS carrier-phase ambiguity resolution is based on the 
concept of integer inference. This chapter focuses on explaining this theory and its 
practical applications. 

Carrier-phase integer ambiguity resolution is essential for achieving fast and accu-
rate GNSS parameter estimation. Once successfully resolved, high-precision carrier-
phase data can be treated as precise pseudorange data, enabling accurate positioning 
and navigation. 

GNSS ambiguity resolution is applicable to a wide range of current and future 
GNSS models, with applications in fields such as surveying, navigation, geodesy, 
and geophysics. These models can vary significantly in terms of complexity and 
diversity. For example, they range from simple single-receiver or single-baseline 
models used for kinematic positioning to more complex multi-baseline models that 
are used for studying geodynamic phenomena. Some models include the relative 
geometry between the receiver and satellites, while others may not. Additionally, 
models can differ based on whether the slave receiver(s) are stationary or moving, or 
whether differential atmospheric delays (e.g., ionospheric and tropospheric effects) 
are treated as unknowns. 

The structure of this chapter is as follows: The mixed-integer GNSS model is 
introduced, which forms the foundation for all integer ambiguity resolution methods. 
Next, the strategies for integer estimation are presented, followed by a discussion 
on the impact of unmodeled errors on ambiguity resolution and their role in the 
solution. The methods for integer evaluation and validation are then outlined. This
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chapter also highlights the advantages of partial ambiguity resolution techniques in 
practical GNSS applications. In response to the evolving trends of multi-frequency 
and multi-GNSS systems, methods for resolving multi-frequency ambiguities are 
presented, providing theoretical guidance for GNSS users. 

4.2 Mixed-Integer Model and Integer Ambiguity 
Estimation 

The GNSS observation model for integer ambiguity resolution can be summarized 
as a mixed integer model as 

E(y) = Aa + Bb, D(y) = Qyy (4.1) 

where y ∈ Rm is the vector of pseudo-range and carrier-phase observables. a ∈ 
Z
n is the vector of unknown integer ambiguities. b ∈ Rp is the vector of real-

valued unknown parameters (e.g., baseline vector). (A,B) ∈ Rm×(n+p) is the full-rank 
coefficient matrix. Qyy is the variance-covariance matrix of y. E(·) and D(·) denote the 
expectation operator and the dispersion operator, respectively. The objective function 
of (4.1) solved using the least squares (LS) criterion is expressed as 

(y − Aa − Bb)T Q−1 
yy (y − Aa − Bb) = min (4.2) 

Actually, the objective function can be transformed into [1]

‖y − Aâ − Bb̂‖2 Qyy 
+ ‖â − a‖2 Qââ 

+ ‖b̂(a) − b‖2 Qb̂(a)b̂(a) 
= min (4.3) 

where ‖ · ‖2 Q = (·)T Q−1 (·). The extremum problem in Eq. (4.3) is now decomposed 
into three criteria, expressed as

‖y − Aâ − Bb̂‖2 Qyy 
= min, â ∈ Rn (4.4)

‖â − a‖2 Qââ 
= min, a ∈ Zn (4.5)

‖b̂(a) − b‖2 Qb̂(a)b̂(a) 
= min (4.6) 

The solution to the three extremum problems above is computed in four steps. In 
fact, this four-step procedure is also called integer estimation [2].
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Step 1: Float Solution 

Disregarding the integer property of the ambiguities a ∈ Zn, the solution to Eq. (4.4) 
is obtained as

[
â 
b̂

]
,

[
Qââ Qâb̂ 

Qb̂â Qb̂b̂

]
(4.7) 

where â = (â1, . . . ,  ̂an)T ∈ Rn is the float ambiguity solution. 

Step 2: Integer Estimation 

Apply criterion (4.5) to find the integer solution of the ambiguities. With an 
admissible integer map S : Rn �→ Zn, the fixed integer ambiguity vector ǎ = 
(ǎ1, . . . ,  ̌an)T ∈ Zn is obtained as 

ǎ = S(â) (4.8) 

The integer map is admissible when its pull-in-regions Pz = {x ∈ Rn|S(x) = 
z}, z ∈ Zn cover Rn while being disjoint and integer translational invariant [3]. Some 
popular choices of mapping function S are available, including integer rounding 
(IR), integer bootstrapping (IB) and integer least squares (ILS). Of all choices, ILS is 
proven to be optimal and can be efficiently mechanized in the least-squares ambiguity 
decorrelation adjustment (LAMBDA) method [2]. 

Step 3: Integer Evaluation and Validation 

An integer evaluation and validation test are devised to determine whether or not 
the integer solution ǎ from Step 2 is sufficiently more reliable than any other integer 
candidate. Several validation tests are currently used in practice, such as the R-ratio 
test [4], W-ratio test [5], difference test [6] and project test [7]. If the integer validation 
test is passed, the reliable solution ǎ is used to update the baseline parameter. Other-
wise, the float solution in Step 1 is adopted for users. Regardless of the validation 
method used, the underlying goal is essentially the same: to assess the distinguisha-
bility among the integer candidates. The evaluation determines whether the integer 
solution is sufficiently distinct and reliable compared to other alternatives. If the 
integer solution is validated, it is adopted as the optimal solution; otherwise, the float 
solution from Step 1 is retained for the users. 

Step 4: Fixed Solution 

The float solution of the baseline parameters and its variance-covariance matrix are 
updated with the fixed integer solution, written as 

b̌ = b̂ − Qb̂âQ
−1 
ââ (â − ǎ) (4.9) 

Qb̌b̌ = Qb̂b̂ − Qb̂âQ
−1 
ââ Qâb̂ (4.10)



58 4 Integer Ambiguity Resolution

where b̌ is the fixed baseline solution. Qâb̂ and Qb̂â are the cross-covariance of â and 
b̂. Qb̂b̂ is the variance-covariance matrix of b̂. It should be noted that if the success 
rate in Step 3 is not high enough, the fixed solution b̌ is not necessarily better than 
the float solution b̂ [8]. 

To gain a deeper understanding of the three criteria in Eq. (4.3) and their relation-
ship with Eq. (4.2), we start with Eq. (4.2). Based on the principle that real parameters 
are differentiable while integer parameters are non-differentiable, we differentiate 
Eq. (4.2) to obtain 

−2AT Q−1 
yy

(
y − Aâ − Bb̂

) = 0 (4.11) 

The real parameters are expressed in terms of the observations and the integer 
parameters as 

b̂ = (
AT Q−1 

yy A
)−1(

AT Q−1 
yy y − AT Q−1 

yy Ba
)

(4.12) 

Substituting Eq. (4.12) into Eq. (4.2) gives  

(a − a0)T H(a − a0) + ζ = min (4.13) 

where ζ = yTQ−1 
yy QQ

−1 
yy y − yTQ−1 

yy QQ
−1 
yy AH

−1ATQ−1 
yy QQ

−1 
yy y, Q = Qyy − 

B(BT Q−1 
yy B)

−1 
BT , H = AT Q−1 

yy QQ
−1 
yy A, a0 = H−1 AT Q−1 

yy QQ
−1 
yy y. It is clear that 

ζ is a constant, so Eq. (4.13) is equivalent to 

(a − a0)T H(a − a0) = min (4.14) 

It is easy to prove that Qââ = H−1 , a0 = â, therefore Eq. (4.14) is equivalent to 

(a − â)T Q−1 
ââ (a − â) = min (4.15) 

The above equation is equivalent to Eq. (4.2). Furthermore, since Eq. (4.15) is  
the same as Eq.  (4.5), it shows that solving the mixed-integer model (4.1) using  the  
LS criterion is equivalent to the second criterion (4.5) proposed by Teunissen. The 
other two criteria (4.4) and (4.6) can be understood as auxiliary computations for 
solving (4.1). Furthermore, when the mixed-integer model is subject to constraints, 
such as constraints on both integer parameters a and real parameters b, the following 
conclusion can be drawn: Constraints on the real parameters can improve the quality 
of the float solutions for the integer parameters, whereas constraints on the integer 
parameters provide no significant benefit. In other words, constraints on the integer 
parameters serve only to eliminate incorrect candidates during the integer search 
process.
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4.2.1 Strategy of Integer Estimation 

Regardless of the integer estimation method employed, the objective is to solve the 
minimization problem presented in Eq. (4.5). However, since the ambiguity a is an 
integer and cannot be directly differentiated, the core approach of integer estimation 
methods is to search for a set of integer candidate combinations within the infi-
nite integer space, and then assess whether they minimize the objective function by 
substituting them into Eq. (4.5). The fewer the integer candidate combinations, the 
higher the efficiency in determining the optimal integer. Consequently, all proposed 
integer estimation methods aim to reduce the number of integer candidates, thereby 
facilitating the rapid determination of the optimal integer solution. 

Over the past few decades, several integer estimation strategies have been devel-
oped to address the discrete integer nature of the ambiguity a. These strategies 
include enumeration, fast ambiguity resolution approach (FARA) [9], ambiguity 
function method (AFM) [10, 11], least squares search method (LSSM) [12], and 
the LAMBDA [2], among others. Among them, the LAMBDA method performs 
particularly well in terms of integer search efficiency and has been widely applied. 

In the LAMBDA method, the integer solution to (4.5) is found by means of an 
efficient search over the ellipsoidal search space defined as 

(a − â)T Q−1 
ââ (a − â) ≤ χ 2 (4.16) 

The search speed depends on the size χ 2 and the shape of the ellipsoid. The 
positive constant χ 2 can be predetermined using different strategies [13] and then 
gradually shrunk during the search [13, 14]. The shape and orientation of the ellipsoid 
are defined by the variance–covariance matrix Qââ of the float ambiguity estimates. 
Since a high correlation among the ambiguities may lead to search halting which 
in turn makes the search time-consuming, the decorrelated ambiguities are used 
instead of the original ones in the LAMBDA method. After decorrelation, the original 
ambiguities are transformed to the decorrelated ones using z = ZTa, and then the 
search is conducted in the transformed ellipsoid 

(z − ẑ)T Q−1 
ẑẑ (z − ẑ) ≤ χ 2 , ∀z ∈ Zn (4.17) 

where ẑ = ZT â and Qẑẑ = ZTQââZ. Let the triangular factorization of the decor-
related variance-covariance matrix be Qẑẑ = LT DL, the search over the ellipsoid 
(4.17) is then based on the evaluation of the scalar intervals 

z̃i − σzi|I

√√√√√χ 2 − 
n∑

j=i+1

(
zj − z̃j

)2 
dj 

≤ ẑi ≤ z̃i − σzi|I

√√√√√χ 2 + 
n∑

j=i+1

(
zj − z̃j

)2 
dj 

, 

(i = 1, . . . ,  n) (4.18) 

with
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z̃i = ẑi − 
m∑

j=i+1

(
zj − z̃j

)
lji (4.19) 

where L is a unit lower triangular matrix and lji(j > i) is its element of the jth row 
and the ith column; D is a diagonal matrix whose ith element, di = σ 2 ẑi|I , is the condi-
tional variance of the ith transformed ambiguity zi conditioned on the transformed 
ambiguities I = {i + 1, · · ·, n}. Based on these bounds, the search is performed. 
We must emphasize that the LAMBDA method primarily enhances the efficiency of 
integer ambiguity search and focuses solely on the variance-covariance matrix of the 
ambiguity â. However, unmodeled errors in the GNSS model can introduce biases in 
the ambiguity â, which presents a limitation when applying the LAMBDA method. 
In such cases, neglecting the bias in â while relying solely on the LAMBDA method 
is problematic. 

4.2.2 Integer Ambiguity Resolution in the Presence of Biases 

In GNSS data processing, the observational errors inherent in the GNSS signals 
are typically modeled and corrected. The residuals obtained after model correction 
are subsequently treated as the parameters to be estimated, thereby constituting the 
widely adopted mixed-integer GNSS linearized model, which is expressed as 

E(y) = Aa + Bb, D(y) = Qyy (4.20) 

However, some GNSS observational errors, such as multipath errors or atmo-
spheric biases that are often neglected, are difficult to model. In practice, these errors 
cannot always be ignored in GNSS observation models, as they may lead to biased 
estimates of the ambiguity parameters. The mixed-integer GNSS linearized model 
that accounts for these errors is expressed as 

E(y) = Aa + Bb + C∇, D(y) = Qyy (4.21) 

where ∇ ∈  Rq is other nuisance parameter vector. Their design matrices are A ∈ 
R

m×n, B ∈ Rm×p and C ∈ Rm×q with [ABC] of full column rank. It is emphasized 
that the nuisance parameter ∇ is  set up in (4.21) to compensate the non-ignorable 
systematic biases. However, if ∇ 	= 0, i.e., if the atmospheric biases are not so small 
to be completely ignorable, biased parameter estimates will be obtained with (4.21). 

In principle, reducing the parameters in an adjustment system can improve the 
model strength but as trade-off introduces biases in the parameter estimates if the 
systematic effects specified by these parameters cannot be completely ignored. The
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three-step procedure for solving model (4.21) in the presence of atmospheric biases 
(∇ 	= 0) will thus lead to a biased solution, as described next. 

Step 1: Float solution 

The float solution is again obtained by disregarding the integer constraints on the 
ambiguities,

[
âb 

b̂ 
b

]
∼ N

([
a + �a 
b + �b

]
,

[
Qb 

ââ Q
b 
âb̂ 

Qb 
b̂â 

Qb 
b̂b̂

])
(4.22) 

with the variance-covariance matrix

[
Qb 

ââ Q
b 
âb̂ 

Qb 
b̂â 

Qb 
b̂b̂

]
=
[
AT Q−1 

yy A AT Q−1 
yy B 

AT Q−1 
yy A BT Q−1 

yy B

]−1 

(4.23) 

and the bias vector

[
�a
�b

]
=
[
Qb 

ââ Q
b 
âb̂ 

Qb 
b̂â 

Qb 
b̂b̂

][
ATQ−1 

yy C 
AT Q−1 

yy C

]
∇ (4.24) 

where the superscripts “b” are used to denote the biased terms. It can be easily shown 
that the variance-covariance matrix (4.23) is smaller than the unbiased one and also 
Qb 

ââ ≤ Qââ and Q
b 
b̂b̂ 

≤ Qb̂b̂. The reason is that the number of unknown parameters is 
reduced. 

Step 2: Integer estimation 

Similarly, as with the unbiased model, the float ambiguity estimate âb is used to 
compute its integer counterpart: 

ǎb = S
(
âb
)

(4.25) 

Step 3: Fixed solution 

Once the ambiguities are fixed by applying Steps 1 and 2 described here, one should 
never disregard the biases for computing the precise baseline solution, since even if 
ǎb is correct, the bias �b will propagate in the fixed baseline solution. Therefore, 
the float solution of the baseline parameters and its variance-covariance matrix are 
updated with the fixed integer solution, written as 

b̌ = b̂ − Qb̂âQ
−1 
ââ

(
â − ǎb

)
(4.26)
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Qb̌b̌ = Qb̂b̂ − Qb̂âQ
−1 
ââ Qâb̂ (4.27) 

This is equivalent to solving the model 

E
(
y − Aǎb

) = Bb + C∇, D(y) = Qyy (4.28) 

Note from (4.10) and (4.27) that the precision Qb̌b̌ of the fixed baseline solution 
with ǎ is the same as with ǎb if in both cases the uncertainty of the fixed ambi-
guity solution can be ignored. Therefore, it will be better to use ǎb if the probability 
that this integer solution is correct is higher than that ǎ being correct. However, 
in practical applications, these unmodeled biases are difficult to handle through 
explicit modeling, yet they still exist. Consistently neglecting these biases can lead 
to biased ambiguity estimates. In practice, however, a simplified model, as expressed 
in Eq. (4.20), is typically used for processing. 

4.2.3 Integer Evaluation and Validation 

The correctness of the final integer solution obtained through integer estimation 
methods is crucial throughout the ambiguity resolution process. Once an incorrect 
integer solution is accepted, the remaining real parameter solutions, such as position 
estimates, may become significantly erroneous. Therefore, when applying the integer 
solution obtained from integer estimation methods, it is essential to perform both 
evaluation and validation test. Evaluation test involves assessing the correctness of the 
integer solution from a probabilistic perspective, providing an internally consistent 
measure of integer correctness. Validation test, on the other hand, involves evaluating 
the correctness of the integer solution through mutual comparison among the integer 
candidates. 

A very high positioning performance can only be guaranteed if the estimated 
integer ambiguities are correct. It is therefore very important to assess the probability 
of correct integer estimation. This probability is called the success rate and only if 
it is very close to 1, it is possible to rely on the integer solution without further 
validation [15]. In that case the integer ambiguity solution can be assumed to be 
deterministic, and the variance-covariance matrix of the fixed baseline solution is 
obtained in Eqs. (4.10) and (4.27). 

The essence of correct integer estimation was described previously. It is thus 
important to have means available to evaluate the ambiguity success rate, i.e. the 
probability of correct integer estimation Ps [15]. This success rate is equal to the 
probability that â resides in the correct pull-in region Pa with a the true but unknown 
ambiguity vector 

Ps = P(ǎ = a) = P(â ∈ Pa) =
∫
Pa 

fâ(x|a )dx (4.29)
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The probability density function (PDF) of the float ambiguities, fâ(x|a ), is  
assumed to be the normal PDF with mean a: 

fâ(x|a ) = 1 √
det

(
2πQââ

)exp
{
− 
1 

2 
(x − a)T Q−1 

ââ (x − a)
}

(4.30) 

As the pull-in regions of the integer estimators are integer translation invariant, 
the success rate can also be evaluated as 

Ps =
∫
P0 

fâ(x|0 )dx (4.31) 

The success rates also depend on the selected integer estimation method, since 
the pull-in region is different for IR, IB and ILS. In [16] it was proven that 

P(ǎIR = a) ≤ P(ǎIB = a) ≤ P(ǎILS = a) (4.32) 

The success rate cannot be evaluated exactly in all cases due to the complex 
integration over the pull-in region. It is of course important to be able to have good 
approximations of the success rate in case exact evaluation is not feasible. A lower 
bound is an approximation of the success rate, which is guaranteed to be smaller 
than or equal to the actual success rate. As such it is particularly useful. However, 
if the lower bound is not tight, this may result in an unnecessarily high rejection 
rate as the success rate is deemed too low. An upper bound can be useful as well, 
especially in combination with a lower bound, since it then tells the user in which 
range the success rate will be. If the upper bound is below a user-defined threshold, 
one cannot expect ambiguity resolution to be successful. In addition, for IR and IB it 
may be useful to have an upper bound which is invariant for the class of admissible 
ambiguity transformations. Different approximations and bounds were proposed in 
the literature, an evaluation of some of the bounds was made in [8]. 

Integer rounding success rates 

The n-fold integral over the IR pull-in region is difficult to evaluate. Only if the 
variance-covariance matrix Qââ is diagonal will the success rate become equal to 
the n-fold product of the univariate success rates. When Qââ is not diagonal, a lower 
bound written as 

Ps,IR = P(ǎIR = a) ≥ 
n∏

i=1

(
2Φ

(
1 

2σâi

)
− 1

)
(4.33) 

with Φ(x) = 1 √
2π

∫ x 
−∞exp

{− 1 
2 t

2
}
dt. 

According to Eq. (4.32), IB will always result in a success rate higher than or 
equal to the IR success rate if the same parameterization of the float ambiguities is
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used. Hence, the IB success rate can be used as an upper bound for IR. In the next 
subsection it will be shown that the IB success rate can in fact be evaluated exactly. 

Integer Bootstrapping success rates 

In the case of bootstrapping, the success rate can be evaluated exactly using 

Ps,IB = P(ǎIB = a) = 
n∏

i=1

(
2Φ

(
1 

2σâi|I

)
− 1

)
(4.34) 

For bootstrapping we thus have an exact and easy-to-compute formula for the success 
rate. An upper bound is given by 

Ps,IB ≤
(
2Φ

(
1 

2ADOP

)
− 1

)n 

(4.35) 

with ADOP =
√
det

(
Qââ

)1/n 
, representing the ambiguity dilution of precision 

(ADOP) and expressed in units of cycles. The ADOP is a diagnostic that captures the 
main characteristics of the ambiguity precision. When the ambiguities are completely 
decorrelated, the ADOP equals the geometric mean of the standard deviations of the 
ambiguities, hence, it can be considered as a measure of the average ambiguity 
precision. 

Integer least squares success rates 

Due to the complex geometry of the ILS pull-in region, the multivariate integral can 
only be evaluated by using monte carlo simulation. In addition, several lower and 
upper bounds of the ILS success rate have been proposed. It was already mentioned 
that IB may perform close to optimal if applied to decorrelated ambiguities. There-
fore, the corresponding IB success rate can be used as a lower bound for the ILS 
success rate 

Ps,ILS = P(ǎILS = a) ≥ Ps,IB (4.36) 

The conditional standard deviations σẑi|I of the decorrelated ambiguities must be 
used. 

Consequently, the invariant upper bound of the IB success rate may serve as an 
approximation of the ILS success rate. Furthermore, an upper bound for the ILS 
success rate based on the ADOP can be given as 

Ps,ILS ≤ P
(

χ 2 (n, 0) ≤ cn 
ADOP2

)
(4.37)
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with cn = ( 
n 
2 �( n 2 ))2/n 

π
. This bound was introduced in [17], while the proof was given 

in [18]. 
As previously demonstrated, utilizing the integer solution ǎ is meaningful only 

if the ambiguity success rate Pa is sufficiently high. Otherwise, there would be an 
unacceptable risk of large errors in the fixed solution b̌. This consideration leads to 
the following decision rule for determining the outcome of the ambiguity resolution 
process, 

outcome =
{
ǎ ∈ Zn if P(â ∈ Pa) ≥ P0 

â ∈ Rn otherwise 
(4.38) 

According to this rule, the integer solution ǎ is accepted only if the success rate 
is beyond a user-defined threshold P0; otherwise, the float solution â is retained. 
This is a model-driven rule, meaning the decision depends solely on the strength 
of the underlying model rather than the actual float solution â itself. Instead, the 
PDF of â, through the probability P(â ∈ Pa), influences the decision. Alternatively, 
a data-driven decision rule can be adopted, where the decision is based directly on the 
observed float solution rather than relying purely on the model’s statistical properties. 
Such rules are of the form 

outcome =
{
ǎ ∈ Zn if T (â) ≥ τ0 
â ∈ Rn otherwise 

(4.39) 

with testing function T : Rn �→ Rn and user-defined threshold value τ0. The integer 
solution ǎ is accepted if the value of T (â) is sufficiently large; otherwise, it is rejected 
in favor of the float solution â. This is a data-driven rule, as the decision is based on 
the actual value of the float solution, which is evaluated using T (â). 

In practice, data-driven rules are often preferred in integer validation, as they offer 
greater flexibility in assessing the correctness of the integer solution. Various testing 
functions, such as the ratio test, difference test, and projector test, can be applied in 
this context. Each of these tests belongs to the class of integer aperture estimators, 
as introduced in the literature [19, 20]. A review and evaluation of these tests can be 
found in [21, 22]. 

The ratio test is a very popular validation test in practice. The ratio test is used 
here, i.e., accept ǎ if:

‖â − a2‖2 Qââ

‖â − a‖2 Qââ 

≥ τ0 (4.40) 

where a2 is the second-best integer candidate. In many software packages a fixed 
value for the ratio is used, e.g., τ0 = 3. The difference test leads to acceptance of ǎ 
if:
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‖â − a2‖2 Qââ 
− ‖â − a‖2 Qââ 

≥ 1/τ0 (4.41) 

The main advantage of data-driven rules over model-driven rules lies in their 
increased flexibility, particularly in controlling the fail rate. With data-driven rules, 
users can have full control over the fail rate, independent of the strength of the 
underlying GNSS model. This level of control is not possible with model-driven 
rules. 

4.3 Partial Ambiguity Resolution 

In theory, only the ambiguities that have enough correlation with the baselines are 
necessary to be correctly fixed to improve the baseline precision. For the ambiguities 
that have marginal correlation with baseline, we do not need to strive for their fixing, 
particularly when they are difficult to be fixed. In the section, we will demonstrate 
that in an ambiguity vector, not all ambiguities have the comparable contribution to 
the baseline. In other words, we will show that the full ambiguity resolution (FAR) 
is not always necessary. 

Firstly, availability of partial ambiguity resolution (PAR) is higher than FAR. For 
some cases, before the FAR, the PAR results can be applied, to a great extent, to 
achieve the satisfied baseline/ionosphere solutions that can directly provide service 
to users. Secondly, the PAR is more reliable than FAR. In other words, the baseline/ 
ionosphere solution of PAR is safer than that of FAR, especially when the success-
rate of FAR is not high enough. Figure 4.1 illustrates the variation of ionosphere 
precision over time for PAR and FAR from a simulation experiment. Obviously, the 
PAR is better than FAR in the ionosphere solution. Thirdly, With the accumulation 
of the observations, PAR turns to the FAR as long as FAR is possible. Therefore, 
PAR is more flexible than FAR.

Let ambiguity vector â = [
âT 1 â

T 
2

]T 
and â1 be fixed to ǎ1, then the baseline 

solution with PAR is 

b̌PAR = b̂ − Qb̂â1 Q
−1 
â1 â1 (â1 − ǎ1) (4.42) 

and its precision is 

Qb̌PAR b̌PAR = Qb̂b̂ − Qb̂â1 Q
−1 
â1 â1 Qâ1 b̂ (4.43) 

For the remaining ambiguity â2 if it can also be fixed to ǎ2, then precision gain of 
baseline is 

Qâ2,gain = Qb̌PAR − Qb̌FAR = Qb̂â2|1 Q
−1 
â2|1 Qâ2|1 b̂ (4.44)
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Fig. 4.1 Variation of baseline precision over time for PAR and FAR

This quantity Qâ2,gain can be used as an indicator to measure the contribution of 
the remaining ambiguity â2 to the baseline solution. If it is small enough, we can 
say the fixing of â2 has no effect on the baseline precision improvement; whereas if 
it is still significant, we need to strive for its fixing solution to improve the baseline 
precision. 

In practical data processing, several PAR strategies are available for users to 
choose. 

Success Rate-Based Selection: This strategy involves calculating the success rate 
for each ambiguity component, fixing only those that exceed a predefined threshold. 
Ambiguities with a lower success rate are kept as float solutions, while those with 
higher success rates are fixed. This approach ensures that only the most reliable 
ambiguities contribute to the final solution. 

Contribution-Based Selection: Instead of relying solely on the success rate, this 
method focuses on the contribution each ambiguity makes to the baseline solution. 
Ambiguities that have a minimal impact on the baseline are left unresolved as float 
solutions. This helps ensure that the fixed ambiguities significantly influence the 
accuracy of the solution. A common approach is to analyze the contribution through 
the variance-covariance matrix. 

Stepwise or Sequential Fixing: In this method, ambiguities are resolved one by one, 
starting with those that are most likely to be fixed correctly. This stepwise process 
reduces the chance of error propagation, as each ambiguity is carefully assessed 
before the next one is resolved.
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Quality-Control-Based PAR: This approach involves applying statistical quality 
control tests, such as ratio tests and difference tests, to evaluate the reliability of 
each ambiguity solution. Only those ambiguities that pass these quality checks are 
fixed, ensuring the robustness of the final solution. Methods like R-ratio test, W-ratio 
test, difference test and project test are commonly used. 

Subset Optimization-Based Selection: This strategy selects the optimal subset of 
ambiguities to resolve from a given set, with the aim of maximizing the precision 
and reliability of the solution. By carefully selecting the most impactful ambiguities, 
this method improves the overall performance of the ambiguity resolution. 

These strategies provide users with various ways to balance precision, relia-
bility, and availability when resolving ambiguities, offering flexibility in addressing 
different observational conditions. 

4.4 Ambiguity Resolution with Multiple Frequencies 

With the development trend of multi-frequency of GNSS, ambiguity resolution has 
been extended from three-frequency carrier ambiguity resolution (TCAR) to quad-
frequency carrier ambiguity resolution (QCAR), penta-frequency carrier ambiguity 
resolution (PCAR), and even multi-frequency carrier ambiguity resolution (MCAR). 
In this section, MCAR is first briefly introduced, and the basic theory of MCAR is 
expounded, and finally the advantages and challenges of MCAR are discussed. 

To generalize the scenarios, we derive the formulae based on the arbitrary number 
of frequencies. The derivations are analogous to our previous study for triple-
frequency case [23]. The single-epoch double-differenced (DD) geometry-based 
(GB) model with ionospheric constraints is presented at first, from which the various 
models are then reduced. These reduced models can be used to simplify the ambiguity 
resolution and positioning under different specific situations. 

Considering the residual ionospheric effects, the single-epoch DD observation 
equations of code and phase on f frequencies read 

E

([
p 
φ

])
=
[
ef ⊗ A μ ⊗ Is 0 
ef ⊗ A −μ ⊗ Is � ⊗ Is

]⎡ 

⎣ 
x 
ι 
a 

⎤ 

⎦ (4.45) 

where p = [pT 1 , . . . ,  pT f ]T is the f -frequency code observations with pj the observa-
tions of frequency fj. φ is the f -frequency phase observations with the same structure 
as p. A is the design matrix to baseline parameter x. μ = [μ1, . . . , μf ]T with μj = 
f 2 1 /f 

2 
j is the scalar vector to DD ionosphere parameters ι. � = diag([λ1, . . . , λf ]) is 

diagonal matrix of wavelengths to DD ambiguities a = [aT 1 , . . . ,  aT f ]T . The subscript 
s denotes the number of DD satellite pairs. Here we neglect the residual tropospheric 
effects in the DD observations since the tropospheric delays have been corrected
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by at least 90% with a standard tropospheric model, and the residuals have limited 
effects on the ambiguity resolution. Moreover, if a zenith tropospheric delay (ZTD) 
parameter is set up to further absorb such residuals will extend the convergence due 
to the strong correlation between ZTD and height component. The stochastic model 
of (4.45) is formulated as 

D

([
p 
φ

])
= diag([σ 2 p , σ  2 φ ]) ⊗ If ⊗ Q (4.46) 

where σ 2 p and σ 2 φ are the frequency-independent variance scalars of undifferenced 
code and phase. Q is an (s × s) cofactor matrix of DD observations with elevation-
dependent weighting. 

To make the model more general, we introduce the DD ionospheric constraints 
as pseudo-observations to (4.45) 

E(ι0) = ι, D(ι) = σ 2 ι Q (4.47) 

where the variance σ 2 ι is used to model the spatial uncertainty of baseline-dependent 
ionosphere. Incorporating the ionospheric constraints into (4.45) and further equiva-
lently reducing the ionospheric parameters yields the GB ionosphere-weighted (IW) 
model as 

E

([
p 
φ

])
=
[
ef ⊗ A 0 
ef ⊗ A � ⊗ Is

][
x 
a

]
(4.48) 

where p = p − μ ⊗ ι0 and φ = φ + μ ⊗ ι0. Accordingly, the stochastic model is 

D

([
p 
φ

])
=
[

σ 2 p If + σ 2 ι μμT −σ 2 ι μμT 

−σ 2 ι μμT σ 2 φ If + σ 2 ι μμT

]
⊗ Q (4.49) 

As a special case of the GB model, the geometry-free (GF) model is formulated 
with A = Is. In other words, the satellite-to-receiver distance is directly applied as 
unknowns instead of its expansion with baseline unknowns [24]. Although the GB 
model is the most common operation mode in most surveying applications, the GF 
model has its own appeal, stemming mainly from its simplicity and the exemption 
of complicated tropospheric variations [25]. The GF IW model follows then 

E

([
p 
φ

])
=
[
ef ⊗ Is 0 
ef ⊗ Is � ⊗ Is

][
�

a

]
(4.50)
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Two extreme cases, i.e., the ionosphere-float (IFlt) model with σ 2 ι = ∞  and 
the ionosphere-fixed (IFix) model with σ 2 ι = 0, can be further reduced from the 
IW model for specific situations. Similar to [23], we can also derive the canonical 
formulae of the covariance matrix of the float ambiguities. 

In fact, the most benefit of multi-frequency signals is to provide the more possi-
bility to form the combinations with longer wavelength and then easier or instanta-
neous ambiguity resolution [26]. In this study, we select the extra-wide-lane/wide-
lane (EWL/WL) combinations by transforming f -frequency ambiguities with a pre-
set between-frequency transformation matrix in terms of their maximized success 
rates. With the covariance matrices of float ambiguities in Eq. (4.50), we solve for 
the optimal integer transformation matrices to minimize the variance of the trans-
formed EWL ambiguities based on the ILS criterion. Since the GF model can already 
obtain the high success rate of EWL/WL ambiguity resolution (based on our extensive 
computations), the GF model is used to search the optimal combinations. Considering 
the IW model, we apply the between-frequency transformation matrix

(
zT E ⊗ Is

)
with 

the integer vector zT E = [z1, . . . ,  zf ] to transform the covariance matrix. It follows

(
zT E ⊗ Is

)
Q(GF,IW) 

ââ (zE ⊗ Is) = σ 2(GF,IW) 
ẑ Q (4.51) 

with 

σ 2(GF,IW) 
ẑ = zT E

[
�−1

(
σ 2 φ If +

σ 2 p μμT 

σ 2 p /σ 2 ι + μTμ

)
�−1 + �

]
zE (4.52) 

Obviously, maximizing the success rate to obtain the optimal transforma-
tion vector zT E corresponds minimizing the scalar σ 2(GF,IW) 

ẑ , i.e., σ 2(GF,IW) 
ẑ = 

min. The LAMBDA method [2] can be applied to solve this minimiza-
tion problem where the zero-vector plays the role of float solution while[
�−1

(
σ 2 φ If + σ 2 p μμT 

σ 2 p /σ 2 ι +μTμ

)
�−1 + �

]−1 
the role of its corresponding covariance 

matrix. In the original version of LAMBDA software, only two optimal integer 
vectors are provided. Here the new version of LAMBDA software [27] was employed 
to provide a number of integer vectors in ascending order of their corresponding 
variance scalars. 

The minimization problem of (4.52) is governed by the uncertainty σι of 
ionospheric constraint. For the IFlt model, the variance scalar (4.52) becomes 

σ 2(GF,IFlt) 
ẑ = zT E[�−1

(
σ 2 φ If + σ 2 p 

μμT 

μTμ

)
�−1 + �∞]zE (4.53) 

while for IFix model, the variance scalar is 

σ 2(GF,IFix) 
ẑ = zT E

[
σ 2 φ�−2 + σ 2 p

�−1 ef eT f �
−1 

f

]
zE (4.54)
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and its bias is accordingly transformed in a scalar case as 

b(GF, IFix) 
ẑ = zT Eb

(GF,IFix) 
â = −  

1 

f 
zT E�

−1
(
f If + ef eT f

)
μιb = −  

1 

f 
zT Eχ ιb (4.55) 

with χ = f �−1 μ+�−1 ef eT f μ. In the IFix model, one should consider both variance 
and bias of ambiguity to obtain the best transformation matrix zT E. The mean square 
error (MSE) is applied as a measure by capturing both the variance and bias, 

4σ 2(GF,IFix) 
ẑ + b(GF,IFix) 

ẑ b(GF,IFix) 
ẑ 

= zT E

[
4σ 2 φ�−2 + 

4σ 2 p 
f

�−1 ef eT f �
−1 + 

ι2 b 

f 2 
χχ  T

]
zE = min (4.56) 

Here the factor of 4 is used to transform the ambiguity variance in DD mode and 
thus match the DD ionospheric bias ιb. The LAMBDA method is again applied to 
solve this minimization problem. 

By solving the minimization problems of the IW model (4.52) with the ionospheric 
constraints σι = 0.1, 0.2 or 0.3 m, the IFlt model (4.53) with σι = ∞  and the IFix 
model (4.54) with σι = 0 and ιb = 0.1, 0.2 or 0.3 m, respectively, the several optimal 
EWL combinations for triple-, quad- and penta-frequency BeiDou Global Navigation 
Satellite System-3 (BDS-3) signals are displayed in Tables 4.1, 4.2 and 4.3. In the  
computations, we take the precisions of undifferenced code and phase as σp = 0.2 m 
and σφ = 3mm. In Tables, the standard deviations (STD) are σ (GF,IW) 

ẑ and σ (GF,IFlt) 
ẑ , 

and the root mean square error (RMSE) is
√
4σ 2(GF,IFix) 

ẑ + b(GF,IFix) 
ẑ b(GF,IFix) 

ẑ . The  
combined EWL observation and its ionospheric coefficient, wavelength, frequency, 
ambiguity and variance are defined as 

φE = zT E�−1 

zT E�−1 ef 
φ 

μE = z
T 
E�−1 μ 
zT E�−1 ef 

λE = 1 
zT E�−1 ef 

fE = czT E�
−1 ef 

aE = zT Ea 

σφE = 
√

zT E�−1�−1 zE 
zT E�−1 ef 

σφ = αEσφ 

(4.57) 

where c is the velocity of light and φ = [φ1, . . . , φf ]T . Besides, the ionospheric 
constraint σι corresponds to undifferenced observations and the ionospheric bias ιb 
corresponds to DD observations.

For a given ambiguity resolution model with a specific ionospheric constraint or 
bias, only (f − 1) EWL combinations are selected because only (f − 1) EWL/WL 
combinations are linearly independent for an f -frequency system and any other EWL/
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Table 4.1 Optimal combinations for triple-frequencies, f2, f3 and f4 

Model zT E μE λE [m] STD/RMSE [cycle] with σι or ιb 
[m] 

0.1 0.2 0.3 

IW [0, 0, 1, −1, 0] − 1.5915 4.8842 0.0297 0.0303 0.0310 

[0, 1, −4, 3, 0] − 0.6179 2.7646 0.0816 0.0922 0.1028 

[0, 1, −3, 2, 0] − 0.9698 1.7654 0.0844 0.0921 0.1000 

IFix [0, 0, 1, −1, 0] − 1.5915 4.8842 0.0590 0.0594 0.0601 

[0, 1, −4, 3, 0] − 0.6179 2.7646 0.1560 0.1637 0.1758 

IFlt [0, 0, 1, −1, 0] − 1.5915 4.8842 0.0336 

[0, 1, −2, 1, 0] − 1.1558 1.2967 0.1245 

Table 4.2 Optimal combinations for quad-frequencies, f1, f2, f3 and f5 

Model zT E μE λE [m] STD/RMSE [cycle] with σι or ιb 
[m] 

0.1 0.2 0.3 

IW [1, −1, 0, 0, 0] − 1.009 20.9323 0.0228 0.0229 0.0229 

[0, 0, 1, 0, −1] − 1.6631 3.2561 0.0365 0.0389 0.0410 

[0, 1, −3, 0, 2] − 0.5575 2.7646 0.0654 0.0757 0.0841 

[0, 1, −2, 0, 1] − 1.0652 1.4952 0.0762 0.0801 0.0835 

IFix [1, −1, 0, 0, 0] − 1.009 20.9323 0.0454 0.0455 0.0456 

[0, 0, 1, 0, −1] − 1.6631 3.2561 0.0712 0.0733 0.0766 

[0, 1, −3, 0, 2] − 0.5575 2.7646 0.1226 0.1320 0.1463 

IFlt [1, −1, 0, 0, 0] − 1.009 20.9323 0.0232 

[0, 0, 1, 0, −1] − 1.6631 3.2561 0.0458 

[−1, 2, −2, 0, 1] − 1.0695 1.6102 0.0909

WL combinations can be linearly recovered by these (f − 1) EWL/WL combinations 
[23, 25]. The STD or RMSE of the selected EWL combination are marked in bold. 

The results show that no matter what models used with varying ionospheric 
constraints or biases, all EWL combinations are nearly immune to the varying iono-
spheric constraints and all can obtain very small STD/RMSE, thus allowing instan-
taneous ambiguity resolution. Although the optimal EWL/WL combinations of GB 
model are not presented here, they are generally the same as those obtained with GF 
model.
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Table 4.3 Optimal combinations for penta-frequencies 

Model zT E μE λE[m] STD/RMSE [cycle] with σι or ιb 
[m] 

0.1 0.2 0.3 

IW [0, 0, 0, 1, −1] − 1.7477 9.7684 0.0195 0.0200 0.0204 

[1, −1, 0, 0, 0] − 1.0090 20.9323 0.0227 0.0228 0.0229 

[0, 0, 1, −1, 0] − 1.6208 4.8842 0.0257 0.0263 0.0267 

[0, 1, −3, 0, 2] − 0.5575 2.7646 0.0643 0.0757 0.0840 

[0, 1, −3, 1, 1] − 0.8200 2.1548 0.0660 0.0750 0.0817 

IFix [0, 0, 0, 1, −1] − 1.7477 9.7684 0.0385 0.0390 0.0397 

[1, −1, 0, 0, 0] − 1.009 20.9323 0.0452 0.0454 0.0457 

[0, 0, 1, −1, 0] − 1.6208 4.8842 0.0509 0.0514 0.0523 

[0, 1, −3, 0, 2] − 0.5575 2.7646 0.1189 0.1304 0.1475 

[0, 1, −3, 1, 1] − 0.8200 2.1548 0.1247 0.1335 0.1470 

IFlt [0, 0, 0, 1, −1] − 1.7477 9.7684 0.0212 

[1, −1, 0, 0, 0] − 1.009 20.9323 0.0232 

[0, 0, 1, −1, 0] − 1.6208 4.8842 0.0278 

[−1, 2, −2, 0, 1] − 1.0695 1.6102 0.0908

One can solve the EWL/WL ambiguities based on either the GB model or the 
GF model. For GB model, it is formulated by multiplying the phase observations of 
(4.50) with a vector (λEzT E�

−1 ⊗ Is) as 

E

([
p − μ ⊗ ι0 
φE + μEι0

])
=
[
ef ⊗ A 0 

A λEIs

][
x 
aE

]
(4.58) 

where the stochastic model reads 

D

([
p − μ ⊗ ι0 
φE + μEι0

])
=
[

σ 2 p If + σ 2 ι μμT −σ 2 ι μEμ 
−σ 2 ι μEμ

T σ 2 φE 
+ σ 2 ι μ

2 
E

]
⊗ Q (4.59) 

Once (f − 1) EWL/WL ambiguities are fixed, one will then solve the narrow-
lane (NL) ambiguities. Here we choose the ambiguities at the first frequency as 
the NL ambiguities because the ionospheric parameters are unknown for each DD 
observations such that the efficient wavelength is much shorter than the original one. 
The NL ambiguity is solved by using the IW model as 

⎡ 

⎣ 
pk − μ ⊗ ι0 

φ̌E,k + μE ⊗ ι0 
φ1,k + μ1 ⊗ ι0 

⎤ 

⎦ = 

⎡ 

⎣ 
ef ⊗ Ak 0 
ef −1 ⊗ Ak 0 

Ak λ1Is 

⎤ 

⎦
[
xk 
a

]
, Qyy ⊗ Qk (4.60)
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Qyy = σ 2 ι 

⎡ 

⎣ 
μμT μμT 

E μ1μ 
μEμ

T μEμ
T 
E μ1μE 

μ1μ
T μ1μ

T 
E μ2 

1 

⎤ 

⎦ + 

⎡ 

⎢⎣ 
σ 2 p If 0 0 
0 σ 2 φ QE σ 2 φ QE1 

0 σ 2 φ Q1E σ 2 φ 

⎤ 

⎥⎦ (4.61) 

where the subscript k denotes the kth epoch. φ̌E,k = [  φ̌ T E1,k , . . . ,  ̌φ T Ef −1,k ]
T 
is 

the vector of ambiguity-corrected EWL/WL observations. μE= [μE1 , . . . , μEf −1]T , 
QE = �EZT 

E�
−2 ZE�

T 
E and QE1 = �EZT 

E�
−1 c1 with ZE = [zE1 , . . . ,  zEf −1],

�E = diag
([λE1 , . . . , λEf −1]

)
and c1 is an f -dimensional column vector with first 

element of 1 and the others of 0’s. The normal equations of xk and a read

[
pQ−1 

x̂k tAT 
k Q

−1 
k 

tQ−1 
k Ak ϑQ−1 

k

][
x̂k 
â

]
=
[
ux̂,k+1 

uâ,k

]
(4.62)

[
ux̂,k+1 

uâ,k

]
=
[
eT 2f Q

−1 
yy ⊗ Q−1 

k 

dT 2f Q
−1 
yy ⊗ Q−1 

k

]⎡ 

⎣ 
pk − μ ⊗ ι0 

φ̌E,k + μE ⊗ ι0 
φ1,k + μ1 ⊗ ι0 

⎤ 

⎦ (4.63) 

where p = eT 2f Q
−1 
yy e2f , t = λ1eT 2f Q

−1 
yy c2f , ϑ = λ2 

1c
T 
2f Q

−1 
yy c2f and Q

−1 
x̂k = AT 

k Q
−1 
k Ak . 

Here c2f and d2f are the 2f -dimensional column vectors with last element of 1 and 
λ1, and the others of 0’s. By reducing the parameter xk , one obtains the reduced 
normal equations of â over total of K epochs as 

Nâ,K â = uâ,K (4.64) 

with 

Nâ,K = ϑ 
K∑

k=1 

Q−1 
k − 

t2 

p

(
K∑

k=1 

Q−1 
k AkQx̂k A

T 
k Q

−1 
k

)
(4.65) 

uâ,K = 
K∑

k=1 

dT 2f Q
−1 
yy ⊗ Q−1 

k 

⎡ 

⎣ 
pk − μ ⊗ ι0 

φ̌E,k + μE ⊗ ι0 
φ1,k + μ1 ⊗ ι0 

⎤ 

⎦ (4.66) 

For a short period, for instance the initialization, the satellite elevations have generally 
rather small variations such that they can be deemed as constants. As a consequence, 
we can adequately take Qk = Q for k = 1, …, K. The LS estimate of float solution 
and its covariance matrix read 

â = Qâ,Kd
T 
2f Q

−1 
yy ⊗ Q−1 

K∑
k=1 

⎡ 

⎣ 
pk − μ ⊗ ι0 

φ̌E,k + μE ⊗ ι0 
φ1,k + μ1 ⊗ ι0 

⎤ 

⎦ (4.67)
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Qâ,K = 
1 

Kϑ 
Q + 

1 

Kϑ 
t2 

p 
Q 

⎛ 

⎝
(

1 

Kϑ 

K∑
k=1 

AkQx̂k A
T 
k

)−1 

Q − 
t2 

p 
Is 

⎞ 

⎠ 
−1 

(4.68) 

Since all (f − 1) independent EWL/WL combinations are applied in (4.60), the 
selection of EWL/WL combinations does not affect the NL ambiguity resolution. To 
intuitively show how float NL ambiguities are improved by the increasing epochs, 
we take a special case of GF model, i.e., Ak = Is, for  k = 1, . . . ,  K . As a result, the 
covariance matrix of (4.68) reduces to 

QGF 
â,K = 

1 

K 

p 

ϑp − t2 
Q (4.69) 

The covariance matrix of float NL ambiguity estimate is inversely proportional to 
the number of epochs, which means that the precision of float estimate is improved 
and become easier to be fixed by adding more epochs of data. Giving σp = 0.2 
m, σφ = 3 mm and σι = 0.1 m, the scalar p 

ϑp−t2 can be computed for the triple-
, quad- and penta-frequency cases, where the employed frequencies are the same 
as in Tables 4.1, 4.2 and 4.3. The results reveal a numerical understanding how 
the additional frequency bands improve the precision of float NL ambiguities. In 
addition, although the more frequencies involved can improve the NL ambiguity 
resolution, it is not necessarily to fix all ambiguities due to the between-ambiguity 
quality diversity. In real applications, one often prefers to fix partial ambiguities in 
reliability. 

As a reduced alternative, one can also resolve the NL ambiguities in a both 
geometry-free and ionosphere-free (GIF) model for simplification, which was 
proposed in [28] for triple-frequency NL ambiguity resolution. We analogously form 
the GIF model for f -frequency NL ambiguity resolution of one DD satellite pair as 

â = 
φ̌1 − bT φ̌E 

λ1 
, σ  2 

â = 4 
γ 2σ 2 φ 

λ2 
1 

(4.70) 

where γ 2 = bT QEb − Q1Eb − bT QE1 + 1 and φ̌E = [  ̌φE1 , . . . ,  ̌φEf −1 ]T is the (f − 1) 
ambiguity-fixed EWL/WL observations of one DD satellite pair. The coefficient 
vector, b = [b1, . . . ,  bf −1]T , is obtained by solving the constrained minimization 
problem as 

γ 2 = min, s.t. eT f b = 1, bT μE = μ1 (4.71) 

By using the EWL/WL observations in Tables 4.1, 4.2 and 4.3 for triple-, quad-
and penta-frequency signals, the coefficients are computed in Table 4.4. Obviously, 
although the more frequency signals can significantly enhance the GIF ambiguity 
resolution, multiple epochs are still needed to average down the ambiguity STD and 
then improve the success of ambiguity resolution. Once NL ambiguities are fixed to
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Table 4.4 Coefficients of GIF NL ambiguity resolution and the corresponding ambiguity precisions 
with σφ = 2 mm 

b1 b2 b3 b4 σâ [cycle] 

f = 3 −4.7650 5.6750 4.239 

f = 4 0.5396 −3.4313 3.8917 2.611 

f = 5 −1.1947 0.5381 −2.2250 3.8816 2.609 

their integers, the ambiguities of all raw frequencies can be recovered from the fixed 
EWL/WL and NL ambiguities. 

References 

1. Teunissen PJG (1993) Least squares estimation of the integer GPS ambiguities. Proceedings 
of the IAG general meeting, pp. 1-16 

2. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast 
GPS integer ambiguity estimation. J Geod 70:65–82 

3. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 
73:587–593 

4. Euler HJ, Schaffrin B (1991) On a measure for the discernibility between different ambi-
guity solutions in the static-kinematic GPS-mode. Kinematic Syst Geodesy Surv Remote Sens 
107:285–295 

5. Wang J, Stewart M, Tsakiri M (1998) A discrimination test procedure for ambiguity resolution 
on-the-fly. J Geod 72:644–653 

6. Tiberius CCJM, De Jonge PJ (1995) Fast positioning using the LAMBDA method, Proceedings 
of DSNS-95 

7. Han S (1997) Quality control issues relating to instantaneous ambiguity resolution for real-time 
GPS kinematic positioning. J Geod 71:351–361 

8. Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation 
software for interferometric applications. Comput Geosci 54:361–376 

9. Frei E, Beutler G (1990) Rapid static positioning based on the fast ambiguity resolution 
approach. Manuscr Geodaet 15:344–352 

10. Mader GL (1992) Rapid static and kinematic Global Positioning System solutions using the 
ambiguity function technique. J Geophys Res 97:2371–2383 

11. Lachapelle G, Canon ME, Erickson C, Falkenberg W (1992) High-precision C/A code tech-
nology for rapid static DGPS surveys. Proceedings of the 6th international geodetic symposium 
on satellite positioning, pp 1–6 

12. Hatch D (1990) Instantaneous ambiguity resolution. Proceedings of kinematic systems in 
geodesy, surveying, and remote sensing, pp. 299–308 

13. De Jonge PJ, Tiberius C (1996) The LAMBDA method for integer ambiguity estimation: 
implementation aspects, Delft University of Technology 

14. Chang X, Yang X, Zhou T (2005) MLAMBDA: a modified LAMBDA method for integer 
least-squares estimation. J Geod 79:552–565 

15. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrap-
ping. J Geod 72:606–612



References 77

16. Teunissen PJG, Kleusberg A (1998) GPS for geodesy. Springer, Berlin 
17. Hassibi A, Boyd S (1998) Integer parameter estimation in linear models with applications to 

GPS. IEEE Trans Signal Process 46:2938–2952 
18. Teunissen PJG (2000) ADOP based upper-bounds for the bootstrapped and the least-squares 

ambiguity success rates. Artif Satellites 35:171–179 
19. Teunissen PJG (2003) Integer aperture GNSS ambiguity resolution. Artif Satellites 38:79–88 
20. Teunissen PJG (2004) Penalized GNSS ambiguity resolution. J Geod 78:235–244 
21. Verhagen S (2004) Integer ambiguity validation: an open problem? GPS Solut 8:36–43 
22. Verhagen S, Teunissen PJG (2013) The ratio test for future GNSS ambiguity resolution. GPS 

Solut 17:535–548 
23. Li B, Li Z, Zhang Z, Tan Y (2017) ERTK: extra-wide-lane RTK of triple-frequency GNSS 

signals. J Geod 91:1031–1047 
24. Li B (2016) Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment 

and impact analysis. J Geod 90:593–610 
25. Li B, Feng Y, Gao W, Li Z (2015) Real-time kinematic positioning over long baselines using 

triple-frequency BeiDou signals. IEEE Trans Aerosp Electron Syst 51:1–16 
26. Li B (2018) Review of triple-frequency GNSS: ambiguity resolution, benefits and challenges. 

J Glob Position Syst 16:10 
27. Verhagen S, Li B (2012) LAMBDA software package: Matlab implementation, Version 3.0, 

Delft University of Technology and Curtin University 
28. Li B, Feng Y, Shen Y (2010) Three carrier ambiguity resolution: distance-independent 

performance demonstrated using semi-generated triple frequency GPS signals. GPS Solut 
14:177–184 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons license and indicate if you modified the licensed material. 
You do not have permission under this license to share adapted material derived from this chapter 
or parts of it. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chapter 5 
Cycle Slip Detection and Repair 

5.1 Introduction 

Carrier phase observations are fundamental to high-precision Global Navigation 
Satellite System (GNSS) positioning, such as real-time kinematic (RTK) and precise 
point positioning (PPP), because they offer millimeter-level accuracy once integer 
ambiguities are resolved. However, these observations are susceptible to cycle slips, 
which are abrupt discontinuities in the integer ambiguity caused by factors such 
as multipath effects, ionospheric disturbances, signal obstructions, and electromag-
netic interference. In challenging environments with prevalent signal blockage, cycle 
slips of varying magnitudes frequently occur and may even cause simultaneous data 
gaps across all satellites. Undetected cycle slips can introduce uncontroled errors 
into the positioning solution, while even detected slips pose significant challenges 
for accurate correction. In RTK, an unrepaired cycle slip necessitates re-fixing the 
corresponding ambiguity, and in PPP it increases the number of unknowns, both of 
which deteriorate positioning results. Moreover, if the cycle slips are not correctly 
repaired, additional time is required for the ambiguities to reconverge, potentially 
taking from several seconds to minutes in RTK or even tens of minutes in PPP, 
thus severely impairing the system availability and continuity. Therefore, effec-
tive processing that reliably detects and accurately repairs cycle slips is indispens-
able for maintaining continuous high-precision GNSS positioning without incurring 
time-consuming reinitializations. 

For the problem of multi-frequency cycle slip processing, in the past few decades, 
the extensive investigations have been done for effective cycle slip detection and 
repair. The single-differenced (SD) and double-differenced (DD) cycle slips are 
much easier to be detected since many systematic errors are greatly reduced or elim-
inated, for instance, the clock errors of satellites or/and receiver, the satellite orbital 
errors and the atmospheric delays [1]. However, the cycle slip detection methods 
designed for undifferenced observations, which maintain more useful information, 
still have their advantages for those applications with standalone GNSS receiver such
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as PPP and PPP-RTK. Most of existing studies are based on dual-frequency signals. 
The TurboEdit algorithm developed by Blewitt is one of the most popular methods 
dedicated for dual-frequency undifferenced cycle slip processing [2]. It employs 
the Hatch-Melbourne-Wübbena combination [3–5] together with the geometry-free 
(GF) combination. The TurboEdit algorithm has been implemented in many famous 
softwares such as PANDA, GIPSY-OASIS II and Bernese. However it could be 
inefficient in case of active ionospheric condition with large biases and quick vari-
ations. The improvements to TurboEdit have been made in many literatures. Liu 
employed the ionospheric total electron content rate (TECR) instead of the GF 
combination to implement dual-frequency cycle slip detection [6]. However, one 
requirement is that the GNSS data are recorded at 1 Hz or even higher rate in order 
to detect small cycle slips as stated by author. A forward and backward moving 
window averaging algorithm integrated with a second-order time-differenced phase 
ionospheric residual algorithm were presented based on TurboEdit [7]. It is unfortu-
nately not suitable for real-time applications. Motivated by the extensive 1-cycle slips 
found in low-elevation BeiDou Geostationary Earth Orbit (GEO) satellites, Ju et al. 
jointly used a polynomial fit algorithm and a generalized autoregressive conditional 
heteroscedastic (GARCH) model to provide an adaptive threshold for the GF combi-
nation in TurboEdit [8]. In addition, de Lacy et al. applied the Bayesian theory to 
detect the cycle slips as outliers, while its efficiency is constrained by high sampling 
rate of GNSS data [9]. A similar rationale can be found in [10]. 

Along with the gradual construction of BeiDou Navigation Satellite System (BDS) 
and modernization of the Global Positioning System (GPS), the triple-frequency 
signals become available, triggering a new upsurge for triple-frequency cycle slip 
estimation. The triple-frequency signals in theory can improve the cycle slip esti-
mation [11]. One benefit of triple-frequency signals lies in the formation of various 
useful linear combinations, for instance, the extra-wide-lane (EWL) and the wide-
lane (WL) combinations, which retain integer nature of cycle slips but with small 
errors in cycle thanks to their long wavelengths [12–14]. de Lacy et al. employed five 
GF linear combinations to detect cycle slips in three cascading steps, but the perfor-
mance has been tested only with 1 Hz triple-frequency GPS data from a moderate 
multipath environment [15]. Dai et al. applied two GF phase combinations in cycle 
slip detection and their integer candidates are searched by least-squares ambiguity 
decorrelation adjustment (LAMBDA) method. All these methods mentioned above 
have a common premise that the between-epoch ionosphere variation is so small that 
its effect in GF combination can be ignored. This premise is not necessarily true 
in case of the active ionospheric condition and the large sampling interval or even 
data gap. Without properly compensating these misspecifications, one will obtain the 
wrong cycle slip estimation. Zhao et al. and Li et al. took into account the influence 
of between-epoch ionospheric biases in narrow-lane (NL) cycle slip estimation of 
triple-frequency signals [14, 16]. 

It is noted that all GF methods are implemented on a satellite-by-satellite basis 
where the coordinate parameters are eliminated. In this case, the correlations between 
satellites are completely neglected [6, 15, 16]. As a result, the satellites whose cycle 
slips have been correctly fixed cannot contribute to the cycle slip estimation of
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remained satellites. Especially, when multiple GNSS systems are applied, the satel-
lites from a system without cycle slip can never help the cycle slip estimation of 
other systems. In other words, the key shortcoming of GF cycle slip estimation is 
to ignore the link between satellites embodied by coordinate parameters. However, 
the fact is that multi-frequency and multi-GNSS application is booming for high-
precision applications as all BDS and Galileo satellites and part of GPS satellites are 
transmitting triple- or even more frequency signals (penta-frequency signals served 
by Galileo). To make best use of correlations between satellites, between frequen-
cies and between systems, a geometry-based (GB) model is thus in demand, which 
involves the receiver coordinate parameters and possesses of stronger model strength 
compared to the GF model. Banville and Langley proposed a GB model based cycle 
slip correction procedure, and discussed the model tolerance to the ionospheric biases 
[17]. It is advised that the ionospheric biases are limited to a few centimeters with 
rigorously processing other non-dispersive systematic components. 

In this contribution, we proposed a new geometry-based ionosphere-weighted 
(GBIW) method dedicating to efficiently estimating the cycle slips in scenarios of 
active ionospheric condition and connecting the phase data with a certain data gap. 
In GBIW method, the phase and code observations of all satellites are processed 
simultaneously in an integrated adjustment to achieve mathematically stronger model 
strength and then better solutions than the satellite-wise basis mode in GF model. To 
compensate the increased between-epoch ionospheric variations with the prolonged 
sampling intervals or data gaps, we predict them by using consecutive historical 
data of a sliding window with an adaptive polynomial order and sliding window 
length. Once the float solution of cycle slips is computed, its optimal integer solution 
is searched via LAMBDA method. In addition, because it is impossible to always 
fix all cycle slips correctly due to different quality from individual cycle slips, we 
further propose a partial cycle slip resolution (PCSR) strategy to successively fix 
the cycle slip based on a so-called bootstrapping procedure [18, 19]. In fact, once 
the sufficient number of cycle slips is correctly fixed, one can already maintain 
the continuous precise positioning and then improve the availability of precision 
solutions. In summary, the proposed method is universal and applicable to various 
scenarios specified by the arbitrary number of frequencies and systems, the static and 
kinematic modes, the quiet and active ionosphere conditions. Moreover, the proposed 
method can be easily reduced to its two special models, i.e., geometry-fixed (GFI) 
and GF models that are widely used so far. 

The previous discussion primarily focused on the multi-frequency scenario. Now, 
we turn our attention to the single-frequency case for further analysis. Lots of algo-
rithms dedicated to cycle slip detection and correction have been proposed in the 
past a few years. Some of them are universal for all situations with single- or multi-
frequency signals in both static and kinematic modes, while some are limited to 
only specific situations. The statistical testing based methods are universal, where 
the cycle slips are treated as outliers and detected via testing the relevant statistics 
often constructed with observation residuals [20]. However, few redundancy always 
brings in the strong correlation amongst testing statistics and then the error transfer 
amongst observation residuals, which inevitably causes wrong decisions [21, 22].
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The other two universal methods are the between-epoch high-order phase difference 
and the polynomial fitting of phase observation series [9, 23]. They are both widely 
known and easy-implemented. But the former one amplifies the random noise so 
much that the small cycle slips cannot be identified. The latter one is hindered by the 
need of normal historical observations within a fitting window, and it is troublesome 
to determine the window length and polynomial order. The reliability of cycle slip 
correction using measurement polynomial fitting is improved, if the kinematics of 
the satellite position and satellite clock are subtracted from the measurements before 
the polynomial fitting. In addition, some studies employed the Doppler measure-
ments and/or inertial navigation system (INS) to improve the cycle slip detection 
and correction. But the accuracy of Doppler integration is limited, and meanwhile 
adding an INS system to GNSS increases the cost and complexity. 

Most of the cycle slip detection and correction methods focus on the multi-
frequency signals and are generally based on the combination of multi-frequency 
signals, for instance, the WL and GF combinations [2, 6, 14, 15]. Although some 
of them are incapable of special cycle slips and vulnerable to code noise and iono-
spheric variations, they are proved to be generally efficient in cycle slip detection and 
have been widely implemented in many software. Moreover, with the emerging of 
triple-frequency signals, the different schemes of combinations among three frequen-
cies are developed which makes it easier to effectively detect and repair the cycle 
slips [14, 16, 24]. Obviously, the specific methods with multi-frequency signals such 
as the cycle slip sensitive combinations are not available in single-frequency case. 
Extensive researches have been done in single-frequency cycle slip detection as 
well. Carcanague [25] presented a GB single-frequency cycle slip resolution, where 
the cycle slips are solved by using Doppler and phase observations and fixed via 
the LAMBDA method [26]. Unfortunately, the Doppler is not necessarily available 
for different types of receivers. All these characteristics multiply the challenges of 
single-frequency cycle slip estimation. In summary, the cycle slip estimation is still 
a challenging and open problem in single-frequency GNSS data processing. 

In traditional measurement-based polynomial fitting (MPF), the cycle slip detec-
tion is more likely affected by the systematic errors of measurements, e.g. multipath 
and atmospheric delay, and also by some abnormality, e.g., ionospheric scintillations. 
Besides, the fitting accuracy degrades if the satellite signals are discontinued due to 
the loss of lock and data interruption. Therefore, compared with this satellite-by-
satellite MPF cycle slip detection, detecting the cycle slips of all satellites simulta-
neously via an integrated adjustment with the GB model can provide mathematically 
better results [27]. However, in the GB method, both of baseline and cycle slips are 
solved as unknowns, which results in a relatively weak model and hinder the success 
rate of cycle slip estimation. Nevertheless, if there is accurate prior baseline infor-
mation available, the efficiency of cycle slip estimation will be definitely improved. 
Motivated by the fact that the more accurate prior baseline leads to the more effi-
cient cycle slip estimation, we propose a position polynomial fitting (PPF) method 
to construct the accurate prior baseline information with a series of positions, which 
is referred to as position-domain constraint. As well-known in GNSS navigation, an 
object motion is reasonably well subject to a low-order polynomial over a short period
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[28, 29]. Thus, the positions of multiple historical epochs in a given time-window 
are employed to establish a low-order polynomial to characterize the object motion 
behavior and then predict the position of the current epoch. Afterwards, this kine-
matic constraint is incorporated into the GB cycle slip estimation model to improve 
the model strength and then the efficiency of cycle slip estimation. 

5.2 Multi-frequency Cycle Slip Processing 

This section explores the cycle slip detection and repair method for multi-frequency 
GNSS data. The method integrates SD ionospheric biases to strengthen the model, 
with extensive experiments confirming its high success rates across different 
sampling intervals and system combinations. The method ensures continuous 
positioning even with data gaps, particularly benefiting BDS applications. 

The general GB mathematical model of cycle slip estimation is firstly presented. 
Based on which, the ionosphere constraint is introduced to enhance the model 
strength. We start with the single-epoch observation equations of undifferenced (UD) 
phase and code 

E
(
Φ j
) = Gx + enδtj − δts,j + τ − μjι + λjaj (5.1) 

E
(
Pj
) = Gx + endtj − dts,j + τ + μjι (5.2) 

where the subscript j denotes the frequency fj, corresponding to the wavelength λj, 
which is used to emphasize the frequency-specific terms. Assuming that n satel-

lites are tracked simultaneously, the vectors, Φ j =
[
Φ1 

j , . . . , Φ
n 
j

]T 
and Pj =

[
P1 
j , . . . ,  Pn 

j

]T 
, denote the phase and code observations in meters. Φ i 

j and P
i 
j are 

the phase and code observations of the ith satellite on frequency fj. G is an (n × 3) 
design matrix pertaining to the receiver coordinate parameters x. δtj and dtj are 

the receiver clock errors for phase and code, while δts,j =
[
δt1 s,j, . . . , δt

n 
s,j

]T 

and dts,j = [
dts,j 

1 , . . . ,  dts,j n
]T 

are the satellite clock errors of n satellites for 

phase and code, respectively. τ = [
τ 1, . . . , τ  n

]T 
is the slant tropospheric delay 

vector. ι = [
ι1, . . . , ιn

]T 
is the ionospheric delay vector on frequency f1 with 

μj = f 2 1 /f 
2 
j . aj =

[
a1 j , . . . ,  an j

]T 
is the ambiguity vector with the kth element 

ak j = ϕj(t0) − ϕk 
s,j(t0) + zk j , where zk j and ϕk 

s,j(t0) are the integer ambiguity and 
initial satellite phase bias for satellite k, and ϕj(t0) is the initial receiver phase bias. 

Different from the outlier, the GNSS cycle slip has two properties, i.e., integer and 
continuity. The integer is an inherent property of cycle slip. The continuity property 
means that the same integer jump is introduced afterwards from the epoch where the



84 5 Cycle Slip Detection and Repair

cycle slip happens. Therefore, the between-epoch observations are often applied to 
isolate the cycle slips. The between-epoch SD model reads 

E
(
�Φ j

) = �(Gx) + en�δtj − �δts,j + �τ − μj�ι + λj�zj (5.3) 

E
(
�Pj

) = �(Gx) + en�dtj − �dts,j + �τ + μj�ι (5.4) 

where the difference operator �(∗) = (∗)k+1 − (∗)k , and the subscripts k and k + 
1 refer to two adjacent epochs. In the SD model, the initial phase biases, ϕj(t0) and 
ϕk 
s,j(t0), of both receiver and satellite are completely removed thanks to their stability 

over a certain time. Then the integer difference, �zj = �aj, between two epochs is 
defined as the cycle slip. 

Let us analyze the terms in Eqs. (5.3) and (5.4). With the receiver clock errors as 
an example, it follows �δtj = δtj(k + 1) − δtj(k) and �dtj = dtj(k + 1) − dtj(k) 
for phase and code, respectively. The inter-observation-type bias between phase and 
code is rather stable over time [30], which results in

�δtj = �dtj (5.5a) 

The receiver clock errors rigorously differ from frequencies due to the inter-
frequency-bias (IFB). The clock errors on frequency j can be expressed as δtj = 
δt1 + IFB1,j, where IFB1,j is the IFB between frequencies f1 and fj. Since the IFB is 
also very stable for a while, it follows

�δt1 = �δtj (5.5b) 

with (5.5a) and (5.5b), we have

�δtj = �dtj � �δt (5.5c) 

for all f frequencies.�δt is the between-epoch SD receiver clock error for phase on f1. 
It is exactly the same case for satellite clock errors, namely, �δts,j = �dts,j � �δts. 

The between-epoch SD slant tropospheric delay�τ is typically very small owing 
to very similar propagation paths over a short time. However, it cannot be ignored 
in case of lower elevation angles and is thus corrected with a tropospheric model, 
e.g., the New Brunswick 3 (i.e., UNB3) model. For the between-epoch SD geometric 
term, it follows

�(Gx) = Gk+1xk+1 − Gkxk = 
Gk+1 + Gk 

2 
b + 

Gk+1 − Gk 

2 
b ≈ Gb (5.6) 

where G = (Gk+1 + Gk )/2 and b = xk+1 − xk is defined as the between-epoch 
baseline parameter. The reason of ignoring the term (Gk+1 − Gk )b/2 is explained as 
follows. Due to the high altitude of GNSS satellite orbits, the design matrix changes
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very slowly over time for normal kinematic applications. To give an insight, we 
simply compute the values of (Gk+1 − Gk ) for all BDS and GPS satellites in a 
static observation mode with sampling interval of 60 s. Related study reveal that the 
maximum amplitudes of (Gk+1 − Gk ) are in order of 10–3 for Medium Earth Orbit 
(MEO) satellites of BDS and GPS. These values can be smaller for smaller sampling 
interval. It is therefore adequate to ignore the term (Gk+1 − Gk )b/2. Besides, the 
satellite clock errors are available from the ephemeris data and thus treated as known. 

For sake of simplicity of expressions, we omit the epoch-difference operator �

without any confusion. Then the between-epoch SD observation is finally symbolized 
as 

E
(
Φ j + δts

) = Gb + enδt − μjι + λjzj (5.7) 

E
(
Pj + δts

) = Gb + enδt + μjι (5.8) 

Collecting all observations of f frequencies yields 

E(Φ) = (ef ⊗ G
)
b + efnδt − μ ⊗ ι + (Λ ⊗ In)z (5.9) 

E(P) = (ef ⊗ G
)
b + efnδt + μ ⊗ ι (5.10) 

where Φ =
[
ΦT 

1 , . . . ,  ΦT 
f

]T 
is the observed-minus-computed vector corrected with 

satellite clock errors. P has the same structure as Φ. μ = [
μ1, . . . , μf

]T 
, z =

[
zT 1 , . . . ,  zT f

]T 
and � = diag

(
λ1, . . . , λf

)
. The compact form is 

E(y) = (e2f ⊗ H
)
b + (ν ⊗ In)ι + (Γ ⊗ In)z (5.11) 

where y = [
ΦT , PT

]T 
, ν = [−μT, μT

]T 
, 
 = [�, 0]T . H = [G, en] is augmented 

matrix incorporating the clock error and correspondingly the baseline parameter 
vector is extended to, i.e., b �

[
bT , δt

]T 
. The variance matrix of single-epoch UD 

observations is generalized 

QE = Qf ⊗ Qe (5.12) 

where Qe is the elevation-dependent cofactor matrix of UD observations. Qf = 
blkdiag

(
QΦ , QP

)
captures the frequency and observation-type specific precisions. If 

we assume that the observations of all f frequencies are of the unique precision for 
each observation type, it follows QΦ = If σ 2 Φ and QP = If σ 2 P . Here  σ 2 Φ and σ 2 P are 
the variance scalars of UD phase and code, respectively. Without time correlations, 
the variance matrix of SD observations is ultimately expressed as
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Qy = 2QE (5.13) 

In real data processing, in case of small sampling interval/data gap, the SD iono-
spheric variations can be so small to be ignored and accordingly the ionospheric 
parameters in (5.11) can be omitted. Reducing the ionospheric parameters in the 
adjustment system can improve the model strength. However, when the SD iono-
spheric variations are significant for instance in case of large sampling interval/ 
data gap, ignoring the ionospheric parameters in (5.11) will definitely lead to biased 
parameter estimates. In the event, one should conservatively apply model (5.11) 
although the model strength will be very weak. 

To enhance the model strength of (5.11) and meantime without introducing biases 
in estimates, the pseudo-observations of prior SD ionospheric variations ι0 are often 
applied as constraints [31] 

E
(
ι0
) = ι, D

(
ι0
) = σ 2 ι ⊗ Qe (5.14) 

where the variance σ 2 ι is used to model the uncertainty of prior SD ionospheric 
constraints. Integrating the observation model with ionospheric constraints yields 
the GBIW method, which is equivalent to 

E(y) = (e2f ⊗ H
)
b + (Γ ⊗ In)z (5.15a) 

Qy = [2Qf + σ 2 ι ννT] ⊗  Qe = Q ⊗ Qe (5.15b) 

where y = y − (ν ⊗ In)ι0 is the SD observation vector corrected with prior iono-
spheric constraints. The smaller variance σ 2 ι generates the stronger model, which 
needs more precise prior ionospheric constraints. How to obtain the precise prior SD 
ionospheric constraints is therefore an important issue. In this chapter, we will predict 
the SD ionospheric biases of current epoch by fitting the polynomial of foregoing 
data within a time window, which will be detailed in the methodology section. 

We simply discuss two reduced models, i.e., GFI and GF models, from the GB 
model, which corresponding to extreme situations. For the GFI model, the between-
epoch baseline parameter is completely known, which is the case for static appli-
cations of which continuously operating reference stations (CORS) application is 
more special. The GFI model is reduced from (5.15a) by setting H = en, where 
only the cycle slips and receiver clock error need to be solved. However, the GF 
model directly takes the between-epoch satellite-to-receiver ranges � as unknowns 
instead of between-epoch baseline parameters by setting H = [In, en]. Obviously, the 
GF model is rank-deficient since the receiver clock error δt and satellite-to-receiver 
ranges � are completely dependent. One of full rank GF models can be obtained 
by setting H = In in (5.15a). It is apparent that the model strength is ordered as 
GFI > GB > GF, which will be numerically demonstrated in the results section. It 
is worth pointing out that most of existing cycle slip estimation methods are based 
on GF model with satellite-by-satellite processing.
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As aforementioned, for a sufficient small sampling interval/data gap or quiet 
ionosphere condition, the SD ionospheric biases will be so small that they can be 
ignored, i.e., ι0 = 0 in (5.15a) and σ 2 ι = 0 in (5.15b), or their possible discrepancies 
are conservatively captured with a small σ 2 ι to avoid the potential biases in float 
cycle slip solution; while it is not the case for large sampling interval/data gap or 
active ionosphere, where the SD ionospheric biases can reach several decimeters. 
It is noticed that some of BDS satellites have very small SD ionospheric biases. 
Those satellites are all GEO and Inclined Geosynchronous Satellite Orbit (IGSO) 
satellites because their smaller location variations than MEO satellites with respect 
to the ground stations. 

If phase observations at two adjacent epochs are free of cycle slips or the cycle 
slips have been correctly fixed, the between-epoch SD ionospheric bias ι can be 
derived by using GF combination of two frequency phase observations as 

ι = 
Φi − Φj 

μj − μi 
(5.16) 

where subscripts i and j denote two frequencies. Based on the strong temporal corre-
lation characteristic of ionospheric biases between adjacent epochs [32, 33], we apply 
a simple polynomial fitting to model the SD ionospheric biases of forgoing epochs 
within a time window and then predict those of the current epoch. Two important 
parameters are involved in this processing, namely, the window length and the poly-
nomial order. Let the window length and polynomial order be n and m, respectively, 
the polynomial model of SD ionospheric biases reads 

ι(t−n) =∑m 
r=0 ar(t − n)r 

ι(t−n+1) =∑m 
r=0 ar(t − n + 1)r 

... 
ι(t−1) =∑m 

r=0 ar(t − 1)r 

(5.17) 

where t indicates the current epoch number. ι(t−k) (k = 1, . . . ,  n) is the SD iono-
spheric biases computed with (5.16). ar(r = 0, . . . ,  m) is the polynomial coefficient 
to be estimated via the least squares adjustment. Once the coefficients are determined, 
the SD ionospheric bias of current epoch can be predicted 

ι
∧

t = 
m∑

r=0 

a
∧

r t
r (5.18) 

where a
∧

r denotes the estimate of ar . This predicted SD ionospheric bias serves as a 
prior constraint in GBIW method. 

For a better contribution to enhancing the GBIW model strength, one always 
expects more accurate prior SD ionospheric biases, i.e., the discrepancies between 
the real SD ionospheric biases and their predictions are as small as possible. The
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polynomial model is specified by both the window length n and the polynomial order 
m. They would differ from the sampling intervals/data gaps or ionosphere activity 
conditions. Hence, the optimal parameters n and m of the polynomial model should 
be determined for each dataset to get a prediction effect as accurate as possible. The 
term “optimal” usually refers to the balance between the window length n along with 
the polynomial order m, namely, the number of parameters need to be estimated and 
the goodness of fitting. Akaike introduced the Akaike’s Information Criterion (AIC) 
to measure the goodness of an estimated statistical model and select an optimal model 
from a set of candidate models [34]. For polynomial model (5.17), AIC is defined as 
[34] 

AIC
(
Mq
) = −2ln

(
f
(
ι|Mq

))+ 2
(
mq + 2

)
(5.19) 

where “ln” indicates the natural logarithm. Mq is the qth candidate model specified 
by the model parameter αq = {

nq, mq
}
with nq and mq the window length and 

polynomial order. f
(
ι|Mq

)
is the probability density function of SD ionospheric 

biases ι conditioned on the qth model. It is assumed of normal distribution as 

f
(
ι|Mq

) = 

⎛ 

⎝ 1 
√
2πσ  2 ι|Mq 

⎞ 

⎠ 
nq 

exp 

⎛ 

⎝− 1 

2σ 2 ι|Mq 

nq∑

k=1

( mq∑

r=0 

ar(t − k)r − ι(t−k)

)2 
⎞ 

⎠ (5.20) 

with the error variance conditioned on the qth model Mq as 

σ 2 ι|Mq 
= 

1 

nq 

nq∑

k=1

( mq∑

l=0 

ar(t − k)r − ι(t−k)

)2 

(5.21) 

Inserting (5.20) into (5.19) yields 

AIC
(
Mq
) = nq(ln2π + 1) + nqlnσ 2 ι|Mq 

+ 2
(
mq + 2

)
(5.22) 

Several candidate models are ranked in terms of their associated AIC values where 
the variance σ 2 ι|Mq 

is replaced by its posterior estimate computed by (5.21) with least 
squares estimates of polynomial coefficients and in consideration of the degree of 
freedom. The model with the smallest AIC is selected as optimal model. 

The integer cycle slip estimation of model (5.15a, 5.15b) consists of four steps. In 
the first step, the so-called float solution ẑ of cycle slips and its variance-covariance 
(VC) matrix Qẑẑ are computed via the least squares adjustment. Then the optimal 
integer cycle slip solution ž is efficiently obtained by employing the LAMBDA 
method in the second step. Once the integer solution is obtained, a validation is 
executed in the third step to confirm whether it is reliable enough to accept ž or 
not, since the acceptance of a wrong solution, without notice, will result in severe 
positioning error. In the present contribution, the model-driven integer bootstrapping 
(IB) success rate [27] and the data-driven ratio test [35, 36] will be adopted to validate
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the reliability of the integer cycle slip solution. The IB success rate is defined as [27] 

PB = 
m∏

i=1

(
2�

(
1 

2σẑi|I

)
− 1
)

(5.23) 

with �(x) = ∫ x 
−∞ 

1 √
2π exp{− 1 

2 t
2}dt and σẑi|I is the standard deviation of the ith 

decorrelated float solution, conditioned on the cycle slips I = {i + 1, . . . ,  n}. The  IB  
success rate is a sharp lower bound of the integer least squares (real) success rate [37]. 
Obviously, the IB success rate considers only the precisions and partial correlations 
of float solution that is model-driven. In this study, the user-defined success rate is set 
to P0 = 99.5%. To further control the reliability of integer solution, the data-driven 
ratio test is applied. The key is to determine a proper threshold R0. Commonly the 
fixed threshold of for instance, 2 or 3, is applied. Verhagen and Teunissen proposed 
to adapt this threshold in terms of quality of float solution itself and the fixed failure-
rate ratio-test (FF-RT) was advised [40]. However, as noticed by Li et al. [31], 
once float solution with higher success rate than P0, its associated FF-RT threshold 
will be always almost 1. It means that the integer solution does not need further 
validation. Hence, based on the fact that the FF-RT threshold becomes smaller for 
larger success rate and/or higher dimension, we used a set of dimension-dependent 
thresholds advised by Li et al. [31]. They are 2, 1.5, 1.3 and 1.2 for integer dimensions 
of 2, 3–4, 5–7 and larger than 7, respectively. 

In real data analysis, one cannot sometimes fix all cycle slips simultaneously. In 
another words, the vector of integer cycle slip estimates cannot pass the validation 
of IB success rate or/and ratio test. Close analysis reveals that the failure of fixing 
all cycle slips is mainly due to the poor quality of only some cycle slips. Hence, we 
turn to the fixing of partial cycle slips that can be reliably fixed. Here, fixing all cycle 
slips refers to as the full cycle slip resolution (FCSR) while fixing part of them refers 
to as PCSR. Completely analogous to partial ambiguity resolution provided in Wang 
et al. [38], we select the subset of cycle slips based on the successively increased 
elevations considering the fact that lower elevation corresponds to the poor quality 
of float cycle slip estimate. 

Let the following partitions of float cycle slip solution ẑ and its VC matrix Qẑẑ as 

ẑ =
[
ẑ1 
ẑ2

]
, Qẑẑ =

[
Qẑ1 ẑ1 Qẑ1 ẑ2 
Qẑ2 ẑ1 Qẑ2 ẑ2

]
(5.24) 

where the cycle slip vector ẑ1 is the subset assumed to be reliably fixed to its integer 
counterpart ž1. Stemmed from the bootstrapped ambiguity resolution, the remaining 
cycle slip subset ẑ2 is then updated depending on its correlation with ẑ1 by 

z̃2 = ẑ2 − Qẑ2 ẑ1 Q
−1 
ẑ1 ẑ1 (ẑ1 − ž1) (5.25a) 

Q∼ 
z2 

∼ 
z2 

= Qẑ2 ẑ2 − Qẑ2 ẑ1 Q
−1 
ẑ1 ẑ1 Qẑ1 ẑ2 (5.25b)
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As the low-elevation cycle slips are more prone to be affected by the observation 
anomaly, the subset ẑ1 is selected according to the successively increased elevations. 
If the FCSR fails, namely the user-defined thresholds of ratio test or/and IB success 
rate are not satisfied, the PCSR is therewith invoked. Let the elevations of cycle slips 
in an ascending order as θ1 < θ2 < · · ·  < θn, we start  the PCSR by removing the  
cycle slips of the lowest elevation. The remained cycle slips with elevations higher 
than θ1 form the selected subset, denoted by ẑ1(θ2, . . . , θn). Then we check the fixing 
of ẑ1(θ2, . . . , θn). If yes, we fix them to ž1 and update the remaining subset ẑ2 by 
(5.25a, 5.25b). Otherwise, we further remove the cycle slips of the second lowest 
elevation. This process is repeated until the selected cycle slips can be successfully 
fixed or the vector ẑ1 is null. Once the remaining subset ẑ2 is updated, we try to fix 
them with the same PCSR procedure. 

5.3 Single-Frequency Cycle Slip Processing 

This section comprehensively addresses cycle slip estimation for single-frequency 
RTK applications using the PPF method. The method leverages positional polynomial 
constraints to enhance cycle slip detection and correction. The PCSR strategy further 
improves both the success and fix rates, demonstrating significant advancements over 
traditional methods in various scenarios. 

First, the observation models for cycle slip estimation are discussed. The 
observation equations of single-frequency code and phase read 

Ps 
r = �s 

r + c
(
dtr − dts

)+ τ + ι + εp (5.26) 

Φs 
r = �s 

r + c
(
δtr − δts

)+ λas r + τ − ι + εφ (5.27) 

where the superscript s and subscript r denote the satellite and receiver, respectively. 
P and Φ are the phase and code observations, and εP and εΦ are their corresponding 
random noises. �, τ and ι are the satellite-to-receiver geometric range, the tropo-
spheric delay and the ionospheric delay. dtr and δtr are the clock errors of code and 
phase receiver, while dts and δts are for satellite. as r = zs r + ϕr(t0) − ϕs(t0) is the 
ambiguity with wavelength λ, where zs r and ϕs(t0) are the integer ambiguity and initial 
satellite phase bias, and ϕr(t0) is the initial receiver phase bias. 

Besides the integer property, the cycle slip has an important property of continuity. 
It is that the same integer is introduced for all epochs afterward once a cycle slip 
occurs. To isolate the cycle slip only at the epoch it occurs, the between-epoch 
difference model is always formed

�Ps 
r = ��s 

r + c
(
�dtr − �dts

)+ �τ + �ι + �εP (5.28)

�Φs 
r = ��s 

r + c
(
�δtr − �δts

)+ λ�zs r + �τ − �ι + �εΦ (5.29)
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where the symbol � denotes the between-epoch difference operator. �zs r = �as r 
denotes the integer cycle slip and it is zero if no cycle slips occur since both ϕr(t0) and 
ϕs(t0) are constant and eliminated. The atmospheric errors vary so slowly that their 
between-epoch variations can be basically neglected, especially for small sampling 
interval [39]. Thus, a cycle slip will lead to a sudden jump in �Φs 

r if the other errors 
can be properly modelled. 

In RTK processing, the between-satellite and -receiver DD model is widely used to 
eliminate the errors of receiver and satellite dependence. In case of short baselines, the 
residual DD tropospheric delays after corrections with standard tropospheric model 
and the ionospheric delays can be already ignored. If the between-epoch difference 
is further applied, i.e., triple-differenced (TD), all systematic errors are eliminated, 
and the associated equations follows

�Pik 
br = ��ik 

br + �εik br (5.30)

�Φ ik 
br = ��ik 

br + λ�zik br + �εik br (5.31) 

where the DD operator (∗)ik br =
(∗k 

r − ∗i 
r

)− (∗k 
b − ∗i 

b). In fact, in RTK applications, 
one does not need to estimate the cycle slip of undifference observation, instead 
the DD cycle slip �zik br . Here, we give a brief comment on the multipath that is a 
troublesome error factor and include both deterministic (systematic) and random 
components. The multipath could be still significant on the DD observations espe-
cially for the DD pseudorange observations. However, in the TD observations, its 
deterministic component can be adequately eliminated after between-epoch time 
difference. Regarding the random component, it is commonly captured with the 
stochastic modelling by giving a relatively enlarged variance. 

In the following review of single-frequency detection methods, three typical 
methods of single-frequency cycle slip detection are discussed. i.e., the between-
epoch high-order difference, the MPF [23, 40] and the TD residual-based snooping 
(TRS) [20]. Since the high-order difference scheme amplifies the random noise, it is 
not able to detect the small cycle slips and thus almost incapable in practice. Thus, 
in this section, we will discuss latter two methods. Note the following discussions 
focus on the real-time applications. 

The principle of MPF method is to fit a polynomial with the historical phase 
observations of a few epochs and then to extrapolate the observation of the current 
detection epoch. By comparing with the real phase observation, the decision of 
whether the cycle slip exists is made [23]. For a given satellite s, we express the kth 
epoch observation with a polynomial function as 

E(Φs 
k ) = a0 + a1k + a2k2 +  · · ·  +  amkm (5.32) 

where E denotes the expectation operator. Collecting the observations of n epochs 
together yields
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E(Φs ) = Aa (5.33) 

where Φs = [Φs 
1, Φ

s 
2, . . . , Φ

s 
n]T , A = 

⎡ 

⎢⎢⎢ 
⎣ 

1 
1 
... 
1 

1 
2 
... 
n 

1 
22 

... 
n2 

· · ·  
· · ·  
... 

· · ·  

1 
2m 

... 
nm 

⎤ 

⎥⎥⎥ 
⎦ 

and a = 

[a0, a1, . . . ,  am]T . In case of n > (m + 1), taking the unit weight matrix, the 
least-squares solution of polynomial coefficients reads 

â = (AT A)
−1 
AT Φs (5.34) 

The formal standard deviation (STD) of unit weight is computed as 

σ̂0 =
√

vTv 
n − m − 1 

(5.35) 

with v = Φs − Aa
∧

. Then the cycle slip is detected by individually testing the residual 

|vi| > κ  ̂σ0 (5.36) 

where κ is a positive scalar that can be determined in terms of a certain significance. 
In general, a low-order polynomial function is sufficient to fit phase series. As 

an alternative to (5.33), some specific polynomials, such as, for instance, Lagrange 
interpolation polynomial and Chebyshev polynomial, can also be applied. The MPF 
method is simple and easy-to-implement. However, some drawbacks still exist. It is 
observed from (5.36) that the cycle slip detection is relevant to both κ and σ̂0. Firstly, 
the estimation of σ̂0 is associated with the number of redundancies, namely, the length 
n of fitting window and fitting order m. Too long window with a given polynomial 
order or too high-order polynomial with a given window cannot obtain the stable 
estimate of σ̂0. Hence, it is critical to determine the reasonable window length and 
the polynomial order. In addition, the threshold κ is empirically given. If κ is too large, 
the cycle slips will be missed; while if κ is too small, the normal observation will be 
wrongly detected as cycle slip. Besides, the MPF method is applied for individual 
satellite, the correlated information amongst different satellites is fully neglected. It 
means that observations from satellites without cycle slips cannot be used to assist 
cycle slip detection of the other satellites. 

Following TD observation Eqs. (5.30) and (5.31) with assumption that no cycle 
slip exists, the linearized single-epoch TD observation equations read 

l = Gx + ε (5.37) 

where l = [PT , ΦT]T with P and Φ denoting the single-epoch TD code and phase 
observation vector. G is the design matrix to TD baseline x. Let the cofactor matrix
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of DD observations be denoted by Q and the variances of DD code and phase be 
denoted by σ 2 P and σ 2 Φ , the covariance matrix of single-epoch DD observations is 
QDD = diag

([
σ 2 P , σ  2 Φ

]) ⊗ Q. It follows then that the covariance matrix of single-
epoch TD observations is Qll = 2diag

([
σ 2 P , σ  2 Φ

]) ⊗ Q with assumption that the 
between-epoch observations are independent. The least-squares TD baseline solution 
follows 

x̂ = (GT Q−1 
ll  G)

−1 
GT Q−1 

ll  l (5.38) 

The cycle slips are iteratively detected based on the TD residuals following the 
outlier detection theory. In this case, the underlying assumption is that the outliers are 
solely driven by cycle slips. In general, one first checks the compatibility of model 
(5.33) by using the overall test statistic as [41, 42] 

Tq = 
ε̂T Q−1 

ll  ε̂

q 
(5.39) 

where ε̂ = l −Gx̂ is the TD residual vector and q = 2s − 3 is the degree of freedom 
with 2s the number of TD code and phase observations and s for number of TD 
observations of either code or phase. Hence, if the misspecification is detected with 
Tq < F1−α(q, ∞) by giving a significance level α, one needs then to identify the 
occurrence of cycle slip. Here F denotes the Fisher distribution. Usually, one starts 
with testing the cycle slips for individual observations by using w-test. The w-test 
statistic of the ith observation reads [42, 43] 

wi = 
cT i Q

−1 
ll  ε̂√

cT i Q
−1 
ll  Qε̂ε̂Q

−1 
ll  ci 

(5.40) 

where ci is an 2s-column vector with all elements of 0 except the ith element of λ. 
Here i is taken from the set {s + 1, . . . ,  2s} considering the order of code and phase 
observations in l. Qε̂ε̂ = Qll−G(GTQ−1 

ll  G)
−1 
GT is the covariance matrix of residuals 

ε̂. With a significance level α, the  ith observation is decided as an outlier if its w-
statistic has the largest |wi| of all s phase alternatives and meantime |wi| > N1−α/2. 
Then float solution of cycle slip is estimated as 

ẑi = cT i Q
−1 
ll ε̂

cT i Q
−1 
ll Qε̂ε̂Q

−1 
ll ci 

, σ  2 
ẑi =

(
cT i Q

−1 
ll Qε̂ε̂Q

−1 
ll ci
)−1 

(5.41) 

Then one can fix the integer value of cycle slip completely as the integer ambiguity 
resolution does. For a scalar case, the rounding method is used with a given criterion. 
One may  refer to Li et al.  [44] for the failure rate controllable rounding scheme. 

In any statistical hypothesis test, one has to encounter the type I error of false 
alarm and the type II error of wrong detection, namely, the error of rejecting a
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correct hypothesis and the error of accepting a wrong hypothesis. In such case, the 
corresponding detection power, γ = 1− β with β the probability of the type II error, 
can be computed under Ha. Thus in w-test, the drawbacks mainly lie in three terms. 
(1) It is observed from (5.40) that the w-statistics would be correlated due to the 
correlation of ε̂, which will bring in error transfer amongst observation residuals and 
lead to the type III errors besides the type I and type II errors [21]. (2) In fact, the TRS 
method often fails in case of simultaneous multiple cycle slips. To avoid the error 
transfer, the cycle slip is often detected satellite by satellite until there is no cycle 
slip. But it cannot always work well in practice. (3) Even though the cycle slip can 
be correctly detected, it is still difficult to exactly estimate the integer values of cycle 
slip by using its corresponding adjustment residual since the correlation amongst 
cycle slips are totally ignored. 

To fully consider the influence of potential cycle slips with each other, one does not 
need to fix the cycle slips individually. Instead, once all cycle slips were detected for 
specific observations, we introduce the cycle slips to those observations as unknowns 
in TD model 

l = Gx + Bz + ε (5.42) 

where z is the unknown cycle slip vector with t dimension (t ≤ s). B is a (2s × 
t) design matrix to z. Then the float cycle slip vector is derived with least squares 
criterion as 

ẑ = Q−1 
ẑẑ B

T Q−1 
ll  ε̂, Qẑẑ = (BT Q−1 

ll  Qε̂ε̂Q
−1 
ll  B)

−1 
(5.43) 

where B =
[
0s×t 

Cs×t

]
. All elements of C matrix are zeros except for some elements 

of λ at the positions associated to cycle slip parameters. Then with float solution 
ẑ and its covariance matrix Q

ẑz
∧, the integer cycle slips can be obtained by using 

integer estimation method. In this case, the correlations amongst cycle slips are fully 
taken into account. The model (5.42) is the basis for processing the multiple cycle 
slips, based on which, the additional constraints can be integrated. In this model, the 
normal phase measurements over several consecutive epochs are not required, which 
enables the real-time applications. Moreover, different from the satellite-by-satellite 
detection methods, the model (5.42) has mathematically stronger model strength 
since the all measurements are used in an integrated adjustment. 

Method with position polynomial constraint, we elaborate our new single-
frequency cycle slip estimation method, which is realized by imposing a position 
polynomial constraint on the model (5.42). Starting with the mathematic formation 
of the new method, we derive out its two solutions. 

A time-window that contains the current epoch and (n− 1) consecutive historical 
epochs are selected. For estimating the cycle slips of satellites at current epoch, the 
observations of those satellites should be free of cycle slips over all previous (n − 1) 
epochs. Assigning the subscript to denote the epoch number, the mathematic model
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for cycle slip estimation with a window observation reads 

⎡ 

⎢ 
⎣ 

l1 
... 
ln 

⎤ 

⎥ 
⎦ = 

⎡ 

⎢ 
⎣ 

G1 
... 
0 

· · ·  
. . . 
. . .  

0 0  
... 
Gn 

... 
B 

⎤ 

⎥ 
⎦ 

⎡ 

⎢⎢ 
⎢ 
⎣ 

x1 
... 
xn 
z 

⎤ 

⎥⎥ 
⎥ 
⎦ 

+ 

⎡ 

⎢ 
⎣

ε1 
...

εn 

⎤ 

⎥ 
⎦ (5.44) 

where all symbols have the exactly same meanings as those in (5.37) and (5.42) 
except that an epoch number is assigned. The compact form of (5.44) follows 

y = [G F
][ x 

z

]
+ ε (5.45) 

where y = [lT 1 , . . . ,  lT n ]T , G = blkdiag(G1, . . . ,  Gn), F = cn⊗B with cn the n-column 
zero vector except for the nth element of 1. The baseline vector x = [xT 1 , . . . ,  xT n ]T 
collects the baseline vectors of all n epochs. The vector ε = [εT 1 , . . . , εT n ]T is the 
random noise for observations of all n epochs. Here we would like to give a comment 
on the mathematical model of cycle slip estimation. First of all, we emphasize that 
model (5.44) is for the cycle slip estimation but not for ambiguity resolution and 
positioning. For estimating the cycle slips of the satellites at current epoch, the 
observations of those satellites should be without cycle slips over all previous (n − 
1) epochs. It implies that not all observed satellites at current epoch are included in 
(5.44) for cycle slip estimation, for instance, for the newly tracked satellites at current 
epoch and the satellites whose cycle slips are not successfully repaired at all previous 
(n − 1) epochs. For those satellites, the corresponding new ambiguities will be set 
up and their observations will not include in (5.44) for cycle slip estimation. After 
cycle slip processed, the ambiguities for those satellites will be estimated together 
with position parameters. Regarding the problem how to confirm that the cycle slips 
at the previous epochs have been successfully repaired, one can completely apply the 
validation method used for validating integer ambiguity resolution, like success rate, 
ratio test etc. In the step of cycle slip estimation, it is advised to use relatively tight 
validation thresholds since even if the cycle slip estimation fails, the corresponding 
new ambiguities can be set up for further processing. 

Regarding the stochastic model, for a short time span, it is adequate to assume that 
the covariance matrices of DD observations are the same for all epochs, i.e., QDD. 
Then the covariance matrix of TD observations of consecutive n epochs is derived 
via the error propagation law:
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Qyy = 

⎡ 

⎢ 
⎢⎢⎢⎢⎢ 
⎣ 

2 −1 0  
−1 2  −1 

· · ·  
· · ·  

0 
0 

... 
. . . . . . 

. . . 
... 

0 · · ·  −1 
0 · · ·  0 

2 
−1 

−1 
2 

⎤ 

⎥ 
⎥⎥⎥⎥⎥ 
⎦ 

⊗ QDD 

Based on the general observation model, we introduce the kinematic constraint. 
Assume that the position of the rover station is subjected to a polynomial 

ri = a0 + a1i + a2i2 +  · · ·  +  amim (5.46) 

where i denotes the epoch number; ri stands for the three-dimensional coordinates of 
the rover station. ak (k = 0, . . . ,  m) is the polynomial coefficients for three coordinate 
components. For the sake of convenience, the epoch time ti is replaced by the epoch 
number within the time window. Accordingly, the TD baseline between two adjacent 
epochs can be expressed as: 

xi = ri − ri−1 = a1 + (2i − 1)a2 +  · · ·  +  (im − (i − 1)m )am (5.47) 

Taking into account all TD baselines of n epochs within the time-window, 
Eq. (5.44) can be written in a compact matrix format as: 

x = Sa (5.48) 

where S = 

⎡ 

⎢ 
⎣ 

1 
... 
1 

1 · · · 1 
... 

. . . 
... 

2n − 1 · · ·  nm − (n − 1)m 

⎤ 

⎥ 
⎦ ⊗ I3 and a = [aT 1 , . . . ,  aT m]T . Inte-

grating the position polynomial constraint (5.48) with the observation model (5.45) 
yields the cycle slip estimation model 

⎧ 
⎨ 

⎩ 
y = [G F

][ x 
z

]
+ ε, Qyy 

x = Sa 
(5.49) 

This model is referred to as the PPF model. In this model, the solutions of TD 
baselines x and cycle slips z relay on the observations of not only current epoch 
but also (n − 1) historical epochs. Moreover, introducing the constraint (5.48) can 
significantly improve the accuracy and reliability for cycle slip estimation. 

The first solution of (5.49) is derived by substituting the second equation of (5.49) 
into the first equation, namely, using a instead of x. The least squares normal equations 
follows
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[
STGTQ−1 

yy GS S
TGTQ−1 

yy F 
FTQ−1 

yy GS FTQ−1 
yy F

][
â 
ẑ

]
=
[
STGTQ−1 

yy y 
FTQ−1 

yy y

]

(5.50) 

Then the float cycle slip vector ẑ can be solved via reducing the normal equation 
as 

ẑ = Qẑẑu (5.51) 

Q−1 
ẑẑ = FT Q−1 

yy F − FT Q−1 
yy GS

(
ST GT Q−1 

yy GS
)−1 

ST GT Q−1 
yy F (5.52) 

u = FT Q−1 
yy y − FT Q−1 

yy GS
(
ST GT Q−1 

yy GS
)−1 

ST GT Q−1 
yy y (5.53) 

With float solutions, one can then apply the LAMBDA method to search for 
the most likely candidate of integer cycle slips. In this study, a new version of the 
LAMBDA software (version 3.0) is applied with a more efficient search strategy 
[45]. One may consult Chang et al. [46] for the modified LAMBDA, and also other 
researchers for more efficient ambiguity resolution method. 

However, the direct solution needs to the observations of all historical epochs 
within the time window to form normal equations, which increases calculation 
burden. As an alternative but efficient implementation, an indirect solution is 
presented where the predicted position of a current epoch is fused with the observa-
tions of the current epoch. Firstly, the positions of the forgoing epochs are adopted 
to fit the polynomial, with which the position of a current epoch is predicted. Taking 
the predicted position as virtual observations, the model (5.49) is modified as 

⎧ 
⎨ 

⎩ 

ζ̂ = S1a + εζ̂ , Qζ̂ 
ln = Gnxn + Bz + εn, Qln 
xn = S2a 

(5.54) 

where ζ̂ = [
x̂T 1 , . . . ,  ̂xT n−1

]T 
is the vector of all estimated baselines of (n − 1) 

epochs and Q 
ζ
∧ = blkdiag (Qx̂1 , . . . ,  Qx̂n−1 

) is its covariance matrix. The matrix 

S is partitioned to two parts as 

S1 = 

⎡ 

⎢ 
⎣ 

1 
... 
1 

1 · · · 1 
... 

. . . 
... 

2n − 3 · · ·  (n − 1)m − (n − 2)m 

⎤ 

⎥ 
⎦ ⊗ I3 

and 

S2 =
[
1 2n − 1 · · ·  nm − (n − 1)m

]
⊗ I3
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We first use the first equation of (5.54) to solve the polynomial coefficients a, with 
which as virtual observations, the equivalence of Eq. (5.54) follows

{
ln = GnS2a + Bz + εn, Qln∼ 
a= a, Q∼ 

a
∼ 
a 

(5.55) 

where 
∼ 
a= Q∼ 

a
∼ 
a 
ST 1 Q

−1 
ζ̂ ζ̂ and Q∼ 

a
∼ 
a 

= (ST 1 Q
−1 
ζ̂ S1)

−1 
are the polynomial coefficients and 

its covariance matrix solved by (n − 1) historical epochs. For this equation system, 
the least squares normal equations are derived as

[
â 
ẑ

]
=
[
Qââ Qâẑ 

Qẑâ Qẑẑ

][
ST 2 G

T 
n Q

−1 
ln 
ln + ST 1 Q

−1 
ζ̂ ζ̂ 

BT Q−1 
ln ln

]

(5.56a)

[
Qââ Qâẑ 

Qẑâ Qẑẑ

]
=
[
ST 2 G

T 
n Q

−1 
ln 
GnS2 + Q−1

∼ 
a

∼ 
a 
ST 2 G

T 
n Q

−1 
ln 
B 

BTQ−1 
ln 
GnS2 BTQ−1 

ln 
B

]−1 

(5.56b) 

Finally, the float solution of cycle slips reads 

ẑ = QẑẑB
T Q−1 

ln 
ln + Qẑâ(S

T 
2 G

T 
n Q

−1 
ln 
ln + ST 1 Q

−1 
ζ̂ ζ̂ ) (5.57) 

Again with float solutions, one can employ the LAMBDA software to fix the 
integers of cycle slips. 

In PPF method, it does not require that for individual satellite the observations 
within time window are all normal without discontinuity. Instead, it requires only 
that the positions within time window are all available. This is very promising in real 
applications with low-cost single-frequency receivers where the discontinuity would 
frequently happen for some satellites. Besides, the position polynomial fitting in PPF 
method is more reliable than the measurement polynomial fitting in MPF method 
since processing all observations in an integrated adjustment in PPF provides a math-
ematically stronger solution than satellite-by-satellite testing. Moreover, the PPF is 
immune to the number of observation redundancies because the strong PPF constraint 
is applied. The PPF method is capable of processing the multiple cycle slips, which 
enables a more reliable and stable performance in GNSS-adverse environments. 

5.4 Results and Discussion 

To demonstrate the effectiveness of the proposed related methods, three different 
experiments under complex observation conditions were carried out. Specifically, 
they are the harsh environment, single-frequency low-cost receiver, and real-time 
kinematic situation.
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5.4.1 Analysis in the Harsh Environment 

This section adopts single- and dual-frequency mixed baseline dataset No. 1, of which 
the baseline length is 22.65 km. The 24-h GPS and BDS observations were collected 
with a sampling interval of 30 s. Hence, the ionospheric delays at this time cannot be 
totally eliminated by using the between-epoch differencing. The reference and rover 
stations are both located in Hong Kong, China. Besides, the data used here is from 
the day during the summer vacation. The sum of Kp indices of that day is 18, thus 
indicating the ionosphere is relatively active. For a comprehensive analysis, RTK 
and static PPP modes are both carried out. When dealing with the cycle slips, the 
broadcast ephemeris and precise ephemeris are used in RTK and PPP, respectively. 

To verify the performance of the cycle slip processing in terms of positioning, 
Figs. 5.1 and 5.2 show the positioning results of the TurboEdit and proposed method 
based on the state-domain-aided GFI model in RTK and PPP, respectively. Three 
directions, including east (E), north (N), and up (U) directions, are all presented. The 
orange and purple points denote the float and fixed solutions in Fig. 5.1. The corre-
sponding statistics including, STD and bias of positioning results are also computed. 
In this study, since the observation condition is not very good, the ratio when fixing 
the ambiguities is set to 1.5 in RTK mode. The LAMBDA method is adopted if the 
integer ambiguities need to be fixed. The success rates of the TurboEdit and proposed 
methods are 66.0%, and 89.4%, respectively. It indicates that 23.4% improvements of 
the proposed method can be obtained. In Fig. 5.2, due to the impact of cycle slips, the 
solution of the TurboEdit method is frequently initialized and cannot be converged. 
In contrast, the solution of the proposed method converges to centimeter-level after 
about 140 min. Taking a closer look at Figs. 5.1 and 5.2, and combining the estimated

Fig. 5.1 Positioning errors of three directions by using the TurboEdit method (left) and the GFI 
method (right) in RTK. The orange and purple points denote the float and fixed solutions, respectively
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Fig. 5.2 Positioning errors of three directions by using the TurboEdit method (left) and the GFI 
method (right) in PPP 

STD and bias, it can be found that the proposed method is more precise. Specifically, 
for the STD, approximately 78.4, 48.8, and 56.4% improvements can be obtained in 
E, N, and U directions in RTK mode, and 55.9, 42.1 and 86.0% in PPP mode. Simi-
larly, for the bias, 57.1, 26.3, and 30.0% improvements can be obtained by using the 
proposed method in RTK mode, and 54.1, 39.6 and 86.1% in PPP mode. Therefore, 
the cycle slips must be handled carefully in harsh environments, and the proposed 
method is practical and trustworthy to a great extent.

5.4.2 Analysis in the Single-Frequency Low-Cost Receiver 

This section collects 24-h dataset No. 2 from the single-frequency low-cost receiver. 
The model of the low-cost receiver only costs a few hundred USD. For miniaturization 
purposes, a built-in GNSS full-band antenna and low-cost board are integrated into 
the receiver. Here 5-s single-frequency GPS/BDS observations were adopted in a 
54.50-m baseline. A short baseline is used because the observation condition is not 
good enough where the unmodeled errors inevitably exist. Hence, the atmospheric 
delays need to be eliminated better. Data analysis indicates that the signal reception 
is disturbed, which is most likely due to the internal low-cost receiver and external 
challenging environment. Therefore, the quality of the observations of dataset No. 2 is 
not very good, which is sufficiently representative. As aforementioned, the proposed 
method based on the GB model is used in this section. 

To certify the effectiveness of the coordinate-domain-aided approach, three-
dimensional time-differenced coordinate components based on the GB model are
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illustrated in Fig. 5.3. We can easily find that the time-differenced coordinate 
components in three directions are highly concentrated around 0 m. It is reason-
able that the rover and reference stations are both relatively static during this period, 
hence the time-differenced coordinate components are nearly 0 m. It proves that 
the proposed coordinate-domain-aided GB method is highly reliable. Moreover, the 
threshold of time-differenced coordinate components can be set (e.g., 0.1 m in this 
study). The coordinate-domain aided approach will be not be used if the resolved 
time-differenced coordinate components are larger than the above threshold. The 
accuracy and reliability of the coordinate-domain aided GB method can be further 
improved. 

Figure 5.4 shows the float solutions of the cycle slip parameters resolved in the 
proposed method of dataset No. 2. It can be clearly seen that most float cycle slip 
parameters are nearly 0 cycles, thus indicating that there are no cycle slips at this 
time. Also, most of the other cycle slip parameters are usually close to an integer. 
Hence, the GB model is effective to a great extent. Taking a closer look at Fig. 5.4, 
the absolute values of the float cycle slip parameters are all smaller than 10 cycles 
since the potential large cycle slips (i.e., larger than 10 cycles) have been processed 
by the polynomial fitting before. In addition, there are small cycle slip parameters, 
especially those with an absolute value equal to 1 cycle, thus proving that the proposed 
method can handle small cycle slips.

Fig. 5.3 Three-dimensional time-differenced coordinate components resolved in the GB method 
of dataset No. 2 
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Fig. 5.4 Float solutions of the cycle slip parameters resolved in the GB method of dataset No. 2 

5.4.3 Analysis in the Real-Time Kinematic Situation 

The real-time kinematic data is adopted in this section named dataset No. 3. The 1-s 
dual-frequency vehicle data was collected from a high-end receiver. The experiment 
site was located in the urban area, where the signals may be obstructed, reflected, etc. 
The experiment lasted 1 h and 21 min. Although real cycle slips inevitably exist in 
a such kinematic situation, several simulated cycle slips, including small, multiple, 
insensitive, and even large cycle slips, are added. Hence the performance of the 
proposed method can be validated better. Specifically, small cycle slips from 2 to 3 
cycles are added on G04 at L1, G29 at L2, C04 at B2, and C05 at B1 every 20 s 
from 02:17:09; multiple cycles from 4 to 5 cycles on more than 60% of satellites 
except reference satellite every 200 s from 02:17:49; insensitive cycle slips of GF 
plus ionospheric-biased and GF plus ionospheric-free combinations are added on 
G03 at L1 (1 cycle) and L2 (1 cycle), G22 at L1 (77 cycles) and L2 (60 cycles) every 
20 s from 02:17:14; large cycle slips from 100 to 225 cycles are added on G31 at 
L2, G32 at L1, C01 at B1, and C02 at B2 every 20 s from 02:17:19. The proposed 
method based on GF and GB models is applied here. 

Figures 5.5 and 5.6 show the float solutions and corresponding fractional parts 
of cycle slips based on the GB method alone and the proposed GB combined GF 
method, respectively. Here the fractional part means the difference between the float 
solution of the cycle slip and its nearest integer. Based on the relatively concentrated 
fractional parts in Fig. 5.5, the GB method alone is effective to some extent. However, 
the GB method can only work some of the time. The reason may be that there are 
not enough redundant observations. Hence, the GB method alone cannot work well 
in case of multiple cycle slips. It can be confirmed in Fig. 5.6 that the fractional parts 
are more concentrated since some significant cycle slips are processed in advance by 
the proposed method. Therefore, it proves the effectiveness of the proposed method.
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Fig. 5.5 Float solutions and corresponding fractional parts of cycle slips based on the GB method 
alone 

Fig. 5.6 Float solutions and corresponding fractional parts of cycle slips based on the GB combined 
GF method
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5.5 Conclusion 

The cycle slip estimation is a conventional but rather important hotspot in precision 
GNSS applications with phase observations. The efficient cycle slip processing can 
avoid re-initialization and maintain precise solutions continuously. In high-precision 
GNSS applications, the frequent occurrences of cycle slips and data gaps contaminate 
carrier phase observations, triggering the time-consuming re-initialization, which 
otherwise will result in positioning errors and degradation of positioning continuity. 
In this monograph, a GBIW method was proposed for integer cycle slip and data gap 
repair, which can be easily reduced to the GF and GFI models. In this method, cycle 
slips are processed simultaneously in an integrated adjustment, and a key portion is to 
provide the SD ionospheric biases as prior constraints to enhance the model strength 
in case of large sampling intervals or data gaps. To further improve the reliability of 
solutions, a PCSR strategy is employed. It should be clear that the proposed method 
should perform better in real applications since the simulation for cycle slips and 
data gaps was run at every epoch, which is a scenario unlikely to occur in practical 
situations. Although this monograph mainly focuses on the universal GB model, the 
results should, in theory, be better for the GFI model in static mode, where the station 
coordinates are already precisely known. 

Essentially, cycle slips can be considered as fixed integer ambiguities, but their 
form is expressed as differential ambiguities. Compared to traditional integer ambi-
guity resolution, cycle slip resolution has its own characteristics. By leveraging this 
property, cycle slip correction can be conducted more efficiently, facilitating contin-
uous and reliable high-precision positioning. In addition, it is a great challenge to 
efficiently process cycle slips in single-frequency RTK applications. The impact of 
cycle slip handling in such scenarios is particularly significant, as it directly affects the 
positioning accuracy and reliability. This is even more crucial in low-cost receivers 
and challenging environments, where frequent signal blockages and multipath effects 
exacerbate the difficulty of maintaining continuous and precise positioning solutions. 
To address this issue, we have proposed a new method with PPF aimed at single-
frequency cycle slip estimation. The key aspect of the PPF method is the imposition 
of a positional polynomial constraint. Its essence lies in accurately predicting the 
position of the current epoch using the positions of several historical epochs. By 
leveraging the useful information gained from the PPF constraint, the accuracy of 
cycle slip estimation is significantly improved. Moreover, with the presented PCSR 
strategy, both the success rate and fix rate can be further enhanced, ensuring more 
reliable and robust positioning performance. Finally, we clarify that the PPF method, 
although originally motivated by single-frequency RTK applications, can be directly 
extended to multi-frequency and multi-GNSS scenarios. In principle, even better 
results should be achieved in such cases, given the additional redundancy and stronger 
observational geometry provided by multiple frequencies and constellations.
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Chapter 6 
Stochastic Modeling 

6.1 Introduction 

In geodetic data processing, two models are essential: the functional model 
and stochastic model. The functional model establishes the relationship between 
measurements and unknown parameters, typically via linear or nonlinear equations, 
while the stochastic model characterizes the random errors by describing their accu-
racy and inter-correlations through a covariance matrix. Although any arbitrarily 
positive definite and symmetric matrix may serve as a weight matrix in a least squares 
(LS) adjustment to yield unbiased estimates, only the correct stochastic model can 
guarantee minimum variance estimators and reliable statistical tests. Given that the 
true stochastic properties of measurements are often not adequately known, methods 
such as variance and covariance component estimation (VCE) have been developed 
to better capture the actual dispersion and improve overall parameter estimation and 
reliability in data adjustment systems. 

Significant research efforts have been devoted to VCE in geodetic data processing 
over the past century, resulting in many elegant formulations. In a typical adjust-
ment, the covariance matrix of the observations is known only up to a scale factor, 
namely, the variance components, which must be accurately estimated to achieve 
optimal parameter estimation and reliable statistical testing. Starting with Helmert’s 
quadratic estimation of unbiased variance components using LS residuals in a Gauss-
Markov (GM) model (and its subsequent extension and simplification [1]), Grafarend 
extended this method to conditional adjustment models (the Gauss-Helmert model). 
Building on these foundations, Rao proposed the minimum norm quadratic unbi-
ased estimator (MINQUE) [2], which is equivalent to Helmert’s estimate under 
normality assumptions [3]; Sjöberg further extended MINQUE to conditional adjust-
ment models [4] and Koch introduced the best invariant quadratic unbiased estimator 
(BIQUE) with a minimal variance objective [5]. In the general Gauss-Helmert frame-
work, Yu derived a generalized BIQUE [6], showing that both Rao’s MINQUE [2] 
and Koch’s BIQUE [5] are special cases of his approach. Concurrently, maximum
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likelihood estimation (MLE) methods have been explored extensively: Kubik derived 
an MLE VCE for the case of one variance per observation group [7], Koch formu-
lated an MLE for unbiased estimates in the GM model [8], and Ou provided an 
MLE formula equivalent to Koch’s and Helmert’s methods [9]; moreover, a general 
MLE is derived that encompasses the methods of Kubik [7] and Koch [8]. Modern 
geodetic applications have since adopted popular VCE methods including MINQUE 
[2], BIQUE [3, 5], the restricted maximum likelihood estimator (RMLE) [7, 8, 10], 
and the least-squares variance component estimator (LS-VCE) [11–14]. Additional 
studies have focused on robust estimation [15], the use of VCE in collocation [16] 
and ill-posed problems [17, 18], and the development of efficient computational 
algorithms [19]. In addition, Xu et al. discussed the estimability of variance and 
covariance components, indicating that at most r(r + 1)/2 independent components 
are estimable for a redundancy of r [20], while Teunissen and Amiri-Simkooei have 
demonstrated the benefits of LS VCE [21]. 

In general, the iterative procedure must be employed to gradually approximate the 
converged estimates of variance and covariance components, because the unknown 
covariance matrix is involved to compute the inputs of VCE. For instance, in Helmert 
estimation with the GM model, the LS residuals as the inputs for VCE are computed 
iteratively with the updated covariance matrix, since the covariance matrix is used to 
compute the LS residuals. Thus, in real application the bottleneck problem of VCE 
is the huge computation burden, particularly when many variance and covariance 
components are involved for many heterogeneous observations. Theoretically, the 
measurements can be used to extract at most their discrepancies with each other 
besides to estimate the unknowns in linear model and these discrepancies are the 
essential inputs for VCE. Any orthogonal complement matrix of coefficient matrix 
in the linear GM model can be used to compute these discrepancies. Traditionally, 
the orthogonal complement matrix is constructed by using both the coefficient and 
covariance matrices. Thus, the constructed orthogonal complement matrix and its 
derived discrepancies must be updated in the whole iterative VCE procedure, which 
is the key limitation for VCE computation efficiency. 

The objective of this section is to develop a new method that allows efficient 
estimation of variance and covariance components to overcome the VCE bottleneck 
problem of a huge computation burden. The core of the new method is to construct 
the orthogonal complement matrix only by using the coefficient matrix exempting the 
involvement of covariance matrix. Therefore, the constructed matrix and its derived 
discrepancies are invariant for the whole VCE procedure. As a result, the computation 
efficiency is significantly improved. 

For the fully-populated stochastic modeling, in Global Navigation Satellite 
Systems (GNSS) applications, an adequate stochastic model is required for reli-
able ambiguity resolution and for precise positioning. However, our knowledge of 
an adequate stochastic model is still at a rather rudimentary level in contrast to the 
functional model. Hence, refining the GNSS stochastic model is a worthy aspiration. 
Studies of GNSS stochastic models in earlier times were based on the elevation depen-
dence of random observation errors [22], and later took into account time and cross
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correlations [11, 18, 23–25]. In addition, the signal-to-noise ratio based elevation-
dependent models, i.e., SIGMA-ε and SIGMA-Δ, were developed by [26, 27]. This 
SIGMA-type model was further extended to incorporate the physical correlations 
[26, 27] based on turbulence theory [28]. However, in most existing GNSS software 
packages, only the elevation dependence of observation variances is implemented 
due to its simplicity and small computation burden [29]. 

BeiDou Navigation Satellite System (BDS) is the first GNSS that broadcasts 
triple-frequency signals in the full satellite constellation. Since its Interface Control 
Document (ICD) was released at the end of 2012, many investigators have intensified 
their efforts to understand BDS capabilities in ambiguity resolution and positioning 
[30–32]. However, all such investigations are based on a very empirical stochastic 
model borrowed from the knowledge of Global Positioning System (GPS) stochastic 
models, where homoscedastic or empirical elevation-dependent weighting is applied 
and often both time and cross correlations are disregarded. But we expect differences 
between the stochastic properties of BDS and GPS observations due to differences 
in their constellations and signal quality. Hence, it is necessary to study appropriate 
stochastic models for BDS observations. 

The contribution of this study is threefold. First, we study estimation theory in 
the context of triple-frequency BDS stochastic models, where a very sophisticated 
covariance matrix is formulated to allow estimating satellite-specific variance, cross 
correlation between two arbitrary frequencies, and time correlation of phase and 
code observations per frequency. To purely reflect the level of random observation 
noise, the between-receiver single-difference (SD) geometry-free functional model 
is used to eliminate geometric errors. Second, six BDS data sets from four brands 
of receivers are analyzed to demonstrate BDS stochastic properties. The stochastic 
models between short and zero-length baselines are compared in detail. Finally, the 
impacts of elevation-dependent weighting, cross correlation and time correlation on 
integer ambiguity resolution and positioning are numerically analyzed to emphasize 
the importance of using a realistic stochastic model. 

6.2 Variance and Covariance Component Estimation 

This section comprehensively introduces variance and VCE including the efficient 
method. We introduce the methodology of the VCE from two parts: VCE based on 
the LS residuals and efficient estimation of variance and covariance components. 

For the part of VCE based on the LS residuals. Starting from the linear (linearized) 
GM model 

y = Ax + ε (6.1) 

where y is an n × 1 vector of measurements, A is an n × t (n > t) design matrix of 
full column rank, x is a t × 1 vector of unknown parameters to be estimated, and ε is 
the n × 1 vector of measurement errors. In general, ε is random with mean of zero
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and covariance matrix Dεε = Dyy. The LS solution of Eq. (6.1) is  

⎧ 
⎪⎨ 

⎪⎩ 

x̂ = (
ATD−1 

yy A
)−1 

ATD−1 
yy y 

v = Ry = Rε 
R = In − A

(
ATD−1 

yy A
)−1 

ATD−1 
yy 

(6.2) 

where v is the vector of the LS residuals; In is the n × n identity matrix and R is an 
idempotent matrix satisfying with 

RR = R, RA = 0, RT D−1 
yy = D−1 

yy R (6.3) 

and 

tr(R) = rk(R) = r (6.4) 

Here, tr(•) and rk(•) are the mathematical operators for computing trace and rank 
of a matrix, respectively. r = n− t is the redundancy. The matrix equations for VCE 
are established by using the LS residuals as 

RDyyRT = RE
(
εεT

)
RT = E

(
vvT

)
(6.5) 

where E(•) denotes the mathematical expectation of a variable. Obviously, the iter-
ative procedure must be employed to estimate covariance matrix Dyy because it is 
involved to compute v and R. Ignoring the expectation and giving an appropriate 
initial covariance matrix D0, the fundamental matrix equations for iterative VCE 
reads 

R0DyyRT 
0 = v0vT 0 (6.6) 

where v0 = R0y and R0 = In − A
(
ATD−1 

0 A
)−1 

. Without loss of generality, we use 
the general structure of Dyy as 

Dyy = U1θ1 + U2θ2 +  · · ·  +  Umθm = 
m∑

i=1 

Uiθi (6.7) 

where θi is the ith unknown variance or covariance; Ui is the given (semi-)definite 
matrix for variance component of θi and the symmetrical matrix for covariance 
component. Since v0vT 0 in Eq. (6.6) is a matrix, we transform the matrix equations 
into vector equations as 

vec
(
R0 D̂yyRT 

0

) = vec
(
v0vT 0

)
(6.8)
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where vec(•) denotes the vector operator that converts a matrix to a column vector 
by stacking one column of this matrix underneath the previous one. Substituting 
Eq. (6.7) into Eq. (6.8), we have 

M0 θ̂ = vec
(
v0vT 0

)
(6.9) 

with M0 =
[
vec

(
R0U1RT 

0

) · · ·  vec
(
R0UmRT 

0

) ]
. We use the LS criterion on Eq. (6.9) 

with the weight matrix P = D−1 
0 ⊗ D−1 

0 , the VCE normal equations yields 

MT 
0 PM0 θ̂ = N θ̂ = MT 

0 Pvec
(
v0vT 0

) = q (6.10) 

After the derivation, the explicit expressions are 

nij = tr
(
W0UiW0Uj

)
, qi = vT 0 W0UiW0v0 (6.11) 

with W0 = D−1 
0 R0 = RT 

0 D
−1 
0 = WT 

0 , which is the same to the expressions of 
MINQUE given by Rao [2] and the LS VCE formulae given by Teunissen and 
Amiri-Simkooei [21]. Moreover, it is rather easy to prove that Helmert’s formulae 
are the same [14]. Therefore, all VCE methods mentioned above can be derived from 
the fundamental matrix Eq. (6.6) and the equivalent solutions are trivially achievable. 

For the part of efficient estimation of variance and covariance components. It 
is observed that the fundamental equations are correlated due to the rank defect of 
R. In other words, there are r(r + 1)/2 independent equations and n2 − r(r + 1)/2 
equations do never contribute to the estimation of variances and covariances [20]. 
In this section, we will derive VCE from the independent discrepancies of measure-
ments. Theoretically, any orthogonal complement matrix of the coefficient matrix A 
can be used to compute the discrepancies. We invent an efficient VCE method by 
constructing an invariant orthogonal complement matrix only using the coefficient 
matrix itself. Additionally, equivalent solutions from the correlated LS residuals and 
the independent discrepancies are proven. 

For the VCE based on the independent discrepancies. The essential inputs for 
VCE are not all n LS residuals due to their correlation, but r = n−t independent 
observation discrepancies. In other words, the most information extracted from the 
measurements is their discrepancies except the information used for parameter esti-
mation. Thus, the observation vector can be transformed to the vector comprised by 
parameters and discrepancies

[
x̂ 
u

]

=
[(

ATD−1 
yy A

)−1 
ATD−1 

yy 

B

]

y (6.12) 

where u is the r × 1 vector of the discrepancies; B is an r × n matrix with rank 
number of r and orthogonal with A, namely, BA = 0. In other words, B is an 
orthogonal complement matrix of A in the n-dimensional real-valued space Rn . From  
the mathematical point of view, y ∈ Rn , x̂ ⊂ R

(
AT

)
and u ⊂ R(B), and R(B) =
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N
(
AT

)
. Here  R(•) denotes the space spanned by all column vectors of a matrix and 

N(•) the null space of a matrix. 
Starting with the equations of discrepancies 

u = By = B(Ax + ε) = Bε (6.13) 

we establish alternative fundament matrix equations for VCE similar to Eq. (6.5) as  

BDyyBT = uuT (6.14) 

Due to the symmetry of matrix uuT, there are r(r + 1)/2 equations are indepen-
dent. All independent equations are extracted using “vech” product as 

M θ̂ = vech
(
uuT

)
(6.15) 

where M = [
vech

(
BU1BT

) · · ·  vech
(
BUmBT

)]
The product “vech(•)” has a similar 

definition to vec(•) except the elements on and below the diagonal of a matrix is 
used. It is emphasized here that the inverse of covariance matrix of vech

(
uuT

)
is 

used as weight matrix, otherwise the solution is not optimal. When y is of normal 
distribution, the covariance matrix of vech

(
uuT

)
is computed as [21]

∑

vh 

= D+(Duu ⊗ Duu)D+T /2 (6.16) 

where Duu = BDyyBT , D is the duplication matrix defined by the property that 

Dvech(S) = vec(S) with S being a symmetrical matrix, and D+ = (
DT D

)−1 
DT is 

its pseudo inverse. Given the prior covariance matrix D0, namely Du0 = BD0BT and 
D0 

vh = D+(
Du0 ⊗ Du0

)
D+T /2, the elements of LS normal equation is derived similar 

to Eq. (6.11) 

nij = tr
(
ŨiΣ

−1 
u0 ŨjΣ

−1 
u0

)
, qi = uT Σ−1 

u0 ŨiΣ
−1 
u0 u (6.17) 

with Ũi = BUiBT . 
For the Constructing the orthogonal complement matrix for invariant discrep-

ancies. In principle, any orthogonal complement matrix of A can be used as B in 
Eq. (6.17), and the equivalent solution is achievable. But the computation efficiency 
is significantly various for the different choices of orthogonal complement matrices. 
As a geodesist, we are very familiar with that the coefficient matrix in the condition 
adjustment model can be directly used as matrix B. However, in the most of data 
processing problems, the GM function model is preferred due to its easier formation, 
particularly in the case of huge observations with many observation types. Hence, 
it is crucial to efficiently determine an orthogonal complement matrix based on the 
information from the GM model.
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In this monograph, we construct the orthogonal complement matrix purely from 
coefficient matrix A itself such that the constructed B matrix is invariant and never 
necessary to be updated in the whole iterations. The y, A and ε in Eq. (6.1) are  
blocked as 

y =
[
y1 
y2

]

, A =
[
A1 

A2

]

, ε =
[

ε1 

ε2

]

(6.18) 

where y1 and ε1 are of t × 1 dimension and y2 and ε2 of r ×1 dimension; A1 is a t × t 
invertible matrix and A2 a r × t matrix. Obviously, the parameter x can be uniquely 
determined by y1 without any redundancy 

x̂ = A−1 
1 y1 (6.19) 

The remaining equations are totally redundant. If the measurements are free of 
error contamination, then 

y2 = A2A
−1 
1 y1 (6.20) 

holds exactly true. In fact, all measurements are inevitably uncertain and thus their 
discrepancies with each other are computed as 

u = A2A
−1 
1 y1 − y2 =

[
A2A

−1 
1 −Ir

]
y = By (6.21) 

with [33] 

B = [
A2A

−1 
1 −Ir

]
(6.22) 

Apparently, the matrix B is orthogonal and complementary with A. Substituting it 
into Eq. (6.17), we obtain the formula of efficient estimation of variance and covari-
ance components, where Ũi and u are invariant and computed before the iteration 
procedure, and we just need to update Du0 . However, in the traditional methods, both 
R0 and v0 have to been updated besides Du0 . 

For the Equivalent solutions from the correlated LS residuals and independent 
discrepancies. We have well known that the correlated equations can never contribute 
to the parameters and then we wonder whether the solution from independent discrep-
ancies is equivalent to that from correlated LS residuals. The answer is positive and 
the proof is given as follows. 

According to the equivalence theory of [34], the elimination of the partial param-
eters can never affect the solution of other parameters and corresponding accuracy. 
Therefore, the estimated variance of unit weight from the original Eq. (6.1) is equal 
to that from equivalent Eq. (6.21), namely, we have the following equation 

σ̂ 2 0 = 
(y − Ax̂)T

∑−1 
0 (y − Ax̂) 

n − t
= 

uT
∑−1 

u0 u 

n − t 
(6.23)



116 6 Stochastic Modeling

Substituting the LS solution of x̂ and Eq. (6.21) into Eq. (6.23) yields 

yT RT 
0 D

−1 
0 R0y = yT BT D−1 

u0 By (6.24) 

Since Eq. (6.24) holds true for arbitrary observation vector y, Eq.  (6.24) is  
equivalent to 

RT 
0 D

−1 
0 R0 = BT D−1 

u0 B (6.25) 

It is rather easy to derive the same expression to Eq. (6.11) via substituting 
Eq. (6.25) into Eq. (6.17), namely, the equivalent solution is achievable from the 
efficient method. 

6.3 Fully-Populated Stochastic Modeling 

As an important part of Stochastic modeling, the fully-populated stochastic modeling 
is studied comprehensively in this section. Then, the estimation procedure of a fully-
populated stochastic model is introduced. 

First, the SD geometry-free functional model is studied. As defined by Teunissen 
in his canonical theory for short GPS baselines, the geometry-free model parameter-
izes the observation equations in terms of the receiver-satellite ranges instead of the 
baseline components as in a geometry-based model. The double-differenced (DD) 
geometry-free model has been extensively studied for DD ambiguity resolution by 
Delft researchers [35] due to its advantages: for instance, as mentioned in [11], the 
linearity of the observation model, the independence of satellite orbit information 
and tropospheric delay, and the capability of ambiguity resolution with only one pair 
of satellites. 

To retrieve the stochastic properties of pure random noise of triple-frequency BDS 
signals, one has to eliminate the systematic errors contained in the observations. We 
will use the between-receiver SD, geometry-free model to remove such errors. On 
ultra-short (shorter than 10 m as usual) or zero-length baselines, the systematic 
errors can be completely eliminated such that only pure random errors remain in the 
resulting observations. Moreover, since no mathematical correlation is introduced 
in the SD model, it is more suitable for estimating the satellite-specific variances 
compared to the DD model, though they are equivalent for estimating the stochastic 
model [11]. 

Eliminating the systematic errors on ultra-short or zero-length baselines, the 
single-epoch, geometry-free, SD observation equations on frequency j read 

E
(
Φ j

) = δ� + esδtr,j + λjesϕj + λjαr,j (6.26) 

E
(
Pj

) = δ� + esdtr,j (6.27)
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where Φ j =
[
�1 

j , . . . , �
s 
j

]T 
is the SD observation vector of s satellites for phase 

on frequency j, and Pj for code has the same structure as Φ j. δ� = [
δ�1, . . . , δ�s

]T 

is the vector of SD receiver-satellite ranges; a = [
a1, . . . ,  as

]T 
is the SD integer 

ambiguity vector with wavelength λj; ϕj is the SD initial phase bias of receiver; δtr,j 
and dtr,j are the SD receiver clock errors for phase and code, respectively. 

Obviously, Eq. (6.26) has a rank deficiency of 1 since the coefficients of the 
unknown parameters δtr,j, ϕj and αr,j satisfy

[
es, λjes, λjIs

]

⎡ 

⎣ 
λj λj 

−1 0  
0s×1 −es 

⎤ 

⎦ = [
0s×1, 0s×1

]
(6.28) 

This indicates that the SD phase clock δtr,j and SD initial bias ϕj are linearly 
dependent, and also further dependent on the SD ambiguity parameters αr,j. To  
eliminate this rank deficiency, we reparameterize the equations as: 

δtr,j =: δtr,j + λjϕj + λja
1 
r,j zj = [a2 r,j − a1 r,j, . . . ,  as r,j − a1 r,j]T (6.29) 

where the same symbol δtr,j is used to denote the reparameterized variable. The 
vector zj contains DD ambiguities. The full-rank version of observation Eqs. (6.26) 
and (6.27) reads 

E

(
Φ j 

pj

)

=
[
Is es 0 λjΛ 
Is 0 es 0

]

⎡ 

⎢ 
⎢ 
⎣ 

δ�

δtr,j 
dtr,j 
zj 

⎤ 

⎥ 
⎥ 
⎦ (6.30) 

where Λ = [
0(s−1)1, Is−1

]T 
. In general, the geometry-free model has lower success in 

ambiguity resolution compared to a geometry-based model. However, it still allows 
reliable ambiguity resolution over multiple epochs in our short baseline case. After 
the DD ambiguities zj are fixed, one can move them to the left side of the equations. 
Collecting the observations of all f frequencies yields: 

E(y) = [ (
e2f ⊗ Is

) (
I2f ⊗ es

) ]
[

δ�

	t

]

(6.31) 

where y = [
ΦT , PT

]T 
with the ambiguity-corrected phase Φ =

[
�T 

1 , . . . , �
T 
f

]T 
and 

the same structure for code P; 	t = [
δtT, . . . ,  dtT

]T 
with δt = [

δtr,1, . . . , δtr,f
]T 

and dt = [
dtr,1, . . . ,  dtr,f

]T 
. 

From the design matrix of Eq. (6.31), it is easy to see that
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[ (
e2f ⊗ Is

)
(C ⊗ es)

]
[
es 
e2f

]

= 0 

which reveals that Eq. (6.31) is rank-deficient with a deficiency of 1. We therefore 
make an independent parameterization by fixing dtr,1, i.e., 	t = [

δt, dt
]
with δt = 

δt − ef dtr,1 and dt = [dtr,2 − dtr,1, . . . ,  dtr,f − dtr,1]T; δ� = δ� + esdtr,1. Finally, 
the single-epoch, f -frequency, geometry-free, SD observation equations of full rank 
read 

E(y) = [ (
e2f ⊗ Is

)
(C ⊗ es)

]
x (6.32) 

where x = [δ�T ,	tT]T, C = blkdiag
(
If , [0, If −1]T

)
. The observation equations of 

K epochs are 

E(
) = (IK ⊗ B)β = Aβ (6.33) 

where B = [(
e2f ⊗ Is

)
, (C ⊗ es)

]
, 
 = [yT 1 , . . . ,  yT K ]T and β = [xT 1 , . . . ,  xT K ]T with 

the subscripts denoting the epoch number. 
Second, the Formulation of the stochastic model is studied. To make the stochastic 

model sufficiently sophisticated, the following assumptions are made. Firstly, to 
address the satellite-specific variance and its elevation dependence, an unknown 
variance is assigned to individual satellites over a short period of K epochs during 
which the satellite elevation is nearly invariant. Secondly, the cross correlation is 
assumed to be present between two different frequencies for phase and code obser-
vations, respectively, while it is assumed to be absent between phase and code of 
common frequency. Thirdly, for a given time lag, the time correlation coefficients are 
assigned respectively to phase and code per frequency. Note that the between-satellite 
and between-station correlations are neglected in the stochastic model. 

It is emphasized that our covariance matrix is not a fully unknown covariance 
matrix though it is very sophisticated. That is, the number of unknown (co)variance 
components is much smaller than the number of elements in the full covariance 
matrix. Hence, our covariance matrix is mathematically (stepwisely) estimable. For 
more information on estimability of covariance matrices, see [20]. 

The single-epoch stochastic model can be derived. Based on the foregoing assump-
tions for our stochastic model, the observation variances are specified by the obser-
vation types, the satellites and the frequencies, while the cross correlations are asso-
ciated with the between-frequency observations of phase and code, respectively. In 
the case of phase, the single-epoch stochastic model reads 

Qφ = Q[σ ] 
φ + Q[c] 

φ (6.34) 

where Q[σ ] 
φ = blkdiag

(
Q[σ ] 

φ1 
, . . . ,  Q[σ ] 

φf

)
captures the observation variances of all f 

frequencies, while Q[σ ] 
φj 

= diag
([

σ 2 
φ1 
r,j 
, . . . , σ  2 φs 

r,j

])
the variances of all s satellites
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on frequency j, with σ 2 
φi 
r,j 
being the variance of the ith satellite. The matrix Q[c] 

φ =
{
�
[c] 
φiφj 

Q[σ ] 
φiφj

}
captures the cross correlations with �

[c] 
φiφj 

, which is the cross correlation 

coefficient between frequencies i and j, and Q[σ ] 
φiφj 

= diag
([

σφ1 
r,i 
σφ1 

r,j 
, . . . , σφs 

r,i 
σφs 

r,j

])
. 

The superscripts ‘[σ]’ and ‘[c]’ denote the terms associated with the observation vari-
ances and cross correlations, respectively. As an example with f = 3, the covariance 
matrix (6.34) reads 

Qφ = 

⎡ 

⎢ 
⎣ 

Q[σ ] 
φ1

�
[c] 
φ1φ2 

Q[σ ] 
φ1

�
[c] 
φ1φ3 

Q[σ ] 
φ1φ3 

Q[σ ] 
φ1φ2

�
[c] 
φ2φ3 

Q[c] 
φ2φ3 

symmetry Q[c] 
φ3 

⎤ 

⎥ 
⎦ (6.35) 

One can similarly construct the covariance matrix for code observations (denoted 
by Q[σ ] 

P and Q[c] 
P ) and then the single-epoch covariance matrix of phase and code 

observations as 

QE = D(y) = Q[σ ] 
E + Q[c] 

E (6.36) 

where Q[σ ] 
E = blkdiag

(
Q[σ ] 

φ , Q[σ ] 
P

)
and Q[c] 

E = blkdiag
(
Q[c] 

φ , Q
[c] 
P

)
. The covariance 

matrices for code, Q[σ ] 
P and Q[c] 

P , have the same structure as those for phase. There 
are total 2sf + f (f − 1) unknown (co)variance components, of which sf are for 
variances and f (f − 1) for cross correlations. 

The multiple-epoch stochastic model can be derived. In the multiple-epoch case, 
besides block-diagonally stacking the single-epoch covariance matrices of all epochs, 
the time correlations are introduced for phase and code observations per frequency 
for all time lags. As a result, the multiple-epoch covariance matrix is formulated as 

Q
 = IK ⊗ QE + Q[t] ◦ (
eKeT K ⊗ QE

)
(6.37) 

where the symbol “◦” is the Hadamard product with
[
A ◦ B]ij =

[
A]ij[B]ij. 

Matrix Q[t] is symmetric, and its upper triangle part is 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

0 Q[σ ] 
,1 Q

[σ ] 
,2 · · ·  Q[σ ] 

,K−1 
. . . . . . . . . 

... 
. . . . . . Q[σ ] 

,2 
. . . Q[σ ] 

,1 

0 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

where Q[t] 
,τ = blkdiag

(
Q[t] 

φ,τ , Q
[t] 
P,τ

)
⊗ Is captures the time correlations of phase and 

code of all f frequencies for time lag of τ . Matrix  Q[t] 
φ,τ = diag

([
ρ
[t] 
φ1,τ , . . . , ρ

[t] 
φf ,τ

])
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corresponds to phase observations, where ρ[t] 
φj ,τ is the time correlation coefficient on 

frequency j with time lag τ ; Q[t] 
P,τ has a similar structure as Q[t] 

φ,τ . To show the structure 
of the multiple-epoch stochastic model, an example is given for phase observations 
with K = 3 and f = 2 and without cross correlation: 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

Q[σ ] 
φ1 

0 �
[t] 
φ1,1 

Q[σ ] 
φ1 

0 �
[t] 
φ1,2 

Q[σ ] 
φ1 

0 
Q[σ ] 

φ2 
0 �

[t] 
φ2,1 

Q[σ ] 
φ2 

0 �
[t] 
φ2,2 

Q[σ ] 
φ2 

Q[σ ] 
φ1 

0 �
[t] 
φ1,1 

Q[σ ] 
φ1 

0 
Q[σ ] 

φ2 
0 �

[t] 
φ2,1 

Q[σ ] 
φ2 

Q[σ ] 
φ1 

0 
symmetry Q[σ ] 

φ2 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

It can be further simplified, in case of single-frequency, i.e., f = 1, as  
⎡ 

⎢ 
⎣ 

1 �
[t] 
φ2,1

�
[t] 
φ1,2

�
[t] 
φ1,1 

1 �
[t] 
φ1,1

�
[t] 
φ1,2

�
[t] 
φ1,1 

1 

⎤ 

⎥ 
⎦ ⊗ Q[σ ] 

φ1 

In general, we have 2f (K − 1) time correlation coefficients with the factor of 2 
accounting for both phase and code. Such a large number of parameters precludes 
efficient numerical computations. 

Third, the estimation of the parameters of the stochastic model is studied. In this 
part of the LS variance component estimation. As aforementioned, there are many 
VCE methods, for instance, MINQUE [2], BIQUE [5], RMLE [7, 8, 10] and LS-VCE 
[12, 13]. These methods differ in the estimation principles used, as well as in the 
distributional assumptions that they make. They might be equivalent under certain 
circumstances [14]. In this study, the LS-VCE is applied owing to its superiorities 
identified by [21]. To describe the LS-VCE method, we write the observation model 
Eq. (6.33) together with its stochastic model Eq. (6.37) as a general, linear GM 
model: 

E(
) = Aβ, D(
) = Q
 = Q0 + 
p∑

i=1 

σiUi (6.38) 

where 
 is an n-column observation vector (n = 2fsK), A= IK ⊗ B is the n × t 
design matrix for the t = (2f − 1+ s)K parameter vector β. The variance matrix Q


consists of a known part Q0 and unknown part specified by p unknown (co)variance 
components σi and their associated known cofactor matrices Ui (i = 1, . . . ,  p). 

The normal equations of LS-VCE are [14] 

N σ̂ = ω (6.39)
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where σ̂ = [
σ̂1, . . . ,  ̂σp

]T 
. The entries of normal matrix N and vector ω are 

nkl = tr
(
UkQ

−1

 P⊥ 

A UlQ
−1

 P⊥ 

A

)
(6.40) 

ωk = ε̂T Q−1

 UkQ

−1

 ε̂ − tr

(
UkQ

−1

 P⊥ 

A Q0Q
−1

 P⊥ 

A

)
(6.41) 

where P⊥ 
A = I − A(ATQ−1


 A)−1ATQ−1

 is the project matrix orthogonal to A, and 

ε̂ = P⊥ 
A
 the LS residual vector. The LS-VCE needs to be solved iteratively since 

the unknown covariance matrix Q
 is contained in the normal equations. Given the 
initial values for (co)variance unknowns, denoted by σ 0 i (i = 1, · · ·, p), the iteration 
continues until the difference in the computed unknowns between two consecutive 
iterations is sufficiently small. 

In this part of estimation procedure, many unknown (co)variance components are 
involved in the covariance matrix described above. For number of epochs K , number 
of frequencies f , and number of satellites s, there are a total of 2fs+ f (f 1) + 2f (K1) 
unknowns. Here, 2fs is for observation variances, f (f 1) is for cross correlations 
between any two frequencies, and 2f (K1) is for time correlations over K epochs. 
For instance, when K = 50, f = 3 and s = 6, the number of unknown (co)variance 
components is 396. Simultaneous estimation of such a huge number of unknowns will 
often lead to unreliable estimates, even producing negative variances and nonsense 
correlation coefficients. The reason is twofold. First, the normal matrix N in Eq. (6.39) 
associated with the geometry-free model for estimating observation variances and 
cross correlations is rank deficient. It means that one cannot estimate the obser-
vation variances and cross correlations simultaneously. Secondly, the fact that the 
precision of phase observations are much higher than that of code will cause ill-
posedness, which leads to unreliable estimates. For further discussion, see [11, 25], 
which concludes a theoretical proof and numerical analysis. In summary, it is not 
feasible to simultaneously estimate all variance and covariance components. Hence, 
the following three-step estimation procedure is proposed: Estimate the phase and 
code variances per satellite of each frequency, which will be used to analyze the 
elevation-dependence of individual satellite precisions; Estimate the cross correla-
tion coefficients for phase and code observations, respectively; Estimate the time 
correlation coefficients for phase and code of each frequency as a function of time 
lags. 

In steps 2 and 3 of this procedure, the estimates from the previous step are held 
fixed. Details of each step are discussed in the following. 

Step 1: The cross and time correlations are disregarded and the unknown covariance 
matrix is reduced to 

Q
 = IK ⊗ Q[σ ] 
E = IK ⊗ 

2fs∑

i=1 

σiUi (6.42)
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where Ui is the zero matrix except for its ith diagonal entry of 1, and σi is its 
corresponding variance component. Inserting Eq. (6.42) into Eqs. (6.40) and (6.41), 
it follows, from multivariate adjustment principles, that the variance estimates of K 
epochs are equal to the averaged single-epoch estimates over K epochs [11], 

σ̂ = 
K∑

k 

σ̂(k)/K (6.43) 

where σ̂(k) = [
σ̂1,(k), . . . ,  ̂σ2fs,(k)

]T 
is the vector of variance component estimates 

from the kth data epoch only. To improve the computation efficiency, one may use 
the following simplified formula, resulting in an almost unbiased estimation [1]. 

σ̂i =
∑K 

k=1 ε̂
T 
i,(k)Pi ε̂i,(k) 

Kri 
, i = 1, . . . ,  2fs (6.44) 

where ε̂i,(k) is the residual of the ith observation at the kth epoch and ri = 1 − 
tr
(
(BTPB)−1BT 

i PiBi
)
is its redundancy number; Bi is the i th row vector of matrix B 

in (6.38); Pi is the ith diagonal element of P = (Q[σ ] )−1. 

Step 2: With variance components estimated in step 1 held fixed, we estimate the 
cross correlations in step 2. The unknown covariance matrix is now structured as 

Qt = IK ⊗ Q[ σ̂ ] 
E + IK ⊗ Q[c] 

E = Q0 + 
f (f −1)∑

i=1 

σi(IK ⊗ Ui) (6.45) 

where Q0 = IK ⊗ Q[ σ̂ ] 
E was estimated in step 1. The scalar σi is the ith unknown 

cross correlation coefficient that can be collected in the vector 

σ =
[
�
[c] 
φ1φ2 

, �
[c] 
φ1φ3 

, �
[c] 
φ2φ3 

, �
[c] 
P1P2 

, �
[c] 
P1P3 

, �
[c] 
P2P3

]T 

for f = 3. Ui is the (2fs × 2fs) cofactor matrix associated with σi. For example, for 
σ1 = �

[c] 
φ1φ2 

and σ4 = �
[c] 
P1P2 

, the cofactor matrices are 

U1 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

0 Q[ σ̂ ] 
φ1φ2 

0 0 0 0  
Q[ σ̂ ] 

φ2φ1 
0 0  0  0  0  

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, U4 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 Q[ σ̂ ] 

P1P2 
0 

0 0 0  Q[ σ̂ ] 
P2P1 

0 0  
0 0 0 0 0 0  

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(6.46) 

Inserting Eq. (6.45) into Eqs. (6.40) and (6.41) and performing some algebraic 
manipulation yields
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nkl = K tr
(
UkQ

−1 
E P

⊥ 
B UlQ

−1 
E P

⊥ 
B

)
(6.47) 

and 

ωk = tr
(
Ê 
T 
Q−1 

E UkQ
−1 
E Ê

)
− K tr

(
UkQ

−1 
E P

⊥ 
B Q

[ σ̂ ] 
E Q

−1 
E P

⊥ 
B

)
(6.48) 

where P⊥ 
B = I − B(BT Q−1 

E B)−1BT Q−1 
E , Ê = P⊥ 

B L with observation matrix L =[
y1, . . . ,  yK

]
. In computations, if the initial values of unknown components are taken 

as σ = 0, then QE = Q[ σ̂ ] 
E and Eqs. (6.47) and (6.48) are simplified to 

nkl = K tr
(
UkP σ̂ 

EP
⊥ 
B UlP σ̂ 

EP
⊥ 
B

)
(6.49) 

ωk = tr
(
Ê 
T 
P σ̂ 
EUkP σ̂ 

E Ê
)

− K tr
(
UkP σ̂ 

EP
⊥ 
B

)
(6.50) 

where P σ̂ 
E = (Q[ σ̂ ] 

E )−1. Our experience is that after the first computation of (6.49) and 
Eq. (6.50), the estimate update from the iteration is so marginal that the iteration is 
practically not necessary. 

Step 3: We finally estimate the time correlations for phase and code observations of 
each frequency. Since the products of between-frequency residuals are not used, the 
cross correlations have very minor effects on estimates of time correlations. Hence, 
in order to reduce the computation complexity, the cross correlations are disregarded 
and only the observation variances estimated from the step 1 are held fixed, i.e., 
QE = Q[σ ] 

E and Q[c] 
E = 0. The unknown stochastic model in Eq. (6.45) reads 

Q
 = IK ⊗ Q[ σ̂ ] 
E + Q[t] ◦

(
eKeT K ⊗ Q[σ ] 

E

)
= Q0 + 

2f (K−1)∑

i=1 

σiUi (6.51) 

where Q0 = IK ⊗ Q[ σ̂ ] 
E . The scalar σi is the ith unknown time correlation coefficient 

in the vector 

σ =
[(

�
[t] 
,1

)T 
, L,

(
�[t] 

,τ

)T 
, L,

(
�
[t] 
,K−1

)T
]T 

with �[t] 
,τ = [�[t] 

φ1,τ , . . . , �
[t] 
φf ,τ , �

[t] 
P1,τ , . . . , �

[t] 
Pf ,τ ]T. The cofactor matrix is structured as 

Ui = Uτi ⊗
(
Uαi ⊗ Qαi

)
with the subscript i = 2f (τi − 1) + αi and αi = 1, . . . ,  2f ; 

τi = 1, . . . ,  K − 1. 
Given i, one can uniquely determine αi and τi. As an example, when i = 1, it  

follows that αi = 1 and τi = 1; while when i = 20, αi = 2 and τi = 4 in case of 
f = 3. Qαi 

is the αi-th block-diagonal matrix of Q[ σ̂ ] 
E . For instance, Qαi 

= Q[ σ̂ ] 
φ1 

for 

αi = 1 and Qαi 
= Q[ σ̂ ] 

P1 
for αi = f + 1. Uαi is a (2f × 2f ) zero matrix with its αi-th
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diagonal element of 1. Uτi is a (K × K) zero matrix with the elements at its τi-th 
diagonal above and below main diagonal all being 1. 

Substituting Eq. (6.31) into Eqs. (6.40) and (6.41), one can iteratively compute the 
time correlation coefficients. Note that the iteration process may be time consuming 
because of so many unknowns, namely 2f (K1). Again, our experience indicates that 
iteration can hardly improve the estimates from the first computation with initial 
values of all time correlation coefficients being 0. Therefore, one may directly obtain 
the estimates without iteration. In this case, Q
 = Q0 = IK ⊗Q[ σ̂ ] 

E and P⊥ 
A ≡ IK ⊗P⊥ 

B , 
and the normal equations of LS-VCE become 

nkl = tr
(
Uτk Uτl

)
tr
(
Uαk P

⊥ 
B Uαl P

⊥ 
B

)
(6.52) 

ωk = tr
(
Ê 
T 
P σ̂ 
EUαk 

ˆEU τk
)

− tr
(
Uτk

)
tr
(
Uαk P

⊥ 
B

)
(6.53) 

where Uαk = Uαk ⊗ Is. Since tr
(
Uτk

) = 0, ωk is further reduced to 

ωk = tr
(
Ê 
T 
P σ̂ 
E

(
Uαk ⊗ Is

)
ÊUτk

)
(6.54) 

Some comments are given on the stepwise estimation procedure. In step 1 of 
estimating observation variances, both the cross and time correlations are disre-
garded. In such case, the variance estimates are unbiased only if the cross and time 
correlations are all indeed zeros; otherwise, they are biased and the biases depend 
on the magnitude of correlations. To understand this point, see the example with 
explanations given in [11]. Analogously, if the variance estimates obtained in step 
1 are biased and fixed in the next steps, the estimates of cross and time correlation 
coefficients will be biased as well. Unfortunately, it is often the case in actual data 
analysis. Here, a between-step iteration strategy is advised to possibly reduce such 
biases of the estimates. If the estimates of time and cross correlation coefficients are 
not sufficiently close to 0, the iteration starts with the step 1 by fixing the cross and 
time correlation coefficients to their previous estimates instead of zeros. Repeat the 
iteration with updated cross and time correlation coefficients until their change is 
sufficiently small. 

6.4 Results and Discussion 

In order to have a better understanding of GNSS stochastic modeling. Firstly, the 
experiment setup is described. Secondly, the spatial, cross and temporal correlations 
are discussed, respectively.
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Table 6.1 Data description 
of the ten data sets Data set Receiver brand Baseline length 

1 Trimble NetR9 0.00 m 

2 Trimble NetR9 12.49 km 

3 Trimble NetR9 23.48 km 

4 Trimble NetR9 31.49 km 

5 Trimble NetR9 42.74 km 

6 Leica GR25 4.99 m 

7 Leica GR25 13.31 km 

8 Leica GR25 20.93 km 

9 Leica GR25 34.50 km 

10 Leica GR25 49.89 km 

6.4.1 Experiment Description 

Ten data sets of dual-frequency BDS code and phase observations with a sampling 
interval of 1 s were collected using two types of receivers. The observation session 
was 1 h at the same time, and the baseline lengths varied from 0 to 50 km in the same 
area. Table 6.1 lists the receivers’ specifications and the baseline lengths. It can be 
seen that the attributions of receiver, multipath, and atmosphere could be taken into 
account because of their varying baseline lengths. 

All the data sets were processed with the DD version of our own research type 
RTK software using two types of functional models: (A) the ionosphere-fixed model; 
(B) the ionosphere-free (IF) model. The Hopfield model was used to correct the 
tropospheric effects. Since the precise coordinates of all stations are solved by using 
daily data with our RTK software, the DD integer ambiguities are reliably fixed in 
advance. Therefore, only three unknown coordinates exist in the functional models. 

For the stochastic modeling, the variance elements are estimated by the elevation-
dependent model. To make sure that the physical correlations to be analyzed are 
correct, one must obtain the reliable DD residuals. Therefore, after estimating a 
priori fully populated VCM, the MINQUE method is applied, as aforementioned. 

6.4.2 Spatial Correlation 

Based on the structure of a fully populated stochastic model as aforementioned, 
the spatial correlations are firstly analyzed. Since a DD observation formed by four 
undifferenced observations, the mathematical correlation is present in the stochastic 
model. The mean spatial correlations of all these six signal types are shown in Fig. 6.1. 
It can be seen that all the mean spatial correlation coefficients are close to + 0.5,
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although there exist biases especially the phase observations, where the mean corre-
lation coefficients of B1, B2 and IF phase signals are 0.391, 0.460 and 0.389 respec-
tively. The reason is that the variance of reference satellite is usually smaller than the 
one of any other common satellite, hence the mean spatial correlations are usually 
smaller than + 0.5. 

In order to accurately determine the spatial correlations, the single between-
receiver differenced residuals are applied since the single-differences are mathe-
matically uncorrelated. Based on the estimated SD residuals calculated, the mean 
spatial correlations from the ten data sets are listed in Table 6.2. It can be found 
that all the absolute correlation coefficients are lower than 0.196, thus indicating 
that the spatial correlations in RTK are not significant. Actually, the reason is that 
the DD solution can eliminate the most of spatial correlated errors to a great extent, 
especially when the baseline length is not very long (less than 50 km as usual). 

Fig. 6.1 Mean spatial correlations of six signal types from the ten data sets 

Table 6.2 Mean spatial correlations of the ten data sets 

Number Code Phase 

B1 B2 IF B1 B2 IF 

1 − 0.057 − 0.081 − 0.065 − 0.067 − 0.067 − 0.068 
2 − 0.068 − 0.054 − 0.068 − 0.028 − 0.009 − 0.044 
3 − 0.046 − 0.039 − 0.049 0.009 − 0.069 − 0.036 
4 − 0.040 − 0.047 − 0.048 − 0.024 − 0.079 − 0.017 
5 − 0.037 − 0.037 − 0.044 0.021 0.001 0.000 

6 − 0.076 − 0.064 − 0.075 − 0.050 − 0.041 − 0.038 
7 0.079 0.070 0.071 − 0.079 − 0.150 − 0.113 
8 0.045 − 0.107 0.037 0.002 − 0.112 − 0.143 
9 0.121 0.180 0.160 0.032 − 0.028 − 0.094 
10 − 0.068 0.067 − 0.030 0.144 0.059 − 0.062
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6.4.3 Cross Correlation 

The mean cross correlations from Trimble and Leica of each data set are presented 
in Tables 6.3 and 6.4, respectively. It can be clearly seen that the cross correlation 
coefficients between B1 phase and B2 phase are significantly higher than the other 
types. It can be seen that these two observation types, i.e., phase and code, are gener-
ally not correlated with each other regardless of the receiver internal and external 
environments of receiver. However, the phase-to-phase correlations are generally 
correlated but not dependent on the multipath and atmospheric effects. Specifically, 
for the Trimble receiver, B1 phase is strongly correlated with B2 phase with the 
mean value of 0.859, but the correlation for the Leica receiver is weaker only with an 
average of 0.358. It indicates that the cross correlations can be introduced by decoding 
techniques employed by different receiver types. For instance, when the decoding 
technique is applied to obtain B2 signal that is encrypted under Anti-Spoofing, the 
B1 and 	B are directly obtained and B2 = B1+	B. As a result, it leads to a strong 
cross correlation between B1 and B2, like the Trimble receiver in this study. 

In conclusion, this type of correlation is mainly receiver-specific and independent 
with the baseline length. It is worth noting that though the code-to-code cross corre-
lations in this study are insignificant, they may be significant in some other types 
of receivers. In addition, the mean values can be used to substitute the specific ones 
since they are almost invariant.

Table 6.3 Mean cross correlations of the five data sets from Trimble 

Number B1 code to 
B2 code 

B1 phase 
to B2 
phase 

B1 code to 
B1 phase 

B1 code to 
B2 phase 

B2 code to 
B1 phase 

B2 code to 
B2 phase 

IF code to 
IF phase 

1 0.129 0.870 − 0.012 − 0.018 0.003 0.008 − 0.022 
2 0.119 0.829 − 0.001 − 0.021 − 0.012 0.022 0.031 

3 0.099 0.823 0.021 0.009 0.039 0.025 − 0.022 
4 0.079 0.874 − 0.009 − 0.005 − 0.024 − 0.029 − 0.001 
5 0.069 0.901 0.000 − 0.003 − 0.026 − 0.024 − 0.010 

Table 6.4 Mean cross correlations of the five data sets from Leica 

Number B1 code to 
B2 code 

B1 phase 
to B2 
phase 

B1 code to 
B1 phase 

B1 code to 
B2 phase 

B2 code to 
B1 phase 

B2 code to 
B2 phase 

IF code to 
IF phase 

6 − 0.147 0.291 0.021 0.014 − 0.020 − 0.019 − 0.075 
7 − 0.010 0.262 0.161 0.040 − 0.215 0.137 0.089 

8 0.118 0.350 0.006 − 0.156 − 0.150 0.150 − 0.075 
9 − 0.065 0.489 − 0.030 0.037 − 0.200 − 0.135 − 0.031 
10 − 0.130 0.398 − 0.176 0.122 − 0.225 − 0.363 − 0.080 
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6.4.4 Temporal Correlation 

In this section, the temporal correlations are analyzed. Since the temporal correlation 
coefficients of the sampling interval will be applied into a fully populated stochastic 
model, the mean temporal correlations for all the observations at a lag of sampling 
interval (1 s) are emphasized, as shown in Tables 6.5 and 6.6. It can be seen that the 
correlation coefficients of code observations from Leica are larger than those from 
Trimble. The reason is that the preprocessed techniques (e.g., filtering and smoothing) 
are different for different receiver types, consequently the temporal correlations share 
different patterns. It proves indirectly that the temporal correlations can be influenced 
by the receiver. For the phase observations, the correlation coefficients become larger 
when the baseline length is increased. It is seen that the result of zero (No. 1) and 
ultra-short (No. 6) baselines seem to have little temporal correlations, particular for 
the zero baseline. However, the temporal correlations become more serious and can 
be treated significant (larger than 0.196) for longer baselines (No. 2-5 and No. 7-10). 
As a matter of fact, the multipath effects will exhibit in the ultra-short baseline and 
the atmospheric delays (including the troposphere and ionosphere) are the dominant 
errors in longer baselines. Therefore, the temporal correlation coefficients are both 
determined by the multipath and atmosphere. Moreover, the correlation coefficients 
of IF phase data are significantly lower than those of B1 and B2 phase data. It is 
reasonable that the ionospheric delays have been reduced by the IF model. Therefore, 
the temporal correlations are sensitive to the distance-dependent atmospheric delays. 

Table 6.5 Mean temporal correlations with a 1-s lag of the five data sets from Trimble 

Number Code Phase 

B1 B2 IF B1 B2 IF 

1 0.037 0.066 0.046 0.001 0.000 0.009 

2 0.149 0.174 0.172 0.581 0.758 0.498 

3 0.207 0.206 0.231 0.815 0.905 0.497 

4 0.173 0.212 0.201 0.841 0.920 0.448 

5 0.169 0.201 0.201 0.881 0.947 0.375 

Table 6.6 Mean temporal correlations with a 1-s lag of the five data sets from Leica 

Number Code Phase 

B1 B2 IF B1 B2 IF 

6 0.986 0.988 0.988 0.143 0.225 0.160 

7 0.997 0.996 0.997 0.780 0.879 0.355 

8 0.997 0.996 0.997 0.875 0.927 0.402 

9 0.999 0.996 0.999 0.940 0.963 0.403 

10 0.999 0.996 0.999 0.966 0.980 0.471
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Fig. 6.2 Code multipath effects, elevations and temporal correlations of a PRN 07 and b PRN 04 
on a 5-m baseline 

Another impact factor of temporal correlations, i.e., the site-specific multipath, 
is investigated. The data set No. 6 was applied since the multipath is the dominant 
error source in a 5-m baseline. To assess the strength of code multipath, the multipath 
combination function is applied, where the code multipath can be estimated by the 
peak-to-peak behaviors. In addition, the elevation-dependent code hardware varia-
tions are insignificant mainly due to the small elevation variation. Figure 6.2 illus-
trates the dual-frequency multipath effects, elevations, and corresponding temporal 
correlations of satellites PRN 07 and PRN 04, respectively. Based on the top panels, it 
is clear that the elevations of PRN 07 are significantly higher than PRN 04. Accord-
ingly, the observations of PRN 04 are contaminated by multipath more seriously. 
Therefore, the temporal correlations of code and phase observations are higher than 
0.7 and 0.2 for PRN 07, whereas for PRN 04, the corresponding ones are 0.4 and 
0, respectively. It indicates that when the elevations are lower, the multipath will be 
contaminated more seriously and the temporal correlations will be higher. 

In conclusion, the temporal correlation is an important property caused by the 
unmodeled errors, though it could also be influenced by the receiver. Specifically, 
when the multipath is the dominant error source, the temporal correlations will be 
positively influenced, where the elevations and satellite types are both the poten-
tial impact factors. It is noteworthy that the discrepancy of mean temporal correla-
tion coefficients between different frequencies for the same data set is insignificant, 
therefore they can be treated equal.



130 6 Stochastic Modeling

6.5 Conclusion 

We firstly established the fundamental matrix equations for VCE, from which the 
traditional VCE formula is derived. It has been theoretically proven that the essential 
inputs for VCE are not all correlated LS residuals but the independent discrepancies 
of measurements and any orthogonal complement matrix of the coefficient matrix 
in the GM model can be used to compute a set of independent discrepancies. We 
proposed to construct an orthogonal complement matrix only by using the coeffi-
cient matrix itself, such that both the constructed orthogonal complement matrix 
and its derived discrepancies are invariant. Consequently, they do never need to be 
updated in the iterative VCE procedure and the computation efficiency is significantly 
improved. Nowadays, many sensors are freely accessible to acquire measurements 
for integrated utilization. With the development of spatial geodetic technology, more 
and more sensors will be launched and much more plentiful measurements will be 
available in future. We must employ efficient estimation of variances and covariances 
to determine the reasonable stochastic model of the measurements from the different 
sensors for balancing their contributions to the fused solution, especially in the (near) 
real-time applications. Therefore, the new method will undoubtedly be beneficial to 
data fusion from multi-sensors. 

In addition, we systematically studied the stochastic modeling of triple-frequency 
BDS observations. A very sophisticated structure of covariance matrix was designed 
to allow estimation of satellite-specific variances, cross correlations between two 
arbitrary frequencies as well as time correlations for phase and code observations 
per frequency. A three-step VCE procedure was presented for efficiently and stably 
estimating many (co)variance components. Six data sets with four brands of BDS 
receivers on short and zero-length baselines were used to analyze the stochastic 
models. Finally, with the observation variances, the cross and time-correlation coef-
ficients estimated from real data, one can construct a stochastic model though it is 
still numerically challenging. The established stochastic model can largely reflect 
the actual observation random errors of observations. Even if it mis-specifies the 
stochastic model of long baselines, one can efficiently compensate for that by esti-
mating fewer unknowns in a new unknown covariance matrix with the established 
stochastic model as known part, allowing for use with (near) real time applications. 
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Chapter 7 
Unmodeled Error Processing 

7.1 Introduction 

Global Navigation Satellite System (GNSS) has become indispensable for precise 
positioning across various fields such as geodesy, engineering, and artificial intelli-
gence, with real-time kinematic positioning (RTK) playing a pivotal role. Although 
differencing techniques can effectively mitigate many systematic errors, such as 
satellite and receiver clock errors and orbital inaccuracies, residual errors inevitably 
persist due to the complex spatiotemporal variability of the ionosphere, troposphere, 
and multipath effects, as well as our limited understanding of their underlying phys-
ical mechanisms. These residual systematic errors, often termed unmodeled errors 
[1], cannot be entirely captured by operators of differencing and linear combina-
tion, conventional empirical models or parameterizations, thereby constraining the 
further improvement of positioning accuracy in real applications [2, 3]. Moreover, 
as the advent of multi-constellation GNSS (including Global Positioning System 
(GPS), BeiDou Navigation Satellite System (BDS), GLONASS, and Galileo) has 
enhanced signal visibility and integrity, it becomes even more critical to accurately 
process these errors to ensure trustworthy positioning results. Understanding the 
properties of unmodeled errors is therefore a prerequisite for developing effective 
compensation methods to enhance ambiguity resolution, data quality control, and 
overall positioning accuracy [4], making it essential to establish efficient procedures 
to test their significance and identify their components. 

Since the residual systematic errors hinder the high-precision and high-reliability 
of GNSS positioning, many works have been carried out on how to model/reduce 
the systematic errors as much as possible. In recent decades, the specific residual 
systematic errors are focused, such as multipath, tropospheric and ionospheric 
effects. Firstly, for the multipath, except for choosing the favorable environment and 
advanced hardware, the additional data processing strategies are further applied. The 
most widely used approach is the sidereal filtering based on the coordinate or observa-
tion domain [5–7]. Besides, the multipath hemispherical map [8–10], signal-to-noise 
ratio (SNR) or carrier-to-noise power-density ratio (C/N0) [11], wavelet analysis
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[12], support vector regression [13] and ray-tracing approach [14] are also studied. 
Although the multipath can be characterized or mitigated to some extent, the strongly 
environment-specific multipath is still rather difficult to be totally modeled or elimi-
nated in real applications, especially for the real-time and kinematic modes. Secondly, 
for the tropospheric effects, the easy-to-implement empirical troposphere correction 
model is often applied [15–17]. However, due to the limited accuracy of troposphere 
models, especially for the wet troposphere component, the residual tropospheric 
errors will remain in GNSS observations particularly with low elevations. To further 
absorb the residual tropospheric errors, a so-called zenith tropospheric delay (ZTD) 
parameter is introduced together with mapping function. However, it is not always 
effective especially in case of long-range kinematic positioning where the variation 
of tropospheric errors grows rapidly [18]. Thirdly, regarding the ionospheric effects, 
it can be compensated by parameterization or eliminated by forming ionosphere-free 
(IF) model combination with multiple frequency signals [19–21]. Another easier but 
less accurate strategy is to use the empirical model, such as Bent, IRI, Klobuchar, 
grid, polynomial and spherical harmonic models. Unfortunately, these methods are 
effective only to the first-order ionospheric errors. The second- and/or higher-order 
terms remain owning to their spatiotemporal complexity and predictable difficulty 
[3]. In conclusion, no matter how we properly model these residual systematic errors, 
there will inevitably leave some unmodeled errors mainly due to their complicated 
spatiotemporal characteristics. In theory, the unmodeled errors can be, to a great 
extent, compensated by introducing the additional parameters. However, introducing 
too many parameters would lead to an ill-posed or even inestimable. Therefore, we 
have to make a compromise to only mitigate the unmodeled errors that are indeed 
significant by introducing parameters as few as possible. It is thus urgently needed 
to develop a procedure to test the significance of unmodeled errors and identify their 
components. 

So far, although there is no study directly on the unmodeled errors in GNSS 
community, a number of studies have indirectly suggested the existence of unmod-
eled errors by analyzing the statistics and stochastic characteristics of GNSS obser-
vations. For instance, many studies suggested the existence of physical correlations 
[1] in GNSS observations, e.g., the time correlation. The probability distribution of 
GNSS observations have also been extensively investigated based on the least squares 
(LS) derived residuals. Tiberius and Borre [22] studied the probability density of 
GPS observations by graphical analysis and empirical moments. They found that the 
normal distribution turned out to be reasonable for the zero and ultra-short (3 m) 
baselines, but not be suitable for the longer (approximately 13 km) baselines. Luo 
et al. [23] analyzed the studentized double differenced (DD) residuals of GPS phase 
observations mainly using four sample moments and five hypothesis tests. Then 
the discrepancies between the classical Gauss distribution and reality are numer-
ically demonstrated as a function of baseline length. Finally, they attribute these 
discrepancies mainly to the multipath and atmospheric effects. As mentioned above, 
there will inevitably leave some unmodeled errors mainly due to their complicated 
spatiotemporal characteristics. Therefore, these findings actually imply the existence 
of unmodeled errors in GNSS observations.



7.1 Introduction 135

All aforementioned studies on the unmodeled errors are all based on the LS 
residuals. In theory, the unmodeled errors pertain to their associated observations 
cannot be completely estimated from the residuals because of the their dependence. 
However, the residuals can, to a great extent, reflect the behaviors of unmodeled 
errors especially in case of the large number of redundancies with multi-frequency 
and multi-constellation GNSS signals. Unfortunately, little attention has realized this 
opportunity to study the unmodeled errors themselves. So far, very little attention 
has paid to the unmodeled errors themselves even in such promising area of multi-
frequency and multi-constellation. Thus far, the majority of related studies mainly 
focus on how to capture the systematic errors that can be modeled. Only if the 
unmodeled errors are statistically identified with a certain significance, the further 
compensation methods could be applied. 

In this study, a procedure will be designed for testing the significance of GNSS 
unmodeled errors, i.e., the Li’s procedure. It is composed of the Augmented Dickey-
Fuller (ADF) test, Jarque-Bera (JB) test and t-test. Specifically, the ADF-test is 
applied to test the stationarity of unmodeled errors, then the combined JB-test and 
t-test are introduced to detect the zero-mean normality of the stationary unmodeled 
errors. Thus three components are identified in unmodeled errors, i.e., the nonsta-
tionary signal, the stationary signal and the white noise, which can be undetstood as 
the deterministic signal, the clored noise and the Gaussian white noise respectively in 
GNSS observations. The efficiency of the testing procedure is validated by using the 
simulated time series and the real dual-frequency BDS observations of 10 baselines 
ranging between 0 and 50 km. To further verify the correctness of testing results 
from the proposed procedure, the Allan variance analysis and fast Fourier transform 
(FFT) are applied to investigate the properties of unmodeled errors from the attri-
butions of atmosphere, multipath and receiver, respectively. It is worth mentioning 
that the proposed procedure allows us to test the significance of unmodeled errors 
individually for each satellite or satellite pair in real time. It is promising to real-time 
applications. 

To address the challenge of unmodeled error compensation, we now explore inno-
vative strategies aimed at mitigating their adverse effects on positioning accuracy. 
Thus far, many studies focus on how to model or reduce the specific unmodeled 
effects, such as multipath, tropospheric and ionospheric errors. First, for the multi-
path, one can choose the ideal environment and advanced hardware. Besides, the data 
processing methods are often applied, such as sidereal filtering [5–7], hemispherical 
map [8–10], wavelet analysis [12] and so on. Second, regarding the tropospheric 
delay, the tropospheric correction model including the Hopfield model [15], Saasta-
moinen model [16] and New Brunswick 3 (i.e., UNB3) model [17] are often applied. 
In addition, the ZTD parameter and mapping function are both introduced to estimate 
the tropospheric errors [18]. Third, for the ionospheric delay, the parameterization or 
empirical model can be applied. The IF combination only by using carrier phase can 
also be formed to mitigate these ionospheric delays if there are at least two available 
frequencies [21]. However, all these traditional methods cannot totally eliminate the
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systematic errors, and these unmodeled effects are inevitably exist in GNSS obser-
vations especially for the RTK multipath, wet tropospheric component, second- and 
higher-order ionospheric effects. 

In essence, there are four main ideas to mitigate these residual systematic errors in 
GNSS applications. The first one is to make a difference or linear combination, which 
can mitigate or even eliminate some common systematic errors among different 
observations. For instance, the tropospheric and ionospheric delays can be mitigated, 
and the satellite and receiver clock errors can be eliminated. The second one is to 
apply a priori correction, empirical model or precise product [20]. This method is 
the most widely used in the field of atmospheric error correction. The third one is 
stochastic model compensation [24], where the variance and covariance elements are 
used to capture the residual systematic errors. The functional model compensation 
is the last main approach to mitigate these residual systematic errors. This method 
is especially suitable when these systematic errors are significant. Specifically, one 
can choose the adjustment model with additional systematic error parameters [25], 
the collocation model with additional systematic error parameters [26], or even the 
semiparametric estimation model [27]. 

However, for the unmodeled error mitigation, these traditional methods are not the 
best solutions. At first, theoretically, the functional model compensation is the most 
suitable approach among all these traditional methods since the unmodeled errors 
usually exhibit like a deterministic signal. Whereas, introducing too many parame-
ters would lead to ill-conditioned or even inestimable. Therefore, we have to make a 
compromise to only parameterize the unmodeled errors that are indeed significant. 
At second, unlike the tropospheric or ionospheric errors, the unmodeled errors have 
their own characteristics. Specifically, the residual tropospheric errors can be param-
eterized a ZTD parameter together with mapping function, and the ionospheric errors 
can be parameterized where the parameters are related to the signal frequency and 
the observation type. However, the unmodeled errors are related to the elevation, 
azimuth, even the frequency and observation type. Therefore, the unmodeled errors 
are not directly estimable by the traditional parameterization. Although there exist 
some functional model compensation methods such as semiparametric estimation, 
the algorithm such as determination of smoothing parameters is a little complicated. 
Besides, this method cannot be applied to the real-time scenario otherwise the true 
coordinate component cannot be separated accurately. In conclusion, it is urgently 
needed to develop a functional model compensation of unmodeled effects for GNSS 
precise positioning, which can be conducted in real time. 

Since in single-frequency multi-GNSS positioning, the first-order ionospheric 
delays cannot be eliminated by the IF combination in terms of two or more carrier 
phases with different frequencies, the problem of significant unmodeled effects that 
affect the positioning precision and reliability is more severe. Fortunately, there are 
enough redundant observations at this time, which can reveal the unmodeled errors to 
a great extent according to the observation residuals. In this monograph, we propose 
a real-time unmodeled error mitigation method in single-frequency multi-GNSS 
precise positioning. This method can be called as multi-epoch partial parameter-
ization. That is, only the significant unmodeled errors are parameterized and the
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properties of unmodeled effects are applied to parameterize the unmodeled errors to 
a great extent. To evaluate the effectiveness of the proposed method, an experiment 
was conducted and analyzed. 

7.2 Unmodeled Error Detection 

As an important part of unmodeled error processing, the detection of unmodeled 
errors is studied comprehensively in this section. First, for the GNSS unmodeled 
error, if there are no unmodeled errors in GNSS observations, the functional and 
stochastic models are defined as 

l = Ax + e (7.1) 

D = σ 2 0 Qee (7.2) 

where l is an m×1 observation vector and e is its corresponding noise vector with zero 
mean. x is a u × 1 parameter vector to be estimated and A is its design matrix of full 
column rank. D is the covariance matrix of the observations with σ 2 0 a variance factor 
and Qee the cofactor matrix. It is worth noting that the Eqs. (7.1) and (7.2) can be 
used in the single differenced (SD) and DD observations. Typically, the noises e are 
adequately assumed to be white noises with normal distribution (i.e., Gaussian white 
noises) [23, 28] for undifferenced (UD) observations. In this case, the cofactor matrix 
Qee should be derived via error propagation law when the SD and DD observations 
are applied. 

The LS estimator and its cofactor matrix read 

x̂ = (
AT Q−1 

ee A
)−1 

AT Q−1 
ee l (7.3) 

Qx̂x̂ =
(
AT Q−1 

ee A
)−1 

(7.4) 

The LS residual vector reads 

v̂ = l − Ax̂ = Rl = Re (7.5) 

where R = Im−A
(
ATQ−1 

ee A
)−1 

ATQ−1 
ee R is an idempotent and rank-deficient matrix, 

satisfying with RA = 0. Because the LS solution is an unbiased estimator, i.e., 

E(v̂) = RE(l) = RE(e) = 0 (7.6) 

where E(·) denotes the mathematical expectation. It means that the residuals are of 
zero-mean expectation if the observations are not affected by the unmodeled errors.
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More specifically, the residuals are normally distributed with zero-mean if we take the 
common assumption for normal distribution of GNSS observation noises [23, 28]. 

However, if the unmodeled errors exist in observations and are ignored without 
notice, the LS residuals must be affected. There are three potential scenarios. Firstly, 
if the unmodeled errors exhibit as the deterministic signals s, i.e., E(l) = Ax + s, 
then both LS estimator and residuals are biased. The biases are as follows

�xs = E(x̂) − x = (
AT Q−1 

ee A
)−1 

AT Q−1 
ee s (7.7)

�vs = RE(l) = R(Ax + s) = Rs (7.8) 

Secondly, if the unmodeled errors exhibit as the colored noises ε, the LS solution 
will be not optimal anymore if the cofactor matrix Qee is still applied. In this case, 
although the LS estimator and residuals are unbiased as well-known, their associ-
ated covariance matrices will be definitely affected. The third scenario is that the 
unmodeled errors include the combined deterministic signals and colored noises 
simultaneously. It is obvious that the LS residuals are affected by both two compo-
nents of unmodeled errors. In this case, the residuals will become nonstationary. 
Therefore, in practice, the significance of unmodeled errors can be judged by testing 
the LS residuals with a given significance level. 

Then, for the Li’s procedure, since the unmodeled errors objectively exist as the 
spatiotemporal signals, they have some corresponding properties of the spatiotem-
poral signals, including the colored noises caused by the physical correlations [1] and 
the deterministic signals caused by some certain systematic errors [4]. For a typical 
signal, there are two types of components, i.e., the stationary term and the nonsta-
tionary term [29]. Analogously, the time series of GNSS unmodeled errors can also 
be subdivided into two components: (1) the stationary terms including both the white 
noises and colored noises. Specifically, the white noises are Gaussian white noises 
[23, 28], and the colored noises usually have the properties of random walk noise, 
flicker noise and the first order Gauss-Markov (GM) process; (2) the nonstationary 
terms, referred to also as the deterministic signals, including trend and periodic terms 
[30]. It is emphasized that in GNSS observations, the nonstationary and stationary 
signals can be, to a great extent, understood as the deterministic signals and colored 
noises. As a result, the time series of unmodeled errors y can be mathematically 
formulated as 

yt = ut + 
k∑

i=1 

[ai sin(ωit) + bi cos(ωit)] + st + et (7.9) 

where t denotes the observation epoch. u, s and e denote the trend term, the colored 
noise and the white noise, respectively. The periodic term is expressed by the summa-
tion of k harmonic functions

∑k 
i=1[ai sin(ωit) + bi cos(ωit)] with the amplitudes a 

and b, and the angular frequency ω. It is noticed that separating the certain systematic 
effects from the signals contaminated with the colored noises is dangerous [30]. Our



7.2 Unmodeled Error Detection 139

purpose is to test the significance of the unmodeled errors. If they are statistically 
found significantly, we will directly compensate their effects on the LS solutions 
instead of separating the systematic effects from the unmodeled errors. 

In principle, if all the systematic errors are completely modeled, there remains the 
only white noise. If some proper hypothesis tests can be used to effectively test the 
significance of the colored noises and/or the deterministic signals, we can conclude 
the existence of unmodeled errors and consequently develop the relevant compen-
sation methods. Therefore, we propose a procedure for testing the significance of 
unmodeled errors, as shown in Fig. 7.1. It is clear that the procedure starts with the 
time series of LS residuals and consists of two main testing steps. The first step is to 
test the stationarity of residual time series by applying the ADF-test, while the second 
step, after the time series is confirmed to be stationary, is to further test whether the 
colored noises are included by using the combined JB-test and t-test. We do not 
consider the situation of the combined nonstationary signals and white noise here 
since it is nearly inexistent based on our extensive experimental studies [1]. Once 
the components of unmodeled errors are identified from time series of LS residuals 
by hypothesis testing, the proper compensation methods should be applied if the 
further improvements on positioning solutions are expectable. For instance, if the 
stationary errors (i.e., the lumped colored noises and white noises) are justified, the 
stochastic model compensation should be applied to adequately assimilate the phys-
ical correlations raised by the colored noises. However, if the nonstationary signals 
are identified (mostly, the deterministic signals and the colored noises are simulta-
neously existing), one needs to assimilate the deterministic signals by proper func-
tional model compensation (e.g., modeling or parameterization) besides the colored 
noises by the stochastic model compensation. Certainly, there are some other easy-to-
implement compensation methods, such as deleting the observations in the functional 
model, down-weighting the observations in the stochastic model.

In this study, three hypothesis tests are advised, i.e., the ADF-test for identifying 
the deterministic signals, the combined JB-test and t-test for identifying the colored 
noises. The ADF-test is a unit root test based on the existence and uniqueness property 
of an autoregressive (AR) model. It is mathematically formulated as [31] 

Yt = φYt−1 + α1�Yt−1 +  · · ·  +  αp�Yt−p + Et (7.10) 

where Y is the residual time series to be tested. φ and α are the parameters, and 
E is the white noise. The subscript t is the observation epoch. p is the number of 
lagged difference terms. � is the time differencing operator, i.e., �Yt = Yt − Yt−1. 
The parameters are estimated in terms of LS criterion. Then the test statistic of the 
ADF-test is constructed as 

TADF = 
φ̂ − 1 
SE

(
φ̂
) (7.11)
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Fig. 7.1 Flow diagram of the procedure for testing the significance of unmodeled errors

where SE
(
φ̂
)
denotes the standard error of LS estimator φ̂. Here the standard error 

is the standard deviation (STD) of the sampling distribution of mean. The ADF 
statistic follows the nonstandard distribution [32]. The critical value for TADF can 
be generated by using the Monte-Carlo simulation. Since the ADF-test focuses on 
searching AR unit roots, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test based 
on the moving average (MA) unit roots could also be used as an alternative choice. 

If the residual time series is identified to be stationary with ADF-test, a multiple 
test will be further applied to test the zero-mean normality of this series. If it is 
negative, then one can conclude that the colored noises are contained in residuals. 
Specifically, the JB-test is used for testing the normality while the t-test is for testing 
the zero-mean expectation. Only when both tests pass, we can confirm that the 
residual time series is of zero-mean normal distribution. The JB-test is a two-sided 
goodness-of-fit test with statistic as [33] 

TJB = 
n 

6

[
S2 
3 + 

(S4 − 3)2 

4

]
(7.12)
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where n is the sample size of residual time series to be tested. S3 and S4 are the third 
and fourth standardized central sample moments of a random distribution, i.e., the 
skewness and kurtosis, they are computed by 

Si =
∑n 

j=1

(
Yj − Y

)i 
/n 

σ i 
(7.13) 

where Y and σ are the mean and STD of time series Yj (j = 1, . . . ,  n). i is the order 
of central sample moments (i.e., 3 for skewness and 4 for kurtosis). The JB-test often 
uses the chi-square distribution to determine its critical value. If the sample size is less 
than 2000, the critical value would be better computed by Monte-Carlo simulation. 
Note since the JB-test is sensitive to the outliers and poorly valid for small sample 
sizes [23, 34], the other tests for normality like Lilliefors (LF) test [35], would be 
alternatively applied if the time series has a small size or the outliers probably exist. 
The t-test is applied to test the significance of zero mean of a time series. Its test 
statistic reads 

Tt = 
Y − u 
σ/ 

√
n 

(7.14) 

where u is the hypothesized population mean and u = 0 in our testing case. The 
t-test statistic has student’s distribution with n−1 degrees of freedom, and its critical 
value can be accordingly computed. 

We emphasize that the above testing procedure is not restricted to the DD obser-
vations. It can be applied to the observations in UD, SD and DD modes. Therefore, 
the Li’s procedure can be applied for significance testing of the unmodeled errors 
for standalone positioning and relative positioning models, such as precise point 
positioning (PPP) and RTK. 

7.3 Unmodeled Error Compensation 

After introducing unmodeled error detection, this section will discuss how to compen-
sate unmodeled errors. It is also an important part of unmodeled error processing. 
In theory, the unmodeled errors can be compensated by stochastic model and func-
tional model simulatenously. Since the stochastic modeling is discussed in Chap. 6, 
the functional model compensation that can capture the significant unmodeled errors 
are discussed in this section. Specifically, the introduction, methodology, and exper-
iments and results of unmodeled error mitigation are introduced and analyzed in 
turn. For the methodology of unmodeled error mitigation, we will introduce it in two 
parts: basic theory of unmodeled error mitigation and unmodeled error mitigation 
based on multi-epoch partial parameterization.
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First, for the basic theory of unmodeled error mitigation, a discussion on the 
GNSS unmodeled error and its functional model compensation is the prerequisite 
of unmodeled error mitigation. Therefore, at first, the fundamental properties of the 
single-frequency multi-GNSS unmodeled errors are discussed. At second, the prin-
ciple of functional model compensation is analyzed. In this section, the estimability 
of unmodeled error parameters is emphasized. 

For the single-frequency multi-GNSS unmodeled error, if the GNSS mathematical 
model can meet the reality, the unmodeled errors do not exist. At this time, the 
mathematical model of single-frequency multi-GNSS observations is defined as 

l = Ax + e (7.15) 

D = σ 2 0 Qee (7.16) 

where in functional model (7.15), l and e denote the observation vector and noise 
vector, respectively; x denotes the parameters to be estimated and A denotes the 
corresponding design matrix of full column rank. In stochastic model (7.16), D 
denotes the variance-covariance matrix of the observation vector; σ0 and Qee (i.e., 
P−1 with P denoting the weighting matrix) denote the variance factor and cofactor 
matrix, respectively. The error equation and its adjustment criterion are as follows 

V = Ax − l (7.17) 

VT PV = min (7.18) 

where V denotes the residual vector. As a result, the LS estimator and its cofactor 
matrix read 

x̂ = (
AT PA

)−1 
AT Pl (7.19) 

Qx̂x̂ =
(
AT PA

)−1 
(7.20) 

However, if the GNSS mathematical model cannot meet the reality, the unmod-
eled errors will be existent and even significant. In case of single frequency, the 
ionospheric delays cannot be mitigated by using the IF combination in terms of two 
or more carrier phases with different frequencies. Hence, when the baseline length 
is long, these ionospheric delays are easily significant. Fortunately, in multi-GNSS 
precise positioning, the redundancies are large enough as usual. Therefore, the obser-
vation residuals can reflect the unmodeled errors including the ionospheric delays to 
a great extent in this situation, then several observations with significant unmodeled 
errors can be found out according to the behaviors of these observation residuals. 
Specifically, if the unmodeled errors are indeed significant for some observations,
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they exhibit as the deterministic signals with randomness. As usual, the priori infor-
mation of the unmodeled errors can be estimated including the expectation, variance 
and covariance. 

Since the unmodeled effects have three main types of components, i.e., the nonsta-
tionary signal, stationary signal and white noise, the GNSS unmodeled errors should 
be compensated by the mathematical models. It is obvious that the nonstationary 
signal of unmodeled errors is the main impact factor affecting the positioning preci-
sion. For the nonstationary part, i.e., the aforementioned deterministic signals, the 
functional model compensation is prior to be applied. Whereas, the unmodeled errors 
cannot be easily parameterized and estimated. The reasons are as follows. At first, the 
severity of unmodeled errors among different satellites is not the same due to their 
different elevations and azimuths. At second, unlike some specific residual system-
atic errors, the unmodeled effects are actually the integrated errors of observations. 
When the residual tropospheric delays are severe, the so-called ZTD parameter is 
introduced together with mapping function. That is, the tropospheric delay in any 
direction is considered to be related to the zenith direction, so the mapping func-
tion and the ZTD parameter can represent the residual tropospheric delay of any 
satellite. When the ionospheric delays are severe, the ionosphere-float model can be 
applied. Besides, since the ionospheric delay is related to the signal frequency and 
the observation type, only one ionospheric delay parameter can construct the iono-
spheric delay of each satellite. Therefore, unlike some specific residual systematic 
errors, the unmodeled errors are highly probable to be correlated with the eleva-
tion, azimuth, even the frequency and observation type. Moreover, the unmodeled 
errors are impacted by some site-specific errors such as multipath. In conclusion, 
the unmodeled errors from different sources cannot be directly estimated by one 
parameter. 

For the classical functional model compensation, regardless of the estimability of 
unmodeled errors, firstly let us analyze the classical functional model compensation. 
The additional parameter vector s is added to the (7.15), and the new functional 
model reads 

l = Ax + Bs + e (7.21) 

It is worth noting that the term s denotes the filtering signal, i.e., the deterministic 
signal with randomness. The new stochastic models read 

E(s) = μs, var(s) = Ds (7.22) 

E(e) = 0, var(e) = De (7.23) 

cov(e, s) = Des (7.24) 

where symbols “E(·)”, “var(·)”, and “cov(·)” denote the operators of prior expecta-
tion, variance and covariance, respectively. The error equations then read
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{
V = Ax + Bs − l 
Vs = s − ls 

(7.25) 

where the Vs denotes the residual vectors of the filtering signal. The ls denotes the 
virtual observations of the filtering signal. The ls equals the prior expectation, i.e., 
ls = μs. The generalized LS criterion can be obtained 

VT PV + VT 
s PsVs = min (7.26) 

Assuming the filtering signal is not correlated with the observation noise, i.e., 
cov(e, s) = 0, the LS estimator of parameters to be estimated and the filtering signal 
read 

x̂ =
[
AT

(
BDsBT + De

)−1 
A

]−1 
AT

(
BDsBT + De

)−1 
(l − Bls) (7.27) 

ŝ = ls + DsBT
(
BDsBT + De

)−1 
(l − Ax̂ − Bls) (7.28) 

The corresponding covariance matrices read 

Dx̂x̂ =
[
AT

(
BDsBT + De

)−1 
A

]−1 
(7.29) 

Dŝŝ = Ds − DsBT
(
BDsBT + De

)−1
[
I − ADx̂x̂AT

(
BDsBT + De

)−1
]
BDs (7.30) 

where the I denotes the identity matrix. 
Since the unmodeled errors can be considered to be a deterministic signal with 

randomness, theoretically classical functional model compensation can be used. It is 
worth noting that this idea is essentially one of using best linear unbiased prediction, 
i.e., BLUP [36]. However, according the aforementioned analysis, the above standard 
form of functional model compensation cannot be applied directly mainly because 
the unmodeled error parameters are not estimable. In order to estimate the unmodeled 
errors based on the functional model compensation, the properties of the unmodeled 
errors should be used firstly. Fortunately, the unmodeled errors have the property of 
temporal correlation, and the severity of unmodeled errors from different sources 
is not the same [1, 24]. Hence, the basic theory of functional model compensation 
should be based on the multi-epoch partial parameterization. Specifically, this method 
only parameterizes the observations with severe unmodeled errors, and uses multiple 
epochs to jointly estimate these unmodeled errors to a great extent, thus overcoming 
the problem that the unmodeled error parameters have no redundant observations. 

Second, for the Unmodeled error mitigation based on multi-epoch partial parame-
terization, we propose a method for unmodeled error mitigation mainly based on the 
multi-epoch partial parameterization. At first, the methodology of multi-epoch partial 
parameterization is proposed. At second, a procedure of the real-time unmodeled 
error mitigation method is presented.
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For the multi-epoch partial parameterization, take the RTK as an example to 
unfold the (7.21), and there are m single-frequency multi-GNSS observations in the 
consecutive k epochs, of which n observations need to be parameterized (n ≤ m). 
It is worth noting that since different satellite systems have their own reference 
satellites, there are no intersystem biases here. When the size of moving window is 
k (1 < k < i), the linearized observation equations are formulated as 

⎡ 

⎢ 
⎣ 
li−k+1 

... 
li 

⎤ 

⎥ 
⎦ = 

⎡ 

⎢ 
⎣ 
Ai−k+1 

. . . 
Ai 

⎤ 

⎥ 
⎦ 

⎡ 

⎢ 
⎣ 
xi−k+1 

... 
xi 

⎤ 

⎥ 
⎦ + 

⎡ 

⎢ 
⎣ 
Bi−k+1 

... 
Bi 

⎤ 

⎥ 
⎦s + 

⎡ 

⎢ 
⎣ 
ei−k+1 

... 
ei 

⎤ 

⎥ 
⎦ (7.31) 

where l = [
lT i−k+1, . . . ,  lT i

]T 
denotes the vector of observed-minus-computed DD 

observations; x = [
xT i−k+1, . . . ,  xT i

]T 
denotes the vector of parameters to be esti-

mated; s denotes the vector of unmodeled errors; A = blkdiag(Ai−k+1, . . . ,  Ai) 
denotes the design matrix to x; B = [

BT 
i−k+1, . . . ,  BT 

i

]T 
denotes the design matrix to 

s; e = [
eT i−k+1, . . . ,  eT i

]T 
denotes the noise vector; The symbol “blkdiag” denotes the 

operator of block diagonal concatenation of matrices. It can be seen that the design 
matrix B is a rank deficient matrix since only partial observations are parameterized. 
Therefore, the design matrix B is determined by the vector of unmodeled errors. 

Since the unmodeled errors can be regarded as the deterministic signal, the priori 
expectation and variance should be known. Therefore, the priori information of 
unmodeled error parameters need to be estimated firstly when assuming the unmod-
eled errors are the non-random parameters. That is, the corresponding stochastic 
model is as follows 

D = σ 2 0 Q = σ 2 0 P
−1 (7.32) 

The error equation and its adjustment criterion are as follows 

V = Ax + Bs − l (7.33) 

VT PV = min (7.34) 

Then the normal equation reads

[
AT PA AT PB 
BT PA BT PB

][
x̂ 
ŝ

]
=

[
AT Pl 
BT Pl

]
(7.35) 

with AT PA = NAA, AT PB = NAB, BT PA = NBA, BT PB = NBB and M = NBB − 
NBAN

−1 
AANAB. Accordingly, the vector of unmodeled errors can be estimated as 

ŝ = M−1 BT Pl − M−1 NBAN
−1 
AAA

T Pl (7.36)
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The covariance matrix reads 

Qŝŝ = M−1 (7.37) 

Finally, the priori information of the unmodeled error at the (i + 1)-th epoch can 
be obtained as follows 

E(si+1) = ŝ (7.38) 

var(si+1) = M−1 (7.39) 

For the (i + 1)-th epoch, the functional model can be derived as 

li+1 = Ai+1xi+1 + Bi+1si+1 + ei+1 (7.40) 

According to the generalized LS criterion, the error equations read

{
V i+1 = Ai+1xi+1 + Bi+1si+1 − li+1 

Vsi+1 = si+1 − lsi+1 

(7.41) 

where Vsi+1 denotes the residual vector of the filtering signal, i.e., the unmodeled 
errors; lsi+1 denotes the virtual observations of the filtering signal, satisfying lsi+1 = ŝ. 
The adjustment criterion then can be derived as 

VT 
i+1Pi+1V i+1 + VT 

si+1 
Psi+1Vsi+1 = min (7.42) 

where Psi+1 = M denotes the weighting matrix of the filtering signal. 
Assuming there are no correlations between the filtering signal and the observation 

noise, i.e., cov(e, s) = 0, the unknown parameters and unmodeled errors can be 
estimated as 

x̂i+1 =
(
AT 
i+1N

−1 
i+1Ai+1

)−1 
AT 
i+1N

−1 
i+1(li+1 − Bi+1ŝ) (7.43) 

ŝi+1 = ŝ + M−1 BT 
i+1N

−1 (li+1 − Ai+1 x̂i+1 − Bi+1ŝ) (7.44) 

with Ni+1 = Bi+1M−1BT 
i+1 + De. The corresponding covariance matrices are as 

follows 

Dx̂i+1 x̂i+1 =
(
AT 
i+1N

−1 
i+1Ai+1

)−1 
(7.45) 

Dŝi+1 ŝi+1 = M−1 − M−1 BT 
i+1N

−1 
i+1

(
I − Ai+1Dx̂i+1 x̂i+1A

T 
i+1N

−1 
i+1

)
Bi+1M−1 (7.46)
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Similarly, the unmodeled errors of the (i + 2)-th epoch can be mitigated according 
to from (7.31) to (7.46). Apparently, the proposed method is conducted epoch-by-
epoch, hence it can be applied in real-time. 

For the procedure of the proposed method. Based on the preceding analysis, a 
procedure of real-time unmodeled error mitigation based on the multi-epoch partial 
parameterization is proposed. The details of the proposed method are shown in 
Fig. 7.2. 

According to Fig. 7.2, it can be seen that the proposed method is iterative. The 
descriptions of these specific steps are as follows.

1. GNSS positioning. 

The positioning results and other relevant necessary data are obtained by using 
the conventional positioning methods, such as RTK or PPP. The code-based 
positioning modes such as single point positioning and code real-time differenced 
positioning are also suitable. 

2. Observation residuals and significance testing. 

The Li’s method is applied to test the residuals of GNSS observations, hence 
the observations with significant unmodeled errors are obtained. Specifically, a

Fig. 7.2 A procedure of unmodeled error mitigation based on the multi-epoch partial parameteri-
zation 
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combined test consisting of the ADF test, JB test and t-test is applied. It is worth 
noting that these unmodeled errors may need to be parameterized afterwards.

3. Selection of satellite (pair). 

According to the certain indicator (e.g., elevation, SNR, temporal correlations of 
observations or other statistics of observation residuals), the unmodeled errors of 
certain satellite (pair) that are most in need of parameterization are determined. 
The basic principle of the selection of satellite (pair) is that the observations are 
contaminated by the unmodeled errors are always highly correlated with certain 
indicators such as elevation, SNR, temporal correlations of observations or other 
statistics of observation residuals. 

4. Multi-epoch partial parameterization and corrections. 

The method of parameterization in the section on multi-epoch partial parameter-
ization is applied. That is, the equations from (7.31) to (7.46) is used iteratively 
epoch-by-epoch. After the error equation is reconstructed, the corrections, new 
positioning results and other relevant quantities are obtained. 

5. Result comparison. 

The new positioning solutions are determined whether they are improved or 
not (e.g., by applying the state equation to obtain the prediction solution). The 
parameterization is stopped until the precision of the positioning results cannot 
be improved. 

7.4 Results and Discussion 

7.4.1 Results and Discussion of Unmodeled Error Detection 

For the experiment of simulated data, a simulated example is implemented to validate 
the Li’s procedure. According to the former analysis, without loss of generality, 
the trend term, periodic term, colored noise and white noise are all simulated. The 
simulated time series is generated with Eq. (7.9) where the sample size is taken as 
1000 epochs. The white noises are simulated with three different variances, namely, 
W(0.2) ~ N(0, 0.22), W(0.05) ~ N(0, 0.052), W(0.01) ~ N(0, 0.012), for specifying the 
strength of white noise in time series. The colored noise is simulated as a GM process 
realized by an autoregressive moving average (ARMA) model of ARMA(7,7). Here, 
the parameters (7,7) are used to specify the pink noise that is one of the most common 
colored noises in real applications. Then the colored noise s is generated as follows 

st = 0.5st−1 + 0.125st−2 + 0.063st−3 + 0.036st−4 − 0.026st−5 

− 0.007st−6 − 0.005st−7 + et + 0.5et−1 − 0.125et−2 + 0.063et−3 

− 0.036et−4 − 0.026et−5 + 0.007et−6 − 0.005et−7 (7.47)
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where all white noises e follow normal distribution of N(0,0.04). The deterministic 
signals consist of trend and periodic terms. The trend term is simulated by Tt = 
0.0035t, while the periodic term is simulated by Pt = 0.4 × sin(2π t/300) + 0.4 × 
cos(2π t/300) + 0.3 × sin(2π t/60) + 0.3 × cos(2π t/60) with two periods of 300 
and 60 epochs, respectively. 

To specify the varying situations, we set up a set of simulation options. Firstly, only 
the white noises with different variances, and the lumped white noise and colored 
noise are simulated respectively. Secondly, the trend and periodic terms are added 
to the simulated data. In order to illustrate the advantages of the advised testing 
procedure, the alternative tests are also examined. We repeat here that our testing 
procedure includes the ADF-test for identifying the deterministic signals, and the 
combined JB-test and t-test for identifying the colored noises. The alternative tests 
we examine here include the KPSS-test for identifying the deterministic signals, and 
the combined LF-test and t test for identifying the colored noises. A significance level 
of 5% is applied for all tests. For each simulation option, we run the simulations by 
10,000 times. It is noted that for our simulations, the null hypotheses of these tests 
are that the time series is stationary and normally distributed with zero mean. Out of 
total 10,000 simulations, the testing results (empirical acceptance percentages) for 
simulated time series without and with deterministic signals are in Tables 7.1 and 
7.2, respectively. 

The results indicate that both the proposed and alternative procedures can effec-
tively identify the stationarity and zero-mean normality of varying time series, and 
our proposed procedure performs better. Firstly, the ADF-test can always confirm 
the stationarity of time series with acceptance rates of at least 90% or even nearly 
100% as shown in the second rows of both tables. However, as shown in the third 
row of Table 7.1, the KPSS-test cannot obtain the desirable results especially when 
the colored noises are lumped with the white noises for which the acceptance rates 
are as small as 4–10%. It implies that the KPSS-test should not be used when the 
deterministic signals are absent in the time series. The underlying reason is that the 
KPSS-test is based on the MA unit roots, which is very sensitive to the colored noises. 

Let us compare the testing results between the combined JB-test and t-test and 
the combined LF-test and t-test, as shown in the fourth rows of Tables 7.1 and 7.2. In  
case of only white noises (the third to fifth columns of Table 7.1), 90% acceptance

Table 7.1 The acceptance percentages of the testing procedure for the time series without the 
deterministic signals (unit: %) 

Hypothesis Statistic W(0.2) W(0.05) W(0.01) W(0.2) 
+ C 

W(0.05) 
+ C 

W(0.01) 
+ C 

C 

Stationarity ADF 100 100 100 100 100 100 100 

KPSS 94.7 95.1 95.2 10.8 4.4 4.1 4.1 

Zero-mean 
normality 

JB + t 90.2 90.5 90.1 49.3 35.1 33.4 33.2 

LF + t 90.6 90.6 90.1 55.8 47.2 46.5 46.4 

The terms ‘W’ and ‘C’ denote the white noise and colored noise, respectively
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rates are approximately obtained for confirming the zero-mean normality regardless 
of the white-noise variance. These results are consistent to the theoretical confidence 
90.25%, i.e., the product of two theoretical confidences (95% × 95% = 90.25%). 
In this case, the combined LF-test and t-test obtain quite similar results, seeing the 
fifth row of Table 7.1. However, in case of the lumped white noise and colored noise 
or the pure colored noise. The combined JB-test and t-test slightly outperforms the 
combined LF-test and t-test, referring to the results from the sixth to ninth columns 
of Table 7.1. The null hypothesis that only white noise exists is accepted by the 
combined JB-test and t-test with 33–49%, while by the combined LF-test and t-
test with 46–55%. The results of testing zero-mean normality also indicate that the 
acceptance rates are positively proportional to the strength (variance) of white noises. 
For the situation with deterministic signals, the acceptance rates of testing zero-mean 
normality in Table 7.2 are exactly 0 for both the combined JB-test and t-test and 
the combined LF-test and t-test for most of cases. For the cases from the sixth to 
eighth columns, the combined JB-test and t-test is much better than the combined 
LF-test and t-test with nearly half acceptance rates. Such results further confirm 
the validity of the combined JB-test and t-test. To sum up, based on the results of 
simulated experiments, the proposed procedure is overall better for the majority of 
circumstances. 

Next, the experiment of real data is given. In order to further demonstrate the 
validity of the proposed procedure for significance testing of unmodeled errors, ten 
datasets were analyzed and for each dataset, two types of receivers were used to 
collect dual-frequency BDS data for 1 h with sampling interval of 1 s at the same 
time. The baseline lengths are from 0 to 50 km. Two types of high-end receivers 
were applied in these ten baselines, seeing the detailed information in Table 7.3. It  
is noted that all the datasets were collected in the same area, which means that the 
observation environment is quite similar. 

All the datasets were processed by using our self-developed single-baseline RTK 
software (named by SRTK). To better study the properties of unmodeled errors, we

Table 7.3 Data description of the ten datasets 

Dataset Stations Receiver type Antenna type Length 

No. 1 T001-T002 Trimble NetR9 TRM59800.00 0.0 m 

No. 2 HKLM-HKQT Trimble NetR9 TRM59800.00 12.5 km 

No. 3 HKLM-HKCL Trimble NetR9 TRM59800.00 23.5 km 

No. 4 HKQT-HKCL Trimble NetR9 TRM59800.00 31.5 km 

No. 5 HKTK-HKCL Trimble NetR9 TRM59800.00 42.7 km 

No. 6 HKFN-T430 Leica GR25 LEIAR25.R4 5.0 m 

No. 7 HKST-HKKT Leica GR25 LEIAR25.R4 13.3 km 

No. 8 HKSS-HKKT Leica GR25 LEIAR25.R4 20.9 km 

No. 9 HKOH-HKNP Leica GR25 LEIAR25.R4 34.5 km 

No. 10 HKWS-HKNP Leica GR25 LEIAR25.R4 49.9 km 
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should make sure that the same visible satellites are processed from different base-
lines. The cut-off angle of 15° is the lowest elevation that can meet this demand. The 
coordinates of all the stations are precisely known, serving as ground truths for vali-
dating results later. All phase ambiguities were correctly fixed in advance by using all 
observations of each baseline dataset with the least-squares ambiguity decorrelation 
adjustment (LAMBDA) method, where the elevation-dependent weighting scheme 
was applied and the tropospheric effects were corrected with the Hopfield model. For 
the ionospheric effects, we set up two strategies corresponding to two mathematical 
models: (A) Ignoring the ionospheric effects, referring to as the ionosphere-fixed 
model: (B) Eliminating the first-order ionospheric effects by using the IF model. 
Total of 8 BDS satellites were tracked for the whole period, and there are 28 time 
series of DD residuals for dual-frequency observations in each dataset. Since only 
3 coordinates are assumed as unknowns, the number of observation redundancies is 
sufficiently large. Then the DD residuals can be used to investigate the properties of 
unmodeled errors. It is also worth noting that the code observations are both proved 
to be preprocessed by these two types of receivers based on our study. Specifically, 
the filter and carrier-smoothed code techniques are applied by the Trimble and Leica 
receivers, respectively. The similar conclusions can also be found in other literatures. 
Hence, we are not able to compare the raw code observations. In fact, the raw code 
observations always have the unmodeled errors due to their limited precision, and 
the high-precision positioning mainly depends on the phase observations. There-
fore, there has not much need to test the significance of unmodeled errors in code 
observations and only the phase observations are discussed here. 

The DD residuals derived from the models A and B on baselines No. 2–5 with 
Trimble receivers and the similar results but derived from the baselines No. 7–10 
with Leica receivers are all computed. It can be intuitively seen that some of DD 
residuals are not stationary, and the deterministic (certain systematic) signals and/or 
colored noise may be in the unmodeled errors. The magnitudes of unmodeled errors 
are roughly positively proportional to the baseline length, especially for the B1 and 
B2 data. Besides, the patterns of unmodeled errors are similar with each other in 
each dataset from different frequencies, but there exist significant discrepancies for 
the different receiver types. In addition, compared with the model A, the unmodeled 
errors of model B reduced dramatically. That is, the ionospheric effects of unmodeled 
errors are significantly mitigated by model B. In conclusion, the unmodeled errors 
are correlated with the baseline length, the mathematical model and the receiver type. 

The proposed procedure is then applied to identify the components of unmodeled 
errors with a significance level of 5%. The null hypotheses of ADF-test, JB-test 
and t-test are that the residual time series is stationary, normally distributed and 
zero-mean, respectively. For the reisudal time series of each baseline, we set up a 
moving window of 300 epochs. For each window, we apply the testing procedure. 
As usual, there is no need to detect the zero-mean normality when the time series is 
nonstationary. However, to obtain more detailed results, these three hypothesis tests 
are all applied no matter whether the tested time series is stationary or not. All the 
rejection rates of the null hypotheses are computed for two mathematical models. 
The results of the hypothesis tests are listed in Table 7.4. In general, the rejection
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rates of all statistic tests become larger as the baseline length increasing. Comparing 
the models A and B, the rejection rates of IF residuals (model B) are smaller than 
those of B1 and B2 residuals (model A). A closer look at the test results from the 
two receiver types, the rejection rates of ADF-test and JB-test for Trimble receivers 
are smaller than those for Leica receivers. Therefore, the rejection rates depend on 
the baseline length, the mathematical model and the receiver type, which agrees with 
the intuitive behaviors of GNSS residuals in related study by the authors. 

Since the results have not significant frequency-dependence as shown in Table 7.4, 
the testing results of the proposed procedure can be further summarized in Table 7.5. 
It can be easily found that the DD residuals are all stationary on zero baseline (No. 
1). Besides, the DD residuals can even be regarded as zero-mean normal distribution 
by approximately 90% for both the ionosphere-fixed model (A) and IF model (B). 
Therefore, the main error component on zero baseline is the white noise. For the 
ultra-short baseline (No. 6), the DD residuals are exactly stationary with acceptance 
rate of 100%, whereas they all do not obey the zero-mean normal distribution with 
small acceptance rates, i.e., 6.6% and 10.7% for models A and B, respectively. These 
testing results indicate that the unmodeled errors are stationary but include the colored 
noises. For the longer baselines (from No. 2–5 and No. 7–10), the acceptance rates of 
stationarity and zero-mean normality are almost negatively proportional to the base-
line length. These indicate that the unmodeled error components on longer baselines 
are more complicated comparing to those on ultra-short baseline. Specifically, apart 
from the colored noises, the deterministic signals would become significant and they 
are positively correlated with the baseline length. It is also the evidence why there is 
no need to detect the zero-mean normality when the time series is nonstationary. In 
summary, our testing procedure can identify the unmodeled error components that 
are highly consistent with the former analysis in this section.

As stated before, the unmodeled errors mainly contain two types of components, 
namely, the deterministic signals and the colored noises. When the deterministic

Table 7.4 Rejection rates of the null hypotheses from baselines No. 1 to 10 (unit: %) 

Trimble Leica 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 

ADF B1 0 0 6.0 14.3 35.7 0 3.3 16.7 41.7 61.7 

B2 0 1.2 9.5 16.7 29.8 0 3.3 23.3 48.3 68.3 

IF 0 0 0 0 0 0 0 0 0 0 

JB B1 3.6 9.5 21.4 25.0 33.3 7.1 28.3 60.0 76.7 83.3 

B2 1.2 13.1 33.3 40.5 46.4 10.7 63.3 76.7 83.3 88.3 

IF 7.1 7.1 8.3 11.9 11.9 4.8 13.3 15.0 16.7 26.7 

t B1 4.8 96.4 96.4 97.6 98.8 95.2 95.0 98.3 98.3 100 

B2 10.7 90.5 96.4 96.4 97.6 91.7 91.7 95.0 95.0 100 

IF 10.7 88.1 90.5 96.4 96.4 89.3 83.3 90.0 93.3 95.0 
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Table 7.5 Test results of the proposed procedure from baselines No. 1–10 (unit: %) 

Trimble Leica 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 

Stationarity A 100 99.4 92.3 84.5 67.3 100 96.7 80.0 55.0 35.0 

B 100 100 100 100 100 100 100 100 100 100 

Zero-mean 
normality 

A 91.7 5.4 2.4 1.8 1.8 6.6 2.5 1.7 0.8 0 

B 88.1 11.9 8.3 3.6 3.6 10.7 16.7 8.3 6.7 5.0

signals are significant, it indicates that there is misspecification between measure-
ments and functional model. Therefore, the functional model compensation should 
be applied, i.e., modeling or parameterization the observations with significant deter-
ministic signals. On the other hand, when the colored noises are significant, it means 
that the common-used stochastic model with ignoring the physical correlations does 
not match the reality. Hence the physical correlations should be considered into the 
stochastic model. In conclusion, if the proposed procedure is applied, one can know 
when and how the functional and stochastic models should be improved. 

Then the effectiveness of the proposed procedure is validated by analyzing the 
properties of unmodeled errors, where the impacts of receiver, multipath and atmo-
sphere are all discussed in detail. We divide the baselines into three types: zero 
baseline, ultra-short baseline and longer baseline, and analyze the results in detail. 

For the results of zero baseline. We first analyze the zero-baseline data (No. 1), 
where the DD residuals with model A are shown in Fig. 7.3. The results of model 
B are not shown here because the ionospheric delays completely vanish on the zero 
baseline. Each color denotes one DD satellite pair. It can be easily seen that the DD 
residuals are highly random. This is because the external errors can be completely 
eliminated for zero baseline, only the receiver-specific white noises are remained 
[37, 38]. 

To further confirm that the zero-baseline residuals are of zero-mean normality and 
only receiver-dependent, the graphical and statistical analyses are carried out. Unlike 
the other GNSS satellite systems, BDS has three types of orbiting satellites, i.e., the 
geostationary earth orbit (GEO) satellites, the inclined geosynchronous satellite orbit

Fig. 7.3 The DD residuals of zero baseline with model A 
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(IGSO) satellites, and the medium earth orbit (MEO) satellites. The PRN 7 is selected 
as the reference satellite, then the B1 observations of GEO PRN 3, IGSO PRN 10 and 
MEO PRN 11 are used as example. Figure 7.4 presents the histograms of their DD 
residuals and the corresponding fitted curves with zero-mean normal distributions. 
The graphical results obtained from B2 observations are quite similar to those from 
B1 observations although they are not shown here. It is confirmed from Fig. 7.4 
that the distributions of zero-baseline DD residuals are rather close to the zero-mean 
normal distributions. 

The sample moments are applied to quantitatively demonstrate the zero-mean 
normality of zero-baseline DD residuals. Table 7.6 lists the statistics of mean, STD, 
sekeness and kurtosis based on the DD residuals of all satellites. Typically, for a 
normal distribution, the theoretical values of skewness and kurtosis are 0 and 3, 
respectively. It is clear that for all three types of orbiting satellites, the computed 
statistics are all very close to the theoretical values of zero-mean normal distribu-
tion. It is therefore concluded that there are only the white noises on zero baseline. 
This result is highly consistent to the test results with the proposed procedure, thus 
certifying the validity of the testing procedure.

The unit of mean and STD is mm, while the unit of skewness and kurtosis is scale. 
For the results of ultra-short baseline. The data of ultra-short baseline (No. 6) is 

analyzed. Only the results of model A are analyzed because the atmospheric effects 
can be basically eliminated, and the multipath would be the dominant error source 
on the ultra-short baseline of 5 m in our study [38]. The code multipath can be 
estimated by using the multipath combination function. It can be extracted by using 
one frequency code and two frequency phase observations to form the geometry-free 
and IF combination. The code multipath function M on frequency i reads

Fig. 7.4 The histograms of zero-baseline DD residuals of GEO satellite PRN 3 (left), IGSO satellite 
PRN 10 (middle) and MEO satellite PRN 11 (right), and their corresponding fitted curves with zero-
mean normal distributions (red lines). The numbers in the top left and top right corners indicate the 
corresponding means and STDs in unit of mm, respectively 



156 7 Unmodeled Error Processing

Table 7.6 The statistics of mean, STD, skewness and kurtosis of all DD residuals on zero baseline 

GEO satellites IGSO satellites MEO satellites 

B1 B2 B1 B2 B1 B2 

Mean − 0.04 0.00 − 0.02 − 0.02 − 0.05 − 0.03 
STD 1.86 1.99 1.60 1.74 1.66 1.81 

Skewness 0.01 0.02 0.00 0.02 − 0.04 − 0.03 
Kurtosis 3.03 3.00 3.10 3.03 3.00 3.04

Mi = Pi − 
f 2 i + f 2 j 

f 2 i − f 2 j 

Φi +
2f 2 j 

f 2 i − f 2 j 

Φj (7.48) 

where the subscripts i, j (i �= j) denote two frequencies; f is the carrier phase 
frequency; P and Φ are the code and phase measurements in unit of length, respec-
tively. Mi contains not only multipath on Pi, but also the terms of phase ambiguities 
and the relevant hardware delays. Then the code multipath MPi is derived as 

MPi = Mi − M i (7.49) 

where M i is the mean value of Mi over a certain period. Without cycle slips, MPi is 
dominated by the code multipath. Hence, the multipath combination function can be 
applied to assess the multipath effects of single satellite. Note the BDS may suffer 
from the elevation-dependent code hardware variations. These satellite-induced code 
biases that are dependent on the elevations in this study have been tested to be 
insignificant on multipath estimation mainly due to the small elevation variation in 
duration of 1 h. Thus, the satellite-induced variations are ignored here. For saving 
the space, we illustrate the multipaths of satellites PRN 01 and PRN 10, and their 
corresponding DD residuals in Fig. 7.5, representing the weak and strong multipath, 
respectively.

Obviously, the DD residuals in Fig. 7.5 are much different from those in Fig. 7.3. 
The DD residuals with multipath effects are all not purely white nosies, and the 
systematic errors exist. The stronger the multipath is, the more systematic the 
DD residuals are. Such results are are again consistent with the analysis, and the 
unmodeled errors in such ultra-short baseline are indeed induced by the multipath. 

To further validate the former conclusions in this section, the time-domain Allan 
variance is applied to study the noise characteristics of unmodeled errors. The Allan 
variance has been widely used for identifying the noise types. The non-overlapped 
Allan variance σ2 

Y 
is defined as 

σ2 
Y 
(T ) = 1 

2(N − 1) 

N −1∑

i=1

(
Y i+1 − Y i

)2 
(7.50)
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Fig. 7.5 The weak (left) and strong (right) code multipaths and corresponding DD residuals for 
satellites PRN 01 and PRN 10 on ultra-short baseline, respectively

where Y i is the ith mean value of N fractional frequency values averaged over the 
cluster time T . According to a log-log plot of Allan STD, the noise types with their 
magnitudes can be determined. In GNSS applications, the Gaussian white noise, 
random walk noise, flicker noise and the first order GM process are four types of 
important stochastic processes. They are characterized by the regions of − 1/2, + 1/ 
2, 0 and ± 1/2 slopes, respectively [39, 40]. The strength of Gaussian white noise 
can be also estimated by σ(1). 

The Allan plots of DD residuals with weak and strong multipaths are shown in 
Fig. 7.6. They exhibit the similar patterns between B1 and B2 frequencies. It means 
that the noise characteristics are highly similar between two frequency observations. 
Due to the straight lines with the slopes of approximately − 1/2 at the beginning, the 
white noise can be easily identified as the dominant error component with strength 
of 1.5mm/ 

√
Hz for cluster time T < 128 s with weak multipath and T < 16 s with 

strong multipath, respectively. For the rest cluster time with these two types of multi-
path impacts, the first order GM process is identified to some extent. Consequently, 
the white noise and the first order GM process are both existent in unmodeled errors, 
and the first order GM process may play a more important role in case of strong 
multipath since the cluster time of white noise in case of stong multipath is shorter. 
It is concluded that the noise characteristics with multipath are more complicated 
than the zero-baseline results, which is also consistent with the analysis of Fig. 7.5. 
Besides, the strength of the white noise are almost the same under different condi-
tions of multipath, thus indicating the influence of the white noise mainly comes 
from the receivers, which provides substantial evidence for the former results of the 
zero baseline.

The frequency-domain FFT is applied to identify the components of deterministic 
signals in unmodeled errors. FFT can reveal important frequency components of a
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Fig. 7.6 The Allan plots of DD residuals with weak multipath (left) and strong multipath (right) 
on ultra-short baseline

signal. The discrete form of the FFT is defined as follows [41] 

pk = 
N∑

j=1 

qjw
(j−1)(k−1) 
N (7.51) 

where the vector p is the Fourier transform of a vector q with length N . j and k are 
the indices that run from 1 to N ; wN = e(−2π i)/N is one of N roots of unity with i 
the imaginary unit. According to the FFT plot, the frequency range varies from the 
fundamental frequency (i.e., the 1/T , with T the observation length) to the Nyquist 
frequency that is the half of sample rate [42]. Then the interested sections with their 
corresponding amplitude spectra can be identified. For the deterministic signals, the 
frequency can be identified by the peaks of the FFT plots. 

The FFT plots of DD residuals with weak and strong multipaths are illustrated in 
Fig. 7.7. Since 1-h GNSS unmodeled error series is employed with the sample rate of 
1 Hz, the spectrum falls between 2.8×10−4 and 5.0×10−1 Hz. A significant discrep-
ancy is found between weak and strong multipaths. Specifically, the amplitudes of 
the intermediate segment 5.0 × 10−4 < f < 3.0 × 10−3 with strong multipath are 
frequently close to or even higher than 0.5 mm. The results suggest that there will 
exhibit some insignificant deterministic signals (since the highest amplitude spectra 
still lie in the areas of fundamental frequency) in case of strong multipath. 

Fig. 7.7 The FFT plots of DD residuals with weak multipath (left) and strong multipath (right) on 
ultra-short baseline
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To summarize, as expected, the multipath is closely related to the unmodeled 
errors. When the multipath is weak, the colored noise is the dominant component; 
whereas the more complicated colored noise and deterministic signals may be both 
exsistent in case of strong multipath although the deterministic signals could be not 
as significant as colored noises. Besides, all the results certificate that suffering from 
the multipath effects, the proposed procedure can accurately and efficiently identify 
the components of the unmodeled errors. 

For the results of longer baselines, finally, the longer baselines (from No. 2–5 
and No. 7–10) with baseline lengths from 10 to 50 km are analyzed, where the 
atmospheric effets will become the dominant error source. Therefore, the models A 
and B are both studied. Since the baseline data are collected at the same time and 
small area, they should suffer from the similar atmospheric effects. The atmospheric 
effects consist of tropospheric and ionospheric effects. Analogously, to validate the 
results of the proposed procedure, the Allan plots of DD residuals of PRN 6 computed 
from baselines No. 7–10 are shown in Fig. 7.8. The white noise, flicker noise, random 
walk and the first order GM process can all be identified at the beginning and the 
intermediate segments, especially for the B1 and B2 data. The results are more 
complicated than those with purely multipath on ultra-short baseline No. 6. For the 
ending part, it is hard to identify the noise type due to the large uncertainty of the 
Allan variances. Besides, comparing the Allan plots between B1, B2 and IF modes, 
their shapes have no apparent difference, which agrees with the former analysis. 
For the same model, the shapes of Allan plots are similar for different baselines. 
It implies the noise characteristics are not necessrily dependent on the magnitudes 
of atmospheric effects. In fact, this point can be used to explain why the temporal 
correlations caused by unmodeled errors can be fitted by some empirical functions 
that are free from the baseline length [1]. As a result, compared to the situation with 
pure multipath, the components of unmodeled errors become more complicated in 
the situation of atmospheric effects, whereas the colored noise has weak dependence 
on the magnitute of atmospheric effects.

The FFT plots of DD residuals of PRN 6 computed from baselines No. 7–10 are 
shown in Fig. 7.9, where the deterministic terms can be easily identified. Unlike 
the results in case of pure multipath on ultra-short baseline, for the B1 and B2 
data, the deterministic signals seem much more serious due to their larger amplitude 
spectra. Judging from Fig. 7.9, the deterministic signals with model A are much 
more significant in comparison with model B. These results agree again with the 
former analysis. In addition, the deterministic signals seem more significant with the 
increasing of baseline length. In summary, under the strong atmospheric conditions, 
the DD residuals are not stationary anymore. Furthermore, the deterministic signals 
will be influenced more easily than the colored noise when the strength of atmosphere 
effects changes.

To summarize, the atmospheric effect is the main attribution of unmodeled errors. 
At this time, the unmodeled errors will become not stationary. Therefore, it proves 
that the proposed procedure is indeed effective with high efficiency.
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Fig. 7.8 The Allan plots of DD residuals with models A (for which both B1 and B2 Allan STDs 
are analyzed) and B (for which IF Allan STDs are analyzed) for satellite PRN 6 on baselines No. 
7–10 (from top to bottom)

Fig. 7.9 The FFT plots of DD residuals with model A (for which both B1 and B2 results are 
analyzed) and B (for which IF results are analyzed) for satellite PRN 6 on baselines No. 7–10 (from 
top to bottom)
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7.4.2 Results and Discussion of Unmodeled Error 
Compensation 

In order to validate the performance of the proposed multi-epoch partial parameter-
ization method, 2-h single-frequency GPS/BDS observations were collected using 
Leica GR25 receivers with a sampling interval of 1 s at a network consisting four 
stations in the same area, and the observations are obtained at the same time on 2 
April, 2016. The RTK is taken as an example, and six baselines were formed with 
lengths from approximately 5–25 km from these four stations A, B, C and D. The 
coordinates of all the stations are precisely known and served as ground truths. The 
traditional single-epoch RTK and the proposed RTK methods were implemented in 
self-developed RTK software for the precise multi-frequency and multi-GNSS RTK 
processing. The processing strategies of the traditional and proposed RTK methods 
are presented in Table 7.7, where the ambiguities were fixed by the LAMBDA 
method. It can be seen that the processing strategies are quite common and the 
same for these two different methods, thus ensuring the reliability of the analysis 
later. 

When the proposed method is used, the elevation is chosen as the indicator that 
determines the order of parameterization where the unmodeled errors are significant. 
The main reason is that, as usual, when the elevation is lower, the unmodeled errors 
are more easily significant mainly because the atmospheric delays have the longer 
propagation path. Additionally, the elevation can be computed by real time which is 
also easy-to-implement. For the issue that how many consecutive epochs of unmod-
eled errors can be regarded highly correlated during the partial parameterization, we 
set 5 epochs as the width of moving window if the sampling rate is 1 Hz. The reason 
is that, in this situation, the temporal correlations between two consecutive epochs 
are usually higher than 0.98 or even 0.99 [1]. Hence, when the width of moving 
window is 5 epochs, the temporal correlation between the first and fifth observations 
are still higher than 0.9. Therefore, the unmodeled errors can be regarded the same 
within a short time (i.e., 5 s in this study).

Table 7.7 Common processing strategies of the traditional and proposed RTK methods 

Processing strategies 

Used observations DD pseudorange observations 

DD carrier phase observations 

Cut-off elevation 8° 

Strategy of ambiguity resolution LAMBDA 

Troposphere correction Modified Hopfield model 

Ionosphere correction Ionosphere-fixed model 

Weighting function Elevation model 

Observation variances UD pseudorange observations: 0.2 m 

UD carrier phase observations: 2 mm 
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Figure 7.10 illustrates the positioning errors of the traditional and proposed 
methods for six baselines, where the blue, green and red dots denote the east, north and 
up directions, respectively. The results clearly show that the positioning precisions 
are indeed improved by the proposed method for all these six baselines. Hence, it 
demonstrates the effectiveness of the multi-epoch partial parameterization. A closer 
look at the positioning results, the precisions of up direction are improved more 
significantly than the other directions. The reason may be that the unmodeled errors 
have high correlations with the positioning solutions of the up direction. Therefore, 
when the unmodeled errors are mitigated, the positioning solutions of the up direction 
are improved significantly. 

Figures 7.11 and 7.12 illustrate the DD GPS/BDS code and phase residuals of 
traditional and proposed methods for six baselines, respectively. It is worth noting 
that each color denotes one satellite pair. Compared with the observation residuals 
from the traditional method, the ones from the proposed method are more stationary, 
especially for the phase ones. It can be further seen that, for some certain satellite 
pairs, the observation residuals with large fluctuations are mitigated to a great extent 
after using the proposed method. Hence, the significant unmodeled errors are proved 
to be mitigated at this time.

Figure 7.13 illustrates the code and phase unmodeled error corrections based on 
the proposed method for six baselines, where each color denotes one satellite pair. 
It can be clearly seen that these code and phase unmodeled errors can be up to 4 m 
and 60 mm or larger, respectively. Hence, these unmodeled effects cannot be simply 
ignored, otherwise they will have adverse impacts on GNSS positioning. Judging 
from the behaviors of these unmodeled error parameters, they are highly correlated

Fig. 7.10 Positioning errors of the traditional (left) and proposed (right) methods for six baselines. 
The blue, green and red dots denote the east, north and up directions, respectively 
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Fig. 7.11 DD GPS/BDS code residuals of the traditional (left) and proposed (right) methods for 
six baselines. Each color denotes one satellite pair 

Fig. 7.12 DD GPS/BDS phase residuals of the traditional (left) and proposed (right) methods for 
six baselines. Each color denotes one satellite pair

within a short time, just like a deterministic signal as previously analyzed. That is, the 
multi-epoch partial parameterization can indeed work for capturing these significant 
unmodeled effects.

Table 7.8 shows the three-dimensional (3D) bias and 3D root mean square (RMS) 
of the traditional and proposed methods for six baselines. It can be clearly seen that,



164 7 Unmodeled Error Processing

Fig. 7.13 Unmodeled error corrections based on the proposed method for six baselines. Each color 
denotes one satellite pair

compared with the traditional method, the 3D biases of the proposed method are all 
smaller. Similarly, the 3D RMSs of the proposed method is significantly smaller than 
the ones of the traditional method. Specifically, the mean improvements of the 3D bias 
and 3D RMS are 28.79% and 24.22%, respectively. It can be found that the precision 
of up direction is improved to a great extent, where the precision can be increased 
by up to 56.90%. It indicates that the unmodeled effects are mitigated and have large 
dependence on the up direction, which is consistent with the aforementioned analysis. 
In conclusion, according to the experiment results and corresponding analysis in this 
section, the proposed method can indeed mitigate the significant unmodeled errors 
in real time. 

Table 7.8 3D bias and 3D RMS of the traditional and proposed methods for six baselines (mm) 

Error Method A-B C-D B-C A-C B-D A-D 

3D bias Traditional method 25.94 24.74 19.30 16.43 27.95 25.18 

Proposed method 18.41 10.30 13.77 15.05 18.86 21.21 

3D RMS Traditional method 26.93 26.42 21.35 18.95 30.85 28.38 

Proposed method 20.28 13.13 16.57 17.75 22.34 24.41
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7.5 Conclusion 

The GNSS unmodeled errors are studied systematically and this research is a solid 
foundation to further improve the accuracy and reliability of GNSS applications. A 
testing procedure has been proposed to test the significance of unmodeled errors in 
GNSS observations. It is proved to be effective and feasible with the various simulated 
and real data as well as time-domain Allan variance analysis and frequency-domain 
FFT. Besides, in GNSS positioning, the unmodeled errors are objectively existent 
and cannot be easily eliminated since they are time- and space-variable. The attri-
butions of these unmodeled effects mainly come from the ionosphere, troposphere 
and multipath. Besides, the receiver may also have an impact on the behaviors of the 
unmodeled errors. Three dominant components are identified in GNSS unmodeled 
error: nonstationary signal, stationary signal and white noise. They can be largely 
understood as the deterministic signal (including trend and periodic terms), colored 
noise (including random walk noise, flicker noise and the first order GM process) 
and Gaussian white noise, respectively. The magnitudes of unmodeled errors are 
positively correlated with the multipath and atmospheric effects. Then the unmod-
eled errors with different frequencies share similar patterns. Under the conditions 
of multipath, the colored noise is the dominant error source for unmodeled errors. 
Then the ionospheric and tropospheric effects are the main attributions of unmodeled 
errors since these effects will become not stationary. Besides, unlike the multipath, 
the atmospheric effects have marginal effects on noise characteristics and will influ-
ence considerably the deterministic signals. As future work, under different appli-
cation modes (e.g., RTK, PPP) and environments, once the error types are identified 
with the Li’s procedure, an open problem raises for developing their own specific 
compensation methods. 

Also, we present a method for real-time mitigating the unmodeled errors in GNSS 
precise positioning, which is especially suitable when there are enough redundant 
observations. In single-frequency and multi-GNSS scenario, since the ionospheric 
delays cannot be mitigated by the IF combination in terms of two or more carrier 
phases with different frequencies, the unmodeled effects certainly will be significant 
more frequently. Therefore, the corresponding unmodeled error mitigation is urgently 
needed in this situation. In essence, the proposed method is mainly based on the 
multi-epoch partial parameterization, where only the significant unmodeled errors 
are captured. It is worth noting that the proposed can also be used in post time, hence 
it can be introduced to RTK, PPP or any other positioning modes. According to 
the experiment and analysis, the results show that this proposed method is effective 
and can improve the positioning precision significantly. In addition, because the 
unmodeled errors have high dependence on the positioning results of the up direction, 
the proposed method can improve the precision of the up direction to a great extent.
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Chapter 8 
Data Quality Control 

8.1 Introduction 

The proliferation of Global Navigation Satellite Systems (GNSSs) has driven 
widespread adoption of Real-Time Kinematic (RTK). Nevertheless, the presence of 
outliers in GNSS measurements poses a significant threat to the achievable accuracy 
and reliability of RTK solutions. Consequently, effective identification and exclusion 
of these erroneous measurements are critical for robust positioning. 

Two principal methodological approaches exist for handling outliers: detection, 
identification, and adaptation (DIA) and robust estimation. DIA procedure primarily 
employs hypothesis testing theory to distinguish between a null hypothesis (no 
outliers) and one or more alternative hypotheses (specifying potential outliers). These 
methods are explicitly designed within the functional model framework, requiring 
assumptions about the nature, quantity, and location of potential outliers. Despite 
its widespread use, the DIA method faces inherent limitations in practical imple-
mentation. It cannot guarantee infallible testing decisions or unbiased parameter 
estimates. Challenges such as missed detections, false alarms, and incorrect exclu-
sions inevitably arise due to factors including the underlying measurement geometry, 
the distinguishability (separability) between competing hypotheses, the chosen test 
statistics, and the predetermined critical values governing the tests. 

Robust estimation, conversely, operates by modifying the stochastic model 
through equivalent weight functions. These functions aim to mitigate or eliminate 
the prejudicial influence of suspect observations on the final parameter estimates. 
Such robust techniques are extensively applied across various GNSS data processing 
domains, including deformation analysis, least-squares collocation, and Kalman 
filtering. Numerous enhanced robust estimators have been developed to achieve 
greater robustness and higher breakdown points, such as the median method, least 
trimmed squares, and sign-constrained robust least-squares. Among these, the robust 
M-estimator stands out due to its practical advantages: ease of implementation and 
computational efficiency. M-estimation is versatile, applicable to both independent
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and correlated measurements using appropriate reweighting schemes. For handling 
correlated GNSS data in RTK, the bifactor equivalent weight function, particularly 
following the Institute of Geodesy and Geophysics 3 (IGG3) scheme, is a standard 
choice. The IGG3 approach classifies potentially problematic measurements into 
three categories: 1) complete exclusion, 2) downweighting, or 3) retention with full 
weight. 

This chapter first introduces two categories of outlier detection methods. The first 
category focuses on the stochastic model, aiming to mitigate the impact of outliers 
on parameter estimation. The second category is based on the functional model, 
targeting the elimination of outliers influence on parameter estimation. Specifically, 
robust estimation methods are commonly applied in the posterior stage to process 
outliers in the stochastic model. For the functional model, the DIA method is utilized 
to handle outliers. 

8.2 Mitigation and Elimination of GNSS Outliers 

GNSS observations often inevitably contain outliers in harsh environments. Outliers 
or misspecifications in the functional model generally result in biased least-
squares (LS) estimators. 

When the observations contain outliers, the outlier model is usually denoted as 
follows 

y = Ax + � + ε (8.1) 

where A and y denote the design matrix of the functional model and observation 
vector, respectively. The x is the estimated vector of parameters. Besides, ε and �

are the measurement noise and the outlier, respectively. 
The outlier should be processed and removed and it relates to the reliability theory 

in the processing. The reliability theory includes internal reliability and external 
reliability, which exhibit the ability to detect the outliers and resist the influence of 
undiscoverable outliers, respectively. Besides, there are essentially two main ideas for 
outlier detection. Firstly, when the outliers are non-stochastic, the mean shift model 
is researched and eliminated as the error model. It is a perspective that the outliers 
can affect the mean of observations. Secondly, when the outliers are stochastic, 
it is another perspective that the outliers can affect the variance of observations. 
Therefore, the variance inflation model is introduced as the error model. Based on 
the above descriptions, the outlier detection correspondingly has two major classes 
of methods. The first one is data snooping, which classifies the outlier to detect and 
eliminate based on the functional model. At this time, relatively pure observations 
are obtained and they meet the conditions of LS estimation. The second one is the 
robust estimation method. The outlier is introduced into the stochastic model. When 
there exists an outlier, the corresponding weight of this observation is set as zero to 
exclude the effect of the outlier. The adjustment results are successively iterated and
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the method requires an adjustment factor R, which is as follows 

v = Ry (8.2) 

R =
(
P−1 − A

(
AT PA

)−1 
AT

)
P (8.3) 

where P donates the weight matrix. The adjustment factor is the geometric condition 
of the adjustment, and it reflects the effect of the observation on the residuals. 

Missed detection, false alarm, and wrong identification, usually cannot be avoided 
due to the geometry of the observation model in the DIA method [1, 2]. The robust 
estimation method restrains the impacts of outliers on the final parameter solutions 
by minimizing the score function with higher robustness and breakdown point when 
it excludes the doubtful observations [3]. The robust estimation methods include 
M estimation, L estimation, and R estimation. The M estimation is a generalized 
maximum likelihood estimation and can be further divided into two categories: the 
iterative method with variable weights and the P minimum norm. 

The iterative method with variable weights is briefly introduced and divided into 
the following steps: 

The mathematical model is as follows 

v = Ax̂ − y, P (8.4) 

The first parameter estimation and their residuals are then solved as follows 

x̂[1] = (
AT PA

)−1 
AT Py (8.5) 

v[1] = Ax̂[1] − y (8.6) 

And then iterative calculation continues. The iteration is stopped until the differ-
ence between the parameter estimates obtained at the kth iteration and the k - 1th  
iteration meets

∣∣x̂[k] − x̂[k−1]
∣∣ ≤ ω (8.7) 

The ω is a tiny amount as constant threshold. Finally, the parameter estimation 
and their residuals are solved. 

x̂[k] =
(
AT P 

[k−1] 
A

)−1 
AT P 

[k−1] 
y (8.8) 

v[k] = Ax̂[k] − y (8.9)
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The key to the iterative method with variable weights is to choose the ρ function. 
The ρ function is basically selected by experience, and it is a function of residual. 
The weight function pi can be calculated from the ρ function, with ϕ(vi) = ∂ρ(vi) 

∂vi 
and 

pi = ϕ(vi) 
vi 

. And the most classic scheme is the IGG3 method. The weight function pi 
of the IGG3 method is determined as follows 

pi = 

⎧⎪⎨ 

⎪⎩ 

1 |ṽi| ≤ k0 
k0 
|ṽi |

(
k1−|ṽi | 
k1−k0

)2 
k0 < |ṽi| ≤ k1 

0 |ṽi| > k1 

(8.10) 

where the k0 and k1 are two constant thresholds. Without loss of generality, k0 = 1.0 
and k1 = 3.0 in this study. The ṽi is the standardized residual as follows 

ṽi = vi 
σ̂0 

√
qvivi 

(8.11) 

where qvivi is the ith diagonal element of the cofactor matrix Qvv, σ̂0 is the posterior 
variance factor as follows 

σ̂0 = 
√
vTPv 
r 

(8.12) 

where r is the number of the redundant observations. In robust estimation, other 
types of weight functions can also be adopted according to the real applications. For 
instance, one can use the Huber function, which is as follows 

pi =
{
ṽ2 i |ṽi| ≤ 2σ 
4σ (ṽi) − 4σ 2 |ṽi| > 2σ 

(8.13) 

where the σ is the standard deviation of the residuals. The Hampel function can also 
be used as follows 

pi = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

|ṽi| 0 ≤ |ṽi| < k0 
k0 k0 ≤ |ṽi| < k1 
k2−(ṽi) 
k2−k0 

− k0 k1 ≤ |ṽi| < k2 
0 |ṽi| ≥ k2 

(8.14) 

where k2 is a constant threshold. 
GNSS outliers elimination includes three steps: detection, identification, and 

adaptation. The DIA method relies on making a decision between a null and a set 
of alternative hypotheses, H0 and H1. The null hypothesis and alternative hypothesis 
are usually formed as 

H0: (vi) = 0 (8.15)
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H1: (vi) �= 0 (8.16) 

The vi is the ith element of the residual vector v. The null hypothesis provides 
an unbiased estimation of when the mathematical model is correct. Instead, the 
alternative hypotheses are used to know and successfully eliminated the suspected 
outliers and the subset of affected faulty observation. 

When the null hypothesis does not hold, the alternative hypothesis is tested. The 
classical DIA method is used in an alternative hypothesis test. It is briefly introduced 
and divided into the following three steps: 

(1) Detection 

In the detection step, conventionally, the residual ε̂ and global test statistic Tq are 
formed as 

ε̂ = y − Ax̂ (8.17) 

Tq = ε̂T Q−1 
yy ε̂ (8.18) 

where y is the remaining term of the observation equation. The q and Qyy are 
the number of redundant observations and the variance matrix of the observations, 
respectively. According to the critical value with the significance level α1, it indicates 
that there are outliers in the observations if Tq > χ  2 α1 

(q, 0). Therefore, an identifi-
cation procedure should be conducted. On the contrary, the observation does not 
contain outliers and thus the solutions can be accepted. 

(2) Identification 

Once the above detection procedure detects outliers, an identification procedure 
should be conducted by searching among the alternative hypotheses. At this time, 
the local test statistic wi is constructed and used in the identification step for the most 
likely model misspecification. The detailed formula is as follows 

Qε̂ε̂ = Qyy − A
(
AT Q−1 

yy A
)−1 

AT (8.19) 

|wi| =
∣∣∣∣∣∣

cT i Q
−1 
yy ε̂√

cT i Q
−1 
yy Qε̂ε̂Q

−1 
yy ci

∣∣∣∣∣∣
(8.20) 

where ci = [0, . . . ,  0, 1, 0, . . .  ,  0]T ; Qε̂ε̂ represent the cofactor matrix of residuals. 
The N 1 

2 α2 
(0, 1) is the critical value of a standard normal distribution with a signif-

icance level α2. When |wi| > N 1 
2 α2 

(0, 1), the outlier is existed in the ith observa-
tion and the corresponding observation needs to be removed. The data snooping is
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stopped until the global test is accepted, and then an adaptation procedure should be 
conducted. 

(3) Adaption 

After the identification of the suspected misspecification, the remaining observations 
are used to conduct the LS estimation again. Then the relatively reliable parameter 
solutions can be obtained. The bias in the unknown parameters can only be completely 
removed after the hypothesis testing. 

The above-mentioned DIA method uses the normality (N ) test. And the joint 
(F) test, student (t) test, and chi-square (χ 2) test can also be used to construct test 
statistics. 

8.3 Importance About Data Quality Control 

In a data adjustment system, the functional model describes the relationship between 
observations and parameters, while the stochastic model describes the observation 
precisions and their correlations to each other. The stochastic model can be speci-
fied by a covariance matrix, being the second-order central moments of the random 
observation errors. Despite the principle that an arbitrarily positive-definite covari-
ance matrix can be used to compute the unbiased estimator in LS adjustment, one 
can never achieve the optimal estimate with the minimal variance unless the correct 
stochastic model is applied [4–6]. 

In GNSS applications, the stochastic model is very important for reliable integer 
ambiguity resolution [7, 8] and for precise positioning [9–11]. Compared with the 
correct stochastic model, any approximate stochastic model will result in the smaller 
success rate of both integer least squares and integer bootstrapped ambiguity reso-
lution [12]. Hence, refining the GNSS stochastic model is a worthy aspiration and 
significant research efforts have been done in the past two decades. The earlier studies 
were based on the elevation dependence of random observation errors [13], and later 
took into account the physical correlations, typically the between-frequency cross 
correlation and time correlation [14]. Based on these studies, it is concluded that in 
general the observation precision is elevation-dependent and the cross correlation 
and time correlation may exist. Moreover, these stochastic characteristics vary with 
both receiver and observation types. 

Besides achieving the precise parameter estimator, the correct stochastic model is 
also required to retrieve the objective precision measures and the covariance matrix of 
the estimator. For short baselines and short observation sessions, the physical corre-
lations have no significant effects on the baseline solutions, but significant effects 
on the covariance matrix of the baselines, as numerically shown in [15]. Existing 
studies of refining GNSS stochastic models almost all focus on the improvement of 
positioning. In fact, the stochastic model is even more important for the reliability 
of quality control, where the covariance matrix is involved in testing statistics, for
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instance, the overall statistic for model specification and the w statistic for outlier 
detection. Such statistics are known to be sensitive to the stochastic model [16]. 

However, in the GNSS community, the influence of the stochastic model on 
the statistical reliability tests has been rarely studied. Teunissen [17] derived the 
analytical formulae of minimal detectable biase (MDB) for canonical forms of 
different GNSS application models. Li et al. [18] numerically demonstrated the 
impact of the elevation-dependent model on the overall and w statistic tests as an 
initial study. In this chapter, we will synthetically study the influence of the GNSS 
stochastic model on the statistic tests involved in reliability with triple frequency 
BeiDou Global Navigation Satellite System (BDS) observations as an example. We 
first apply the variance component estimation (VCE) method to achieve the realistic 
elevation-dependent precisions, cross correlations and time correlations. Compared 
with the empirical stochastic models, we numerically demonstrate the influence of 
these realistic stochastic properties on the overall and w statistic tests. In addition, 
the MDBs together with separability defined by the correlation coefficient of two w 
statistics are examined. To the best of our knowledge, this chapter is the first compre-
hensive study on the reliability influence of BDS stochastic modeling. The achieved 
results will be very helpful for users to do quality control in real applications. 

As well known in the Gauss-Markov model, the LS solution is optimal only when 
no outlier exists neither any other misspecifications of the functional and stochastic 
model [4]. It is therefore important to validate this pre-condition by using some proper 
statistical testing. Often, two test statistics, overall test and w-test, are popularly 
applied to check the specification of the mathematic model. The overall test is to 
test the overall discrepancy between the underlying observation model and the real 
observations, while the w-test is to test whether outliers in individual observations 
are present. In GNSS applications, one can apply these two statistical tests to both 
float and fixed solutions. 

Once the float solution is obtained in the first step of solving the mixed GNSS 
model, one can apply the overall test to check the compatibility of the mathematic 
model. The overall test statistic is [19] 

Tq = 
ε̂T y Q

−1 
yy ε̂y 

q 
(8.21) 

For the null hypothesis that no misspecification exists, the overall statistic has a 
Fisher distribution with q = m − n − p = f (s − 1) − 3 and ∞ degrees of freedom, 
i.e., Tq ∼ F(q, ∞). Given the correct stochastic model Qyy, it is emphasized that 
the expectation of Tq is equal to 1 if the function model is overall well-specified. 
Therefore, given a significance level α, if  Tq < F1−α(q, ∞), we accept the null 
hypothesis that there is no misspecification in the functional and/or stochastic model; 
otherwise, we accept the alternative hypothesis that the misspecification exists in the 
functional and/or stochastic model. 

If the null hypothesis is rejected, one may then need to further identify the cause 
of the misspecification between model and data. Usually, one starts with testing for
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outliers in individual observations by using the w-test. The w-test statistic of the ith 
observation reads [19] 

wi = 
cT i Q

−1 
yy ε̂y √

cT i Q
−1 
yy Qε̂ε̂Q

−1 
yy ci 

(8.22) 

where ci is m-column vector with all elements of 0 except the ith element of 1. The wi 

is standard normally distributed with zero mean [i.e., wi ∼ N (0, 1)] for null hypoth-
esis H0 and with non-zero mean (i.e., non-centrality parameter

√
cT i Q

−1 
yy Qε̂ε̂Q

−1 
yy ci∇ 

with ∇ an unknown scalar as expectation of bias) for alternative hypothesis Ha. In  
any statistical hypothesis test, one has to encounter the type I error of false alarm and 
the type II error of wrong detection, namely, the error of rejecting a correct hypothesis 
and the error of accepting a wrong hypothesis [20]. In the w-test, with a significance 
level α, the null hypothesis will be accepted that the ith observation is not an outlier if 
|wi| < N1−α/2; otherwise, the corresponding alternative hypothesis will be accepted 
if it has the largest |wi| of all m alternatives. In such case, the corresponding detection 
power, γ = 1 − β with β the probability of the type II error, can be computed under 
Ha. 

In theory, with a significance level α0, the larger |∇| will receive the larger detec-
tion power γ . If the detection power is further controlled to a level γ0, the absolute 
non-centrality parameter

√
λ0 as a function of α0 and γ0 can be obtained. For instance, 

for α0 = 0.001 and γ0 = 0.8, it follows that λ0 = 17. Once the non-centrality 
parameter is known, the corresponding size of the bias is [19] 

|∇| =
√√√√ λ0 

cT i Q
−1 
yy Qε̂ε̂Q

−1 
yy ci 

(8.23) 

If the outlier is smaller than this size, the testing power will be smaller than γ0. 
Hence, this size is defined as the MDB related to the probabilities of α0 and γ0. 

For the fixed solutions, one can apply the overall test, w-test and compute the 
MDB exactly following (8.21), (8.22) and (8.23), respectively; But now ε̌y and Qε̌ε̌

must be used instead of their float counterparts ε̂y and Qε̂ε̂ . Note in the overall test the 
degree of freedom becomes q = 2f (s − 1) −3 since the f (s − 1) double-differenced 
(DD) ambiguities are fixed. 

To intuitively get some insight on how the stochastic model (covariance matrix 
Qyy) affects the LS solutions and the hypothesis testing statistics, we assume simply 
that the structure of Qyy is correct but scaled by a factor κ, i.e., Qyy → κQyy. Then 
the LS float estimate, b̂, is invariant but its covariance matrix Qb̂b̂ → κQb̂b̂, which 
is the case also for the fixed solution b̂. The overall and w-statistics as well as MDB 
become Tq → Tq/κ , wi → wi/

√
κ and |∇| → √

κ|∇|, respectively. It is obvious that 
the scaled stochastic model has immediate effect on both the overall and w-statistics 
and MDB although it does not affect the parameter estimate b̂. In the following,
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we will numerically demonstrate how the elevation-dependent precisions, the cross 
correlations and time correlations in the stochastic model affect the hypothesis tests 
by comparing between the realistic and empirical stochastic models. 

8.4 Results and Discussion 

This section will give comprehensive analysis of the outlier handling method and the 
impacts on the the overall test, w-test, and MDB. 

8.4.1 Analysis of the Outlier Processing Method 

In order to validate the effectiveness of the outlier handling method and evaluate posi-
tioning accuracy, this section conducts experiments on five sets of landslide moni-
toring data from the southwestern region, collected on the 288th day of the year 2021 
over a 24-h period. These datasets are named Test1, Test2, Test3, Test4, and Test5, 
with baseline lengths approximately 92 m, 143 m, 53 m, 133 m, and 75 m respectively. 
The primary processing involves Global Positioning System (GPS) L1 + L2 obser-
vations and BDS B1 + B2 observations, with ionospheric delays corrected using the 
Klobuchar model and tropospheric delays corrected using the Saastamoinen model. 
The ambiguity resolution is achieved through the least-squares ambiguity decorre-
lation adjustment (LAMBDA) method. Specific processing strategies are detailed in 
Table 8.1. 

To verify the efficacy of two categories of outlier treatment methods and iden-
tify the optimal approach under complex conditions, ten different schemes were 
designed based on these methods, differing in threshold settings. Schemes B, C, 
and D represent three data snooping approaches with varying thresholds, while E,

Table 8.1 Processing strategies 

Content Processing strategy 

Used signals GPS L1 + L2, BDS B1 + B2 
Data processing Carrier phase differential technique 

Solution method Real-time single epoch solution 

Ambiguity resolution strategy LAMBDA 

Ambiguity fixing threshold 2.0 

Sampling interval (s) 5 

Ionospheric delay correction Klobuchar model 

Tropospheric delay correction Saastamoinen model 

Cut-off elevation angle (°) 15 
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F, G, E1, F1, and G1 denote six robust estimation schemes paired with two distinct 
threshold values for iteration control, set at 0.01 m and 9 m. The specific outlier 
handling measures for each scheme are outlined in Table 8.2. To comprehensively 
assess the performance of these schemes, analysis includes ambiguity fixing rates 
and positioning errors. 

Ambiguity fixing rates for the five datasets under different schemes are presented 
in Table 8.3. It is evident that the data snooping schemes successfully identify and 
remove contaminated observations. Among them, scheme B, which employs a lower 
threshold, achieved the highest ambiguity fixing rate, increasing from 60.8% to 
63.2%. Robust estimation schemes perform better with a larger iteration threshold, 
demonstrating superior performance in obtaining more fixed solutions. Notably, the 
ambiguity fixing rates of schemes E and F are lower than that of scheme A, which 
highlights the importance of threshold selection in robust estimation. Scheme E1 
shows the highest ambiguity fixing rate among the robust estimation schemes. This 
indicates that a combination of a small threshold and a large iteration threshold in 
robust estimation is more effective for ambiguity resolution. Both data snooping and 
robust estimation have proven effective in enhancing ambiguity fixing rates.

Due to space constraints, only detailed results for Test1 are provided. In satellite 
positioning, a higher number of visible satellites and a more stable satellite geometry 
are preferred. Figure 8.1 illustrates the average number of visible GPS + BDS satel-
lites and the position dilution of precision (PDOP) in Test1. The average number of 
visible satellites is 21, but there is significant fluctuation, indicating unstable signal 
reception and poor observation quality. All PDOP values exceed 1, with an average of 
approximately 1.6, and some values exceeding 3, indicating that the satellite geom-
etry layout is generally good but occasionally exhibits poor spatial structure. As the 
number of satellites decreases, PDOP values increase correspondingly. Figure 8.2 
shows the sky plot of Test1. The figure shows that there are some GPS and BDS 
satellites with low elevation angles, which may cause signal reflection, diffraction,

Table 8.2 Outlier processing scheme 

Scheme Outlier handling method Threshold for iteration control Threshold value 

A No outlier treatment – – 

B Data snooping – N 1 
2 α2 

(0, 1) = 1.960 

C Data snooping – N 1 
2 α2 

(0, 1) = 2.576 

D Data snooping – N 1 
2 α2 

(0, 1) = 3.291 

E Robust estimation Small (ω = 0.01 m) k0 = 1.0, k1 = 2.5 
F Robust estimation Small (ω = 0.01 m) k0 = 1.5, k1 = 3.5 
G Robust estimation Small (ω = 0.01 m) k0 = 2.5, k1 = 6.0 
E1 Robust estimation Large (ω = 9 m) k0 = 1.0, k1 = 2.5 
F1 Robust estimation Large (ω = 9 m) k0 = 1.5, k1 = 3.5 
G1 Robust estimation Large (ω = 9 m) k0 = 2.5, k1 = 6.0 
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Table 8.3 Ambiguity fixing rates of observation data (%) 

Scheme Test1 Test2 Test3 Test4 Test5 

A 60.8 32.3 41.4 82.8 72.0 

B 63.2 36.7 44.8 83.9 76.6 

C 62.7 35.7 44.7 83.8 76.3 

D 62.1 34.7 44.1 83.4 76.0 

E 54.5 24.1 38.6 71.6 69.7 

F 58.2 27.7 40.2 78.6 72.3 

G 61.3 32.3 42.8 83.2 75.1 

E1 66.5 39.8 46.3 85.2 77.7 

F1 64.8 37.4 45.4 84.6 77.0 

G1 63.3 35.0 44.6 84.1 76.3

or obstruction. Therefore, a cutoff elevation angle of 15° was set to exclude unsuitable 
satellites that are not suitable for data processing. 

We also analyzed the positioning errors and observation residuals of Scheme 
A, which are shown in Figs. 8.3, 8.4, and 8.5. Without outlier handling (scheme 
A), the positioning results, particularly in the U direction, exhibit noticeable insta-
bility issues. The data snooping scheme (Fig. 8.6) can effectively detect and remove 
outliers, with scheme B performing best in reducing U-direction errors compared to 
the other two snooping schemes. For robust estimation schemes (Fig. 8.7), those with 
a large iteration threshold show more pronounced convergence than those with a small 
iteration threshold at the same threshold values. Scheme E1, with a small threshold 
combined with a large iteration threshold, significantly reduces U-direction errors

Fig. 8.1 Satellite number 
and PDOP value of Test1
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Fig. 8.2 Skyplot of Test1

compared to scheme E, illustrating its superior performance in satellite positioning 
under complex conditions. 

Furthermore, the root mean square error (RMSE) of the positioning results for 
each scheme is computed. Data snooping schemes, especially scheme B with a small 
threshold, can identify and remove more outliers. Compared to scheme A, the posi-
tioning results improved by 0.059 m, 0.017 m, and 0.062 m, respectively. Among 
various robust estimation schemes, those combining a small threshold with a large 
iteration threshold (like E1) perform better than scheme A. For example, E1 improves

Fig. 8.3 Double-differenced pseudorange residuals of scheme A
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Fig. 8.4 Double-differenced phase residuals of scheme A 

Fig. 8.5 Positioning errors 
of scheme A

the positioning accuracy by 0.098 m, 0.055 m, and 0.209 m, respectively. This anal-
ysis confirms that both data snooping and robust estimation are effective in dealing 
with outliers under complex conditions. 

We further validate the effectiveness of outlier treatment by listing the positioning 
availability for data snooping and robust estimation schemes. The availability for data 
snooping schemes surpasses that of scheme A in all horizontal components. While 
the availability of robust estimation schemes E and F is slightly worse than scheme 
A, other robust estimation schemes (including E1) show improvements over scheme 
A. Among them, scheme E1 achieves a positioning availability of 96.50% when 
the horizontal component is less than 2.0 m. This reinforces the notion that a small 
threshold combined with a large iteration threshold in robust estimation is optimal 
for accurate outlier detection and reasonable weighting of observations in complex 
scenarios.
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Fig. 8.6 Positioning errors 
of data snooping 

Fig. 8.7 Positioning errors of robust estimation

8.4.2 Analysis of the Overall Test, w-test and MDB 

In the GNSS community, the influence of the stochastic model on the statistical 
reliability tests has been rarely studied. In this section, we analyze the impacts
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of individual stochastic quantities, elevation-dependent precisions, cross correla-
tions and time correlations, on the reliability, including the overall test, w-test and 
MDB based on the BDS stochastic model. It is important to verify the prerequisite 
conditions through appropriate statistical tests, so some statistical introductions and 
explanations will be provided. 

The purpose of this section is to investigate the numerical impacts of a real-
istic stochastic model on the hypothesis tests compared with those with empirical 
stochastic model. In principle, the GNSS stochastic modelling should be purely based 
on the random noise. To completely avoid the influence of any remaining systematic 
biases on the numerical analysis, for instance, multipath, atmospheric bias etc., the 
zero baseline is employed in this study. Another benefit of zero baseline data is that 
we exactly know the baseline component which can serve for the latter analysis. 

Two data sets of triple frequency BDS observations are collected on zero baselines 
by using ComNav and Trimble receivers, respectively. The total number of epochs 
is 13,582 and 86,400 for ComNav and Trimble baseline, respectively, both with 
sampling interval of 1 s. In the whole computations, the cut-off elevation is taken by 
10°. 

The DD integer ambiguity resolution is the precondition to analyze the stochastic 
model. In this study, the data sets are collected on zero baselines. Such information 
can be applied to extremely enhance the model strength such that the ambiguity 
resolution can be reliably done epoch by epoch with the LAMBDA method. 

Given the data window K = 60 epochs, we estimate the precision of each satellite 
per frequency and observation type. Then the precision estimates of all satellites for 
unique observation type are sorted in ascending order of elevations. For each elevation 
interval 0.5° from 10° to 90°, we take the mean of the precision estimates in this 
elevation interval as the precision of this elevation. The results of elevation-dependent 
precisions are computed for all three-frequency phase and code observations. 

In addition, two elevation-dependent functions are analyzed, denoted by model 
A and B, respectively. We choose model A as [18] 

σθ = f (c|θ ) = c1/(sinθ + c2) (8.24) 

and its reduced version model B 

σθ = f (c|θ ) = c/sinθ (8.25) 

It is noted that we choose these two elevation-dependent models just for a case 
study due to their simplicity. 

Moreover, these two models are representative. That is, model (8.24) can fit the 
elevation-dependent observation precisions very well, while model (8.25) poorly, 
see the latter results. One can of course choose other elevation-dependent models, 
for instance, exponential function [13], which may result in the different numerical 
results but will not affect our conclusions. 

The results show that the observation precisions are overall elevation-dependent 
for all triple frequency phase and code observations, although the dependence
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patterns differ from the observation and receiver types. For the ComNav receiver, 
the phase precisions of B3 are lower than those of B1 and B2, but the corresponding 
code precisions are much higher over all elevations. For the Trimble receiver, we 
cannot see the obvious precision difference for phase between frequencies, while 
the code precisions of B1 are relatively larger for low elevations. The model A can 
overall fit the precisions better than model B. For model B, the over-fitting problem 
exhibits. In other words, the precision values of low elevations are overly enlarged 
whilst those of high elevations are overly reduced. 

The estimated cross-correlation coefficients are presented in Table 8.4. For each 
receiver, six cross-correlation coefficients are computed for phase and code obser-
vations amongst three frequencies. For the ComNav receiver, all cross-correlation 
coefficients deviate from 0 with values smaller than 0.2; especially for phase, which 
means that no cross correlation exists. However, for the Trimble receiver, very signif-
icant cross correlation with correlation coefficient 0.76 exists between B2 and B3 
code observations. 

The impact of elevation-dependent models on reliability takes precedence in our 
discussion. We demonstrate the impact of observation precisions on reliability by 
comparing two elevation-dependent models, A and B. Hereafter they are also called 
weighting models. As an example, the Trimble baseline data was processed with 
these two models, respectively. 

We computed the statistics of overall test for single-epoch float and fixed solutions 
with two models. Given a significance level α = 0.05, the critical values are computed 
by F0.95(q, ∞) for float and fixed solutions with q = 3s − 6 and 6s − 9 for f = 3, 
respectively. The results of model A differ significantly from model B. Since the 
baseline data was collected in an ideal environment, very few outliers were found and 
excluded in our post-processing. In other words, there is no outlier in the observations 
used anymore. In such case, if the model specifies the observations very well, the 
expectation of the overall statistics in principle is equal to 1. The statistics of model 
A is indeed overall close to 1, but those of model B have significant deviations from 
1. The mean of all epoch statistics can be deemed as an empirical approximation 
to expectation. Therefore, the smaller the difference of the computed mean from 1 
is, the better the corresponding elevation-dependent model is. The means of overall 
statistics are calculated. The result indicates that the model A is best, follows by the 
model B. The deviations of means of overall statistics from 1 are only 0.03 and 0.02 
for float and fixed solutions of model A, while they are 1.33 and 1.16 for model B. 

In absence of outliers, the computed statistics should be smaller than the critical 
values statistically. If the statistic is larger than its associated critical value, it leads to

Table 8.4 Estimated cross-correlation coefficients for all three-frequency phase and code obser-
vations of two types of receivers

�
[c] 
φ1φ2

�
[c] 
φ1φ3

�
[c] 
φ2φ3

�
[c] 
p1p2 �

[c] 
p1p3 �

[c] 
p2p3 

ComNav 0.00 − 0.00 − 0.00 0.17 − 0.01 − 0.02 
Trimble –0.01 − 0.01 − 0.07 0.12 0.13 0.76 
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a false alarm. The probabilities of false alarm are computed for both float and fixed 
solutions with three models. The results showed that model A is prominently better 
than the model B. The probabilities of false alarm for model A are smaller than 4 
and 7% for float and fixed solutions, respectively. For model B, they are worst and 
even reach about 67 and 80% for float and fixed solutions, respectively. Roughly, the 
probabilities of false alarm of model A are smaller than those of model B by more than 
10 times. Such performance reveals that if the elevation-dependent function is not 
properly specified, it will derive even worse results than the elevation-independent 
model. 

In the single-epoch float solution model, the ambiguity parameters are to be esti-
mated for all three frequency phase observations. Such model formation leads to that 
the denominators of (8.22) and (8.23) are zero, i.e., cT i Q

−1 
yy Qε̂ε̂Q

−1 
yy ci = 0, for phase 

observations. It means that the statistics of w-test and MDB cannot be computed 
for phase observations with single-epoch float solutions. Therefore, we focus on 
analyzing the statistics of w-test and MDB for single-epoch fixed solutions. 

The result shows the computed w-statistics as a function of elevations for all triple 
frequency code and phase observations with two elevation-dependent models, A and 
B. Recall the theoretical relation that wi → wi/

√
κ if Qyy → κQyy. It means that 

the downscaling variance (κ <  1) derives the larger wi statistic, and vice versa. As 
a result, the w-statistics of low elevations are smaller than those of high elevations, 
especially for code of B2 and B3. The model A outperforms the model B, where its 
w-statistics are basically comparable for all elevation observations. 

For a normal observation, wi is of standard normal distribution. Given the signif-
icance level α = 0.05, the empirical probability of false alarm is computed as a 
ratio between the number of w-statistics outside the confident region

[
Nα/2, N1−α/2

]
and the total number of w-statistics. Given the elevation intervals of 10º from 10º to 
90º, there are total 8 elevation intervals. For each elevation interval, this empirical 
probability of false alarm can be computed. 

Let us now analyze the MDB results with three weighting models. The MDBs are 
computed with single-epoch fixed solution following (8.23) for triple frequency code 
and phase observations. Again, recall the theoretical relation that |∇| → √

κ|∇| if 
Qyy → κQyy. It means that the MDB is positively proportional to the observation 
precision with arithmetic square root of a scalar. The more precise observation will 
receive a smaller MDB, and vice versa. In other words, with a given significance level 
α and detection power γ, the detectable outlier becomes smaller if the observation 
precision is improved. The model A receives the realistic MDBs since it can reflect 
the precisions of observations realistically. However, with model B unrealistic MDBs 
are obtained, which can be either too small or too large. Compared to the MDBs of 
model A, the model B obtains too large MDBs for low elevations while too small 
ones for high elevations. In other words, the outliers at low elevations that can be 
actually detected become non-detectable in terms of MDB with a certain reliability. 
More conservatively, some normal observations at high elevations may be wrongly 
excluded as outliers. 

To investigate the impact of cross correlation on reliability, we use the B2 and 
B3 code observations of the Trimble baseline for the baseline resolution, where the
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B2 and B3 code is strongly correlated with correlation coefficient 0.76. Here we 
do not incorporate B1 data just for simplicity due to its minor correlations with B2 
and B3 data. Single-epoch sinle-differenced (SD) model with only B2 and B3 code 
observations reads 

E

([
p2 
p3

])
=

[
G es 0 
G es es

]⎡ 

⎣ 
x 
dt2 
dt3 

⎤ 

⎦,

[
Qp2p2 �cQc

�cQc Qp3p3

]
(8.26) 

where Qp2p2 = diag
([(

σ 1 p2
)2 

, . . . ,
(
σ s p2

)2
])

with σ s p2 is the undifference observa-

tion precision of satellite s computed by elevation-dependent model A (8.24). Qp3p3 is 
similar to Qp2p2 computed with its own elevation-dependent parameters. The matrix, 

Qc = Q 
1 
2 
p2p2Q 

1 
2 
p3p3 , is scaled by a cross-correlation coefficient �c between B2 and B3 

code observations. 
For the realistic stochastic model with �c = 0.76 and the empirical model with

�c = 0, one can solve the model (8.26) to obtain the corresponding LS solutions 
epoch by epoch. Then the statistics of overall tests are computed with respect to two 
stochastic models. They are very close to each other and their means are 1.0756 and 
0.9176, respectively. With significance level α= 0.01, the probabilities of false alarm 
are 2.24 and 2.75% for stochastic models with �c = 0.76 and 0, respectively. 

The w-test statistics of all observations are computed for these two stochastic 
models with and without cross correlations. For these two stochastic models, the 
means of w-test statistics are 5 × 10–5 and 0.001 with standard deviations 1.0345 
and 0.9544, respectively. Although the w-test statistics with stochastic model of �c 

= 0.76 are slightly closer to the standard normal distribution, they are practically 
very similar to those with stochastic model of �c = 0. For the significance level α = 
0.01, the probabilities of false alarm is 0.79 and 1.34%, respectively. In summary, 
the cross correlation in stochastic model has very minor effects on the overall and 
w-test. 

Let us now analyze the impact of cross correlation on the MDBs. By considering 
and ignoring the cross correlations in stochastic model, the MDBs are computed for 
all B2 and B3 code observations of all satellites. Considering the cross correlation 
will decrease the MDBs, namely, the smaller outliers are detectable if the cross corre-
lations are properly assimilated. In principle, the information content in the correlated 
B2 and B3 observations should be less than that in the B2 and B3 observations if 
they are independent. Hence, with less information contents for correlated B2 and 
B3 observations, the outlier detection should become difficult and the MDBs should 
be larger. Such contradiction attracts our further analysis. The correlation coefficient 
of two w-statistics of B2 and B3 code observations for a satellite is defined as [21]

�wiwj = 
cT i Ωcj √

cT i Ωci 
√
cT j Ωcj 

= Ω(i, j) √
Ω(i, i)

√
Ω(j, j) 

(8.27)
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where Ω = Q−1 
yy Qε̂ε̂Q

−1 
yy . For a larger correlation coefficient �wiwj between the ith 

and jth observations, it is more difficult to discriminate the outlier exactly on either 
the ith or jth observation. In other words, one may detect out the outlier, but wrongly 
position the outlier location, which will derive the type III error [21, 22]. In real 
applications, if the w-test statistics of two observations are highly correlated and an 
outlier is statistically detected on either one observation, an advisable strategy is to 
exclude these two observations simultaneously to control the type III error. 

The correlation coefficients �wiwj between two w-statistics of B2 and B3 code 
observations for individual satellites are computed. The mean correlation coefficients 
over the whole observation span for all satellites are computed as well. The correlation 
is increased from about 0.2 (�c = 0) to 0.8 (�c = 0.76). That makes sense since the 
cross correlation makes the B2 and B3 observations of one satellite correlated and 
then their w-statistics correlated. Therefore, if the outlier is detected for B2 or B3 
observation, it is advisable to exclude both B2 and B3 observations of this satellite 
to control the type III error for high reliability of positioning solutions. 

To demonstrate the impact of time correlation on reliability, we solve the baseline 
solutions based on the SD model with two-consecutive epoch observations of triple 
frequency code observations of ComNav receivers, where all triple frequency code 
observations are time correlated. The associate model reads 

E

([
pk 
pk+1

])
=

[
e3 ⊗ Gk I3 ⊗ es 0 
e3 ⊗ Gk+1 0 I3 ⊗ es

]⎡ 

⎣ 
x 
dtk 
dtk+1 

⎤ 

⎦ (8.28) 

with stochastic model

[
1 �t

�t 1

]
⊗ Qpp (8.29) 

where Qpp is the covariance matrix of single-epoch SD code observations computed 
by elevation-dependent model A (8.24). �t is the time correlation coefficient 
between two consecutive epochs, which is equal to 0.6 for all triple frequency code 
observations. 

For two stochastic models specified by �t = 0 and �t = 0.6, i.e., ignoring 
and considering time correlation, the statistics of overall and w-test and MDBs are 
computed. The means of overall-test statistics are 0.9296 and 1.0098 for �t = 0 and 
0.6, respectively. The corresponding probabilities of false alarm are 1.97 and 1.89% 
for significance level α = 0.01. The means of w-test statistics are 0.0014 and 0.0007 
with respect to �t = 0 and 0.6. The corresponding probabilities of false alarm is 
0.79 and 1.16% for the significance level α = 0.01. Therefore, in general, the time 
correlation has minor impact on the overall and w tests. 

The MDB results of all triple frequency code observations are computed. For each 
baseline solution, triple frequency code observations of two epochs are involved. The 
MDBs of B3 is smallest, followed by B2 and B1. This is due to the B3 code is most 
precise and then B2 and B1. Similar to the impact of cross correlation on MDB and
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correlation of w-statistics, the MDBs of all observations are reduced when taking 
into account the time correlation, while the correlations of w-statistics between two 
epochs are significantly increased. As a result, it is more difficult to discriminate 
exactly on which observation the outlier has occurred if the observations are time 
correlated. Again an advisable strategy is to exclude the observations of these two 
epochs simultaneously to control the type III error. 

8.5 Conclusion 

The importance of stochastic model on achieving optimal parameter estimator and 
realistic covariance matrix of the estimator has been well documented by GNSS 
researchers in past many years. That is, the ambiguity resolution and positioning can 
be improved by refining the stochastic model. However, the importance of stochastic 
model on the reliability of quality control has been rarely studied, where the covari-
ance matrix is involved in statistical reliability tests. In this chapter, we have synthet-
ically studied the influence of the stochastic model on the statistical tests with triple 
frequency BDS as an example. Compared with the empirical stochastic models, the 
influence of estimated realistic stochastic models on the overall and w statistical tests 
as well as the MDBs have been numerically investigated. Based on our studies, the 
conclusions are summarized as follows: 

The GNSS observation precision is in general elevation-dependent and the cross 
and time correlation may exist. These stochastic characteristics differ from the 
receiver and observation types and frequencies, which should be taken into account 
for establishing a realistic stochastic model. 

Comparison of elevation-dependent and -independent models in overall and w 
tests reveals that a realistic elevation-dependent model can reduce the probabilities 
of both false alarm and wrong detection. Without proper elevation-dependent model, 
the probabilities of false alarm and wrong detection could be even worse than those 
of elevation-independent model. 

The cross and time correlations have very marginal effects on the baseline (posi-
tioning) solutions [8]. However, they affect the covariance matrix of the baseline 
solutions and then the reliability test statistics significantly. In other words, one may 
not expect the improved baseline solutions by properly considering the physical 
correlations, but indeed the more realistic reliability results. That is, with taking into 
account the physical correlations, the probabilities of both false alarm and wrong 
detection will be reduced in statistical reliability tests; the MDBs become smaller 
with more difficulty of discriminating the outlier location. Hence, when the physical 
correlations exist amongst observations, an advisable strategy is to exclude these 
observations simultaneously to control the type III error for reliable positioning. 

This chapter primarily focuses on a comprehensive study of the impact that 
stochastic models have on statistical reliability tests. Employing authentic random 
models enables the derivation of reasonable outcomes in reliability testing, which
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in turn facilitates users to make objective decisions concerning quality control in 
practical GNSS applications. 

References 

1. Hekimoglu S, Berber M (2003) Effectiveness of robust methods in heterogeneous linear models. 
J Geod 76:706–713 

2. Wieser A (2004) Reliability checking for GNSS baseline and network processing. GPS Solut 
8:55–66 

3. Yang L, Shen Y (2020) Robust M estimation for 3D correlated vector observations based on 
modified bifactor weight reduction model. J Geod 94:31 

4. Koch K (1988) Parameter estimation and hypothesis testing in linear models. Springer, New 
York 

5. Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J 
Geod 82:65–82 

6. Li B, Shen Y, Lou L (2011) Efficient estimation of variance and covariance components: a case 
study for GPS stochastic model evaluation. IEEE Trans Geosci Remote Sens 49:203–210 

7. Amiri-Simkooei AR, Jazaeri S, Zangeneh-Nejad F, Asgari J (2016) Role of stochastic model 
on GPS integer ambiguity resolution success rate. GPS Solut 20:51–61 

8. Li B (2016) Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment 
and impact analysis. J Geod 90:593–610 

9. Wang J, Stewart M, Sakiri M (1998) Stochastic modeling for static GPS baseline data 
processing. J Surv Eng 124:171–181 

10. Howind J, Kutterer H, Heck B (1999) Impact of temporal correlations on GPS-derived relative 
point positions. J Geod 73:246–258 

11. Liu X (2002) A comparison of stochastic models for GPS single differential kinematic 
positioning. Proceedings of the ION GPS 2002, pp 1830–1841 

12. Teunissen PJG (2007) Influence of ambiguity precision on the success rate of GNSS integer 
ambiguity bootstrapping. J Geod 81:351–358 

13. Euler H, Goad C (1991) On optimal filtering of GPS dual frequency observations without using 
orbit information. Bull Géod 65:130–143 

14. Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code 
observations. GPS Solut 4:3–13 

15. Han S, Rizos C (1995) Standardization of the variance-covariance matrix for GPS rapid static 
positioning. Geomat Res Aust 62:37–54 

16. Baarda W (1968) A testing procedure for use in geodetic networks, Netherlands Geodetic 
Commission 

17. Teunissen PJG (1998) Minimal detectable biases of GPS data. J Geod 72:236–244 
18. Li B, Lou L, Shen Y (2016) GNSS elevation-dependent stochastic modeling and its impacts 

on the statistic testing. J Surv Eng 142:04015012 
19. Teunissen PJG (2000) Testing theory: an introduction. Delft University Press, Delft 
20. Neyman J, Pearson ES (1933) On the problem of the most efficient tests of statistical hypotheses. 

Philos Trans R Soc Lond Ser A Contain Pap Math Phys Charact 231:289–337 
21. Förstner W (1983) Reliability and discernability of extended Gauss-Markov models. Proceed-

ings of the SEE N 84-26069 16-43, pp 79–104 
22. Yang L, Wang J, Knight NL, Shen Y (2013) Outlier separability analysis with a multiple 

alternative hypotheses test. J Geod 87:591–604



190 8 Data Quality Control

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons license and indicate if you modified the licensed material. 
You do not have permission under this license to share adapted material derived from this chapter 
or parts of it. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chapter 9 
LRTK: Long-Range RTK 

9.1 Introduction 

The real-time kinematic positioning (RTK) is a high-precision positioning method 
with Global Navigation Satellite System (GNSS) signals. It is classified into two 
types, i.e., the single-baseline RTK (SRTK) and the network-based RTK (NRTK). 
NRTK was originally proposed in middle of 1990s [1, 2]; and has gradually become 
one of the most popular high-precision real-time GNSS positioning methods since 
the 2000s. It makes full use of a continuously operating reference stations (CORS) 
network to generate the observation corrections for the high precision positioning 
of the rover stations within the area covered by a CORS network [3]. The posi-
tioning performance of the rover station is almost location-independent within the 
coverage of the CORS network since the location-dependent errors contained in the 
rover observations are well compensated by using the corrections [4]. Hence, NRTK 
is able to provide high precision positioning service in a relatively large-scale area 
without any problems about service area division and uneven positioning quality 
[5]. The inter-station distance of CORS network in the case of Global Positioning 
System (GPS)-only NRTK is usually from 20 to 90 km and the positioning precision 
is at the centimeter level [6]. Longer inter-station distance and higher positioning 
precision is possible by using multi-frequency and multi-system (MFMS) GNSS 
signals [7]. MFMS GNSS signals double the number of the observations and there-
fore can improve the positioning performance dramatically [8, 9]. The inter-station 
distance can be extended to more than 100 km and the precision be enhanced to the 
few-centimeter level [1]. However, NRTK seems of resource-wasting for a medium-
sized city, like Shanghai whose administrative area radius is about 50 km. There 
are ten CORS distributed in Shanghai currently and most of them are not necessary 
required for a high-precision RTK service. As an extreme case, only one properly 
located reference station is required if SRTK can provide comparable positioning 
service as NRTK based on MFMS GNSS signals.

© The Author(s) 2025 
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Traditional GPS-only SRTK can provide high precision RTK service only for the 
baseline length of typically shorter than 20 km [1]. Otherwise, for long-range RTK 
(LRTK) situations where the baseline length usually exceeds 20 km, the residual 
distance-dependent errors contained in the differential observations are too large to 
be ignored. The modeling of the distance-dependent errors is difficult without any 
external information or additional observations [10, 11]. MFMS SRTK overcomes 
this problem to a certain degree since the number of observations is doubled or even 
tripled. The redundancy of observations increases dramatically and therefore allows 
introducing more parameters to model the distance-dependent errors in long-baseline 
cases. Odolinski et al. [12] proposed several models for short- to long-baseline MFMS 
SRTK (i.e., LRTK) positioning and got sound experimental results in case of baseline 
length up to 100 km. Li et al. [13] also realized the long-range SRTK with triple-
frequency BeiDou Navigation Satellite System (BDS) signals. Hence, SRTK is able 
to provide high-precision RTK service in a larger area based on MFMS GNSS signals 
and is more economic and convenient than MFMS NRTK. The only question is 
whether LRTK can reach the comparable positioning performance including the 
few-centimeter level positioning precision and quick convergence as NRTK in a 
large-scale area. This chapter intends to give a positive answer to this question by 
comprehensively comparing the LRTK to NRTK. Besides the numerical comparison 
with real data, the theoretical comparison is also carried out for float solution and 
ambiguity resolution (AR) since they govern the quality of fixed solutions to a certain 
extent [14, 15]. 

9.2 Mathematical Model 

9.2.1 Functional and Stochastic Models 

The functional model of single-epoch f -frequency double-differenced (DD) obser-
vations is formulated as [16],

[
P 
Φ

]
=

[
ef ⊗ A ef ⊗ g μ ⊗ Is 0 
ef ⊗ A ef ⊗ g − μ ⊗ Is � ⊗ Is

]⎡ 

⎢⎢⎣ 

x 
τ 
ι 
a 

⎤ 

⎥⎥⎦ +
[

εP

εΦ

]
(9.1) 

where the subscripts f and s denote the number of frequencies and the number of 
DD satellite pairs, respectively. ⊗ denotes Kronecker product and ef is a column 
vector with all f elements of 1. Is denotes the identical matrix of s dimension. 

P =
[
PT 
1 , . . . ,  PT 

f

]T 
is the vector of f -frequency code observations while Pj is the 

vector of s DD observations on frequency fj. Φ is for phase observations and has the 
same structure as P. A is the design matrix for baseline parameter x. g is the mapping
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function vector for relative zenith troposphere delay (RZTD) τ after correcting with 
the New Brunswick 3 (i.e., UNB3) model [17–19]. μ = [

μ1, . . . , μf
]T 

with μj = 
f 2 1 /f 

2 
j is the scalar vector for DD ionosphere parameters ι. � = diag

([
λ1, . . . ,  λf

])
is the diagonal matrix of wavelengths for DD ambiguities a =

[
aT 1 , . . . ,  aT f

]T 
. Other 

residual errors are lumped into observation noise vectors εP and εΦ . The stochastic 
model is generalized as [16],

[
QP 0 
0 QΦ

]
⊗ Q (9.2) 

where QP = diag
([

σ 2 P1 
, . . . , σ  2 Pf

])
and QΦ = diag

([
σ 2�1 

, . . . , σ  2�f

])
with σ 2 Pj 

and 

σ 2�j 
as the variance scalars of undifferenced code and phase on the j-th frequency. Q is 

an (s × s) cofactor matrix of DD observations with elevation-dependent weighting. 
The observations on different frequencies are assumed to be independent and have 
the equal variances for code and phase respectively, i.e., QP = σ 2 PIf and QΦ = σ 2�If . 

9.2.2 Influences of Tropospheric and Ionospheric Delays 

Tropospheric delay and ionospheric delay are two major errors contained in GNSS 
observations. Inappropriate treatment of the delays will decrease the AR efficiency 
and degrade the positioning performance [11]. NRTK employ multiple reference 
stations to model and eliminate the delays accurately based on their distance-
dependent property. The residual delays are therefore always ignored in the rover 
positioning model of NRTK [20]. SRTK employ single reference station to reduce 
the delays simply through DD operation between observations. The residual delays 
can also be ignored in short-baseline case due to the strong correlation of the delays 
between rover station and reference station but become considerable in medium-
to long-baseline cases. Ignoring residual delays in such cases will cause system 
biases on the resolved ambiguity and baseline parameters and dramatically degrade 
positioning performance. A proper treatment is appending appropriate ionosphere 
and troposphere parameters in the positioning model of medium- and long-baseline 
SRTK. The residual delays are absorbed by the appended parameters as long as they 
describe the properties of the delays well and the system biases are then removed. In 
such a positioning model the influences of the distance-dependent errors are inde-
pendent with the baseline length theoretically and consequently out of consideration 
in the respect of extending service radius of SRTK. However, the appended param-
eters severely weaken the model strength and therefore slow down the convergence 
of positioning results and degrade positioning precision. Fortunately, MFMS signals 
multiply the number of the observations manifold and therefore significantly improve 
the model strength. Hence, SRTK is possible to provide ideal positioning service in 
medium- and long-baseline cases based on a proper positioning model and MFMS
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observations [12]. Before introducing the proper mathematical model employed by 
the rover positioning of NRTK and SRTK, there are some notes to be mentioned. 

The residual ionospheric delay becomes difficult to be modeled or described 
during periods of active ionospheric conditions of the rover positioning. The posi-
tioning performances of both NRTK and SRTK degrade dramatically [20, 21]. At 
low latitudes where active ionospheric activities frequently occur, NRTK increases 
the density of reference stations to model the ionospheric delay more accurate. 
However, in most cities located in the mid-latitude region like Shanghai, we simply 
avoid employing high-precision positioning service during such periods since active 
ionospheric activities almost only occur at noon. We consequently ignore the active 
ionospheric conditions here and concentrate our research attention on whether LRTK 
can provide comparative positioning performance as NRTK in cities of Shanghai-like 
medium size and mid-latitude. 

The residual tropospheric delay is usually modeled by introducing an RZTD 
parameter combined with an empirical dynamic model. However, the RZTD param-
eter is strongly correlated with height and therefore extends the initialization time of 
precise positioning [7]. We also simply ignore it here to avoid long convergence time 
in SRTK and the height parameter may bias in medium- and long-baseline cases. 

The appended parameters are incapable of describing the properties of ionospheric 
delay and tropospheric delay perfect especially when we ignore the RZTD parameter 
and active ionospheric conditions. Therefore, the baseline length limitation of SRTK 
considering appended parameters still exist but is really loose based on the MFMS 
observation. 

9.2.3 Ionosphere-Ignored and -Weighted Models 

The distance-dependent errors can be ignored for short-baseline SRTK and NRTK. 
The functional model (9.1) reduces to ionosphere-ignored (I-I) model as

[
P 
Φ

]
=

[
ef ⊗ A 0 
ef ⊗ A � ⊗ Is

][
x 
a

]
+

[
εP

εΦ

]
(9.3) 

where the terms have the same meanings as in (9.1) and the stochastic model as 
in (9.2). As a common strategy for both SRTK and NRTK, the wide-lane (WL) 
ambiguities are fixed first and then they are substituted into (9.3) for the narrow-lane 
(NL) AR [22, 23]. After WL ambiguities are fixed, the I-I model becomes 

⎡ 

⎣ 
P 

Φw 

Φ1 

⎤ 

⎦ = 

⎡ 

⎣ 
ef ⊗ A 0 
ew ⊗ A 0 
e1 ⊗ A Is 

⎤ 

⎦[
x 
a1

]
+ 

⎡ 

⎣ 
εP

εΦw

εΦ1 

⎤ 

⎦ (9.4)
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where Φw =
[
ΦT 

(i1,j1,k1), . . . ,  ΦT 
(iw,jw,kw)

]T 
denote (w × s) ambiguity-fixed WL phase 

observations. Φ(i,j,k) = if1Φ1+jf2Φ2+kf3Φ3 

f(i,j,k) 
with f(i,j,k) = if1 + jf2 + kf3 and f1, f2 and f3 

the triple frequencies, respectively. Φ1, Φ2 and Φ3 denote the undifferenced triple-
frequency phase observations. For triple-frequency case, we have two types of WL 
observations i.e., w = 2; while for the dual-frequency case, only one type of WL 
observation, i.e., w = 1. a1 is DD ambiguity vector in meters on frequency L1. εΦw 

and εΦ1 are the residual errors of Φw and Φ1 respectively. The stochastic model is 
then derived via error of propagation law as 

⎡ 

⎣ 
σ 2 PIf 0 0  
0 QΦw 

QΦwΦ1 

0 QΦ1Φw 
σ 2�

⎤ 

⎦ ⊗ Q (9.5) 

where QΦw 
= σ 2�

⎡ 

⎢⎣ 

α2 
(i1,j1,k1) · · · α1w 

... 
. . . 

... 
αw1 · · ·  α2 

(iw,jw,kw) 

⎤ 

⎥⎦ 

w×w 

with α2 
(i,j,k) = (if1)

2+(jf2)
2+(kf3)

2 

f 2 (i,j,k) 
and 

αmn = iminf 
2 
1 +jmjnf 2 2 +kmknf 2 3 

f(im ,jm ,km)f(in ,jn ,kn ) 
. QΦ1Φw 

= σ 2�
[

i1f1 
f(i1 ,j1 ,k1) 

, . . . ,
iwf1 

f(iw ,jw ,kw )

]
is the cofactor matrix 

of Φ1 and Φw. Following [24] and [13], the sum of three coefficients i, j, and k of 
WL observations are equal to 0. 

We ignore tropospheric delay here to avoid too long convergence. The orbit error 
is also ignored since it is at most 1 cm for baseline as long as 200 km [25]. The 
ionospheric delay is estimated by introducing an ionosphere parameter for each DD 
satellite pair. Besides, to enhance the model strength, we introduce the ionospheric 
constraints as pseudo-observations 

ι0 = ι + ει0 , σ  2 
ι Q (9.6) 

where ι0 is the vector of nominated ionosphere delays at first epoch and the variance 
σ 2 ι is used to specify its uncertainty of the errors ει0 . After the first epoch, the filter 
results of ι output from the epoch k − 1 can further be used as a time-dependent 
ionospheric constraint for the current epoch k, i.e., 

ι̂k−1 = ιk + ει̂k−1 + dk , Qι̂k−1 
+ Wk (9.7) 

where ι̂k−1 is the estimate of ιk−1 output from the epoch k − 1 and ει̂k−1 is its 
error with respect to ιk−1. Qι̂k−1 

is its covariance matrix. dk is a zero-mean process 
noise with a covariance matrix Wk = σ 2 d Q. σ 2 d specifies the uncertainty of between-
epoch ionospheric constraints. Ignoring the RZTD parameter and considering the 
ionospheric constraints, the functional model (9.1) becomes the ionosphere-weighted 
(I-W) model as
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⎡ 

⎣ 
P 
Φ 
ι 

⎤ 

⎦ = 

⎡ 

⎣ 
ef ⊗ A μ ⊗ Is 0 
ef ⊗ A − μ ⊗ Is � ⊗ Is 

0 Is 0 

⎤ 

⎦ 

⎡ 

⎣ 
x 
ι 
a 

⎤ 

⎦ + 

⎡ 

⎣ 
εP

εΦ 
ει 

⎤ 

⎦ (9.8) 

where ι denotes the pseudo-observables derived from ionospheric constraints such 
as (9.6) and (9.7). ει denotes the residual errors of ι. The stochastic model of the I-W 
model for the first epoch follows as below 

⎡ 

⎣ 
QP 0 0 
0 QΦ 0 
0 0  σ 2 ι 

⎤ 

⎦ ⊗ Q (9.9) 

With WL ambiguities fixed and substituted into (9.8), the I-W model is trans-
formed to a different form with less parameters but the same number of observations 
as 

⎡ 

⎢⎢⎣ 

P 
Φw 

Φ1 

ι 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

ef ⊗ A 
ew ⊗ A 

μ ⊗ Is 
− μw ⊗ Is 

0 
0 

e1 ⊗ A 
0 

− μ1 ⊗ Is 
Is 

Is 
0 

⎤ 

⎥⎥⎦ 

⎡ 

⎣ 
x 
ι 
a1 

⎤ 

⎦ + 

⎡ 

⎢⎢⎣ 

εp

εΦw

εΦ1 

ει 

⎤ 

⎥⎥⎦ (9.10) 

where μw =
[
μ(i1,j1,k1), . . . , μ(iw,jw,kw)

]T 
with μ(i,j,k) = f 2 1 (1/f1 + 1/f2 + 1/f3)/f(i,j,k) 

is the scalar vector of WL observations to DD ionosphere parameters ι. The posi-
tioning precision of I-W model is influenced by the ionosphere constraints. A strong 
ionosphere constraint with small σ 2 ι and σ 2 d can significantly strengthen the model 
and enhance the positioning performance once the values of ι0 and dk are accurate 
enough. However, the inaccurate values of ι0 and dk will bias the resolution dramat-
ically especially when the ionosphere constraints are deemed strongly and therefore 
degrade the positioning performance [16]. A loose ionosphere constraint can hardly 
degrade the positioning performance but also hardly benefits the AR and positioning. 
In the next section we compare the strength of I-I model and I-W model through 
redundancy analysis to demonstrate that LRTK has comparable model strength with 
NRTK [12]. 

9.3 Model Strength Analysis 

The model strength comparison is divided into three parts including redundancy 
analysis for float solution, success rate (SR) analysis for WL AR and ambiguity 
dilution of precision (ADOP) analysis SR for NL AR. Such a division of compar-
ison corresponds to the three main procedures of RTK technique. Each procedure 
is able to output the coordinate results with different precision and the former two 
procedures are the pre-requisites for the last. The final precise positioning results
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are only available after the NL AR was successfully completed. In other words, the 
analyses of the three main procedures reflect the expected positioning performance 
of RTK and decide whether MFMS SRTK is comparable with NRTK theoretically. 
The dilution of precision (DOP) values and redundancy are usually used to eval-
uate the potential resolving quality of the float solution. However, DOP values only 
depend on the design matrix while redundancy only depends on the numbers of 
observations and parameters of the positioning model. They are all unilateral to be 
employed to compare the model strengths. Hence, we propose to use another indi-
cation named as redundant observation components (ROCs) to evaluate the model 
strength of resolving float solution and derive the related formulae based on a Kalman 
filter. ROCs reflect the expected quality of resolving float solution but is unable to 
reflect the possibility of a successful ambiguity fixing. The SR indicates the a priori 
probability of a successful ambiguity fixing [14] and can be precisely calculated 
based on the given a priori information in a geometry-free (GF) model. Thanks to 
the relative long wavelength, the WL ambiguities are usually fixed to integers based 
on GF model [13]. Hence, we use SR to compare the model strengths for WL AR of 
MFMS SRTK and NRTK. The fixed WL ambiguities are substituted into Eqs. (9.4) 
or (9.10) to improve the NL AR and the NL ambiguities are normally resolved based 
on geometry-based (GB) model due to relatively short wavelength. Since the SR is 
difficult to be calculated in GB model [26], we calculate the ADOP values that also 
reflect the model strengths of NL AR for comparison. We also give the approxi-
mate transformation from ADOP values to SR for a more intuitive reflection on the 
possibility of a successful ambiguity fixing. 

9.3.1 Analysis of Float Solution 

The float solution gives an approximate positioning result and is an input for AR. 
Through evaluating the float solution, one can roughly understand how strong the 
model strength for further AR and precise positioning is. The redundancy defined 
as the number of observations minus the number of estimated parameters can, to a 
certain extent, reflect the model strength and then the expected float solution. With 
the same set of observations, the positioning model with fewer independent param-
eters has larger redundancy and consequently stronger model strength. For a given 
positioning model, more observations result in larger redundancy and also stronger 
model strength. However, for the different positioning models with different types of 
observations, it is difficult to evaluate the positioning precision by comparing their 
model strength with redundancy analysis. For instance, the larger redundancy in the 
single point positioning model with only code observations does not mean that it can 
obtain more precise solutions than the RTK model even with fewer redundancies. In 
this case, one should analyze the ROCs instead of redundancy itself. We therefore 
calculate the ROCs to compare the model strength of SRTK with NRTK to demon-
strate SRTK also has a promising float solution. Since the float solutions are often 
solved sequentially based on a Kalman filter [17, 27], we derive the formula of ROCs
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based on the Kalman filter. The Kalman filter-based float solution reads 

X̂k = Xk + Kk
(
Lk − AkXk

)
(9.11) 

where Xk = Φk,k−1 X̂k−1 is the predicted solution of parameters at epoch k, including 
baseline, ambiguity and ionosphere parameters. Φk,k−1 is the transition matrix and it 

is the identity matrix here. Kk =
(
AT 
k PkAk + PXk

)−1 
AT 
k Pk is the Kalman gain matrix. 

PXk 
is the inverse of covariance matrix of Xk . Lk , Ak and Pk are the observation vector, 

design matrix and weight matrix of Lk at epoch k, respectively. X̂k is the final Kalman 
filter solution. The residuals are then calculated as 

Vk =
[
I − AkKk AkN

−1 
k PXk

][ Lk 

Xk

]
(9.12) 

where Nk = AT 
k PkAk + PXk 

. The redundancy matrix is the projection from the 
observations to residuals and represents the redundancies of observations. However, 
the residuals in a Kalman filter are calculated from not only the real observations Lk 

but also the pseudo-observations (predicted solution of parameters) Xk as shown in 
(9.12). We derive the redundancy matrix Rk based on the relationship that redundancy 
matrix equals to the variance-covariance matrix of the residuals multiplied by the 
weight matrix of corresponding observations as 

Rk = QVk 
Pk =

[
I − AkKk AkN

−1 
k PXk

]
[
P−1 
k 0 
0 P−1 

Xk

][
I − AkKk AkN

−1 
k PXk

]T 
Pk 

= I − AkKk (9.13) 

The diagonal elements of Rk are defined as the ROCs. The redundancy matrix 
is independent of the real observations, but its computation needs the geometry 
information of the design matrix and weight matrix of the observations. Hence, to 
identify the real situation, we use a 100 km baseline to compute the design matrix 
and weight matrix with the I-W model. To make a comparison, a short baseline of 
10 km is computed with the I-I model. Here the long-baseline and short-baseline 
share the same rover station. During the computation, the dual-frequency GPS and 
triple-frequency BDS signals are used with a sampling rate of 1 s and the cut-off 
elevation of 10°. The elevation-dependent stochastic model 

σ = 1.02 

sin θ + 0.02 
σ90◦ (9.14) 

is applied for the undifferenced measurements with a zenith precision of σ90◦ = 2mm  
for phase and 0.2 m for code [28]. For the I-W model of long-baseline, the ionospheric
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Fig. 9.1 The average ROCs 
of all observations 

constraints are empirically applied with ι0 = 0, σι = 10−6len, dk = 0, σd = 10−8len 
where len is the baseline length in meter. 

Figure 9.1 displays the average ROCs of all phase observations and all code obser-
vations respectively. The “code-NRTK” and “code-SRTK” represent the average 
ROCs of code observations for short- and long-baseline, respectively. They are all 
close to 1 after the first epoch, which means that the contribution of code observa-
tions on the final solution is very limited due to their poor precisions except for the 
first epoch. The “phase-NRTK” and “phase-SRTK” represent the average ROCs of 
phase observations of short- and long-baseline, respectively. 

Since the GPS-only NRTK with the I-I model is traditionally used to provide 
NRTK services, we calculate the ROCs of NRTK only with dual-frequency GPS 
signals for further comparison. The results are denoted by “phase-GPS” and “code-
GPS”. Obviously, due to lack of high precision signals, the ROCs of phase-GPS are 
relatively smaller than those of phase-NRTK with MFMS signals and even smaller 
than those of phase-SRTK with the I-W model based MFMS signals. We conse-
quently conclude that the expected performance of the float solution of MFMS 
SRTK is worse than MFMS NRTK but better than GPS-only NRTK. Such a compar-
ison results of the expected float solution is sufficient to support that LRTK has 
potential to provide comparable positioning service as NRTK after the ambiguities 
being correctly fixed since the performance of ambiguity-fixed solutions of GPS-only 
NRTK is comparable to MFMS NRTK with a denser CORS network. We further need 
to analyze the AR efficiency to transfer the “potential” to “ability”. 

9.3.2 Analysis of WL AR 

The SR is a useful indicator reflecting whether the ambiguity can be fixed to its 
integer [14]. We analyze the AR efficiency of different WL combinations used in 
SRTK and NRTK by analyzing their SRs. With the GF model, one can derive the float 
ambiguity estimate as â(i,j,k) = P(l,m,n)−�(i,j,k) 

λ(i,j,k) 
with wavelength λ(i,j,k), and its standard 

deviation (STD) as σâ(i,j,k) = 
√

σ 2�α2 
(i,j,k)+σ 2 P α2 

(l,m,n) 
λ(i,j,k) 

. For NRTK, the float WL ambiguity 
is adequately assumed to be unbiased. Its SR is
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Ps,u = 2�
(

1 

2σâ(i,j,k)

)
− 1 (9.15) 

where�(x) = ∫ x 
−∞ 

1 √
2π exp

(
− v2 

2

)
dv. For long-range SRTK, the float WL ambiguity 

could be biased by the unmodelled ionospheric delay. The SR of fixing this biased 
WL ambiguity reads 

Ps,b = �

(
1 + 2δâ(i,j,k) 

2σâ(i,j,k)

)
+ �

(
1 − 2δâ(i,j,k) 

2σâ(i,j,k)

)
− 1 (9.16) 

where δâ(i,j,k) = μ(i,j,k)+μ(l,m,n) 
λ(i,j,k) 

ι represents the bias of â(i,j,k) caused by unmodelled 
ionospheric delay ι. In theory, Ps,b is smaller than Ps,u for the same WL combination 
with the same STD σâ(i,j,k) . However, in practice, the SRs would be comparable for WL 
AR in NRTK with (9.15) and in long-range SRTK with (9.16). The reason is that the 
STD σâ(i,j,k) is typically very small with several epochs and in such a case, a small bias 
δâ(i,j,k) in cycles (due to the large wavelength) can hardly affect the SR [13]. Moreover, 
there are some ionosphere-free (IF) WL combinations with which the unbiased float 
solution is also obtainable in long-range SRTK. Table 9.1 presents the SRs of several 
sets of commonly used WL combinations for NRTK and SRTK, respectively. The 
SRs are computed for the number of epochs from 1 to 5. In computations, we set 
σ� = 5mm  and σP = 0.5m, and for long-range SRTK, ι = 0.3m  as an error budget 
representing the baseline length typically from 100 to 200 km [7]. The SRs of WL 
AR in SRTK are very close to those in NRTK as shown in Table 9.1. Therefore, 
LRTK has a comparable efficiency for WL AR as NRTK.

9.3.3 Analysis of NL AR 

The ADOP is proposed by [15] and defined as, 

ADOP = √
detQâ 

1 
n (9.17) 

where Qâ is the covariance matrix of float ambiguity solution with dimension n. 
ADOP is a well-known scalar measure used to infer the strength of the GNSS model 
for AR [29]. Based on ADOP, the upper bound of SR can be computed [26] 

Ps 
∼=

[
2�

(
1 

2ADOP

)
− 1

]n 

(9.18) 

With ADOP of 0.15, the SR of 99% can be obtained. Although this upper bound 
could be loose [28], it can give insight into AR capability for the purpose of compar-
ison. Hence, we compare the ADOP values of NL AR for a short baseline with the I-I
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â (

i,
j,
k )

 (
cy
cl
e)

SR
 (
%
) 

1
2

3
4

5
6 

SR
T
K
 

ι =
 0
.3
 m

 
G
PS

�
(1

,−
1,
0 )

P
(1

,1
,0

)
0.
86
2

0
0.
41
5

77
.2
1

91
.1
8

96
.3
2

98
.4
1

99
.3
0 

B
D
S

�
(0

,1
,−

1 )
P

(0
,1

,1
)

4.
88
4

0
0.
07
8

10
0

10
0

10
0

10
0

10
0

�
(1

,4
,−

5 )
P

(1
,1

,1
)

6.
37
1

2.
01
5

0.
14
3

99
.7
7

10
0

10
0

10
0

10
0 

N
R
T
K
 

ι =
 0
 

G
PS

�
(1

,−
1,
0 )

P
(1

,1
,0

)
0.
86
2

0
0.
41
5

77
.2
1

91
.1
8

96
.3
2

98
.4
1

99
.3
0 

B
D
S

�
(0

,1
,−

1 )
P

(0
,1

,1
)

4.
88
4

0.
07
8

10
0

10
0

10
0

10
0

10
0

�
(1

,4
,−

5 )
P

(1
,1

,1
)

6.
37
1

0.
14
3

99
.9
5

10
0

10
0

10
0

10
0 

N
ot
e 

σ
 SE
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Fig. 9.2 The ADOP values 
of NL AR 

model and a long baseline with the I-W model, which specify the NRTK and SRTK, 
respectively. The parameter settings in the computations are completely the same as 
for computing ROCs in Sect. 9.3. The results are shown in Fig. 9.2. 

The legends of SRTK and NRTK denote the ADOP values for the long baseline 
with the I-W model and for the short baseline with the I-I model, respectively. The 
regular fluctuations are caused by the change of satellite subset for partial NL AR [22, 
30]. Although the I-I model of NRTK indeed have much smaller ADOP values than 
the I-W model of SRTK, the ADOP values of SRTK, whose corresponding upper 
bound of SRs exceed 99% in a few epochs, are already small enough for achieving 
comparable NL AR efficiency as NRTK. 

The AR efficiency of SRTK with I-W model is comparable to NRTK with I-I 
model based on MFMS observations. Combined with the conclusion based on the 
analysis with ROC in Sect. 9.3.1, we roughly conclude that long-range MFMS SRTK 
has ability to provide comparable positioning service as NRTK with the I-I model 
when the baseline is no more than 100 km theoretically. In following, we will make a 
comprehensive comparison with real data processing to verify our rough conclusion. 

9.4 Results and Discussion 

Three experiments with real observations were carried out to compare the perfor-
mance of long-range SRTK and NRTK in Shanghai. The long-range MFMS SRTK 
software was developed by the GNSS group at Tongji University, which is named as 
Tongji real-time kinematic positioning (TJRTK) in the following. The first experi-
ment compares the performance of TJRTK with Trimble-VRS (TVRS) maintained by 
the Shanghai Institute of Surveying and Mapping. This experiment was conducted on 
land within the Shanghai area. The second experiment compares TJRTK with Land-
Star that is another NRTK system maintained by the Shanghai Center of Maritime 
Surveying and Mapping (SCMSM), Ministry of Transport. This experiment was 
conducted in the offshore area of the Yangtze river estuary near Shanghai. Besides, 
the third experiment comprehensively evaluates the performance of TJRTK in a 
variety of long baselines, including the positioning accuracy, ratio of fixed solution 
as well as the initialization time. The initialization time in the following refers to the 
time to first fix the NL ambiguities. In all experiments, the dual-frequency GPS and
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Fig. 9.3 Initialization 
time (m) of TJRTK and 
TVRS 

triple-frequency BDS observations were used with the elevation-dependent model 
(9.14). 

9.4.1 Comparison Between LRTK and TVRS 

For SRTK, we set up a reference station in the center of Shanghai. There are a total 
43 points with distances to reference station from 10 to 60 km. We conducted RTK 
at each of 43 points by using TJRTK and TVRS, respectively. At each point, we 
restarted both TJRTK and TVRS four times and each time we occupied the point 
for 15 s after the initialization and recorded the average ambiguity-fixed solution as 
well as the initialization time. Hence, we have four coordinate solutions and four 
initialization time results for each software at every point. 

Figure 9.3 shows the probability distribution of initialization time of TJRTK and 
TVRS at each point. The initialization time is less than 60 s by larger than 90% for 
both TJRTK and TVRS. The average initialization time is about 10 s for TVRS and 
12.5 s for TJRTK. The static experiment displays the positioning performance of 
TJRTK and TVRS resolving 43 points. The statistics indicate that TJRTK can reach 
equivalent positioning performance including centimetre-level positioning precision 
and quick convergence compared to TVRS. 

9.4.2 Comparison Between LRTK and LandStar 

Another experiment was carried out in the offshore area of the Yangtze river estuary 
near Shanghai. In this area, the LandStar system maintained by SCMSM provides 
the NRTK service with 12 CORS stations. We conducted the kinematic positioning 
in the area of blue shadow, and changed 5 reference stations (green circles) to test 
the performance of our TJRTK in varying baseline length. As shown in Fig. 9.4, 
all of two LandStar receivers and one TJRTK receiver were mounted on a plane, 
and the TJRTK receiver was exactly at the middle of two LandStar receivers. Such 
layout guaranteed that the position of TJRTK receiver was the mean position of 
two LandStar receivers. As a result, one can compare the TJRTK solution with the
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Fig. 9.4 Illustration of rover 
stations of TJRTK and 
LandStar 

mean position of two LandStar solutions. All RTK solutions were recorded second 
by second except that the LandStar results might discontinue sometimes due to the 
loss of NRTK correction communication. 

In the following comparison, the mean value of RTK solutions from two LandStar 
receivers is used as reference. Then the difference between the TJRTK solution and 
its reference provided by the LandStar NRTK system is defined as the coordinate 
differences of TJRTK. To form different baseline lengths, during the RTK experi-
ment, we changed the reference stations of R1, R2, R3, R4 and R5, respectively, 
and for each reference station, the RTK experiment lasted by about 3 h. Figure 9.5 
presents the coordinate differences of TJRTK with different reference stations where 
the baseline lengths are about 30, 45, 78, 140 and 160 km, respectively. The solu-
tion gaps are due to the gaps in the LandStar NRTK corrections and then the lack 
of LandStar reference solutions. Table 9.2 provides the root-mean-square (RMS) 
statistics of TJRTK coordinate differences and the initialization time to get the first 
ambiguity-fixed solutions.

From Fig. 9.5, the coordinate differences are mostly smaller than 5 cm for N 
and E components on both short and long baselines. The coordinate differences are 
relatively larger for the U component but all are much smaller than 20 cm and even 
smaller than 10 cm for most of epochs. With the LandStar NRTK as references, the 
RMS of TJRTK coordinate differences are all smaller than 2 cm for the two horizontal 
components. Such precisions are better than those of the first experiment. The reason 
is that the observation environment on the ocean is very open and much better than 
that in the urban area. The horizontal RMS are comparable for the different baselines, 
whereas the vertical RMS are larger in the long-baseline tests than those in the short-
baseline tests. The reason is as follows. In our processing the RZTD parameter was 
not set up and the increased residual tropospheric delays in the long baselines were to 
a certain degree absorbed by the height parameter [31]. Again, due to the increased 
residual errors in long baselines, the initialization time of TJRTK increased as well. 
In terms of positioning precision and convergence time, it can be concluded that the 
performance of TJRTK is comparable to NRTK for baselines shorter than 50 km. 
For baselines longer than 100 km, TJRTK can still obtain comparable horizontal 
precision while the vertical precision and convergence time deteriorate.
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Fig. 9.5 TJRTK coordinate 
differences with R1, R2, R3, 
R4 and R5 (from top to 
bottom) as reference station
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Table 9.2 The statistics of TJRTK coordinate differences and the initialization time 

Reference station Baseline length (km) Initialization time (s) RMS (cm) 

N E U 

R1 30 10 2.8 1.9 3.4 

R2 45 0 2.6 2.2 4.8 

R3 78 8 1.6 2.3 7.1 

R4 140 41 1.8 2.5 10.3 

R5 160 66 2.5 1.7 5.9

9.4.3 Performance Assessment of LRTK 

In the former two experiments, we evaluated the positioning performance of TJRTK 
by comparing it with NRTK services in urban and ocean environments. In this exper-
iment, we further evaluate the TJRTK performance in detail to show its capability to 
provide a high-precision RTK positioning service in Shanghai. Three static stations 
are located to form two long baselines of 122 km (TJ01-TJ03) and 147 km (TJ02-
TJ03) and one short baseline of 27 km (TJ01-TJ02). The observation duration is 
24 h and sampling rate is 1 s. The precise coordinates of the three stations were 
computed with the Bernese GNSS Software Version 5.2 in precise point positioning 
(PPP) mode with all 24-h observations and precise orbit products. The solution serves 
as the benchmark in the following analyses. All three baselines were resolved with 
TJRTK. The coordinate differences shown in Fig. 9.6 are defined as the differences 
between the TJRTK results and their benchmark. The horizontal axis represents the 
elapsed time in the unit of Universal Time Coordinated (UTC) hour. The fluctuations 
of the coordinate differences during the UTC time 4–6 (local time 12–14) of the 
clock are slightly larger than other periods due to the active ionospheric condition 
at noon. The RMS statistics after the initialization time are presented in Table 9.3. 
The horizontal accuracies are about 2 cm. The vertical accuracies of long baselines 
are inferior relative to those of short baseline since the RZTD parameter was not 
set up in TJRTK  [31]. The ratio of fixed solutions is defined as the proportion of 
the number of fixed solutions relative to the number of total solutions. The ratios of 
fixed solution exceeded 99% for all three baselines. It means that the ratio of fixed 
solutions is independent of the baseline length.

Besides, the three baselines form a synchronous closed loop. The misclosure of 
integer ambiguities of the same DD satellite pair from three baselines should be 
equal to 0. With this theoretical condition, we can check two indicators to evaluate 
the AR efficiency. One is the ratio of correctly fixed ambiguities (RCFA), which is 
defined as the ratio of the number of correctly fixed ambiguities to the total number of 
fixed ambiguities. The other indicator is the ratio of correctly fixed solutions (RCFS), 
which is defined as the ratio of the number of correctly fixed solutions to the total 
number of fixed solutions and a correctly fixed solution is confirmed only when all 
ambiguities of one epoch are correctly fixed. Both RCFA and RCFS exceed 99.9%
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Fig. 9.6 The coordinate 
differences of TJ02-TJ01 
(top), TJ01-TJ03 (middle) 
and TJ02-TJ03 (bottom) 

Table 9.3 The RMS accuracies of TJRTK coordinate differences and their corresponding ratios of 
fixed solutions 

Baseline (length) Ratio of fixed solutions (%) RMS (cm) 

N E U 

TJ02-03 (147 km) 99.09 1.16 2.38 5.52 

TJ01-03 (122 km) 99.86 1.12 1.86 5.17 

TJ02-01 (27 km) 99.63 1.41 1.54 2.80

in this experiment. It means that the correctness of ambiguity fixing in TJRTK does 
not degrade with increasing baseline length. 

However, the condition of zero misclosure of ambiguities from three baselines 
is not sufficient to confirm the correct ambiguity fixing since the ambiguities of 
two baselines could be biased with the same integer value although it rarely occurs. 
Hence, we check the correctness of TJRTK solutions with the misclosure of three 
baseline solutions since any wrong ambiguity fixing will definitely bias the baseline
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Fig. 9.7 Closure 
discrepancy sequences of 
baseline parameters in 
geocentric coordinate system 

solutions. As shown in Fig. 9.7, except for the beginning epochs with convergence, 
all misclosures are much smaller than 10 cm and most of them are smaller than 5 cm. 
The results further confirm the AR correctness of TJRTK. 

We finally evaluate the initialization time of TJRTK. We included more stations 
to form a total of 11 baselines with lengths from 40 to 130 km. For each baseline, 
we restarted the RTK engine hourly to obtain 24 results. In total 264 results of 
initialization time were obtained. The probability mass function (PMF) with respect 
to the initialization time is shown in Fig. 9.8. The results indicate that the initialization 
time is smaller than 30 s with 100% for short baselines, while it is smaller than 
30 s with 85% and 40 s with 90% for long baselines, respectively. Considering 
that in long-baseline RTK, the MFMS observations are applied, one can not always 
fix all ambiguities and even does not necessarily need to fix all ambiguities for 
achieving high-precision positioning. An AR fixing ratio of 80% of is already enough 
to compute high-precision solutions. 

Based on the experimental analysis on the positioning accuracy, AR efficiency 
and initialization time, it is summarized that the long-range SRTK exhibits the rather 
comparable performance as NRTK when the baseline is shorter than 50 km. Even 
for the baseline as long as 100 km, the positioning accuracies are still comparable 
with NRTK except for the vertical component and relatively longer convergence. 
Therefore, we can reassure that the long-range SRTK is able to provide comparable 
positioning service with the NRTK in Shanghai with much reduced expense.

Fig. 9.8 Initialization time 
of TJRTK 
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9.5 Conclusion 

We explore the capability of LRTK (implemented by TJRTK software) with 
MFMS observations in high-precision positioning from both theoretical and practical 
aspects. Regarding the medium city with Shanghai-like area, we try to answer the 
question whether we can use the long-range SRTK to provide comparable positioning 
service as NRTK system. The research findings and conclusions are summarized as 
follows: TJRTK is able to provide centimeter-level positioning service in Shanghai 
based on RTK instead of NRTK. The costs of the CORS infrastructure maintenance 
needed by NRTK will be dramatically reduced by TJRTK; the positioning perfor-
mance of TJRTK is comparable to NRTK when the baseline is generally shorter than 
50 km. Even when the baseline is extended to about 100 km, TJRTK can still provide 
the desirable horizontal solutions with relatively enlarged convergence time; TJRTK 
has a very promising prospect for offshore applications, where it is rather difficult or 
very expensive to establish and maintain a CORS network on ocean. With TJRTK, 
one can employ the reference station on the shore to realize the high-precision RTK 
on a large area of offshore. 
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Chapter 10 
ERTK: Extra-Wide-Lane RTK 

10.1 Introduction 

So far, all satellites of both BeiDou Navigation Satellite System (BDS) and Galileo 
systems and partial satellites of Global Positioning System (GPS) have been 
providing at least triple-frequency signals. In near future, the triple-frequency signals 
will be fully available. And future Global Navigation Satellite System (GNSS) will 
transmit three or more frequency signals. It is anticipated that the efficiency and the 
reliability of carrier ambiguity resolution (AR) for long distance can be significantly 
enhanced with additional frequency signals, which is rather crucial to realize real-
time precise positioning at regional or even global scales. It is an irreversible trend to 
develop the multi-frequency (with three or even more frequencies) GNSS systems. 
Compared to dual-frequency GPS signals, the additional frequency signals will speed 
up the carrier-phase AR [1–3], improve the precision and reliability of positioning 
[4], mitigate or inverse the various categories of error sources [5, 6], reduce the 
communication bandwidth of transmission and so on [7], therefore promising for 
long baseline real-time kinematic positioning (RTK) [8] and large-scale network 
RTK applications [2, 9]. 

The previous studies on triple-frequency signals are as following logical sequence. 
Since the more combinations can be formed by triple-frequency signals with respect 
to the dual-frequency signals, the very beginning studies were mainly on seeking 
for optimal combinations of various applications, for instance, fast AR [2, 10, 11], 
cycle slip detection [12, 13], high-precision positioning and ionosphere inversion etc. 
[6]. It is concluded that no matter what method was applied, the obtained combina-
tions are nearly the same. Afterwards, many studies focused on the triple-frequency 
AR based on these combinations. Many methods, typically with three carrier ambi-
guity resolution (TCAR) and cascading integer resolution (CIR) as representations, 
were proposed for successively fixing ambiguities in order of wavelengths [1, 10, 
11, 14, 15]. Actually, all of these methods are essentially equivalent to a bootstrap-
ping procedure [16]. Regarding triple-frequency AR, a common conclusion advises
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that the extra-wide-lane (EWL)/wide-lane (WL) ambiguities can be reliably solved 
instantaneously or at most with very few epochs nearly without distance restriction, 
but the fast narrow-lane (NL) AR is still challenging depending on the atmospheric 
behaviors over long baselines [17]. In addition, as another important benefit, the 
improvement of observation redundancy and then the reliability gained by triple-
frequency signals was numerically investigated by [4], which is rather important in 
quality control. However, all these works stayed on the theoretical study or numerical 
analysis based on purely simulated triple-frequency data. Until the end of 2013 when 
the BeiDou Interface Control Document (ICD) was released, the real triple-frequency 
BDS data was used to intensively demonstrate the triple-frequency capabilities for 
AR [18, 19], precise point positioning [20, 21], short-baseline RTK [22–24] as well  
as the stochastic modelling [25]. 

As aforementioned, the superiority of triple-frequency GNSS signals with respect 
to dual-frequency ones is to form more useful combinations, of which the EWL 
combinations are most useful for instantaneous AR with very high success rate over 
several tens to hundred kilometer baselines [2, 11, 26]. However, in a long term, we 
are used to start with the centimetre RTK solutions after all carrier ambiguities are 
fixed although this process may take many minutes particularly when the baselines 
are over tens to hundreds of kilometers. In this processing, the ambiguity-fixed EWL 
observations serve as pseudoranges but with higher precision than actual pseudor-
anges. It is thus expectable to obtain a better RTK solution directly with EWL than 
pseudorange, which was foreseen in Feng and Li [26]. 

This chapter dedicates to fully exploit the RTK capability of virtual EWL signals 
over long baselines, which is referred to as Extra-wide-lane RTK (ERTK). First of 
all, the canonical formulae of single-epoch float ambiguity solution are derived for 
a variety of models, i.e., ionosphere-weighted, -fixed and -float in both geometry-
based and geometry-free models. Based on these canonical formulae the easiness 
of EWL AR and the difficulty of NL AR are shown. Then three ERTK models, 
ionosphere-ignored, -float and -smoothed models, are formulated and their rela-
tionships are discussed. Finally, by using the real triple-frequency BDS data from 
a 4-station network with baseline lengths from 33 to 75 km, the ERTK perfor-
mance is numerically demonstrated. The results show that the ionosphere-ignored 
model is overall better than the ionosphere-float model. Such result can be further 
improved to centimeter level by ionosphere-smoothed model, which is equivalent 
to the ionosphere-float model smoothed by adding NL observations but without 
complicated NL AR. 

The chapter is structured as follows. The canonical formulae of single-epoch 
float ambiguity solution are derived, based on which we show the easiness of EWL 
AR and the difficulty of NL AR. Then we first formulate two ERTK models, i.e., 
ionosphere-ignored and -float models. The ERTK equivalence of using any two 
EWL/WL observations is proved. Besides, the condition for choosing ionosphere-
ignored or -float model is presented. Finally, the ionosphere-smoothed ERTK model 
is introduced. The experiment and analysis are carried out, and some concluding 
remarks are summarized.
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10.2 Multi-frequency Observation Model 

In this section, the functional and stochastic models of single-epoch f -frequency 
double-differenced (DD) observations together with ionospheric constraints are 
outlined at first. Based on which, the canonical formulae of covariance matrix of 
float ambiguity solution are derived. Then the difficulty of NL AR and the easiness 
of EWL AR are numerically demonstrated. 

Considering the residual ionosphere and troposphere effects, the DD observations 
equations of code and phase on f frequencies read 

E

([
P 
φ

])
=

[
ef ⊗ A ef ⊗ g μ ⊗ Is 0 
ef ⊗ A ef ⊗ g − μ ⊗ Is � ⊗ Is

]
⎡ 

⎢⎢⎣ 

x 
τ 
ι 
a 

⎤ 

⎥⎥⎦ (10.1) 

where P =
[
PT 
1 , . . . ,  PT 

f

]T 
is the f -frequency code observations with Pj the observa-

tions of frequency fj. ϕ is the f -frequency phase observations with the same structure 
as P. A is the design matrix to baseline parameter x; while g is the mapping function 
vector to relative zenith troposphere delay (RZTD) τ after correcting with University 
of New Brunswick 3 (UNB3) model [27]. μ = [

μ1, . . . , μf
]T 

with μj = f 2 1 /f 
2 
j the 

scalar vector to DD ionosphere parameters ι. � = diag
([

λ1, . . . , λf
])

is diagonal 

matrix of wavelengths to DD ambiguities a =
[
aT 1 , . . . ,  aT f

]T 
. The subscript s denotes 

the number of DD satellite pairs. 
We specify the stochastic model of (10.1) as  

D

([
P 
φ

])
=

[
QP 0 
0 Qφ

]
⊗ Q = Qf ⊗ Q (10.2) 

where QP = diag
([

σ 2 P1 
, . . . , σ  2 Pf

])
and Qφ = diag

([
σ 2 φ1 

, . . . , σ  2 φf

])
with σ 2 Pj 

and 

σ 2 φj 
the variance scalars of undifferenced code and phase on the jth frequency. Q is an 

(s × s) cofactor matrix of DD observations with elevation-dependent weighting. In 
following, the unique variances are assumed respectively for code and phase, namely, 
QP = σ 2 PIf and Qφ = σ 2 φ If . 

The ionospheric constraints are applied as pseudo-observations to generalize the 
model (10.1) as  

E(ι) = ι0, D(ι) = σ 2 ι Q (10.3) 

where the variance σ 2 ι is used to model the spatial uncertainty of baseline ionosphere. 
Incorporating the ionosphere constraints into model (10.1) obtains the ionosphere-
weighted model.
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10.2.1 Canonical Formulae of Float Ambiguity Solution 

The tropospheric delays have been corrected by at least 90% with UNB3 model and 
the residual tropospheric delays are rather small. If they are further compensated 
by setting up a RZTD parameter, it will take long time for convergence due to high 
correlation between RZTD and height component [28]. Therefore, from now on, the 
residual tropospheric delays are ignored after all we emphasize the quick convergence 
with EWL observations. 

Firstly, the ionosphere-weighted model is introduced and deduced. Applying the 
least-squares (LS) criterion to solve observation models (10.1) with ionospheric 
constraints (10.3) and stochastic model (10.2), the normal equations of parameters 
x, ι and a are derived. By reducing the parameters x and ι, we obtain the covariance 
matrix of float ambiguity solution â as 

Q(based) 
ââ = [

�−1(σ 2 φ If + αμμT
)
�−1] ⊗ Q + � ⊗ PAQ (10.4) 

where PA = A
(
ATQ−1A

)−1 
ATQ−1 and 

α = [
σ −2 

ι + σ −2 
P μT μ

]−1 
(10.5a)

� = qqT 

eT f
(
σ 2 PIf + σ 2 ι μμT

)−1 
ef 

(10.5b) 

q = �−1[If + ασ −2 
P μμT

]
ef (10.5c) 

In case of geometry-free model, i.e., A = Is, then 

Q(free) 
ââ = [

�−1(σ 2 φ If + αμμT
)
�−1 + �

] ⊗ Q (10.6) 

Since Q(free) 
ââ is a rank−(s − 3) update of Qââ, in terms of the ambiguity precision, 

it is easy to prove Q(free) 
ââ ≥ Q(based) 

ââ for number of DD satellite pairs s ≥ 3 [29]. 
The superscripts ‘based’ and ‘free’ denote the geometry-based and -free model, 
respectively. 

Next, we present two extreme cases identified by variance of ionospheric 
constraints, i.e., σ 2 ι = ∞  and 0, which are referred to as ionosphere-float and 
ionosphere-fixed model, respectively. 

Secondly, the ionosphere-float model with σ 2 ι = ∞  is analyzed and presented. 
The ionosphere-weighted model reduces to the ionosphere-float model when the 
variance of ionospheric constraints is extremely large (i.e.,σ 2 ι = ∞), namely the 
ionospheric constraints are unavailable. In such case, the variables in (10.4) and 
(10.6) become
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α∞ = σ 2 P
(
μT μ

)−1 
(10.7a)

�∞ = σ 2 P

[
f − 

eT f μμTef 

μT μ

]−1 

q∞qT ∞ (10.7b) 

q∞ = �−1

[
If + 

μμT 

μTμ

]
ef (10.7c) 

Here the matrix inverse was applied in derivation for the denominator of (10.5b). 
Substituting these new variables (10.7a)–(10.7c) into (10.4) and (10.6) yields the 
covariance matrix of float ambiguity solution in geometry-based and geometry-free 
ionosphere-float model, respectively. 

Then the ionosphere-fixed model with σ 2 ι = 0 is derived and analyzed. The 
ionosphere-weighted model reduces to the ionosphere-fixed model when σ 2 ι = 0. It  
implies two situations: (i) the ionospheric biases are indeed precisely known, which 
is the best case to gain the strongest model strength; (ii) the ionospheric biases are 
completely ignored. This makes sense for short baselines that the ionospheric biases 
are small enough to be ignored. However, for long baselines discussed in this chapter, 
it leads to actually the ionosphere-ignored (biased) model. In this case, the variables 
in (10.4) and (10.6) reduce to 

α0 = 0, �0 = σ 2 P 
q0q

T 
0 

f 
, q0 = �−1 ef (10.8) 

Substituting these new variables into (10.4) yields the covariance matrix of float 
ambiguity solution in geometry-based ionosphere-fixed model 

Q(based) 
ââ = σ 2 φ�−2 ⊗ Q + σ 2 P

�−1 ef eT f �
−1 

f
⊗ PAQ (10.9) 

while substituting them into (10.6) yields the covariance matrix of float ambiguity 
solution in geometry-free ionosphere-fixed model 

Q(free) 
ââ =

[
σ 2 φ�−2 + σ 2 P

�−1 ef eT f �
−1 

f

]
⊗ Q (10.10) 

As mentioned, the ionospheric biases would exist on long baselines, denoted by 
ιb, the float ambiguity solution will be biased and the bias is derived as 

b(based) 
â =

[
−�−1 μ ⊗ Is −

�−1 ef eT f μ 
f

⊗ PA

]
ιb (10.11) 

for geometry-based model and
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b(free) 
â = −�−1

(
If + ef eT f /f

)
μ ⊗ ιb (10.12) 

for geometry-free model. 
Based on the canonical formulae of covariance matrix of float ambiguity solu-

tion, we numerically study the single-epoch AR capabilities of different models 
by analyzing their success rates. Both geometry-based and geometry-free models 
are examined, for which the different types of ionosphere models are identified 
by assigning the corresponding variances of ionospheric constraints. Regarding 
the computation of success rate, the bootstrapped success rate is employed due to 
its tightest bound of actual success rate and very efficient computation [30]. The 
geometry-free model is free of effect of satellite geometry, one can directly compute 
success rate based on the covariance matrix Q(free) 

ââ . Different from geometry-free 
model, the geometry-based model is affected by the variant satellite geometry. We 
therefore compute the single-epoch success rate every minute and total 1440 success 
rates are obtained over 24 h. Then the mean of success rates is computed. Since 
the success rate would change for the different number of ambiguities, the different 
number of satellite pairs from 1 to 4 are analyzed with σP = 0.2 m and σφ = 3mm  
and the varying standard deviation (STD) of ionospheric constraints as σι = 0, 5,  
10 cm and ∞. 

Corresponding to the number of satellite pairs from 1 to 4, the number of triple-
frequency ambiguities is from 3 to 12. Related study by the authors reveals that (i) 
for both geometry-based and -free models, the success rates become smaller when 
the ionospheric constraints become weaker with larger σι. (ii) For the geometry-
free model, the success rates get definitely smaller when the more satellite pairs are 
involved except for σι = 0. This makes sense because the geometry gain from more 
satellites has no contribution to geometry-free model. (iii) For the geometry-based 
model, the variation of success rate depends on the balance of the satellite geometry 
and the number of ambiguities. When the success rate increased by geometry gain 
from more satellites is larger than that reduced by more ambiguities, the success rate 
will increase and vice versa. For instance, the success rate of 3 satellite pairs is larger 
than that of 2 satellite pairs but smaller than that of 4 satellite pairs. 

In summary, the single-epoch full ambiguity resolution (FAR) is possible with 
99.99% success rate only in case of very strong ionospheric constraints (ionosphere-
fixed model in our case). In other words, the single-epoch FAR is feasible only 
for short baselines where the ionospheric constraints can indeed be strong. For long 
baselines with weak ionosphere constraints, single-epoch FAR is impossible for both 
geometry-based and -free models. 

10.2.2 Transformed EWL AR 

The result above has indicated the difficulty of single-epoch triple-frequency FAR. 
One may naturally tend to the partial ambiguity resolution (PAR) that was introduced
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in [29]. PAR is a flexible method that allows one to fix a subset of ambiguities, instead 
of aiming to fix the complete ambiguity vector, in terms of user-defined success rate. 
Many literatures studied the strategies of ambiguity subset selection for PAR for 
various applications, and promising results were achieved, see e.g. [31–35]. In this 
study, we select the ambiguity subset for PAR by transforming the triple-frequency 
ambiguities with a pre-set between-frequency transformation matrix. As a result, 
the so-called EWL combinations are obtained. The rationale behind using EWL 
combinations is that their ambiguities, due to longer wavelengths, can be resolved 
better than the original ambiguities. 

With ionosphere-weighted geometry-free model as a case study, we apply 
the between-frequency transformation matrix

(
zT E ⊗ Is

)
with zT E = [

z1 z2 z3
]
to 

transform the covariance matrix (10.6). It follows

(
zT E ⊗ Is

)
Q(free) 

ââ (zE ⊗ Is) = zT E
[
�−1(σ 2 φ If + αμμT

)
�−1 + �

]
zE ⊗ Q 

= σ 2 ẑ ⊗ Q (10.13) 

with 

σ 2 ẑ = zT E
[
�−1(σ 2 φ If + αμμT

)
�−1 + �

]
zE (10.14) 

Since Q is a constant matrix, one can minimize the scalar σ 2 ẑ , i.e., σ 2 ẑ = min, to  
obtain the optimal transformation matrix zT E . The least-squares ambiguity decorrela-
tion adjustment (LAMBDA) method [36] can be applied to solve this minimization 
problem where the zero-vector plays the role of float solution. 

For ionosphere-fixed model of σ 2 ι = 0, the variance scalar becomes 

σ 2 ẑ = zT E

[
σ 2 φ�−2 + σ 2 p

�−1 ef eT f �
−1 

f

]
zE (10.15) 

In this case, the bias (10.12) is accordingly transformed as: 

b(free) 
ẑ = (

zT E ⊗ Is
)
b(free) 
â 

= −  
1 

f 
zT E�−1

(
f If + ef eT f

)
μιb = −  

1 

f 
zT Eχιb (10.16) 

with χ = f �−1 μ + �−1 ef eT f μ. In such ionosphere-fixed model with bias, both 
variance and bias should be taken into account to obtain the best transformation matrix 
zT E . It further assumes that the ionospheric biases are unique for all DD satellites, then 
ιb = esιb. The mean square error (MSE) is applied as a measure by capturing both 
the variance and bias: 

σ 2 ẑ + b(free) 
ẑ b(free) 

ẑ = zT E
[
σ 2 φ�−2 + 

σ 2 P 
f

�−1 ef eT f �
−1 + 

ι2 b 

f 2 
χχ  T

]
zE = min (10.17)
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The LAMBDA method is again used to solve this minimization problem. 
By solving minimization problem (10.15) with varying ionospheric constraints, 

σι = 5, 10, 15 and 20 cm, and the minimization problem (10.17) with σι = 0 
and varying ionospheric biases ιb = 0.1, 0.2, 0.3 and 0.4 m, three EWL combi-
nations, [0, − 1, 1], [1, 3, − 4] and [1, 4, − 5], display the superiority in obtaining 
high success rates. Their wavelengths are 4.884, 2.765 and 6.371 m, respectively. To 
intuitively show the performance of these three combinations, their success rates of 
one DD satellite pair are computed with varying settings shown in related study by 
the authors where σP = 0.2 m and σφ = 3mm. For ionosphere-weighted (unbiased) 
model, the success rate of rounding method is applied while for the ionosphere-fixed 
(biased) model, the bias-affected rounding success rate is used [37]. 

In general, the success rate can be improved, although the improvement is very 
slightly, by strengthening the ionospheric constraint in ionosphere-weighted model 
and by reducing the ionospheric bias in ionosphere-fixed model. The results overall 
reveal that the single-epoch EWL AR can be done in very high success rate with 
either ionosphere-weighted or -fixed model even for long baselines with ionospheric 
constraint of σι = 20 cm or ionospheric bias of ιb = 0.4 m. Therefore, although 
the single-epoch FAR is impossible, one can still instantaneously fix the EWL 
ambiguities with very high success rate. 

10.3 Mathematical Model 

Once two EWL ambiguities are fixed, the ambiguity-fixed EWL observation plays 
the role of pseudorange but with higher precision. One can immediately starts the 
RTK with ambiguity-corrected EWL observations, which is referred to as ERTK. In 
this section, two ERTK models, i.e., ionosphere-ignored and -float, are presented first. 
Then the ERTK equivalence of using any two EWL observations is proven. Finally, 
the condition of selecting either ionosphere-ignored or ionosphere-float model is 
discussed. 

10.3.1 Ionosphere-Ignored and -Float Models 

If the DD ionospheric biases are so small to be ignored or the biased solution is 
acceptable, the ionosphere-ignored ERTK model is formulated

[
P 
φE

]
= (e5 ⊗ A)x (10.18) 

where φE =
[
φT 

(0,−1,1) φ
T 
(1,3,−4)

]T 
. The stochastic model reads
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[
σ 2 PI3 0 
0 QφE

]
⊗ Q with QφE 

= σ 2 φ

[
α2 

(0,−1,1) αcross 

αcross α2 
(1,3,−4)

]
(10.19) 

where α2 
(i,j,k) = (if1)

2+(jf2)
2+(kf3)

2 

f 2 (i,j,k) 
and αcross = −  3f 2 2 +4f 2 3 

f(0,−1,1)f(1,3,−4) 
with f(i,j,k) = if1+jf2+kf3. 

Applying the LS criterion to solve (10.18) with stochastic model (10.19) yields the 
covariance matrix of estimate x̂ as 

Q(ign) 
x̂x̂ = γ −1

(
AT Q−1 A

)−1 = γ −1 Qx̂x̂ (10.20) 

and 

γ = 3σ −2 
P + σ −2 

φ 
a + b 

ω 
= 3σ −2 

P + 0.0342σ −2 
φ (10.21) 

where the superscript ‘ign’ denotes the solution for ionosphere-ignored model. ω = 
α2 

(0,−1,1)α
2 
(1,3,−4) − α2 

cross. a = α2 
(1,3,−4) − αcross and b = α2 

(0,−1,1) − αcross. For  σP = 
0.2 m and σφ = 3 mm, the factor

√
γ −1 = 0.016 m. In the ionosphere-ignored 

model, the ionospheric biases are ignored, which will lead to the estimate biased. 
The bias is derived as 

bx̂ = − γ −1 βQx̂x̂A
T Q−1 ιb (10.22) 

where 

β = σ −2 
P μ� − σ −2 

φ 
aμ(0,−1,1) + bμ(1,3,−4) 

ω
= 2.2582σ −2 

P + 0.0437σ −2 
φ (10.23) 

with μ� = μ1 + μ2 + μ3 and μ(i,j,k) = f 
2 
1 (i/f1+j/f2+k/f3) 

f(i,j,k) 
. Again  for  σP = 0.2 m and 

σφ = 3 mm, the factor β = 4909.87 m−2 and bx̂ ≈ − 1.268Qx̂x̂A
TQ−1 ιb. Obviously 

the bias is governed by not only the satellite geometry and ionospheric bias but also 
the precision of code and phase. 

If the ionospheric biases are large particularly over long baselines, they should 
be properly compensated to reduce their effects on positioning. A normal way is to 
parameterize such ionospheric biases, resulting in the ionosphere-float model

[
P 
φE

]
=

[
e3 ⊗ A μ ⊗ I 
e2 ⊗ A − μE ⊗ I

][
x 
ι

]
(10.24) 

With the same stochastic model of (10.19), the covariance matrix of LS estimate 
reads 

Q(float) 
x̂x̂ =

(
γ − 

β2 

ς

)−1 

Qx̂x̂ (10.25)
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ς = σ −2 
P μT μ + σ −2 

φ 
α2 

(1,3,−4)μ
2 
(0,−1,1) + α2 

(0,−1,1)μ
2 
(1,3,−4) − 2αcrossμ(1,3,−4)μ(0,−1,1) 

ω 
= 1.7935σ −2 

P + 0.0560σ −2 
φ (10.26) 

It is obvious that
(
γ − β

2 

ς

)−1 
> γ  −1. For  σP = 0.2 m and σφ = 3 mm, the 

factor

√(
γ − β2 

ς

)−1 = 0.210 m is much larger than
√

γ −1 = 0.016 m. It means 

that although the bias is eliminated in the ionosphere-float model, its uncertainty is 
13-times larger than that in ionosphere-ignored model. 

10.3.2 ERTK Equivalence for Using Any Two EWLs 

The above formulation of two ERTK models are based on the EWL combinations 
[0, − 1, 1] and [1, 3, − 4]. In principle, only two EWL/WL combinations are inde-
pendent and any other EWL/WL ambiguity a(i,j,k) can be recovered from these two 
integer EWL/WL ambiguities [2, 11, 26]. The question is whether the equivalent 
solution is achievable by using any two kinds of EWL observations. 

In  terms of [11], the sum of three coefficients of an EWL combination is equal 
to 0. Let two arbitrary EWL/WL ambiguities a(i,j,−i−j) and a(k,l,−k−l), we have the  
transformation from a(0,−1,1) and a(1,3,−4) as

[
a(i,j,−i−j) 
a(k,l,−k−l)

]
=

[
3i − j i  
3k − l k

][
a(0,−1,1) 
a(1,3,−4)

]
(10.27) 

where the integer coefficients in transformation matrix satisfy with that their asso-
ciated transformation matrix is unimodular, i.e., (3i − j)k − (3k − l)i = ±  1, 
in order to retain the integer invertible property. For instance, the coefficients of 
i = k = 1, j = −  1 and l = 0 derives the combinations a(1,−1,0) and a(1,0,−1). 

It is understandable that if a full-rank square matrix is applied to transform an 
equation system, the derived solutions will be definitely equivalent. In our case, it is 
easy to find a full-rank square transformation matrix: 

R =
[
I3 0 
0 RE

]
⊗ Is with RE =

[
λ(j,j,−i−j) 
λ(0,−1,1) 

(3i − j) λ(j,j,−i−j) 
λ(1,3,−4) 

i 
λ(k,l,−k−l) 
λ(0,−1,1) 

(3k − l) λ(k,l,−k−l) 
λ(1,3,−4) 

k

]
(10.28) 

By applying the transformation matrix to (10.18) and (10.24), φE is converted to 

new EWL observations φE =
[
φT 

(i,j,−i−j) φ
T 
(k,l,−k−l)

]T 
with transformed EWL ambi-

guities (10.27). Again, due to the full-rank of transformation matrix R, the equivalent 
ERTK solutions will be definitely obtained by using the transformed equation system. 
In other words, the ERTK estimate x̂ and its corresponding covariance matrix Q(ign) 

x̂x̂
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and bias bx̂ obtained with ionosphere-ignored model (10.18) are equivalent to the 
solutions from its transformed system with R. The ERTK estimate x̂ and its covari-
ance matrix Q(float) 

x̂x̂ obtained with ionosphere-float model (10.24) is equivalent to the 
solutions from its transformed system with R as well. Therefore, it is equivalent to 
use any two ambiguity-corrected EWL/WL observations for both ionosphere-ignored 
and -float ERTK. 

10.3.3 Analysis of Ionosphere-Ignored and -Float Models 

We have formulated two ERTK models and indicated that the ionosphere-ignored 
solution is biased although with smaller covariance matrix; while the ionosphere-float 
solution is unbiased but with larger covariance matrix. Although we qualitatively 
know that ionosphere-float model should be applied if the ionospheric biases are 
sufficiently large, the question is how large it is? In this section, we will quantitatively 
answer this question. 

To be simple, we again assume that all DD observations are affected by the same 
magnitude of ionospheric biases, i.e., ιb = esιb. Then the bias (10.22) reduces 

bx̂ = −  γ −1 βιbQx̂x̂A
T Q−1 es (10.29) 

The MSE indicator is employed to measure the accuracy of a biased estimate as 

Q(ign) 
x̂x̂,bx̂ 

= Q(ign) 
x̂x̂ + bx̂bT x̂ = γ −1 Qx̂x̂ + γ −2 β2 ι2 bQx̂x̂A

T Q−1 eseT s Q
−1 AQx̂x̂ (10.30) 

To make comparison, we rewrite the covariance matrix (10.25) of ionosphere-float 
ERTK solution as 

Q(float) 
x̂x̂ =

(
γ − 

β2 

ς

)−1 

Qx̂x̂ =
[
γ −1 + β2 

γ
(
ςγ  − β2

)
]
Qx̂x̂ (10.31) 

The difference between the covariance matrix of ionosphere-float unbiased 
estimate and the MSE of ionosphere-ignored biased estimate is 

δQ = Q(float) 
x̂x̂ − Q(ign) 

x̂x̂,bx̂ 
= β2 

γ
(
ςγ  − β2

)Qx̂x̂ − 
β2ι2 b 

γ 2 
Qx̂x̂A

T Q−1 eseT s Q
−1 AQx̂x̂ 

(10.32) 

Taking the trace to both sides of (10.32) to measure the overall quantity of δQ 
yields 

trace(δQ) = β2 

γ
(
ςγ  − β2

) trace(Qx̂x̂

) − 
β2ι2 b 

γ 2 
trace

(
eT s Q

−1 AQ2 
x̂x̂A

T Q−1 es
)

(10.33)
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It follows then that the ionosphere-ignored model should be applied when the 
condition of trace(δQ) > 0 is hold true, i.e., 

ιb < 

√
γ 

ςγ  − β2 

trace
(
Qx̂x̂

)
trace

(
eT s Q

−1AQ2 
x̂x̂A

TQ−1es
) (10.34) 

It is clear that the threshold ιb of ionospheric bias is a function of satellite geometry, 
number of satellites and observation precisions. For an extreme case of A = Is with 
elevation-independent weighting, then 

ιb < 2 
√

γ 
ςγ  − β2 

(10.35) 

With σP = 0.2 m and σφ = 3 mm, it follows that ιb < 0.33 m for which the 
ionosphere-ignored model will obtain the better ERTK solution than the ionosphere-
float model. In this case, the bias effect on ERTK solution in ionosphere-ignored 
model is smaller than the effect of model weakness induced by ionosphere-float 
model. The numerical experience indicates that for the baseline length as long as 
tens to hundred kilometer, the condition of ιb < 0.33 m is generally satisfied and the 
ionosphere-ignored model outperforms the ionosphere-float model. 

10.3.4 ERTK Improved by Adding NL Observations 

We have shown in Sect. 10.3.1 that the ionosphere-ignored model achieves the small 
uncertainty of biased ERTK solution, while the ionosphere-float model the much 
larger uncertainty of unbiased solution. Moreover, in most cases of several tens 
kilometer baselines, the ionosphere-ignored model outperforms the ionosphere-float 
model. The question is that what should be done if one wants to further improve the 
ERTK solution. 

In theory, in order to improve the ERTK solution, the effect of ionospheric biases 
should be significantly reduced and meantime the model strength should not be 
decreased so much. For reducing the effect of ionospheric biases, we have to use the 
ionosphere-float model unless the ionospheric biases are precisely known (impos-
sible in real RTK applications). Now, the key is to improve the model strength 
of ionosphere-float model. Additional to the observations used in ionosphere-float 
ERTK model, we extend the ionosphere-float ERTK model by incorporating the L1 
phase observations: 

⎡ 

⎣ 
P 
φE 

φ1 

⎤ 

⎦ = 

⎡ 

⎣ e3 ⊗ A μ ⊗ Is 0 
e2 ⊗ A − μE ⊗ Is 0 

A − μ1 ⊗ Is Is 

⎤ 

⎦ 

⎡ 

⎣x 
ι 
a 

⎤ 

⎦, 

⎡ 

⎢⎣ 
σ 2 PI3 0 0  
0 QφE 

QφEφ1 

0 Qφ1φE 
σ 2 φ 

⎤ 

⎥⎦ ⊗ Q = Qyy ⊗ Q 

(10.36)
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where a is ambiguity vector in meter. Qφ1φE 
= [

0, σ  2 φ

]
. For a single epoch, L1 obser-

vations will not contribute to the ERTK solution since the number of L1 observations 
is equal to the number of newly introduced ambiguity parameters. But when the 
multiple epoch data is continuously applied, the ambiguities keep constant and thus 
the L1 observations can improve the ERTK solutions. Essentially, the very precise 
between-epoch single-differenced L1 observation information is used to smooth the 
unbiased ionosphere-float solution so as to reduce its uncertainty. Therefore, the 
model (10.36) is referred also to as ionosphere-smoothed ERTK model. 

Let us now mathematically analyze how the ionosphere-smoothed model 
improves the ERTK solutions. In terms of the equivalence theory, the ionospheric 
parameters can be equivalently eliminated by transforming the ionosphere-smoothed 
model (10.36) with the following transformation matrix 

T = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

μ2 

μ2−μ1 

− μ1 

μ2−μ1 
0 0 0 0  

μ3 

μ3−μ1 
0 − μ1 

μ3−μ1 
0 0 0  

0 0 0 μE2 

μE2−μE1 

−μE1 

μE2−μE1 
0 

0 0 0 μ1 

μ1−μE1 
0 − μE1 

μ1−μE1 
1 
2 0 0 0 0 1 

2 

⎤ 

⎥⎥⎥⎥⎥⎦ 
⊗ Is = T ⊗ Is (10.37) 

which yields 

Ty = [
e5 ⊗ A ϒ ⊗ Is

][x 
a

]
, Qyy ⊗ Q (10.38) 

where y = [
PT φT 

E φ
T 
1

]T 
, ϒ =

[
01×3

− μE1 

μ1−μE1 
0.5

]T 
and Qyy = TQyyT

T . Let the  

subscript k denote the kth epoch, its normal matrix of x and a reads

[
pQ−1 

x̂k tAT 
k Q

−1 

tQ−1 Ak ϑQ−1

]
(10.39) 

where p = eT 5 Q
−1 
yy e5, t = eT 5 Q

−1 
yy ϒ, ϑ = ϒT Q−1 

yy ϒ and Q−1 
x̂k = AT 

k Q
−1 Ak . The  

covariance matrix of single-epoch ionosphere-smoothed ERTK estimate is 

N(smooth) 
x̂k =

(
p − 

t2 

ϑ

)
Q−1 

x̂k (10.40) 

which is equivalent to the ionosphere-float ERTK solution (10.25), i.e., p − t2/ϑ = 
γ − β2/ς . However, it is emphasized that three variables are not individually equal. 
For instance, with σP = 0.2 m and σφ = 3 mm, p = 18404.453, t = 10303.738 and 
ϑ = 5775.643, while γ = 3872.315, β  = 4909.875 and ς = 6261.992. 

By reducing the parameter x, one obtains the single-epoch normal matrix of a 
as Nâ,k = ϑQ−1 − t2 p Q

−1 AkQx̂k A
T 
k Q

−1 . The associated sum normal matrix over K
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epochs reads 

N�a = KϑQ−1 − 
t2 

p 
Q−1

(
K∑

k=1 

AkQx̂k A
T 
k

)
Q−1 (10.41) 

For the (K + 1)th epoch, the normal matrix of smoothed ERTK solution is derived 

N(smooth) 
x̂K+1 

= pQ−1 
x̂K+1 

− t2AT 
K+1Q

−1 

⎡ 

⎣(K + 1)ϑQ−1 − 
t2 

p 
Q−1 

⎛ 

⎝ 
K∑

k=1 

Ak Qx̂k A
T 
k 

⎞ 

⎠Q−1 

⎤ 

⎦ 
−1 

Q−1AK+1 

(10.42) 

It is obvious that N(smooth) 
x̂K+1 

> N(float) 
x̂K+1 

=
(
p − t2 

ϑ

)
Q−1 

x̂K+1 
. Hence the covariance 

matrix of smoothed solution is smaller than that of ionosphere-float solution. The 
improvement depends on the gain obtained from N�a as a function of the number of 
epochs K for smoothing, the satellite geometry as well as the observation precisions. 

To intuitively show how the ionosphere-smoothed model improves the ERTK 
solution, we again take a special case of geometry-free model, i.e., Ak = Is, for  
k = 1, . . . ,  K . In this case, the covariance matrix of (10.42) reduces to 

Q(smooth) 
x̂K+1 

=
[
p − t2 

ϑ + K
(
ϑ − t2/p

)
]−1 

Qx̂K+1 
(10.43) 

It is clear that when K gets larger the solution becomes better and gets comparable 
to ionosphere-fixed solution but promisingly without bias. When K is sufficiently 
large, Q(smooth) 

x̂K+1 
≈ p−1Qx̂K+1 

, which is even better than the ionosphere-fixed solution 
because of p > γ  . Compared to ionosphere-fixed model, it is highlighted that the 
betterment of ionosphere-smoothed solution comes from both its unbiased property 
and smaller (or at least comparable) uncertainty. 

Some comments are given on two alternative implementations of ionosphere-
smoothed model (10.36). The first implementation starts with computing the iono-
spheric biases with two ambiguity-fixed EWL observations. These ionospheric biases 
are very noisy with uncertainty of 89σφ . They can be smoothed following Hatch filter 
[38] by using very precise epoch-differenced ionospheric biases solved with epoch-
differenced geometry-free L1-L2 phase observations. Since the uncertainty of this 
epoch-differenced ionospheric bias is as precise as 3.5σφ , the smoothed ionospheric 
biases will be precise as well. Finally, one can conduct the ionosphere-fixed ERTK 
using observations corrected with smoothed ionospheric biases. Instead of solving 
and smoothing ionospheric biases, in the second alternative implementation, one can 
directly form the ionosphere-free combination with two EWL observations. Again 
this ionosphere-free combination is rather noisy with uncertainty of 114σφ . Similarly, 
these noisy ionosphere-free combination is smoothed by using epoch-differenced
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L1-L2 ionosphere-free phase combination whose uncertainty is 3σφ . As a result the 
precise ionosphere-free EWL observations are obtained for precise ERTK solution. 

10.4 Results and Discussion 

In this section, the experiment and analysis are carried out. Firstly, the experiment 
setup is introduced. Then the results of ionosphere-ignored and -float ERTK and the 
results of ionosphere-smoothed ERTK are presented and analyzed. 

10.4.1 Experiment Setup 

The daily triple-frequency BDS data was collected by using ComNav M300Pro 
multi-GNSS receivers with sampling interval of 1 s at a network of four stations in 
Shanghai area. The date is on day of year (Doy) of 198, 2016. For station A, there 
is no data for the first 2 h due to some abnormality. From these four stations, six 
baselines are formed with the baseline lengths from 36 to 75 km. The coordinates 
of four stations are precisely known, serving as references. The proposed ERTK 
models were implemented in “TJRTK” software that is a self-developed software in 
Tongji University for the multi-frequency multi-GNSS RTK processing and relevant 
engineering and scientific applications. 

Total 14 satellites are tracked, of which all five Geostationary Earth Orbit (GEO) 
satellites at the south side and five Inclined Geosynchronous Orbit (IGSO) satellites at 
the south side for most of time. Very few satellites were tracked in the north especially 
in the northeast sky due to the current distribution of BDS constellations, which may 
lead to the degraded solutions in north as seen in DOP values. Keep in mind that the 
latter results reflect the ERTK performance only of the current BDS constellations, 
which can be definitely improved with further development of BDS constellations. 

In data processing, the cut-off elevation is set to 10° and the elevation-dependent 
stochastic model 

σ = 1.02 

sin θ + 0.02 
σ90◦ (10.44) 

is applied for the undifferenced measurements with the zenith precision σ90◦ = 2 mm 
for phase and 0.2 m for code. Although the data is post-processed, the processing is 
completely analogous to the real-time processing, namely, the data loading and all 
computations are implemented epoch by epoch.
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10.4.2 Results of Ionosphere-Ignored and -Float ERTK 

The capability of instantaneous EWL AR has been numerically demonstrated in 
many literatures with real triple-frequency BDS data [17, 18, 24]. We do not repeat 
the similar result of EWL AR anymore in this monograph. With ambiguity-fixed 
EWL observations, we immediately study the performance of ionosphere-ignored 
and -float ERTK, following the theory in Sect. 10.3.2. 

The errors of ionosphere-ignored ERTK results are computed for all 6 baselines. 
Here N, E and U denote the North, East and Height components in topocentric 
coordinate system. Note the three baselines connected with station A have no data 
for the first 2 h. The variations of horizontal errors are all within 0.5 m and mostly 
within 20 cm for N and E component, respectively; while the variations of height 
errors are all within 1 m and mostly within 40 cm. The accumulated probabilities as 
function of absolute positioning errors are computed for all three components of 6 
baselines. The results show that the errors are smaller than 10 cm by 80% and 90% 
and smaller than 20 cm by 90% and 95% for N and E component, respectively; while 
the height errors are smaller than 40 cm by 90%. Overall, the decimeter-level results 
are obtained although some systematic errors exhibit, especially at the duration of 
UTC time 16–18 h. The statistics of positioning errors, STD and root mean square 
error (RMS), are estimated. Both STD and RMS of E component are better than 
10 cm; while they are slightly larger for N component with averagely around 10 cm. 
The accuracies of height component is 2-times worse than horizontal component. 

The significant systematic biases exhibit during the period of Coordinated 
Universal time (UTC) time 16–18 h for all baselines. This can be mainly attributed 
to the residual ionospheric biases ignored in the ionosphere-ignored ERTK model. 
To confirm this issue, we fix all DD ambiguities of L1 and L2 phase observations by 
post-processing, and then compute the DD ionospheric biases by using ambiguity-
fixed L1–L2 geometry-free phase combinations. The results show that the duration 
of large ionospheric biases coincide to the duration of large ERTK errors. Besides the 
multipath could be another attribution to these large ERTK errors due to the special 
constellation of GEO satellites. 

Let us now analyze the ionosphere-float ERTK solutions computed according 
to the formulae in Sect. 10.3.2. Comparing with the ionosphere-ignored model, it 
is apparent that the systematic errors basically vanish and the random noises are 
significantly enlarged, which is consistent to the theoretical analysis that the noise is 
enlarged by approximate 13 times, see the context after (10.26). Therefore, there is 
a trade-off for choosing the ionosphere-ignored and ionosphere-float model. When 
the effect of ionospheric biases on ionosphere-ignored solutions is less than that 
of enlarged noises on ionosphere-float solutions, one should adopt the ionosphere-
ignored model and vice versa. In terms of theoretical analysis in Sect. 10.3.4 that one 
should use ionosphere-ignored model when the ionospheric bias is smaller than the 
threshold of 0.33 m. Moreover, considering the ionospheric biases where almost all 
DD ionospheric biases are smaller than this threshold, the ionosphere-ignored ERTK 
solutions should be better than the ionosphere-float ones.
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The accumulated probabilities of absolute positioning errors and the STD and 
RMS statistics are estimated for ionosphere-float ERTK model. In this case, only 
30% errors are smaller than 10 cm for horizontal components, and the error reaches 
to 50 cm with the accumulated probability of 90%. The height component of 
ionosphere-float model is much worse than that of ionosphere-ignored model. The 
mean RMS accuracies are about 25, 30 and 80 cm for N, E and U, respectively. Such 
accuracies are approximately 3-times worse than those of ionosphere-ignored ERTK 
solutions. 

It is noticed that the systematic errors still remain in ionosphere-float ERTK 
solutions. This can be attributed to the multipath and also probably the second-order 
ionospheric biases. The existence of severe multipath has been demonstrated by Wu 
et al. [39] and Odolinski [40] in BDS RTK solutions, and also by Li et al. [17] 
through examining the DD geometry-free and ionosphere-free (GIF) combinations. 
Especially, in ionosphere-float model, the multipath is significantly enlarged together 
with the enlarged noises. Here, let us simply analyze the effect of the second-order 
ionospheric biases. It is assumed the first- and second-order ionospheric biases as 
ι1 = K1/f 2 1 and ι2 = K2/2f 3 1 at L1 frequency with K1 and K2 the functions of 
total electronic contents. In ionosphere-float model, only the first-order ionospheric 
biases are compensated by parameterization which is similar to using the ionosphere-
free model to eliminate the first-order ionospheric biases. In this case, the remained 
ionospheric biases are derived as follows. Different from the first-order ionospheric 
bias, the combination coefficient of the second-order ionospheric bias is 

μ̃(i,j,k) = 
f 3 1

(
i/f 2 1 + j/f 2 2 + k/f 2 3

)
f(i,j,k) 

(10.45) 

Then in the ionosphere-free EWL observation, the remained second-order 
ionospheric bias is

(
μ(0,−1,1) μ̃(1,3,−4) 

μ(1,3,−4) − μ(0,−1,1) 
− μ(1,3,−4) μ̃(0,−1,1) 

μ(1,3,−4) − μ(0,−1,1)

)
ι2 ≈ −  1.6ι2 (10.46) 

Since the second-order ionospheric bias is about one-percent of the first-order one 
[41], the remained ionospheric bias is about 0.016ι1. That can introduce about 1 cm 
error at ionosphere-float ERTK model. 

10.4.3 Results of Ionosphere-Smoothed ERTK 

As stated in Sect. 10.3.4, although the ionosphere-float ERTK is overall worse than 
the ionosphere-ignored ERTK, it provides a possibility for users to further improve 
its solution by additional smoothing processing with incorporating the L1 phase 
observations. The positioning errors of ionosphere-smoothed ERTK solutions are
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computed for all 6 baselines after 2 min smoothing. The accumulated probabilities 
and STD and RMS statistics of positioning errors are estimated. 

The very exciting results are obtained. In general, 90% positioning errors are 
within 4 cm and nearly all within 10 cm for horizontal components. The improvement 
is even more significant for height. In case of accumulated probability of 90%, 
the error magnitude is reduced to 10 cm from larger than 1 m of ionosphere-float 
model and from 35 cm of ionosphere-ignored model, respectively. For horizontal 
components, the STD and RMS statistics are comparable, which means that the 
ionospheric biases are indeed well eliminated. The accuracies are improved to 3 cm 
from 10 cm of ionosphere-ignored model and from 25 cm of ionosphere-float model, 
respectively. The height accuracies are averagely improved to better than 10 cm. Such 
accuracy positioning is comparable to the traditional short-baseline RTK. 

As more GNSS systems, such as BDS and Galileo, are capable of transmitting five 
or even six frequency signals, integer ambiguity resolution over distances ranging 
from tens to hundreds of kilometers can be further enhanced. More combination 
observables with long wavelength and small noise are provided to speed up NL 
ambiguity convergence. This is rather crucial to fix NL integer ambiguities within a 
few epochs, thus enabling the real-time high-precision positioning. In this section, 
the ionosphere-smoothed ERTK model is extended to be compatible with multiple 
frequencies. The multi-frequency and multi-GNSS data of station LEIJ, BAUT, 
FFMJ, WARN and WTZZ were assessed by IGS with sampling interval of 30 s. 
The date is on Doy of 300, 2024. Three baselines are formed with baseline length 
from 150.94 to 510.99 km. The positioning errors of 3 baselines are presented in 
Figs. 10.1, 10.2 and 10.3. The STD statistics of positioning errors and Time To 
First Fix (TTFF) are shown in Fig. 10.4. It can be found that once the NL ambigu-
ities are fixed, centimetre-level positioning can be achieved even over distances of 
hundreds of kilometres. For all three baselines, the magnitude of horizontal posi-
tioning errors is less than 1 cm, and it is no more than 2 cm in the vertical. More-
over, the NL ambiguities are correctly fixed with a few epochs, benefitting from the 
multiple frequency signals and lots of precise combination observables. Compared 
to traditional RTK model, the TTFF is significantly shortened while maintaining the 
equivalent positioning performance.

10.5 Conclusion 

The most benefit of triple-frequency GNSS is to form the EWL combinations whose 
ambiguities can be instantaneously fixed for tens to hundred kilometer baselines. 
We focused in this contribution on exploiting this benefit for real-time positioning 
and the ERTK technique was proposed. Based on the comprehensively theoretical 
and numerical analysis, the conclusions are summarized as follows: The instanta-
neous EWL AR is rather easy even for several tens kilometer baselines although the 
corresponding NL AR is still difficult. This is the most benefit of EWL combination 
of triple-frequency GNSS signals; Two ERTK models, i.e., ionosphere-ignored and
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Fig. 10.1 Positioning errors of baseline LEIJ-BAUT of which the baseline length is 150.94 km. 
Positioning errors of the first 30 epochs are depicted on the right 

Fig. 10.2 Positioning errors of baseline FFMJ-WTZZ of which the baseline length is 322.12 km. 
Positioning errors of the first 30 epochs are depicted on the right
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Fig. 10.3 Positioning errors of baseline FFMJ-WARN of which the baseline length is 510.99 km. 
Positioning errors of the first 30 epochs are depicted on the right 

Fig. 10.4 STD statistics of 
positioning errors and TTFF 
of the three baselines

ionosphere-float model, were presented and mathematically compared. It was theo-
retically clarified that no matter which two EWL/WL observations were applied, 
the ERTK solutions will be equivalent individually for ionosphere-ignored and 
ionosphere-float model, respectively. Besides, a rule-of-thumb threshold of iono-
spheric bias was derived for selecting either ERTK model. When the ionospheric 
bias is smaller than 0.33 m, one should use ionosphere-ignored model and other-
wise the ionosphere-float model; The results based on our experiments of 30–70 km 
baselines indicated that with ionosphere-ignored model one can achieve ERTK solu-
tions of 10 cm horizontal accuracy. Although the ionosphere-float ERTK is 2-times 
worse than ionosphere-ignored case, it can be further improved by incorporating the
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L1 phase observations where the precise epoch-differenced observation information 
was essentially employed. 

It is emphasized that the achievement of such ERTK results is purely instanta-
neous without complicated NL AR, thus the ERTK is promising and can already 
satisfy for many applications. To the best of our knowledge, this monograph is the 
comprehensive study from both theoretical and practical aspects on making full use 
of EWL observations of triple-frequency GNSS signals for decimeter to centimeter 
RTK. 
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Chapter 11 
SMC-RTK: RTK with BDS 
Short-Message Communication 

11.1 Introduction 

High-precision positioning based on Global Navigation Satellite Systems (GNSSs) 
is generally limited in marine applications due to the lack of communication access 
and reference stations in ocean environments [1]. Precise point positioning (PPP), 
as a standalone high-precision positioning technique, is possibly available in ocean 
environments [2]. However, it typically takes approximately 10–30 min to achieve 
centimeter-level accuracy even with multi-frequency multi-GNSS signals in static 
applications [3, 4] and longer in real-time applications [5]. In addition, communi-
cation is a bottleneck in marine applications. Some commercial companies provide 
PPP services globally by transmitting augmented information via satellite commu-
nication at high costs. If there is no regional reference station network, the perfor-
mance of these PPP products is equivalent to real-time PPP. A low-earth-orbit (LEO) 
satellite-augmented PPP would be promising for marine applications, but the LEO 
constellation is still in development. 

Real-time kinematic (RTK) is another high-precision positioning technique 
possibly applicable to the ocean applications. Network-based RTK can provide 
service in large-scale areas but requires a reference station network [6]. Single-
based RTK (SRTK) only needs one reference station and is thus more applicable 
to ocean applications where very few reference stations are available. The coverage 
radius of a single reference station is traditionally approximately 20 km [7] and can 
be extended to 100 km using multi-frequency multi-GNSS signals [8, 9] and even 
to 1000 km using precise ephemerides [10]. For such long baselines, SRTK can still 
provide centimeter-level positioning service once the ambiguities are correctly fixed. 
However, the probability of incorrect fixing increases with baseline length extension. 
In addition, SRTK is rarely implemented at sea since there is generally a lack of 
nearby reference stations, and it is difficult to access real-time precise ephemeris 
due to limited communication means. Traditional terrestrial radio only provides
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communication services within a radius of 50 km, and satellite communication is 
expensive. 

As an initial study, [1] proposed a technique called ocean-RTK that employs 
the short message service (SMS) of the BeiDou navigation satellite system (BDS) 
to transmit the differential corrections for SRTK on the ocean. The experimental 
results showed that for a baseline longer than 300 km, the horizontal positioning 
accuracy was higher than 10 cm. However, there are the following simplifications 
and limitations in [1]. (1) To overcome the narrow communication bandwidth of the 
SMS, ionosphere-free (IF) combined corrections were used instead of uncombined 
corrections. This means that the IF observations must be applied for positioning at the 
user side, which reduces the observation redundancy and eliminates the possibility 
of further applying available ionospheric constraints. (2) The broadcast ephemeris 
was employed, and its effects on long-baseline positioning were ignored. (3) Due 
to the weakness of the IF model as well as the considerable effects of orbit errors, 
ambiguity resolution was not conducted and the float solutions with subdecimeter to 
centimeter accuracy were used directly, depending on the convergence time. 

In [11], we substantially upgrade ocean-RTK by technically solving its aforemen-
tioned limitations. First, uncombined corrections instead of IF corrections are applied 
to increase the observation redundancy. Meanwhile, ultrarapid precise ephemerides 
are assimilated into the uncombined corrections to eliminate the effects of orbit errors 
on long-baseline positioning. Here, the ultrarapid precise ephemeris is provided by 
the Tongji BeiDou Analysis Center (TJBAC) with centimeter accuracy. For more 
details of its quality evaluation, one can refer to http://www.igmas.org/product. 
Importantly, a more efficient encoding strategy is proposed to compress the uncom-
bined corrections that have much larger data volumes than the IF corrections. Second, 
an ionosphere-weighted RTK model is formulated with uncombined corrections to 
improve the model strength and positioning performance. Third, again due to the 
narrow bandwidth of the SMS, it is not able to transmit continuous corrections, and 
thus, the corrections of a single epoch must be used for several epochs at the user side. 
As a result, asynchronously differential observations are used for positioning where 
between-epoch time-correlations must exist. An asynchronous and time-differenced 
filter is employed to assimilate the time-delays and time-correlations of these correc-
tions. Finally, a partial ambiguity resolution (PAR) strategy is employed to fix the 
narrow-lane ambiguities, further improving the positioning performance. 

The rest of the chapter starts with the RTK with BDS short-message communica-
tion (SMC-RTK) infrastructure, emphasizing the generation of uncombined correc-
tions with assimilated precise ephemerides and the new efficient encoding strategy. 
Then an ionosphere-weighted RTK model is formulated using the uncombined 
corrections followed by an asynchronous and time-differenced filter. The numerical 
experiments are presented. Finally, some concluding remarks are given.

http://www.igmas.org/product
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11.2 SMC-RTK Infrastructure at a Reference Station 

The new version of SMC-RTK contains three components/steps: (1) the uncom-
bined corrections are generated and encoded at the reference station; (2) the encoded 
corrections are transferred to users through the BDS SMS; and (3) the users decode 
and apply the corrections to realize high-precision RTK. The key difference between 
SMC-RTK and SRTK is that the corrections are transferred through the BDS SMS. 
Therefore, both encoding and broadcast strategies need to be carefully designed to 
fulfill the narrow bandwidth of the BDS SMS. 

11.2.1 Generating the Uncombined Corrections 

For code division multiple access (CDMA)-type GNSS signals, the pseudorange Ps 
r,j 

and carrier phase Φs 
r,j observation equations at reference station r and epoch time t0 

are 

Ps 
r,j(t0) −

∥
∥Xs 

r,b(t0) − Xr

∥
∥ = τ s r (t0) + μjι

s 
r(t0) + dtr,j(t0) 

+ δts j (t0) + os r,b(t0) + εPs 
r,j (t0) 

Φs 
r,j(t0) −

∥
∥Xs 

r,b(t0) − Xr

∥
∥ = τ s r (t0) − μjι

s 
r(t0) + dtr,j(t0) 

+ δts j (t0) + os r,b(t0) − λja
s 
r,j + εΦs 

r,j (t0) (11.1) 

where the subscripts j and s denote the frequency and satellite, respectively. ‖∗‖ is the 
Euclidean norm of *. Xs 

r,b is the satellite coordinate calculated with the corresponding 
broadcast ephemeris. Its calculation relates to the receiver since the receiver position 
together with the epoch time determine the transmission time of the satellite signal. Xr 

is the coordinate of the reference station, which is precisely known. τ s r and ιs r represent 
the tropospheric and ionospheric delays, respectively. The coefficient μj = f 2 1 /f 

2 
j 

with f1 and fj being the first and jth frequencies, respectively. dtr,j and δts j are the 
clock errors of receiver r and satellite s on frequency j, respectively. as r,j is the time-
independent unknown ambiguity with wavelength λj . os r,b is the orbit error introduced 
by the broadcast ephemeris. ε denotes the residual observation errors. 

The effect of the orbit error os r,b can be up to 10 cm for baselines as long as 
several hundred kilometers [12]. It can be reduced to a few millimeters by applying 
an (ultrarapid) precise ephemeris. In other words, the orbit error os r,b at epoch time 
t0 at the reference station can be computed as 

os r,b(t0) =
∥
∥
∥Xs 

r,p(t0) − Xr

∥
∥
∥ − ∥

∥Xs 
r,b(t0) − Xr

∥
∥ (11.2) 

where Xs 
r,p is the satellite coordinate from the precise ephemeris. Since it is difficult 

to directly transmit the precise ephemeris to a user, the orbit error at epoch time t1 at 
the user end can be computed at the reference station in advance as
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os u,b(t1) =
∥
∥
∥Xs 

u,p(t1) − Xu(t1)
∥
∥
∥ − ∥

∥Xs 
u,b(t1) − Xu(t1)

∥
∥ (11.3) 

where the subscript u denotes the user station and Xu is its approximate coordinate. 
The user orbit error os u,b(t1) cannot be replaced by os r,b(t1) due to the long baseline 
length. Hence, Xu must be sent from the user back to the computation center at 
the reference station, which requires two-way communication between the reference 
station and user. Fortunately, the user can either receive or send a short message to 
the computation center through the BDS SMS. In addition, Xu can be continuously 
used until the coordinate variation reaches tens of kilometers. Hence, we send Xu to 
the computation center one time per hour, and thus, the communication burden can 
be ignored. Here, we directly compute the satellite coordinates at the nominal epoch 
time instead of the actual time when the satellite signal is broadcast. The reason is 
that the orbit error variation is less than 1 mm over 1 s. The difference between the 
nominal time and the broadcast time is only approximately 0.075 s. Such processing 
does not practically affect the orbit error. Moreover, the orbit error is assumed to vary 
linearly over a short period as 

ds 
o = 

os u,b(t1) − os u,b(t0) 
t1 − t0 

(11.4) 

where ds 
o denotes the variation rate of the orbit error at the user station. One can then 

compute the code and phase corrections at epoch time t0 at the reference station as 

P̃s 
r,j(t0) = Ps 

r,j(t0) −
∥
∥
∥Xs 

r,p(t0) − Xr

∥
∥
∥ + os u,b(t0) 

− τ̂ s r − μj ι̂
s 
r − d̂tr,j + δ̂t s 

Φ̃s 
r,j(t0) = Φs 

r,j(t0) −
∥
∥
∥Xs 

r,p(t0) − Xr

∥
∥
∥ + os u,b(t0) − τ̂ s r 

+ μj ι̂
s 
r − d̂tr,j + δ̂t s − λj Ň 

s 
r,j (11.5) 

The corrections at epoch time t1 at the user station are recovered as 

P̃s 
r,j(t1) = P̃s 

r,j(t0) + ds 
o × (t1 − t0) 

Φ̃s 
r,j(t1) = Φ̃s 

r,j(t0) + ds 
o × (t1 − t0) (11.6) 

All the terms, without epoch time for simplification, on the right side with a hat or 
check denote approximations, which are subtracted from the observations to mini-
mize the absolute values of the corrections to save communication resources. The 
nominal tropospheric delay τ̂ s r is computed using the New Brunswick 3 (UNB3) 
model [13, 14] together with the Niell mapping function [15]. The nominal iono-
spheric delay ι̂s r is computed through the Klobuchar model [16]. The satellite clock 
error δ̂t 

s 
is calculated with the broadcast ephemerides. The approximate receiver 

clock error is determined by averaging the residuals of all m satellites
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d̂tr,j = 
1 

m

(
s=m
∑

s=1 

Ps 
r,j(t0) −

∥
∥
∥Xs 

r,p(t0) − Xr

∥
∥
∥ − τ̂ s r − μj ι̂

s 
r + δ̂t s

)

(11.7) 

Here, it is important to reduce the phase correction by subtracting an integer from 
the phase observation. The integer is computed as 

Ň s r,j = 

⎡ 

⎣ 
Φs 

r,j(t0) −
∥
∥
∥Xs 

r,p(t0) − Xr

∥
∥
∥ − τ̂ s r + μj ι̂

s 
r − d̂tr,j + δ̂t s 

λj 

⎤ 

⎦ (11.8) 

where [*] denotes rounding variable * to its nearest integer. 
After deducing these terms, the absolute values of the corrections are normally 

smaller than 20 m for satellites with elevations higher than 10°. Therefore, as shown 
in Table 11.1, if  P̃s 

r,j is located outside its given range, it will be abandoned since 
in this case, there is a high probability it is incorrect. If Φ̃s 

r,j is located outside its 

given range, a new integer Ň s r,j will be computed to make Φ̃s 
r,j inside the given range, 

and an indicator of cycle slip is marked to indicate the integer change. Otherwise, 
Ň s r,j remains constant. Hence, the absolute values of the corrections are rigorously 
restricted and can be encoded to a few characters. In our previous study, the correc-
tions were further reduced by forming the corresponding IF corrections. Although 
the IF corrections alleviate the communication burden, they degrade the positioning 
performance as explained above. Hence, in this contribution, we directly utilize these 
uncombined corrections instead of the IF corrections.

11.2.2 Encoding the Uncombined Corrections 

A new encoding strategy is proposed to efficiently compress the uncombined correc-
tions. In SMC-RTK, only dual-frequency Global Positioning System (GPS) and 
triple-frequency BDS observations are used due to the limited communication 
resources. The encoding is identical for the observations at each frequency of each 
satellite and each system. Hence, we only present the overall structure of the encoding 
strategy and the encoding details of observations at the first frequency of the first BDS 
satellite in Table 11.1. First, the epoch time in seconds is encoded with 6 bits, which 
will be used by users to compute the time difference between user observations and 
the corrections. Then, the number of BDS satellites is encoded with 4 bits. For the 
first satellite, the pseudo random number (PRN), the integer hour of its ephemeris 
epoch time and its orbit error variation rate are encoded with 18 bits, followed by 
the phase and pseudorange corrections of all frequencies. For the first frequency, 
the corrections and the cycle slip indicator are encoded with 29 bits. With the same 
strategy, the corrections of the other frequencies and other BDS or GPS satellites 
are encoded. Table 11.2 presents an example of the encoded corrections for a single 
epoch, including the encoded binary bits and their corresponding correction contents.
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Table 11.1 Uncombined correction encoding strategy 

Size 
(bits) 

Range Resolution Encoding method 

Observation time (seconds in one 
minute) 

6 0 ~ 59 1 s d2b (seconds of 
observation time) 

BDS Number of BDS satellites 4 0 ~ 15 1 d2b (number of BDS 
satellites) 

1st 
sat. 

Satellite PRN 5 1 ~ 32 1 d2b (satellite PRN) 

Ephemeris time 5 0 ~ 23 1 h d2b (integer hour of 
ephemeris time) 

Variation rate of orbit 
error ds 

o 

8 − 1.28 
~ 1.27 mm  

0.01 mm d2b 
([100 × do + 128]) 

1st 
frequency 

Φ̃1 
r,1 16 − 32.768 

~ 32.767 m 
1 mm d2b ([1000 × Φ̃1 

r,1 + 
32,768]) 

P̃1 
r,1 12 − 40.96 

~ 40.94 m 
2 cm d2b 

(
[

50 × P̃1 
r,1 + 2048

]

) 

CS 
indicator 

1 0 or 1 1 0 for CS absent, and 1 
for CS existent 

Other 
frequencies 

…… 

Other 
sat. 

…… 

GPS …… 

Note d2b (*) is a function for converting a variable from a decimal system to a binary system. CS 
represents cycle slip

Table 11.2 An example of 
encoded corrections Encoded binary bits Correction contents 

000000 
1100 
00001 
00000 
10001110 
1001010100111110 
100011011001 
0 
…… 

Observation time = 0 s  
No. of BDS satellites = 12 
Satellite PRN = 1 
Ephemeris time = 0 h  
Variation rate = 0.14 mm/s 
Φ̃1 

r,1 = 5.438 m 

P̃1 
r,1 = 4.340 m 

No cycle slip occurs on Φ̃1 
r,1 

…… 

If m1 GPS satellites (with dual-frequency observations) and m2 BDS satellites 
(with triple-frequency observations) are simultaneously tracked, the corrections of a 
single epoch will be encoded to a character string whose data volume is 

ncs = 6 + 4 + (18 + 29 × 2)m1 + 4 + (18 + 29 × 3)m2
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= 14 + 76m1 + 105m2 (11.9) 

The data volume is computed according to the encoding strategy in Table 11.1. 
Here, 6 bits are for the observation time, and 4 bits are for the number of GPS 
or BDS satellites. The factors of 2 and 3 in the first and second brackets indicate 
the dual-frequency GPS signals and triple-frequency BDS signals. The data volume 
of our encoded corrections in the binary stream is only approximately 40% of the 
standard RTK corrections. After encoding, the corrections are divided into several 
short messages and sent to users through the BDS SMS. Moreover, for each short 
message, a preamble is appended at the message head to denote its serial number. 

11.2.3 The Broadcast Strategy 

The encoded corrections are broadcast to users through the BDS SMS. The SMS 
working mechanisms are as follows; see also [1]. 

1. One BDS SMS card is allowed to send one message within 1 min. The transmis-
sion time is so short that it can be omitted, but the same card will be deactivated 
for 1 min after sending a message. 

2. One message is limited to 78.5 bytes, i.e., 628 bits. 
3. Several cards can be integrated into a multicard machine to send messages in 

turn. The minimal sending interval can be 1 s if 60 SMS cards are integrated. 

According to these mechanisms, the maximum bandwidth of the BDS SMS is 
628 bps. It is obviously not practical to send the uncombined corrections per second. 
Considering the case of m1 GPS satellites and m2 BDS satellites in uncombined 
corrections, the corrections of a single epoch require nsm = floor

( ncs 
628 + 1

)

short 

messages for transmitting. If ncd cards are integrated, nep = floor
(

ncd 
nsm

)

epochs of 

corrections can be sent to users at most within 1 min. One can of course send the 
corrections of these nep epochs to users successively until all ncd cards are deacti-
vated. After that, the corrections of the

(

nep + 1
)

th epoch will be sent in the next 
minute. In this way, the time delay of the corrections, that is, the time difference 
between the user observations and the most recently received corrections, will exceed 
(60 − ncd + 2nsm) s at most.  If  ncd is small, the maximum time delay will be too long 
and significantly degrade the positioning performance. An improved strategy sends 
the corrections with a sampling interval as

�t = floor
(
60 

nep

)

= floor 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

60 

floor

(

ncd 
floor

(
8+68m1+97m2 

628 +1
)

)

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

(11.10)
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Fig. 11.1 Time delay of the corrections for the improved broadcast strategy 

As shown in Fig. 11.1, the corrections at epoch time t are completely received 
by users at epoch time (t + nsm − 1) and applied for user positioning continuously 
to epoch time (t + �t + nsm − 2). Then, at epoch time (t + �t + nsm − 1), the next 
corrections at epoch time (t + �t) are completely received and applied for user 
positioning. As a result, the maximum time delay of the corrections is minimized to 
(�t + nsm − 2) s. In brief, the broadcast strategy is defined by the number of satellites 
m1 and m2, the number of ID cards ncd, and the sampling interval �t. If �t is fixed, 
increasing the number of satellites can improve the positioning performance but 
requires more ID cards and more communication costs and vice versa. If the number 
of satellites is fixed, increasing the number of ID cards requires more communication 
costs but can shorten the time delay and improve the positioning performance and 
vice versa. If ncd is fixed, increasing the number of satellites increases the redundancy 
of observations but extends the time delay. In our design, we empirically set m1 ≤ 9, 
m2 ≤ 9 and ncd = 18; then, ncs ≤ 1643, nsm ≤ 3 and �t = 10, which leads to a time 
delay from 2 to 11 s. The communication costs are approximately 18×600 = 10,800 
Chinese yuan for a reference station and 600 Chinese yuan for a single user per year. 
Here, 600 yuan is the annual fee of a single BDS ID card. The strategy has already 
satisfied our application. One can also find a better broadcast strategy to improve the 
positioning performance with less communication costs by changing m1, m2, ncd and
�t, which remains for further research. 

11.3 Rover Station Positioning Model 

Since the uncombined corrections are received by users, in this contribution, we 
employ the ionosphere-weighted model instead of the IF positioning model used in 
[1]. In addition, the time delay and repeat use of the corrections are both considered.
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11.3.1 Ionosphere-Weighted Model with Asynchronous 
Time-Correlated Observations 

The asynchronous double-differenced (DD) pseudorange and phase observations at 
epoch time t1 are formulated as 

Psv 
ur,j(t1) = Psv 

u,j −
∥
∥Xs 

u,b(t1) − Xu(t1)
∥
∥

+ ∥
∥Xv 

u,b(t1) − Xu

∥
∥ − P̃sv 

r,j(t1) − τ̂ sv u + δ̂t sv j 

Φsv 
ur,j(t1) = Φsv 

u,j −
∥
∥Xs 

u,b(t1) − Xu

∥
∥

+ ∥
∥Xv 

u,b(t1) − Xu

∥
∥ − Φ̃sv 

r,j(t1) − τ̂ sv u + δ̂t sv j (11.11) 

where (∗)sv ∗,j = (∗)s ∗,j − (∗)v ∗,j. P
sv 
u,j(t1) and Φsv 

u,j(t1) are the single-differenced (SD) 
pseudorange and phase observations of the user at epoch time t1. P̃sv 

r,j(t1) and Φ̃sv 
r,j(t1) 

are the SD pseudorange and phase corrections at epoch time t1. τ̂ sv u is the SD tropo-
spheric delay computed based on the same model and mapping function as used at 
the reference station. δ̂t 

sv 
j denotes the SD satellite clock error calculated using the 

same broadcast ephemeris as used at the reference station. 
The observation equations of the asynchronous DD observations are 

Psv 
ur,j(t1) = Bxu + τ sv ur + μjι

sv 
ur + δtsv j (t1, t0) 

+ osv u,b(t1) − osv u,b(t0) − dsv 
o (t1 − t0) + εPsv 

ur,j (ti) 

= Bxu + τ sv ur + μjι
sv 
ur + δtsv j (t1, t0) + εPsv 

ur,j (t1) 

Φsv 
ur,j(t1) = Bxu + τ sv ur + μjι

sv 
ur + λja

sv 
r,j + δtsv j (t1, t0) 

+ osv u,b(t1) − osv u,b(t0) − dsv 
o (t1 − t0) + εPsv 

ur,j (ti) 

= Bxu + τ sv ur + μjι
sv 
ur + δtsv j (t1, t0) + λja

sv 
r,j + εPsv 

ur,j (t1) (11.12) 

where the orbit error is basically eliminated, i.e., osv u,b(t1)−osv u,b(t0)−dsv 
o (t1 − t0) = 0. 

The asynchronous DD residual satellite clock error δtsv j (t1, t0) = δtsv j (ti) − δtsv j (t0) 
can be precisely corrected with the coefficients of the satellite clock error from the 
broadcast ephemerides [1]. Omitting the subscripts of satellites and receivers and the 
epoch time, the asynchronous DD observation equations are 

Pj = Bx + μjι + εPj 

Φj = Bx − μjι + λjaj + εΦj (11.13) 

where ι is the asynchronous DD ionospheric delay. aj = asv u,j − asv r,j + Ň sv r,j is the 
DD integer ambiguity, while asv u,j and a

sv 
r,j are the SD ambiguities of the user and 

reference station, respectively; Ň sv r,j is the SD subtracted integer. If no cycle slip 
occurs, aj is constant. ε∗ is the random error including all residual errors. The residual 
tropospheric delay can be absorbed by the residual zenith tropospheric delay (RZTD)
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parameter [17, 18]. However, the RZTD parameter is strongly correlated with the 
vertical coordinate [19]. Hence, we simply ignore it in this chapter to speed up the 
positioning convergence considering its minor effect on ambiguity integers [20]. The 
single-epoch positioning model with asynchronous observations can be expressed in 
matrix form as

[

pk 
φk

]

=
[

ef ⊗ Bk μ ⊗ Is 0 
ef ⊗ Bk −μ ⊗ Is � ⊗ Is

]
⎡ 

⎣ 
xk 
ιk 

a 

⎤ 

⎦ +
[

εpk 
εφk

]

(11.14) 

where k indicates the epoch number. pk = [

p1,k , . . . ,  pf ,k
]T 

and φk =
[

φ1,k , . . . ,  φf ,k

]T 
are the asynchronous DD observation vectors of the pseudorange 

and phase, respectively. f is the number of frequencies. ef is an f -dimensional 
column vector with all elements equal to 1. Bk is the design matrix of the coor-
dinate parameters xk . μ = [

μ1, . . . , μf
]T 

is the vector of the scalar coefficients for 
the ionosphere parameters ιk . Is is the s-dimensional identity matrix, with s being 
the number of DD satellite pairs. a = [

a1, . . . ,  af
]T 

is the ambiguity vector, and
� = diag

([

λ1, . . . , λf
])

. ε∗ is the vector of the residual observation errors. The 
stochastic model of (11.14) is  

Qεk 
= blkdiag

([

σ 2 p , σ  2 φ

])

⊗ If ⊗ Qk (11.15) 

where σ 2 p and σ 2 φ are the variance scalars of the undifferenced pseudorange and phase 
observations at zenith, respectively. Qk is an (s × s) cofactor matrix of DD observa-
tions with elevation-dependent weighting [21]. To enhance the model strength, the 
initial and time-variant ionospheric constraints are applied as 

ι0 = ι, Qι = σ 2 ι Q0 

ιk = ιk−1 + wιk , Qwιk 
= σ 2 wι 

Qk 
(11.16) 

where ι is the prior DD ionospheric delay at the first epoch and σ 2 ι is the variance scalar 
of the undifferenced ionospheric delay at zenith. wιk is the transition noise vector 
with zero mean and known covariance matrix Qwιk 

with σ 2 wι 
as the variance scalar of 

the transition noise of the undifferenced ionospheric delay at zenith. The sequential 
Kalman filter solutions are derived based on the least squares (LS) criterion. The 
ambiguity parameters are incorporated in the filter state with extremely small vari-
ances to characterize their constant property [22], namely, ak = ak−1 + wak , where 
wak is zero mean with the variance matrix Qwak 

= e−16Isf . 
Due to the time delay of communication, the corrections of a given epoch from 

the reference station need to be continuously used for several user epochs. Hence, 
the DD observations of multiple epochs are correlated to each other when the same 
corrections are repeatedly utilized in (11.14). This time correlation should be properly 
captured in stochastic modeling; otherwise, the ambiguity resolution efficiency will
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be degraded [23]. To derive the filter solution with time correlation, we organize 
observation Eq. (11.14) as  

lk = Ak ξ k + εk + ηk 

Qεk 
= blkdiag

([

σ 2 p , σ  2 φ

])

⊗ If ⊗ Qck 

Qηk 
= blkdiag

([

σ 2 p , σ  2 φ

])

⊗ If ⊗
(

Qk − Qck

)

(11.17) 

where lk =
[

pT k , φ
T 
k

]T 
, Ak =

[

ef ⊗ Bk μ ⊗ Is 0 
ef ⊗ Bk − μ ⊗ Is λ ⊗ Is

]

and ξ k =
[

xT k , ιT k , aT k
]T 
. 

Here, the observation errors in (11.14) are decomposed into two parts. One is the time-
independent observation noise ηk introduced by the user SD observations. The other 
is the linearly time-dependent noise εk introduced by the repeatedly used SD correc-
tions. Qck is an (s × s) cofactor matrix of SD corrections with elevation-dependent 
weighting. Since εk is linearly time dependent, its transition equation is 

εk = Sk,k−1εk−1, Qck = Sk,k−1Qck−1 
ST k,k−1 (11.18) 

where Sk,k−1 is the transition matrix and taken as an identity matrix here. In addition, 
the random walk process is applied for the state transition as 

ξ k = ξ k−1 + wk , Qξ k = Qξ k−1 
+ Qwk 

(11.19) 

where 

wk =
[

wT 
xk , w

T 
ιk 
, wT 

ak

]T 
, Qwk 

= blkdiag
(

σ 2 x I3, σ  2 wι 
Qk , e−16 Isf

)

(11.20) 

and wxk is the transition noise vector for the position parameters and is assumed to 
have a zero mean and covariance matrix σ 2 x I3. Here, we take an extremely large value 
for σ 2 x to conservatively characterize the position variation, i.e., the true kinematic 
situation. A standard Kalman filter can be applied to solve Eqs. (11.17)–(11.20) if  
the observations lk and lk−1 are time-independent, namely, Qck = 0 and Sk,k−1 = 
0. Otherwise, the filter solution should consider the observation time-correlations 
[24]. By applying the time-differencing method introduced in [25], we derive the 
time-correlated filter solution as 

ξ k = ξ̂ k−1 + wk 

Qξ k = Qξ̂ k−1 
+ Qwk 

ξ̂ k = ξ k + Jk
(

zk − Hk ξ k
)

Qξ̂ k = (I − JkHk )Qξ k − JkCT 
k 

(11.21) 

where ξ k is the predicted state vector and
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zk = lk − Sk,k−1lk−1 

Jk =
(

Qξ k H
T 
k + Ck

)(

HkQξ k H
T 
k + Qvk + HkCk + CT 

k H
T 
k

)−1 

Hk = Ak − Sk,k−1Ak−1 

vk = Sk,k−1Ak−1wk + ηk − Sk,k−1ηk−1 

Ck = Qwk 
AT 
k−1S

T 
k,k−1 

Qvk = Sk,k−1Ak−1Qwk 
AT 
k−1S

T 
k,k−1 + Qηk 

+ Sk,k−1Qηk−1 
ST k,k−1 

(11.22) 

Note that once the corrections of the new epoch from the reference station are 
first used at epoch k, one needs only to set Sk,k−1 = 0, εk = 0, Qck = 0, and the 
time-correlated filter reduces to a standard Kalman filter. 

11.3.2 Strategies for Partial Ambiguity Resolution 

The ionosphere-weighted model with asynchronous and time-correlated observations 
resolves the problems of delayed corrections and long baselines for SMC-RTK. 
However, the SMC-RTK ambiguity resolution problem remains unresolved. The 
ambiguity resolution is difficult for baselines as long as several hundred kilometers 
since the DD residual atmospheric delays will be considerable. Therefore, [1] only 
fixed the wide-lane ambiguities, and [26] only provided the float solutions. In this 
study, multi-frequency multi-GNSS uncombined corrections, ionospheric constraints 
and precise ephemerides are applied to improve the float solutions, which make 
the narrow-lane ambiguity resolution efficient. The wide-lane and extra wide-lane 
ambiguities are first fixed based on a geometry-free model [27]. Then, we apply PAR 
to solve the narrow-lane ambiguities. The ambiguity subset â1 is chosen based on 
the accumulated tracking time of signals and their satellite elevations. The tracking 
time threshold is set to 5 s (i.e., the ambiguities continuously tracked for at least 
5 s will be added to the ambiguity fixing subset). The satellite elevation threshold 
is empirically set to 25° initially and raised to 45° in 10° increments successively if 
the previous ambiguity subset is not fixed. Once the ambiguity subset is successfully 
fixed, the remaining ambiguities â2 are updated through the following relationships: 

ã2 = â2 − Qâ2â1 Q
−1 
â1 

(â1 − ǎ1) 

Qã2 = Qâ2 − Qâ2 â1 Q
−1 
â1 
Qâ1â2 

(11.23) 

where â1 and â2 denote the float solutions of the selected ambiguities and the 
remaining ambiguities with variance matrices Qâ1 and Qâ2 , respectively. Qâ2 â1 = 
QT 

â1 â2 is the covariance matrix between â1 and â2. The integer vector ǎ1 represents 
the fixed solution of the selected ambiguities. ã2 is the updated float solution of 
the remaining ambiguities with the variance matrix Qã2 . The remaining ambiguities 
whose satellite elevations are higher than 25° are further selected to be fixed. The
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ambiguities whose satellite elevations are lower than 25° remain unfixed to control the 
ambiguity resolution reliability due to their larger DD residual atmospheric delays. 
The narrow-lane ambiguities are fixed by employing the least-squares ambiguity 
decorrelation adjustment method [28]. The decision of accepting the fixed solution 
is made according to the ratio test with dimension-dependent thresholds advised in 
[22]. 

11.4 Experimental Analysis of SMC-RTK 

Two experiments, static and kinematic situations, are carried out. In SMC-RTK, we 
process the static data by purely simulating the real-time kinematic situation. Triple-
frequency BDS and dual-frequency GPS observations are used. The cutoff elevation 
is 7°, and an elevation-dependent stochastic model of undifferenced observations 
σ = 1.02 

sin θ +0.02 σ90◦ is applied with a zenith precision of σ90◦ = 2 mm for the phase 
and 0.2 m for the pseudorange. We conservatively take ι = 0 and σι = 2blen mm/km, 
where blen is the baseline length in kilometers and σ 2 wι 

= 1.5�t cm2/s, where �t is 
the elapsed time in seconds. 

11.4.1 Baseline Experiment 

A 72-h dataset was collected on a 320 km baseline with a sampling interval of 1 s. The 
observation duration was from day of year (DOY) 006 to 008 in 2020. The baseline 
reference stations, named TJ01 and TJ02, are located in the cities Shanghai and 
Nanjing, respectively. Two Trimble Alloy receivers are used to decode the satellite 
signals received by choke ring antennas on the roofs. The coordinates of TJ01 and 
TJ02 are precisely post solved using the static PPP mode in Bernese GNSS Software 
(version 5.2) based on the daily dual-frequency GPS observations selected from the 
baseline dataset on DOY 008 in 2020. In PPP processing, the sampling interval is 
30 s, and the cutoff elevation is set to 7°. The final International GNSS Service (IGS) 
products are used, and the antenna offsets are corrected with IGS14/igs14.atx. The 
static PPP results serve as the benchmark for computing the root mean square error 
(RMSE) of the positioning. 

First, we reinitialize the positioning engine hourly and record the positioning solu-
tions and their corresponding convergence time. Then, the statistics of the positioning 
accuracy and convergence time are computed. The convergence time is defined as 
the time to correctly fix (TTCF) ambiguities. The ambiguities are considered to be 
correctly fixed when the positioning error of both horizontal components are smaller 
than 5 cm. After TTCF, the positioning accuracy is defined as the RMSE of the 
positioning (i.e., the difference between the positions estimated by SMC-RTK in 
kinematic mode and Bernese in static PPP mode).
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The SMC-RTK errors with hourly reinitialization from DOY 006 to 008 are calcu-
lated. The ambiguities are instantaneously and correctly fixed after most reinitializa-
tions. Sometimes the ambiguities are wrongly fixed at first and lead to decimeter-level 
positioning errors, such as the positioning errors at the 2nd hour on DOY 006 (a) and 
the 12th to 14th hours on DOY 007 (b). The incorrect fixing is caused by the unmod-
eled errors and will make the ratio values close to 1. Hence, a strict ratio test can be 
used after ambiguity resolution to determine whether to inherit the ambiguities for 
subsequent epochs so that the incorrectly fixed ambiguities will not be inherited and 
degrade all subsequent solutions. 

The mean values of the convergence time and RMSE are given in Table 11.3. 
The statistical sample includes the positioning results of all 72 reinitializations. 
As a comparison, the results of SMC-RTK estimating the RZTD parameter with 
a conservative processing noise of 0.1 mm/s are also displayed. 

When the RZTD parameter is ignored, the RMSE along the north and east direc-
tions of SMC-RTK are smaller than 3 cm and are mostly approximately 1 cm, which 
is similar to the case of estimating the RZTD parameter. The results show that the 
convergence time of ignoring the RZTD parameter is smaller than 1 min (which 
means the ambiguities are instantaneously and correctly fixed) for more than 80% 
of reinitializations. In addition, the RMSE along the up direction when ignoring the 
RZTD parameter sometimes exceeds 10 cm. As shown in Table 11.3, estimating the 
RZTD parameter improves the positioning accuracy in the up direction but raises the 
convergence time by 28%. The experimental results are in line with our expectations 
because the RZTD parameter is strongly correlated to the vertical coordinate and 
requires more time to be precisely estimated. Hence, ignoring the RZTD parameter 
will degrade the vertical precision of positioning but shorten the convergence time. 
However, ignoring the RZTD parameter is not suitable for all long-baseline cases, 
especially when the vertical precision is important for the application. In addition, a 
strict and precise constraint of estimating the RZTD parameter can improve the posi-
tioning performance. Hence, the SMC-RTK software keeps the option of ignoring 
or estimating the RZTD parameter, while this study ignores the RZTD parameter to 
shorten the convergence time. 

We further investigate the positioning performance of SMC-RTK without reini-
tialization based on the same dataset. We calculated the SMC-RTK errors without 
reinitialization on DOY 006 (a), 007 (b), and 008 (c) in 2020. The TTCF and the 
positioning accuracy are given in Table 11.4.

Table 11.3 Mean values of convergence time and RMSE of SMC-RTK 

Mean RMSE of 
positioning (cm) 

Mean convergence time (s) 

North East Up 

Ignoring the RZTD parameter 0.9 1.2 4.6 91 

Estimating the RZTD parameter 0.9 1.1 2.8 117 
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Table 11.4 RMSE and TTCF of SMC-RTK 

DOY TTCF (s) RMSE of SMC-RTK (cm) 

North (N) East (E) Up (U) 

006 6 1.1 2.0 4.3 

007 6 1.0 1.1 9.6 

008 6 1.2 1.2 6.6 

The horizontal positioning errors are a few centimeters after the ambiguities are 
correctly fixed. The vertical errors obviously suffer systematic errors due to the 
ignored residual tropospheric delays. They are sometimes larger than 10 cm even 
with ambiguities fixed. We zoom-in on the positioning results of the first minutes on 
DOY 006 (a), 007 (b), and 008 (c). In these cases, the ambiguities are immediately 
fixed at the sixth second once the PAR is activated (where the ambiguities that are 
only tracked for at least 5 s are considered for fixing). Actually, once the PAR is 
activated at the sixth second, the ambiguities are immediately fixed with larger than 
50% probability. 

It should be noted that using the ultrarapid ephemeris is important for long-
baseline resolution because the orbit error of the broadcast ephemerides cannot 
be eliminated by double-differencing. We computed the orbit errors contained in 
the asynchronous double-difference observations if the broadcast ephemerides are 
used. The orbit error is the difference between the asynchronous DD pseudorange 
calculated using the ultrarapid ephemeris and the broadcast ephemeris. 

The results show that many of them are larger than 2 cm and even 3 cm. Consid-
ering the wavelengths of satellite signals, such errors will lead to float ambiguities 
biased by 0.1–0.2 cycles, which dramatically degrades the performance of successful 
ambiguity resolution. In addition, the BDS satellite orbit errors are comparable to 
GPS satellites. However, for the geostationary satellites, the orbit errors exceed 10 cm, 
which means that the related ambiguity biases exceed 0.5 cycles. 

11.4.2 Kinematic Experiment 

A kinematic experiment was carried out in the field for an hour on DOY 013 in 2020. 
The CHCNAV X90F all-in-one receiver receives GNSS observations and transmits 
them to the SMC-RTK software. The observation environment is open but surrounded 
by the ocean. The BDS Radio Determination Satellite System (RDSS) terminal 
receives BDS short messages and transmits them to the SMC-RTK software. The 
workboat moves along the coastline near reference station TJ01. TJ01 and TJ02 both 
serve as the reference stations in this experiment. TJ02 is located 320 km away from 
the user station and is utilized to form an extralong baseline for SMC-RTK. TJ01 
is located 2 km away from the user station to form a short baseline. The precise
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Fig. 11.2 Coordinate 
differences between 
SMC-RTK and the 
short-baseline results 

solutions of the short baseline are employed as the references for evaluating the 
SMC-RTK solutions. 

The RTK solutions of the short baseline correctly fixed the ambiguities at all 
epochs. The coordinate differences along the north, east, and up directions between 
the SMC-RTK results and the references are shown in Fig. 11.2. The SMC-RTK 
TTCF is 6 s. After TTCF, the root mean square values of the coordinate differences 
are 2.4 cm, 5.6 cm, and 5.5 cm along the north, east and up directions, respectively. 
The vertical coordinate difference has a systematic bias of approximately 7 cm due 
to ignoring the residual tropospheric delay. In addition, the coordinate differences 
are slightly larger than those of the baseline experiment because it involves both the 
positioning errors of the SMC-RTK and the short-baseline RTK. 

11.5 Conclusion 

This study introduces the SMC-RTK method, which can realize high-precision posi-
tioning at sea in real time, and makes significant modifications to the method. In this 
chapter, the SMC-RTK technique overcomes the problem of communication at sea 
by sending corrections through the BDS SMS based on an efficient encoding and 
broadcasting strategy. Moreover, SMC-RTK reduces the dependence on reference 
stations by using only a single reference station. The service radius of the single refer-
ence station is extended to 300 km by applying an asynchronous, time-differenced, 
precise ephemerides-aided and ionosphere-weighted positioning model. The SMC-
RTK TTCF is a few seconds. After TTCF, the horizontal accuracy of SMC-RTK is 
approximately 1 cm, and the vertical accuracy is approximately 10 cm. 

SMC-RTK has several advantages compared to other GNSS positioning methods 
on the ocean. (1) It can provide positioning results in real time, which fulfills the 
demands of navigation on the ocean and can enhance the efficiency of engineering 
works, such as water course surveys. (2) The positioning accuracy is at the centimeter 
level, and the convergence time is a few seconds even with a baseline length exceeding
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300 km. (3) The cost of SMC-RTK is low, while the service fee for each user is 
minimally only several hundred Chinese yuan per year since one reference station 
can simultaneously serve 200 users with the help of command ID cards. 

There will be additional possible solutions for high-precision positioning on the 
ocean in the future. BDS satellites have begun to broadcast the PPP-B2b signal 
and have enabled global PPP service. Additionally, the BDS SMS is available for 
transmitting corrections of real-time PPP. However, considering its high-precision, 
quick convergence, and low cost, SMC-RTK will still be a great option. 

The new BDS SMS generation (BeiDou-3 SMS) has recently become available. 
The BeiDou-3 SMS allows users to send a single message containing a maximum of 
1750 bytes every 30 s. It can reduce the number of required ID cards and the costs 
of SMC-RTK but still does not satisfy RTK in virtual-reference-station mode. In 
addition, the actual service frequency and the maximum length of a single message 
are bounded to the registration parameters of users, which means that the maximum 
bandwidth of the BeiDou-3 SMS is not available to most people. Thus, with consid-
eration of the BeiDou-3 SMS, the SMC-RTK method is still superior to RTK on the 
ocean and is more favorable due to the reduced communication costs. 
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Chapter 12 
ARTK: Antenna-Array Aided RTK 

12.1 Introduction 

Integer ambiguity resolution is the key to high-precision global navigation satellite 
system (GNSS) applications. It enables the transformation of the ambiguous carrier 
phases to ultra-precise pseudoranges, thus making high-precision parameter estima-
tion possible. The success of ambiguity resolution depends on the strength of the 
underlying GNSS model. The weaker the model, the more data needs to be accu-
mulated before ambiguity resolution can be successful and the longer it therefore 
takes before one can take advantage of the ultra-precise carrier signals. Clearly, the 
aim is to shorten the time to convergence, preferably zero, thereby enabling truly 
instantaneous GNSS, integer ambiguity resolved, parameter estimation. 

In continuously operating reference system (CORS) network applications, fast 
and successful resolution of the ambiguities is important as it enables improved 
availability of the network provided ambiguity-fixed parameter outputs, such as the 
ionospheric delays. Between-station ambiguity resolution is usually based on data 
of stations equipped with a single antenna only. In this contribution, we study the 
potential improvements that can be realized when stations would be equipped with an 
array of antennas instead of only a single antenna. This array-aided precise point posi-
tioning (APPP) concept, proposed in [1], is a measurement concept that uses GNSS 
data, from multiple antennas in an array of known geometry, to realize improved 
GNSS parameter estimation. Although we focus on ambiguity resolution in this 
contribution, integrity improves, since with the known array geometry, redundancy 
increases, thus allowing improved error detection and multipath mitigation [2, 3]. 

Consider Fig. 12.1, in which two antenna-array equipped stations, b0 and u0, are  
shown. The two antenna arrays, with known geometry, b1, . . . ,  br and u1, . . . ,  ur , are  
mounted on the platforms at b0 and u0, respectively. The known platform antenna-
array geometry enables one to reduce the platform observations of all its antennas 
to a single set of platform observations. This set of reduced observations can be 
interpreted as if it belongs to one single virtual antenna with a better precision than
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Fig. 12.1 Two antenna-array equipped platforms b0 and u0 

the original observations coming from the individual antennas. Therefore, improved 
between-platform (b0 − u0) ambiguity resolution and parameter estimation become 
possible as compared to the between-platform single-antenna case. This improve-
ment has been initially demonstrated on long-distance real time kinematic (RTK) 
campaign [4]. Although the reduction of the platform observations also requires 
ambiguity resolution, namely on the platform, this can be shown possible with high 
success rates due to the known antenna-array geometry [5]. 

One of the potential applications of APPP is to speed up the CORS ambiguity 
resolution. In this contribution, we explore the potential benefits of APPP to the long-
range RTK, which is referred to as array-aided RTK (ARTK). An 80 km baseline 
experiment was conducted for which both stations were equipped with a 4-antenna 
array platform. The newly formed model for observation reduction with multiple 
antennas on the platform was solved using the principle of multivariate mixed integer 
least squares estimation and the reduced data was generated. Then the reduced data 
was processed to demonstrate the superior performance of ARTK in integer ambi-
guity resolution (IAR), precise RTK solutions, as well as high robustness, comparing 
with the conventional RTK (CRTK) with 1-antenna, equipped baseline stations. This 
contribution is organized as follows. First, we formulate the platform array model and 
show how its data can be reduced. Second, we describe three different ionosphere-
weighted differential CORS array models and present closed form formulae for their 
ambiguity variance matrices. They determine the success rates with which the integer 
ambiguities can be estimated. Third, the long-range RTK model between platforms 
is outlined. Finally. the 80 km baseline experiment is presented. 

In following, In denotes the identity matrix of order n and en the n-column 
vector of ones. c1 = [1, 0, . . . ,  0]T is a unit vector with its 1 in the first slot. 
DT 

n = [− en−1, In−1
]
is the differencing matrix. ⊗ and vec are Kronecker product 

and vectorization operators. E and D denote the expectation and dispersion opera-
tors. diag(a) is the operator to form a square matrix with elements of a as diagonal 
elements. 

12.2 Platform Array Model and Its Data Reduction 

As an important part of ARTK, the platform array models are studied comprehen-
sively in this section, including the functional model and the stochastic model. Then 
we show how its data can be reduced.
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12.2.1 Functional Model 

We start with the linearized single-frequency, between-satellite single-differenced 
(SD) observation equations of phase and code, 

E
(
φr,j

) = Grxr + grτr − μjιr − δt,j + λjar,j 

E
(
pr,j

) = Grxr + grτr + μjιr − dt,j 
(12.1) 

where the subscripts r and j denote the antenna and the frequency fj (wave-
length λj), which are used to emphasize the antenna-specific and frequency-specific 
terms, respectively. Assuming that (s + 1) satellites are simultaneously tracked, 

φr,j =
[
φ1 
r,j, . . . , φ

s 
r,j

]T 
and pr,j =

[
p1 r,j, . . . ,  ps r,j

]T 
are the (s × 1) SD phase and 

code observation vectors; Gr is the (s × 3) design matrix of the unknown baseline 
increment vector xr; τr is the zenith tropospheric delay (ZTD), with its mapping 
matrix gr; ιr = [

ι1 r , . . . , ι
s 
r

]T 
is the (s × 1) vector of SD ionospheric delays on 

frequency f1 with μj = f 2 1 /f 
2 
j ; δt,j =

[
δt1 ,j, . . . , δt

s 
,j

]T 
and dt,j =

[
dt1 ,j, . . . ,  dts ,j

]T 
are 

the SD satellite clock errors for phase and code, respectively; ar,j =
[
a1 r,j, . . . ,  as r,j

]T 

is the (s × 1) SD ambiguity vector with the sth element as r,j = zs r,j − ϕs 
,j(t0), where 

zs r,j is integer and ϕ
s 
,j(t0) is real-valued. 

For f frequencies, we define the vectors, yr =
[
φT 
r , pT r

]T 
and �t = [

δtT , dtT
]T 
, 

with φr =
[
φT 
r,1, . . . ,  φT 

r,f

]T 
, δt =

[
δtT ,1, . . . ,  δtT ,f

]T 
; where pr and dt have the 

same structure as φr and δt, respectively. Furthermore, μ = [
μ1, . . . , μf

]T 
, ar =[

aT r,1, . . . ,  aT r,f
]T 

and � = diag
(
λ1, . . . , λf

)
. 

Since we assume the distances between the antennas on the platform to be very 
short, we may assume that Gi = G, g = gi, τ = τi and ι = ιi for i = 1, . . . ,  r. This  
implies that we may write the r antenna array set of SD observation equations of 
(12.1) in multivariate form as 

E(Y) = MX + NA + eT r ⊗
(
υ ⊗ ι + e2f ⊗ (gτ ) − �t

)
(12.2) 

where Y = [
y1, . . . ,  yr

]
, M = e2f ⊗ G, X = [x1, . . . ,  xr], N = � ⊗ Is, � = [�, 0]T , 

A = [a1, . . . ,  ar] and υ = [− μT, μT
]T 
. 

If we now post-multiply (12.2) with the invertible matrix Rr = [c1, Dr], we obtain 
with

[
y1, Ỹ

] = YRr , 

E

([
y1 
Ỹ

])
=

[
Mx1 + Na1 + υ ⊗ ι + (

e2f ⊗ g
)
τ − �t 

M X̃ + NZ

]
(12.3)
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where Ỹ = [
y12, . . . ,  y1r

]
is the transformed double-differenced (DD) observa-

tion matrix, X̃ = XDr = [x12, . . . ,  x1r] is the baseline matrix, and Z = ADr = 
[z12, . . . ,  z1r] is the integer DD ambiguity matrix. 

12.2.2 Stochastic Model 

We specify the stochastic model of Y = [
y1, . . . ,  yr

]
as 

D(vec(Y)) = Qr ⊗ Q with Q = Qf ⊗
(
DT 

s+1QsDs+1
)

(12.4) 

where Qr captures the antenna-specific precision contribution, Qs is the satellite 
elevation-dependent cofactor matrix of the (s + 1) undifferenced observations, and 
Qf = blockdiag

(
Qφ, Qp

)
captures the frequency-specific precision contribution, 

with Qφ = diag
(
σ 2 φ;1, . . . , σ  2 φ;f

)
and Qp = diag

(
σ 2 p;1, . . . , σ  2 p;f

)
, where σ 2 φ;j and 

σ 2 p;j are the variance scalars of the undifferenced phase and code on frequency j, 
respectively. 

Application of the variance propagation law to
[
y1, Ỹ

] = YRr gives the stochastic 
model of (12.3) as  

D

([
y1 

vec
(
Ỹ

)
])

=
[

cT 1 Qrc1 c
T 
1 QrDr 

DT 
r Qrc1 D

T 
r QrDr

]

⊗ Q (12.5) 

12.2.3 Array Data Reduction 

From (12.5) it follows that y1 and Ỹ of (12.3) are correlated. As shown by [1], 
application of the invertible transformation

[
1 − cT 1 QrDr

(
DT 

r QrDr
)−1 

0 Ir−1

]

⊗ I2fs (12.6) 

to (12.3) results in the equivalent but decorrelated version 

E

([
y 
Ỹ

])
=

[
Mx + Nz + (

e2f ⊗ g
)
τ + υ ⊗ ι − �t 

M X̃ + NZ

]
(12.7) 

where
[
y, x

] = [Y, X]Q−1 
r er

(
eT r Q

−1 
r er

)−1 
and z = a1 − ZD+ 

r c1, with D
+ 
r =

(
DT 

r QrDr
)−1 

DT 
r Qr . The dispersion of the reduced observation vector y and the DD
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observation matrix Ỹ is given as 

D

([
y 

vec
(
Ỹ

)
])

=
[ (

eT r Q
−1 
r er

)−1 
0 

0 DT 
r QrDr

]

⊗ Q (12.8) 

showing that y is uncorrelated with Ỹ . 
In the following, we assume that the same type of antennas are used. Thus Qr = Ir , 

from which it follows that y = 1 
r

∑r 
i=1 yi, x = 1 

r

∑r 
i=1 xi, z = a1 + 1 r Zer−1, and(

eT r Q
−1 
r er

)−1 = 1/r. The reduced observation vector y is thus r times more precise 
than that of a single antenna. 

In case of an APPP-CORS platform, the barycentric position vector x is known, 
since the position vectors xi of the platform antennas are assumed known. Further-
more, the known geometry X̃ of the antenna configuration on the platform enables 
one to determine the integer matrix estimator Ž of Z with a very high success rate, 
see [1]. Hence, for all practical purposes one may also assume the DD integer matrix 
Z in z = a1 + 1 r Zer−1 known. Therefore, with x and Z known, the first equation of 
(12.7) can now be written as 

E
(
y′) = (

e2f ⊗ g
)
τ + υ ⊗ ι + Na1 − �t (12.9) 

where y′ = y−Mx−Nz̃, with z̃ = 1 r Zer−1. This is the reduced system of observation 
equations for a single CORS platform equipped with multiple antennas. 

12.3 Ambiguity Resolution Between Arrays 

In this section, the ionosphere-weighted differential CORS array model is studied. 
Then the ionosphere-weighted CORS ambiguity resolution is discussed. We deter-
mine the multi-epoch ambiguity variance matrix for three different scenarios, 
including geometry-fixed, geometry-free and geometry-based, sits in between the 
geometry-fixed one and the geometry-free one. 

12.3.1 Ionosphere-Weighted Differential Array Model 

To determine the differential CORS array model for two CORS platforms equipped 
with multiple antennas, we can take the difference between their single CORS system 
of equations. For two CORS platforms, say b and u, having the reduced observations 
yb and yu, the between-platform system of observation equations, therefore, reads 

E
(
y′
bu

) = (
e2f ⊗ gb

)
τbu + υ ⊗ ιbu + Nabu (12.10)
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with y′
bu = yu − yb − Muxu + Mbxb − N(zu − zb), τbu = τu − τb

(
gb ≈ gu

)
, and 

abu = a1;u − a1;b. Note that abu is now again a DD integer ambiguity vector. 
With the assumption that the same type of receivers is used on the two platforms 

(i.e. Qf ;b = Qf ;u = Qf ), the variance matrix of y′
bu is given as 

D
(
y′
bu

) = 
1 

r 
Qf ⊗ W−1 , W−1 = DT 

s+1Q0Ds+1 (12.11) 

where Q0 = Qs;u + Qs;b is the cofactor matrix of the between-platform SD observa-
tions. This shows how between-platform parameter estimation can benefit from the 
antenna array and in particular from r, the number of antennas in the array. 

The ionosphere-weighted version of (12.10) and (12.11) is obtained if we add the 
ionospheric pseudo-observation equations 

E
(
ι0 bu

) = ιbu, D
(
ι0 bu

) = σ 2 ι ⊗ W−1 (12.12) 

in which the variance σ 2 ι is used to model the between-platform spatial uncertainty 
of the ionosphere, i.e. σ 2 ι is small for short baselines and large for long baselines. 
The two extreme cases, σ 2 ι = 0 and σ 2 ι = ∞  are referred to as the ionosphere-fixed 
and ionosphere-float model, respectively. 

12.3.2 Ionosphere-Weighted Ambiguity Resolution 

If we use (12.12) to eliminate the unknown ionospheric delays from (12.10), the 
single-epoch ionosphere-weighted model may also be written as 

E(y) = [
e2f ⊗ g � ⊗ Is

][ τ 
a

]

D(y) =
(
1 

r 
Qf + σ 2 ι υυT

)
⊗ W−1 

(12.13) 

where y = y′
bu − υ ⊗ ι0 bu, � = [�, 0]T . The short-hands g, τ and a have been used 

instead of gb, τbu and abu. When we solve the ionosphere-weighted model for the 
multi-epoch case, we assume no time correlation between the observables and the 
ambiguity vector a to be time constant. 

We now determine the multi-epoch ambiguity variance matrix for three different 
scenarios. In the first scenario, referred to as geometry-fixed, all the tropospheric 
delays are assumed known. The corresponding ambiguity variance matrix is given 
as 

Q(fixed) 
ââ = 

1 

r 

1 

k

[
�−1(Qφ + αμμT)�−1] ⊗ W−1 

(12.14)
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with the time-average weight matrix W = 1 
k

∑k 
t=1 W t and ionosphere weighting 

scalar 

α =
[(
rσ 2 ι

)−1 +
(
μT Q−1 

p μ
)]−1 

(12.15) 

In the second scenario, referred to as geometry-free, all the slant tropospheric 
delays are assumed unknown. That is, no mapping is applied (i.e. g is replaced by 
Is) and the delays are assumed to change overtime. The corresponding ambiguity 
variance matrix is given as 

Q(free) 
ââ = Q(fixed) 

ââ + 
1 

k 
c2 τ̂free qq

T ⊗ W−1 
(12.16) 

with 

q = �−1
(
If + αμμT Q−1 

p

)
ef 

c2 τ̂free =
[

eT f

(
1 

r 
Qp + σ 2 ι μμT

)−1 

ef

]−1 (12.17) 

Finally, the third scenario, referred to as geometry-based, sits in between the 
geometry-fixed one and the geometry-free one. It is the scenario in which the ZTD 
is considered unknown, but constant in time. The corresponding ambiguity variance 
matrix is given as 

Qââ = Q(fixed) 
ââ + 

1 

k 
c2 τ̂ qq

T ⊗ PgW
−1 

(12.18) 

with g =
(∑k 

t=1 W t

)−1(∑k 
t=1 W tgt

)
, the weighted average ZTD map, the orthog-

onal projector Pg = g
(
gT Wg

)−1 
gT W , and 

c2 τ̂ = c2 τ̂free

[

1 + 
c2 τ̂free 
c2 τ̂ |a 

1 
k

∑k 
t=1

(
gt − g

)T 
W t

(
gt − g

)

gT Wg

]−1 

c2 τ̂ |a =
[

eT 2f

(
1 

r 
Qf + σ 2 ι υυT

)−1 

e2f

]−1 
(12.19) 

Note that c2 τ̂ ≤ c2 τ̂free , with equality in the single-epoch case, and that Qââ and Q
(free) 
ââ 

are a rank-1 update and a rank-s update of Q(fixed) 
ââ . Hence, in terms of the ambiguity 

precision, the three cases can be ordered as
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Q(fixed) 
ââ ≤ Qââ ≤ Q(free) 

ââ (12.20) 

The geometry-fixed model gives the most precise ambiguities, while the 
geometry-free model, being the weakest, gives the most imprecise ambiguities. 

12.3.3 Some Important Derivations 

Assuming all matrices and vectors involved have appropriate dimensions, the 
following properties of the Kronecker product and vectorization operator vec [6]: 

(AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) (12.21) 

vec(ABC) = (
CT ⊗ A

)
vec(B) (12.22) 

and the projector identity [7] 

QDr

(
DT 

r QDr

)−1 
DT 

r = Ir − er
(
eT r Q

−1 er
)−1 

eT r Q
−1 (12.23) 

with DT 
r er = 0, will be frequently applied in the derivations. 

For the derivation of some formulae in Sect. 12.2. To derive (12.5), we apply the 
error propagation law to

[
y1 

vec
(
Ỹ

)
]

= vec(YRr) =
(
RT 
r ⊗ I2fs

)
vec(Y) (12.24) 

where Rr = [c1, Dr]. This gives 

D

([
y1 

vec
(
Ỹ

)
])

= (
RT 
r ⊗ I2fs

)
D(vec(Y))

(
Rr ⊗ I2fs

)

= (
RT 
r ⊗ I2fs

)(
Qr ⊗ Q

)(
Rr ⊗ I2fs

)

=
[
cT 1 Qrc1 c

T 
1 QrDr 

DT 
r Qrc1 D

T 
r QrDr

]
⊗ Q (12.25) 

To derive the first equation of (12.8), we apply the inverible transformation (12.6) 
to (12.3). It follows:

[(
1, − cT 1 QrDr

(
DT 

r QrDr
)−1

)
⊗ I2fs

][ y1 
vec

(
Ỹ

)
]

= y1 −
(
cT 1 QrDr

(
DT 

r QrDr
)−1 ⊗ I2fs

)
vec

(
Ỹ

)
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= y1 − vec
(
Ỹ

(
DT 

r QrDr
)−1 

DT 
r Qrc1

)

= y1 − YDr
(
DT 

r QrDr
)−1 

DT 
r Qrc1 

= y1 − Y
[
Ir − Q−1 

r er
(
eT r Q

−1 
r er

)−1 
eT r

]
c1 

= YQ−1 
r er

(
eT r Q

−1 
r er

)−1 
(12.26) 

where the identity (12.21) was applied. One can easily work out the variance matrix 
(12.8) using this identity. 

For the derivation of variance matrix (12.16). In the geometry-free model, we 
replace g with Is in (12.13) and further use the differencing matrix DT 

2f ⊗ Is to 
eliminate troposphere design matrix:

[
DT 

2f � ⊗ Is
]
and DT 

2f Q̃D2f ⊗ W−1 (12.27) 

with Q̃ = Qf + σ 2 ι υυT. This gives the normal matrix of k epochs for ambiguities as

(
�T D2f

(
DT 

2f Q̃D2f

)−1 
DT 

2f �

)
⊗

(
kW

)
= Ñ ⊗

(
kW

)
(12.28) 

We now concentrate on the first part Ñ only and use the identity (12.21) to rewrite 
it as 

Ñ = �T Q̃
−1

� − �T Q̃
−1 
e2f

(
eT 2f Q̃

−1 
e2f

)−1 
eT 2f Q̃

−1
� (12.29) 

Using matrix inversion lemma gives: 

Ñ
−1 =

(
�T Q̃

−1
�

)−1 + c2 τ̂free qq
T (12.30) 

with 

c−2 
τ̂free 

= eT 2f Q̃
−1 
e2f − eT 2f Q̃

−1
(
�T Q̃

−1
�

)−1
�T Q̃

−1 
e2f (12.31) 

q =
(
�T Q̃

−1
�

)−1
�T Q̃

−1 
e2f (12.32) 

We first work out c−2 
τ̂free 

. Using the analogous projector identity 

I2f − �
(
�T Q̃

−1
�

)−1
�T Q̃

−1 = Q̃�⊥
(
�T 

⊥ Q̃�⊥
)−1

�T 
⊥ (12.33) 

with �⊥ =
[
0, If

]T 
, we get
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c−2 
τ̂free 

= eT 2f �⊥
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)−1

�T 
⊥e2f 

= eT f
(
1 

r 
Qp + σ 2 ι μμT

)−1 

ef (12.34) 

with Q̃ = Qf + σ 2 ι υυT. 
Now we work out the expression for q. Premultiplying the matrix identity (12.31) 

with
(
�T�

)−1
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(
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(12.35) 

Hence 
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ef + σ 2 ι μμT

(
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(12.36) 

It is not difficult to verify that 

If + σ 2 ι μμT

(
1 

r 
Qp + σ 2 ι μμT

)−1 

= If + αμμT Q−1 
p (12.37) 

with α =
[(
rσ 2 ι

)−1 + μTQ−1 
p μ

]−1 
. Hence, for q we find 

q = �−1
(
If + αμμT Q−1 

p

)
ef (12.38) 

It is rather easy to prove:

(
�T Q̃

−1
�

)−1 ⊗ 
1 

k 
W

−1 = Q(fixed) 
ââ (12.39) 

To specify the time variation of troposphere design matrix g and elevation-
dependent weight matrix, we assign the epoch index t to g and W . The normal 
matrix of k epochs reads 

⎡ 

⎣

(
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−1
�

)
⊗ kW

(
�T Q̃
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⎤ 

⎦ (12.40)
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with W = 1 k
∑k 

t=1 W t , g =
(∑k 

t=1 W t

)−1 ∑k 
t=1 W tgt ,

∑k 
t=1 W tgt = kWg and 
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(
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e2f (12.41) 

Reducing the ZTD parameter, the normal matrix of ambiguities over k epochs is

(
Q(fixed) 

ââ

)−1 −
(
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)(
eT 2f Q̃
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(12.42) 

Using the matrix inversion lemma, we obtain the variance matrix (12.43) of  
ambiguities 
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ââ 
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ââ

∑k 
t=1 g

T 
t W tgt −

(
eT 2f Q̃

−1
� ⊗ g̃TW

)
Q(fixed) 

ââ
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(12.43) 

Let us now focus on the fraction U/v of the second term only. We first simplify 
its numerator U. Substituting (12.39) into it yields: 

U = c2 τ̂ |a
(
�T Q̃

−1
�

)−1
�T Q̃

−1 
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−1
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Substituting (12.39) into the denominator v of fraction yields: 
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where use is made of (12.33) and (12.41). Further substituting the identity 

k∑

t=1

(
gT t W tgt

) = 
k∑

t=1

(
gt − g

)T 
W t

(
gt − g

) + kgT Wg (12.46) 

into (12.46) gives
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Therefore, 
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where 
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12.4 ARTK Model 

For the relative positioning between two platforms using the reduced observations 
from array antennas, we introduce the subscripts b and u to specify the array platform. 
The equations of reduced observations for two platforms read 

E
(
yb

) = Mbxb + e2f ⊗ τ̃ b + υ ⊗ ̃ιb + Nã1,b − θ 1 (12.50) 

E
(
yu

) = Muxu + e2f ⊗ τ̃ u + υ ⊗ ̃ιu + Nã1,u − θ 1 (12.51) 

The variance matrix is 

D
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yT b , y

T 
u

]T) = 
1 

r 
blkdiag

(
Qyb 

, Qyu

)
(12.52) 

It is noticed here that yb and yu are the reduced observations already corrected by 
the DD integer ambiguities within the platform. The corresponding DD equations 

E
(
ybu

) = Muxu − Mbxb + e2f ⊗ τ̃ bu + υ ⊗ ̃ιbu + Nz1,bu (12.53) 

with the variance matrix as 

D
(
ybu

) = 
1 

r

(
Qyb + Qyu

)
(12.54) 

where b is taken as a reference station. ybu = yu − yb is DD observations. τ̃ bu and ι̃bu 
are the DD tropospheric and ionospheric delays. z1,bu is the DD integer vector formed
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by the first antenna between two platforms. Qyb and Qyu are the variance matrix of 
observations from the single antenna on platform b and u, respectively. In relative 
positioning Mb is usually very approximate to Mu and the coordinate of station 
b is precisely known or computed using single point positioning (SPP), then the 
coordinate correction xb is near to 0 and Muxu − Mbxb = Muxbu + Mbuxb ≈ Muxbu. 

For long baselines, the atmospheric effects cannot be ignored if the precise posi-
tioning is anticipated. Traditionally, the tropospheric delay is compensated by param-
eterizing it as a function of relative zenith tropospheric delay τ z and mapping function 
as τ̃ bu = mbuτ z with mbu mapping function. The ionospheric delays, as dominant 
and complicated systematic errors, are modeled by estimating all DD ionospheric 
delays as parameters. Then (12.53) becomes 

E
(
ybu

) = Mxbu +
(
e2f ⊗ mbu

)
τ z + υ ⊗ ̃ιbu + Nz1,bu (12.55) 

It is referred to as ionosphere-float model also equivalent to the ionosphere-free 
(IF) model. As well-known, the ionosphere-float model is too weak and one can then 
enhance the model strength by imposing the constraints to ionospheric parameters 

E(ι̃bu) = ι̃0 bu, with D(ι̃bu) = σ 2 ι̃bu 
(12.56) 

It is referred to as an ionosphere-weighted model. Usually, ι̃0 bu = 0 for baselines 
even as long as several hundred kilometers. In RTK, the parameters xbu and ι̃bu are 
various epoch by epoch; the ambiguity z1,bu is constant and τ z can be constant for a 
period as well. Then the least squares criterion is employed to solve the ionosphere-
weighted model realizing RTK solution. 

12.4.1 Experiment and Analysis 

Total 3-h real GPS dual-frequency data was collected on an 80 km baseline with 
sampling interval of 1 s in Perth area, West Australia. The platforms were equipped 
with Sokkia (receiver type: GSR2700ISX, antenna type: Internal Pinwheel™) and 
Javad (receiver type: Javad Delta, antenna type: GrAnt-G3T) receivers. Any tricks 
of code smoothing were switched off for all receivers to cancel the time correlation 
in observations. The sky-plot of all 13 tracked satellites in 3-h observation span is 
also analyzed. 

The satellite PRN 11 with the highest elevation at the first epoch is taken as refer-
ence satellite to form 12 pairs of DD observation series. In the computations, the 
cut-off elevation was set to 10°. We reduce array data according to the implemen-
tation steps and output them in RINEX format. In the following, “ARTK” denotes 
the solution obtained using the reduced observations with 4 array antennas while 
“CRTK” with 1 antenna no matter in static or kinematic scenarios.
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12.4.2 Estimation of Observation Standard Deviation 

As well known in the geodetic community, the only correct stochastic model can 
be used to compute the optimal estimator in the sense of least squares. Conse-
quently, we need firstly to determine the stochastic model of (12.54) for precise 
RTK between-platform, which is specified by the stochastic characteristics of two 
types of antennas. The GNSS observation precision and time correlations may be 
different from the different antennas/receivers and observation types [8]. In our case, 
the code smoothing technique was switched off and time correlation is absent. Hence, 
we need only to examine the observation precisions of Sokkia and Javad receivers. 

During the observation reduction on the array platform, the DD ambiguities are 
fixed and then we can retrieve the residuals 

vỸ =
(
Ir−1 ⊗ Ry

)
vec

(
Ỹ − N Ž

)
(12.57) 

with Ry = Qy P̃y. The one can estimate the standard deviations of all observation 
types with the residuals vỸ by employing the variance component estimation theory 
[8, 9]. It is noticed here that the fixed ambiguities Ž are deemed as deterministic 
values. In theory, this assumption holds true only when the success-rate of ambiguity 
estimation is 100% It is however impossible practically, because the ambiguity is 
computed from the noisy observation. Fortunately, in our case, the baselines on the 
platform are so short that the IAR success-rate is always nearly equal to 100% even 
the rounding method is applied. 

Figure 12.2 illustrates the estimated standard deviations as a function of a number 
of data epochs for all observation types. With the processing ongoing, the more data 
epochs are involved in the estimation and then the more stable estimates are obtained. 
The standard deviations of all observation types of Sokkia and Javad antennas are 
summarized in Table 12.1. In the experiment, we would like to explore the IAR 
capability using multiple antennas. Therefore, if the r antennas are used on the 
platform for data reduction, the standard deviations of the reduced observations are 
the ones of single-antenna observations divided by

√
r.

12.4.3 Static Processing 

First of all, to get insight into the quality of reduced observations, we process data 
using Trimble Geomatics Office (TGO) commercial software in static mode. For such 
long baseline, TGO compulsively specifies the IF model with two cascading steps 
of IAR, i.e., widelane followed by narrowlane. In the processing, the hourly ZTD 
parameters are set up to absorb the tropospheric effects. The baseline is solved in 
ARTK and CRTK modes, respectively. It is emphasized here that ARTK and CRTK 
are both the static processing modes and the only difference is that ARTK uses the 
reduced data of 4 array antennas while CRTK the raw data of 1 antenna. The baseline
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Fig. 12.2 Standard deviations of all observation types of Sokkia (top) and Javad (bottom) receivers 

Table 12.1 Standard deviations of all observation types of two receivers 

Receiver L1 (mm) L2 (mm) C1 (cm) P2 (cm) 

Sokkia 2.3 3.2 30 42 

Javad 2.1 3.3 25 22

formal precisions of the north, east and up components are 0.4, 1.2 and 3.1 mm for 
ARTK and 1.1, 1.4 and 5.2 mm for CRTK. 

After baseline resolved, the IF phase residuals are computed for all 12 pairs of DD 
satellites. Their means and standard deviations (STDs) are illustrated in Fig. 12.3. 
The means and STD of ARTK for all DD satellites are much closer to zero than 
their counterparts of CRTK. It means that ARTK indeed improves the measurement 
precision. The mean ratio of 12 STDs between CRTK and ARK is 1.7 which is close 
to the theoretical value 2. The difference 0.3 could be induced by the inadequately 
modeled systematic errors, like multipath, tropospheric errors. It is also observed that 
the means of satellites 3, 4 and 7 and the STDs of satellites 7 and 17 are apparently 
larger than the others, which is possibly attributed to their low elevations and then 
the misspecified systematic errors.
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Fig. 12.3 The means and STDs of DD IF phase residuals obtained with TGO static baseline 
processing for ARTK and CRTK, respectively 

12.4.4 Kinematic Processing 

In this subsection, we examine the superiority of ARTK against CRTK by processing 
data in kinematic modes based on the ionosphere-weighted model of Sect. 12.4. The  
STD of DD ionospheric constraint is set to σι̃bu = 15 cm. The Kalman filtering 
recursive processing is carried out with the dynamic noise as 1 cm2/h for ZTD and 
infinity for coordinates to identify the truly kinematic scenario. 

First of all, we compare the IAR between ARTK and CRTK. The bootstrapped 
success rate is a good measure to indicate how much probability the successful IAR 
can be done [10]. It is defined as 

PB = 
m∏

i=1

(
2�

(
1 

2σẑi|I

)
− 1

)
(12.58) 

with �(x) = ∫ x 
−∞ 

1 √
2π e

−t2/2dt. σẑi|I is the conditional standard deviation of the ith 
decorrelated float ambiguity ẑi on the float ambiguities from (i+ 1) to the total number 
ambiguities m, which is the ith diagonal element of D computed from the Cholesky 
decomposition on the decorrelated ambiguity variance matrix Qẑẑ = LT DL. In  
addition, one can also compute the empirical success rate PE defined as 

PE = 
# correct integer solutions 

# total integer solutions 
(12.59) 

where the “correct integer solution” is evaluated by comparing with the “true” integer 
solution computed with all data in advance. 

In the RTK campaigns, we expect to resolve ambiguities using short observa-
tion span (only a few epoch data). In such case, the geometry strength is too weak 
to fix all ambiguities, in particular for the ambiguities with larger STDs generally



12.4 ARTK Model 271

corresponding to lower elevations. Thus, we prefer to partial ambiguity resolution 
(PAR) in RTK, i.e., only fixing a subset of ambiguities that can be reliably fixed. 
The key of PAR is how to determine the optimal ambiguity subset for fixing. So 
far, several practical approaches have been developed but the optimal method is still 
under-developing [11–13]. Here we evaluate the ARTK performance using two PAR 
scenarios. One is to only fix widelane ambiguities, while the other is to fix ambi-
guities with elevations larger than a given threshold θ0, like 20°. In Fig. 12.4, the  
empirical success rates of widelane PAR of ARTK and CRTK are compared for the 
different number of data epochs. Figure 12.5 shows the empirical success rates of 
both RTK modes with ambiguity subset thresholds θ0 = 20° and 30° under a varying 
number of data epochs, respectively. Both PAR results show that the ARTK success 
rates are much larger than CRTK counterparts for all scenarios, especially, for the 
cases with fewer data epoch, which indicates that the underlying model strength of 
IAR is indeed significantly enhanced in ARTK mode. As a byproduct, it is noticed 
that the empirical success rates of θ0 = 30° are larger than those of θ0 = 20° for 
both ARTK and CRTK, whereas the results of θ0 = 40° are smaller than θ0 = 30° 
although they are not shown here. This again highlights the open problem how to 
determine the optimal ambiguity subset for partial fixing but beyond the scope of 
this contribution. 

Now, we analyze the RTK solutions in both ARTK and CRTK modes. The scatter-
plot of horizontal positional errors and the vertical positional errors are shown in 
Fig. 12.6. The scatter-plot of ARTK is much more concentrated than that of CRTK and 
the vertical positional errors of ARTK are completely smaller than the counterparts 
of CRTK for the whole position series although they are both relatively larger at 
the beginning short span due to the severe systematic errors. The statistics of RTK 
solutions are listed in Table 12.2. Regarding the mean of positional error, the ARTK 
north is slightly worse than the CRTK north, while the ARTK east and up are much 
closer to 0 than CRTK counterparts. Particularly for up component, the mean of 
ARTK is just 1.25 cm against 8.27 cm of CRTK. The exciting result observed from

Fig. 12.4 Empirical 
success-rate of widelane IAR 
for ARTK and CRTK, 
respectively
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Fig. 12.5 Empirical IAR success-rate for ARTK and CRTK as a function of data epochs with 
ambiguity subset thresholds θ0 = 20° (left) and θ0 = 30° (right), respectively

Fig. 12.6 Scatter-plot of horizontal positional errors (top) and the vertical positional errors (bottom) 
for ARTK and CRTK, respectively

the standard deviations shows that the RTK solution is significantly improved in 
ARTK mode by factors of 2.2, 1.7 and 2.0 respectively to the north, east and up 
components. The mean of improved factors for three coordinate components is 1.97, 
which is rather consistent with the theoretical value 2 in our case study of 4 antennas 
being used on the platform. 

With RTK solution resolved at each epoch, the residuals of DD IF phase and code 
are computed for all 12 pairs of DD satellites of 3-h observation span. To clearly 
illustrate the residual differences between ARTK and CRTK, the scalars of 200 and 
2 are multiplied to the residuals of phase and code, respectively. It means that 1° 
variation in azimuth of sky-plot corresponds to 0.5 cm in phase residual while 0.5 m
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Table 12.2 Statistics for ARTK and CRTK solutions (cm) 

North East Up 

ARTK Mean 0.61 − 0.38 1.25 

STD 0.54 0.59 3.89 

CRTK Mean 0.25 − 0.71 8.27 

STD 1.20 0.98 7.87

in code. The CRTK residuals are much noisier than those of ARTK for both phase 
and code. Moreover, the larger residuals are assigned to the observations of lower 
elevations due to their misspecified systematic errors. Figure 12.7 shows the statistics, 
mean, STD, minimum and maximum, of those 12 pairs of DD IF phase residuals. 
The result is very promising and consistent as we expected. All statistics of ARTK 
are closer to 0 than their counterparts of CRTK. Especially, the smaller standard 
deviations of ARTK indicate the significantly improved observation precision in 
ARTK against CRTK. The mean of ratios for 12 standard deviations between CRTK 
and ARTK is 1.7. This value is close to the theoretical value 2 of 4 antennas being 
used and also is the same as obtained in the static processing from TGO software. 
The difference 0.3 has a similar attribution as claimed in static processing. 

Besides improving IAR and RTK precision, as one of important benefits, ARTK 
can also improve the integrity or reliability of solution that describes how confident 
the users can accept the solution. It is, to a great extent, more important than the 
precise solution itself in sense of application safety. Horizontal protection level (HPL) 
and vertical protection level (VPL) are two popular indicators for measuring the 
integrity of a surveying system. They are defined as radius of a circle over which the 
probability of positional error reaches a user-defined probability level [14], say for 
instance 95%. In other words, given a user-defined probability level, the smaller HPL 
(VPL) indicates the higher reliability of solution. Figure 12.8 shows the HPL and 
VPL of RTK solutions for both RTK modes with user-defined probability level 95%. 
At beginning of short period, the HPL and VPL are relatively larger for both RTK 
modes because of the computation convergence with IAR. The convergence speed

Fig. 12.7 The statistics, mean and STD, for 12 pairs of DD IF phase residuals in ARTK and CRTK 
modes 
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Fig. 12.8 The HPL and VPL of RTK solutions with ARTK and CRTK modes 

Table 12.3 Means of the HPL and VPL series of RTK solutions 

Whole (cm) Part (cm) 

HPL VPL HPL VPL 

ARTK 1.67 3.44 1.46 2.77 

CRTK 3.26 6.67 2.91 5.51 

“Whole” is referred to the means computed based on the whole HPL and VPL series while “part” 
based on the part series after 10 min convergence 

of ARTK is faster than CRTK. After convergence, both HPL and VPL are stable 
where the ambiguities keep fixed. In whole series, both HPL and VPL of ARTK are 
apparently smaller than those of CRTK. Their means are presented in Table 12.3 for 
the whole series and for the part series after convergence in which the first 10 min 
results are withdrawn. From Table 12.3, both HPLs and VPLs of ARTK are basically 
half the counterparts of CRTK. This promising result means that the users can make 
decision based on the ARTK solutions with doubled confidence. 

12.5 Conclusion 

Both fast IAR and the high precision positioning in long-range GNSS RTK appli-
cation depend on the high precision observations. APPP provides a new concept 
that uses GNSS measurements, from an array of antennas on a platform, to realize 
the enhanced GNSS model and then the improved positioning solution. Based on 
APPP concept, in this contribution, we developed the array-aided RTK theory to 
realize the long-range high precision RTK solutions. The theory how to solve the 
multivariate model formed by array antennas on platform and then to reduce the 
observations of these array antennas to the observation of one virtual antenna was
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established. The results from an 80 km baseline experiment with 4-antenna equipped 
stations suggested that besides the fast IAR with larger success rates and the improved 
RTK solutions with higher precision (half standard deviation), the ARTK can also 
improve the reliability of RTK solutions with doubled confidence. The reduced data is 
completely same as the raw data from individual antenna except its higher precision. 
Therefore, as one of ARTK benefits, the existent GNSS software can be immedi-
ately used to handle this reduced data without any modification. Because the receiver 
is generally much expensive than the antenna, considering the economic cost in 
practice, one may connect multiple antennas with one receiver on the platform. In 
addition, the proposed technique allows one to use multiple low-cost antennas, like 
very cheap ublox antennas, to realize the comparable IAR, positioning and attitude 
determination performance instead of the high-quality antennas, e.g., its attitude 
determination performance was demonstrated in [15, 16]. Moreover, such low-cost 
antennas have very small size and then make the platform portable in field surveying. 
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Chapter 13 
CRTK: Cost-Effective RTK 

13.1 Introduction of CRTK 

In ‘Google I/O of 2016’, the Global Navigation Satellite Systems (GNSSs) raw data 
(including pseudorange, phase and doppler) is released to developers from smart 
devices with Android-N operating system [1]. The availability of raw data provides 
more opportunities in the booming location-based service (LBS) markets, allowing 
the users to carry out their positioning campaigns with flexible positioning modes 
in terms of their specific accuracy demands [2]. For instance, one can implement 
the pseudorange-based single point positioning [3], phase-based real-time kinematic 
(RTK) [4] or precise point positioning (PPP) [5] for the meter- to centimeter-accuracy 
LBS. With the growing demands for smartphone precise positioning, the researchers 
started to focus more on phase-based precise positioning techniques [6]. The correct 
integer ambiguity resolution (IAR) is the key issue to achieving precise positioning 
with carrier phase observations. In a short-baseline positioning mode where the 
atmospheric biases are basically eliminated, the success of IAR depends mainly on 
two factors. One is the integer property of ambiguity that is a prerequisite for IAR, 
while the other is the data quality that affects the ambiguity precision. 

For the phase observations in smartphones, the integer property of ambiguity 
has been investigated for the different smartphone chips with embedded or external 
antennas. In the case of embedded antennas, the IAR is rather difficult or even impos-
sible for some brands of smartphones, for instance, Nexus9, Huawei P10 and Galaxy 
S5 [7]. The reason is that their ambiguity fractions are time-variant dramatically 
from satellite to satellite. However, for Huawei Mate20X and P30 as well as Xiaomi 
Mi8 (Mi8), their ambiguities are of integer nature at some frequency signals, like 
Global Positioning System (GPS) L1 frequency [8]. In the case of external antennas, 
the results from [9] showed that with the Android system the constant offsets exist 
in the ambiguities for Nexus9 and Mi8, and thus their ambiguities can be fixed if 
these offsets are pre-calibrated. Moreover, they found that such property of constant
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offsets is not available for Mate20. Note, the above analyses for the integer prop-
erty of ambiguity were mainly based on a given mobile operating system. In fact, the 
power-saving modes differ from the mobile operating systems [10], which may affect 
the smartphone chip to process the received GNSS signals. This leaves a question 
that whether the mobile operating system affects the integer property of ambiguity. In 
addition, with release of new chips of Huawei Kirin980, Huawei Mate20, Mate20X 
and P30 are all updated by these new chips. As a result, it is interesting to understand 
the ambiguity fixation for updated Huawei smartphones. 

Regarding GNSS data quality, the previous studies indicated that the embedded 
antenna of smartphones is the key factor. The linearly polarized antennas and low-
cost GNSS chipsets are generally used in smartphones [11], which together derive 
the GNSS signals featured by the lower and highly-variated carrier-to-noise density 
ratio (C/N0), the non-uniform signal strengths and low C/N0 at high elevations, the 
high noise in the order of tens of meters and frequent outliers for pseudoranges, as 
well as the Duty-cycle. However, the existing studies mainly concentrated on the 
data quality and its impacts on IAR at a given attitude. In fact, the smartphone atti-
tude would frequently change in real applications. Since the smartphone antennas 
are generally omnidirectional rather than hemispherical, it is insufficient to under-
stand the data quality of smartphones only at a given attitude. Instead, one needs to 
accurately understand the data quality at different attitudes so as to improve the IAR 
for smartphone positioning. 

Different from the existing literatures where only the smartphone brands are 
analyzed for IAR, this chapter will address three factors hindering the smartphone 
IAR and thus the precise positioning, including the mobile operating systems and 
smartphone attitudes besides the smartphone brands. We comprehensively analyze 
their effects on the integer nature of ambiguities and data quality. The observations 
from the smartphones of Mate20 and Mi8 with embedded and external antennas and 
the geodetic receivers with external antennas are comparably analyzed. 

13.2 Formulae of Precision Estimation 

To study the integer property and noise characteristics of the observations from a 
smartphone, we will form the short baseline between a geodetic-grade receiver and a 
smartphone. For the between-receiver short baseline single-differenced (SD) obser-
vations, the systematic errors, e.g., satellite orbit and clock errors, satellite hardware 
delays and atmospheric effects, can be basically eliminated. Then the single-epoch, 
SD observation equations on frequency j read [12] 

Φ j = Bb + esδtj + λjaj + λjesϕj + εΦ j 

Pj = Bb + esdtj + εPj (13.1)
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where Φ j is the SD observation vector of s satellites for phase on frequency j, and 
Pj for code has the same structure as Φ j. B is the design matrix to the baseline 
vector b. aj is the SD ambiguity vector with wavelength λj. ϕj is the SD initial phase 
bias of receiver. δtj and dtj are the SD receiver clock errors for phase and code. εΦ j 

and εPj contain the measurement noise and multipath for the SD phase and code, 
respectively. The symbol es is the s-column vector with all elements of ones. 

Obviously, the parameters δtj and ϕj are fully dependent, and they are further 
dependent on parameter aj with rank-deficiency of 1. In terms of [12], the full-rank 
single-epoch SD observation equations of phase and code on frequency j read

[
Φ j 

Pj

]
=

[
B λjΛ es 0 
B 0 0  es

]⎡ 

⎢⎢⎣ 

b 
aj 
δtj 
dtj 

⎤ 

⎥⎥⎦ +
[

εΦ j

εPj

]
(13.2) 

where Λ = [
0(s−1)×1, Is−1

]T 
. Importantly, δtj is the nominated phase receiver 

clock error redefined as δtj = δtj + λjϕj + λja1 j , which includes the receiver 

initial phase biases and the pivot ambiguity. aj =
[−es−1 Is−1

]
aj is the vector of 

double-differenced (DD) ambiguities, which must be integers for the geodetic-grade 
receivers. However, it is not the case for phase observations of some smartphones. 
In such a case, the DD ambiguity can be deemed as a lumped variable of an integer 
and a real-valued between-satellite DD phase bias. As a result, the DD phase bias in 
aj is responsible for smartphone IAR. 

To analyze the stochastic characteristics of smartphone observations, we must 
first recover their noises. To be specific, once the DD ambiguities are correctly fixed 
by calibrating their phase biases, and the baseline is precisely known externally, 
Eq. (13.2) is written as:

[
�j 

Pj

]
=

[
es 0 
0 es

][
δtj 
dtj

]
+

[
εΦ j

εPj

]
(13.3) 

where�j and Pj indicate the phase and code observations corrected with baseline and 
integer ambiguities. After single-epoch least-squares adjustment, the SD phase and 
code residuals are mainly affected by random noises and multipath. For smartphones 
with external antennas, the standard deviation (STD) of code and phase observations 
at frequency j can be estimated by 

σOj =
√

vT Oj 
vOj 

2(s − 1) (13.4) 

where vj is the residual vector at frequency j. O stands for the code or phase obser-
vations. Note that (13.4) has a prerequisite that the baseline is precisely known. 
However, for smartphones with embedded antennas, the antenna phase center cannot
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be precisely measured and its variation is unclear. Therefore, a triple-difference in 
time-domain is applied to calculate the precisions of phase and code observations. 
The SD phase or code observations on frequency j at adjacent epochs k, k + 1, 
k + 2 and k + 3 are denoted as Oj,k , Oj,k+1, Oj,k+2 and Oj,k+3, respectively. First, the 
between-epoch single-difference equations for SD observations read 

⎧⎨ 

⎩ 

Oj,1 = Oj,k+1 − Oj,k 

Oj,2 = Oj,k+2 − Oj,k+1 

Oj,3 = Oj,k+3 − Oj,k+2 

(13.5) 

Then, the between-epoch double-difference equations for SD observations read

{
Oj,12 = Oj,k+2 − 2Oj,k+1 + Oj,k 

Oj,23 = Oj,k+3 − 2Oj,k+2 + Oj,k+1 
(13.6) 

Finally, the between-epoch triple-difference equation for SD observations is 
formulated as [13] 

... 
Oj,k = Oj,k+3 − 3Oj,k+2 + 3Oj,k+1 − Oj,k (13.7) 

where 
... 
(·) denotes the between-epoch triple-difference operator. In case of a short time 

duration (e.g., several minutes) where the satellite elevations are hardly changed, it 
is adequate to assume that the observation STDs are constant for each satellite. Let 
the STD of undifference code or phase observation as σOj , it follows by using error 
propagation law in case of ignoring the time-correlations as 

σ 2... 
O j,k 

= 2σ 2 oj + 9 × 2σ 2 oj + 9 × 2σ 2 oj + 2σ 2 oj = 40σ 2 oj (13.8) 

By using the observations of total K triple-difference epochs, the STD of 
undifference code or phase observation is estimated as 

σOj =

√√√√∑K 
k=1 

... 
O 

T 

j,k 

... 
Oj,k 

40K 
(13.9) 

For more details, one can also refer to [14]. 

13.3 Integer Properties of Phase Ambiguities 

In this section, we investigate the effects of smartphone brands and operating systems 
on ambiguity fixation. To suppress the multipath effects, the embedded antenna is 
replaced by an external geodetic-grade antenna. The ambiguity property of Mate20 is
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analyzed, and for Mi8 one can refer to [9]. Note that the operating system of Mate20 
used in this study is EMUI 9.0.1. For the ultra-short baselines, the baseline-corrected 
DD phase observations can fully reflect the receiver-inherent phase offsets and varia-
tions besides the multipath and random noises. To be specific, the DD ambiguities are 
estimated epoch by epoch for the smartphone observations with an external antenna, 
and the fractional parts of those DD ambiguities are separated through a rounding 
operation. Since the reference station is a geodetic receiver without any phase offsets, 
the offsets of DD ambiguities are attributed to the smartphone observations. 

13.3.1 Data Description 

The static datasets were collected on the rooftop of a building at Tongji campus, and 
were employed to elucidate the impacts of smartphone brands, operating systems 
and attitudes on IAR. Two smartphones, Mate20 and Mi8, were placed next to each 
other in upward, horizontal and downward attitudes, respectively. Away from them 
by approximately 1 m, another Mate20 was located with an external SinoGNSS 
AT340 geodetic antenna powered by the Mate20 smartphone via a splitter. Through 
two outlets of the splitter, the L1 and L5 signals are transmitted to each of their own 
feeding points in the embedded antenna. In addition, two types of GNSS receivers, 
Trimble Alloy and u-blox ZED-F9T, are used, of which the u-blox ZED-F9T is a 
representative of the low-cost receivers. The u-blox ZED-F9T receiver tracks the L1 
and L2 signals of GPS and the B1I and B2I signals of BeiDou Navigation Satellite 
Systems (BDS), while the smartphones track L1 and L5 signals of GPS and B1I 
signals of BDS. Thus in analysis of data quality, only GPS L1 signals and BDS B1I 
signals of u-blox are used for comparison; But in analysis of IAR, the dual-frequency 
GPS and BDS signals of u-blox are used. The detailed information of smartphones 
and receivers is presented in Table 13.1. The observation duration of static datasets 
for each attitude is in Table 13.2. 

In the following, we define a combination set (denoted by U-T) that includes 
L1, B1I and E1 observations of u-blox, and L5 and E5a observations of Trimble, to 
comprehensively compare with dual-frequency smartphone signals. 

The data quality of Mi8 observations is analyzed for comparison with Mate20. 
The GNSS chip of Huawei Kirin980 is embedded in Mate20 while the Broadcom

Table 13.1 The information of data collecting devices 

Device Antenna Systems and frequencies 

Huawei Mate20 Embedded G:L1/L5; E:E1/E5a; C:B1I; J:L1/L5 

Huawei Mate20 AT340 G:L1/L5; E:E1/E5a; C:B1I; J:L1/L5 

Mi8 Embedded G:L1/L5; E:E1/E5a; C:B1I; J:L1/L5 

u-blox ZED-F9T AT340 G:L1/L2; E:E1; C:B1I/B2I; J:L1 

Trimble Alloy TRM59800.00 G:L1/L5; E:E1/E5a; C:B1I; J:L1/L5
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Table 13.2 Details of static datasets where the Trimble alloy is used as a reference for all devices 

Device Baseline length (m) Attitude Duration (UTC time) (min) 

Huawei Mate20 27.2 Upward 23 min (7:07–7:30, May 27, 2019) 

Horizontal 21 min (7:39–8:00, May 27, 2019) 

Downward 39 min (8:40–9:19, May 27, 2019) 

Mi8 26.4 Upward 23 min (3:40–4:03, Oct. 3, 2020) 

Horizontal 21 min (4:09–4:30, Oct. 3, 2020) 

Downward 20 min (4:45–5:05, Oct. 3, 2020) 

Huawei Mate20 24.1 External 48 min (0:16–1:04, Sept. 26, 2020) 

u-blox ZED-F9T 24.1 External 50 min (0:00–0:50, July 6, 2020)

BCM47755 in Mi8. The smartphones are updated with the Android P operating 
system to provide observations and navigation messages of GPS, Galileo, QZSS and 
BDS. We developed an Android app Tongji GNSS RINEX Logger (TJGRL) to extract 
the observations with a sampling interval of 1 s through an application programming 
interface (API) provided by Android developers. It has been extensively tested by 
cooperating with Huawei Company and is freely available to the third parties upon 
required for academic usage at this stage. TJGRL can store the data in both RINEX 
3.04 format and raw log format. The indicator of cycle slip pertained to the phase 
observation is set to 1 when the duty cycle occurs. 

13.3.2 Temporal Properties of Ambiguity Fractions 

We computed the time-series and histograms for the fractions of baseline-corrected 
DD phase observations between Alloy receiver and Mate20 with operating system 
EMUI 9.0.1. The fractions have constant offsets for all satellite systems, and the 
offsets differ from satellite systems and frequency bands. For example, the offset is 
about 0.5 cycles for L1/L5 signals of GPS and QZSS, while − 0.5 cycles for B1/ 
E1 signals of BDS and Galileo. With stable ambiguity offsets of Mate20, the IAR 
is expected if these offsets are corrected. Considering the result from [9] that the 
ambiguity fractions of Mate20 with EMUI 9.0 vary dramatically over time such that 
the ambiguities cannot be fixed, we conclude that the operating system is responsible 
for the time stability of ambiguity fractions. From this point of view, we can say 
that Huawei has solved the variations of ambiguity fractions for their smartphone 
GNSS chipsets in the operating system EMUI 9.0.1. In addition, [9] showed that 
ambiguity fixation is expected for Mi8, which further confirms that the integer nature 
of ambiguity depends highly on the operating systems and smartphone brands. 

To show the efficiency of offset corrections, we first correct the DD observations 
with their corresponding offsets. We calculated the mean offsets for each frequency
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of each system over the entire observation period using the single-epoch offset esti-
mates. The estimated mean offsets are as follows: 0.5 cycles for GPS L1/L5 and QZSS 
L1, − 0.5 cycles for BDS B1 and Galileo E1, 0.7 cycles for QZSS L5, and − 0.4 
cycles, for Galileo E5a, respectively. By using these offsets, we correct the ambiguity 
fractions. After, the offset-corrected fractions are of zero-mean with magnitudes of 
± 0.3 cycles for all frequencies. For the Mate20 observations with an embedded 
antenna, we also apply their ambiguities by using the estimated offsets. The results 
indicate that the ambiguity fractions with embedded antenna are of zero-mean for 
all frequencies but their magnitudes are larger than those with the external antenna. 

13.3.3 Offset-Calibrated Ambiguity Resolution 

After pre-calibrating the DD phase observations of Mate20 by using the mean offsets, 
in this section we investigate the IAR performance of different smartphone brands 
with embedded antennas. To make a comparison, the IAR performance of the smart-
phone with an external antenna and the survey-grade receiver are examined. Since 
the phase center of an embedded antenna cannot be precisely measured, we use the 
antenna reference point (ARP) as a truth benchmark to gauge their relative positions. 

Multi-frequency multi-system real-time kinematic (MRTK) software developed 
by the GNSS group in Tongji University is used for IAR, which is able to process the 
data of each GNSS system or their combinations with the sequential least squares and 
extended Kalman filter (EKF) algorithms. In this study, we employ the EKF algo-
rithm, where an elevation-dependent weighting function is applied [15]. The float 
ambiguities are continuously estimated and they are tried to be fixed at each epoch 
by using the partial ambiguity resolution (PAR) strategy [16] where the ambiguities 
with tracking duration of shorter than 30 epochs are excluded for fixing. Further-
more, an ambiguity-fixed epoch is obtained only when at least three ambiguities are 
successfully fixed [17] and the ratio is larger than the threshold of 3.0 [18]. Once the 
ambiguity-fixed epoch is reached, the time-to-first-fix (TTFF) is obtained. The fixing 
rate is defined as the proportion of the number of ambiguity-fixed epochs relative to 
the number of total epochs. 

Figure 13.1 and Table 13.3 show the ambiguity fixing rate and positioning results 
of static datasets for Mate20 and Mi8 with embedded antennas, where root mean 
square (RMS) stands for the root mean square accuracy. Besides the positioning 
errors, the cumulative distribution function (CDF) of 3D positioning errors is illus-
trated as well. To compare, the results of u-blox ZED-F9T and Mate20 with external 
antenna are shown in Fig. 13.2 and Table 13.4. The ambiguity fixing rate of Mate20 
with embedded antenna is 98.6%, which is higher than that of Mi8 by 9.2%. While if 
the external antenna is applied, the fixing rate can be further improved to 99.7% and 
the TTFF is shortened from 40 to 35 epochs. Regarding positioning results, the 3D 
positioning errors in the confidence of 95% are 3 cm and 5 cm for Mate20 and Mi8 
with an embedded antenna, respectively. The results of u-blox are better. Its fixing 
rate reaches 100% with the TTFF of 30 epochs and the 3D errors of 2 cm in the
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confidence of 95%. From these results, the external antenna is an important factor to 
improve the IAR of smartphone. 

The average number of satellites presented in Tables 13.3 and 13.4 indicates that 
the smartphone with an external antenna can track more satellites, which gives a quick 
understanding why the external antennas can obtain better results than embedded 
antennas, respectively. In fact, the high quality of phase observations with external 
antenna is even more important for better IAR and positioning. The phase residuals 
of Mate20 are smaller than those of Mi8, thus the ambiguity fixing rate is higher for 
Mate20. However, the phase residuals of Mate20 with external antenna are larger 
than those of u-blox, the ambiguity fixing rate is lower for Mate20. Therefore, we 
concluded that the external antenna affects the data quality and then the IAR.

Fig. 13.1 Positioning errors and their 3D CDFs for Mate20 (left) and Mi8 (right) with embedded 
antennas 

Table 13.3 Positioning and IAR statistics of Mate20 and Mi8 with embedded antennas in upward 
attitude 

Devices E N U 

Mate20 RMS (cm) 2.3 2.6 3.6 

Fix rate (%) 98.6 

TTFF (s) 40 

Average number of satellites 18.7 [G:6.7; C:7.8; E:2.4; J:1.8] 

Mi8 RMS (cm) 3.2 3.4 4.8 

Fix rate (%) 89.4 

TTFF (s) 56 

Average number of satellites 14.3 [G:5.6; C:4.6; E:2.3; J:1.8]
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Fig. 13.2 Positioning errors and their CDFs for Mate20 (left) and u-blox ZED-F9T (right) with 
external antennas 

Table 13.4 Positioning and IAR statistics of Mate20 and u-blox ZED-F9T with external antennas 

Mate20 u-blox 

E N U E N U 

RMS [cm] 0.6 0.6 0.7 0.3 0.3 0.5 

Fix rate [%] 99.7 100 

TTFF [s] 35 30 

Average number of satellites 24.5 [G:8.3; C:10.9; E:3.3; 
J:2.0] 

26.2 [G:9.9; C:6.5; E:6.8; 
J:3.0]

13.4 Data Quality and Its Effects Under Different 
Situations 

In this section, we examine the effects of the smartphone attitude on the observation 
noises and then on the IAR. Three indicators are defined to reflect the data quality at 
the different attitudes: (1) the data availability and data gap rate; (2) the relationship 
between C/N0 values and the satellite elevations; (3) the code and phase precisions 
with embedded and external antennas.
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13.4.1 Data Availability and Data Gap Rates 

The data availability rate (DAR) is defined as the proportion of number of real 
tracking satellites (NRTS), na, to the number of theoretical tracking satellites, nt , at a  
given epoch, i.e., DAR = na/nt , where the theoretical tracking satellites are defined 
as the satellites with elevations calculated by broadcast ephemeris higher than 0°. 
DAR can overall reflect the signal acquisition ability of smartphone chips. 

The DAR results of Mate20 and Mi8 are computed. In general, with an embedded 
antenna, the DAR of Mate20 is larger than Mi8, but both smaller than using an 
external antenna. The DAR of U-T is larger than Mate20 with an embedded antenna, 
but they are comparable if the external antenna is applied. Regarding Mate20 with 
an embedded antenna, when the antenna faces upwards or downwards, the DAR 
of L1/E1 is 92.5% on average, larger than that of L5/E5a, while when the antenna 
is horizontal, the DAR of L1/E1 is 87.3% on average. For Mi8 with an embedded 
antenna, the DAR of L1/E1 is 81.8% on average, larger than that of L5/E5a at different 
attitudes. It can be seen that the DAR gets minimal when the embedded antenna of 
Mi8 is placed downward and when the embedded antenna of Mate20 is horizontal. 
In addition, with an embedded antenna, the difference of DAR between different 
attitudes is smaller for Mate20 than for Mi8. An explanation for this phenomenon 
can be found in some studies [19]. Reference [20, 21] demonstrated the discrepancy 
between the antenna phase centers of Mi8 and Mate20. The antenna phase center of 
Mate20 is closer to the geometric center than Mi8, thus the data quality of Mate20 
seems less attitude-dependent. This is in agreement with our results. 

In summary, although the embedded antenna is omnidirectional, the number of 
tracking satellites varies dramatically with the antenna attitudes. The upward attitude 
is generally conducive to the observation reception. 

For precise positioning, the continuous phase observations are rather important. 
Once a new ambiguity is introduced, it often needs a certain period of continuous 
phase observations to make its float solution converge. If the frequent interruptions 
occur, they will badly hamper or even be useless to the success of IAR. Therefore, 
to address the quality of phase data related to this issue, we define another indicator 
of data gap rate (DGR). As shown in Fig. 13.3, given a threshold es (i.e., minimum 
continuous tracking epochs), for instance, es = 30 s, if the number of continuous 
epochs, ed , for a satellite that is smaller than this threshold, the phase observations 
of these ed epochs are considered useless for ambiguity resolution and they are taken 
as an interruption. Then the DGR is defined as the ratio of the number of interrupted 
epochs ed to the total number of epochs et , i.e., DGR = ed /et . The DGR gets larger 
for larger es. With es = 30 s, the DGRs of dual-frequency observations are 19.1, 23.7, 
and 35.7% on average for Mate20 with an embedded antenna in upward, horizontal, 
and downward directions, while they are 34.1, 46.1 and 35.9% for Mi8 with an 
embedded antenna. The DGR is maximum when the embedded antenna of Mi8 is 
placed downward and when the embedded antenna of Mate20 is horizontal. This 
implies that the tracking ability of phase observations varies between smartphones 
with different attitudes. However, with an external antenna, the DGRs of Mate20
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Fig. 13.3 Graphical 
illustration of DGR 
definition with BI1 phase 
observations of C01 satellite 
as an example. The green 
line denotes the availability 
of phase observations 

dual-frequency observations are reduced to 7.4, 7.4, 7.6 and 7.6% for es = 30, 60, 
300 and 600 s, while they are nearly zero for U-T. From the above results we can 
conclude that, in addition to the effect of the smartphone antenna, the attitude of the 
smartphone does affect the continuity of the phase observations. 

13.4.2 Elevation-Dependent C/N0 Values 

The C/N0 is defined as the ratio of the signal power to the noise power in 1-Hz 
bandwidth, which reflects the quality of received signals from the energy aspect. In 
this section, we calculate the mean C/N0 values in an interval of 5° for each frequency 
observation with different attitudes. The results showed that the positive elevation-
dependence is apparent for U-T receivers. For smartphones with either embedded or 
external antenna, the dependence is not clear and some fluctuations exist. Moreover, 
the C/N0 values of Mate20 with an external antenna are about 7 dB larger than those 
with an embedded antenna, and close to the U-T values. The reason is that the linearly 
polarized GNSS antennas employed in smartphones cannot compensate for the 3 dB 
signal power loss caused by polarization mismatch. In addition, we found that for the 
Mate20 and Mi8 with embedded antennas, the effects of attitude variations on C/N0 
are up to 4dB and 11dB, respectively, in all GNSS systems. The observations with 
lower C/N0 may be outliers, which affects the IAR and positioning. Therefore, the 
effect of smartphone attitude on C/N0 values and thereby on the ambiguity resolution 
must be carefully considered in the actual data processing. 

13.4.3 Observation Precisions 

For test devices with external antennas, such as u-blox, Trimble Alloy and Mate20, 
the precisions of GNSS observations were evaluated based on the ultra-short base-
lines with precisely known baseline coordinates, as shown in (13.4). Moreover, we 
quantified the precisions of smartphone observations with embedded antennas using 
a triple-difference method in the time-domain, as shown in (13.9). Note that the time-
independent assumption is applied in (13.9). This is because this correlation can only 
cause a limited impact on the observation precision (1–2 mm) for all conditions in
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our experiments. Such small difference can hardly affect the cm-level positioning 
accuracy, and therefore the assumption of time-independent observations employed 
in (13.9) is acceptable. 

The code and phase STDs of Mate20 and Mi8 are computed. The STDs of 
embedded antennas are generally similar for the different attitudes. When the external 
antenna is used, due to its high gain and low noise, the code STDs become smaller. 
For the B1/E1 signals of two smartphones, the code and phase STDs of BDS and 
Galileo satellites are smaller than those of GPS and QZSS satellites. However, the 
code and phase STDs of all frequencies in smartphones are larger than those of U-T. 
For the L5/E5a signals of two smartphones, the code STDs of all systems are signif-
icantly smaller than those of the L1/E1 signals. This shows that the L5/E5a signals 
have advantages in signal modulation and better anti-multipath ability in different 
scenes. To verify this point, the probabilities of the code outliers as a function of C/ 
N0 values are calculated for the different smartphone attitudes. Here the code outlier 
is defined for the observation with its residual being three times larger than its STD. 
It is well known that the larger C/N0 value has generally a smaller noise influence. 
The result showed that the probability of code outliers decreases with the increase 
of C/N0 values. When the C/N0 value is larger than 30 dB-Hz, the probability of 
L1/E1 code outliers seems slightly higher than that of L5/E5a signals. It means that 
L5/E5a signals have the better anti-multipath capability in a smartphone. The code 
outliers occur more frequently when the observations have C/N0 values smaller than 
30 dB-Hz for two smartphones, which gives experience in real data processing for 
setting the minimum C/N0 threshold in the actual data processing. 

13.4.4 Ambiguity Resolution Under Different Attitudes 

The previous results show that the data quality differs from the smartphone attitudes, 
in this section, we will further study the effects of attitudes on the IAR. In terms of the 
afore-analysis, the code observations with C/N0-values lower than 30 dB-Hz would 
be outliers with high probability. Thus the observations only with C/N0 values larger 
than 30 dB-Hz are used. In addition, considering the effect of DGR on ambiguity 
fixation, the ambiguities with a tracking time shorter than 30 epochs will not be fixed 
in the data processing. Finally, the offsets obtained in Sect. 13.4 will be used for 
ambiguity fraction calibration for Mate20. 

Table 13.5 shows the positioning results of statistic datasets for Mate20 and Mi8 
in three antenna attitudes (i.e., upward, horizontal and downward). In general, the 
positioning performance of Mate20 is overall better than Mi8. The 3D errors of 
Mate20 are all smaller than 10 cm by 95% for three antenna attitudes, and even 
smaller than 5 cm for upward and downward attitudes. For Mi8, the 3D errors are in 
centimeters only for upward attitude, and reach 0.2 m and 0.4 m for downward and 
horizontal attitudes, respectively. The ambiguity fixing rates of Mate20 are larger 
than those of Mi8 with much shorter TTFF for all antenna attitudes. Moreover, the 
results of upward attitude are best with the highest accuracies, largest fix-rates and
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Table 13.5 Positioning statistics of Mate20 and Mi8 with different antenna attitudes 

Upward Horizontal Downward 

E N U E N U E N U 

Mate20 RMS (cm) 2.3 2.6 3.6 5.3 5.6 6.1 4.3 4.6 5.5 

Fix rate (%) 98.6 80.2 81.1 

TTFF (s) 40 57 160 

Mi8 RMS (cm) 3.2 3.4 4.8 5.3 8.1 11.5 6.2 7.4 9.3 

Fix rate (%) 89.4 75.9 78.4 

TTFF (s) 56 102 213 

shortest TTFF for both Mate20 and Mi8. Then the results of downward attitude are 
better than those of horizontal attitude. Therefore, the antenna attitude is indeed an 
important factor for smartphone positioning with an embedded antenna. 

13.4.5 Kinematic Positioning 

The IAR and positioning have been investigated for smartphones with embedded 
antennas under different attitudes by using static data. However, most real smartphone 
positioning applications are in kinematic situations. In this section, we analyze the 
IAR and positioning of smartphones at upward attitude in two real kinematic exper-
iments, aiming to provide the reference of quantitative accuracy for mass-market 
users. Table 13.6 summarizes the error characteristics and corresponding processing 
strategies for smartphones in real data processing. 

Two kinematic datasets were collected on the playground of Tongji campus 
(denoted by Kin#1) and on the highway of Shanghai city (denoted by Kin#2). 
Note that for two kinematic experiments, the embedded antennas of the Mate20 
and Mi8 face upwards. In Kin#1 dataset, all smartphones with embedded antennas 
were equipped on a kart and a Trimble receiver is used for comparison purposes. 
In Kin#2, two Mate20 smartphones were placed inside the windshield. A splitter 
was applied to separate the radio frequency signals from an external SinoGNSS 
AT340 antenna into a SinoGNSST30 receiver and one of two smartphones. In other 
words, one smartphone used an external geodetic antenna sharing with a geodetic 
receiver, while the other used its own embedded antenna. Kin#1 suffers from the

Table 13.6 The error characteristics and corresponding processing strategies for smartphones 

Device C/N0 DGR Ambiguity 
fractions 

Attitudes Operating system 

Mate20 Larger than 
30 dB-Hz are 
used 

Longer than 30 
epochs are used 

Pre-calibrating Upward EMUI 9.0.1 

Mi8 / Upward EMUI 9.0 
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semi-shielding surroundings by trees and buildings, while Kin#2 includes the open 
sky and semi-shielding surroundings. To identify the motion complexity, the varying 
velocities are included with the maximum speed of 7 km/h and 85 km/h for two 
experiments, respectively. In the following analysis, the epochs with ambiguity-fixed 
solutions from Trimble in Kin#1 and SinoGNSST30 receivers in Kin#2 are used as 
the true values to evaluate the solutions of smartphones. 

For Kin#1, the ambiguity fixing rate and positioning statistics of Mate20 and Mi8 
are shown in Fig. 13.4 and Table 13.7, respectively. The RMS accuracies of Mate20 
and Mi8 are all smaller than 5 cm in three directions, and their ambiguity fixing 
rates of them are all above 90%. It means that with Mate20 and Mi8 smartphones 
the centimeter-level location-based services are achievable in such an environment. 
The TTFF of Mate20 is more than 2 times shorter than Mi8. The CDF results of 
positioning errors indicate smaller errors for Mate20 compared to Mi8. In conclusion, 
centimeter-accuracy positioning can be achieved in a semi-shaded environment using 
a smartphone with an embedded antenna placed upwards. 

For Kin#2, the positioning errors and statistics of Mate20 with embedded or 
external antennas are shown in Fig. 13.5 and Table 13.8, respectively. Compared 
to Kin#1, the C/N0 values with embedded antenna are 7.2 dB-Hz lower for L1/ 
B1/E1 signals and 2.3 dB-Hz lower for L5/E5a signals in Kin#2 due to the effect 
of the car front windshield. When the external antenna is used, the C/N0-values 
are significantly improved. In such a high-dynamic and obstruction environment, the 
ambiguity fixing rates are reduced by 62.1% for embedded antenna and still by 22.6%

Fig. 13.4 Positioning errors and their CDFs of 2D and 3D errors for Mate20 (left) and Mi8 (right) 
in Kin#1



13.4 Data Quality and Its Effects Under Different Situations 291

Table 13.7 Positioning statistics for Mate20 and Mi8 both with embedded antennas in Kin#1 

Mate20 Mi8 

E N U E N U 

RMS (cm) 2.5 2.6 4.4 3.1 3.5 4.7 

Fix rate (%) 98.3 90.6 

TTFF (s) 33 10

even for external antenna. In general, only the meter-level accuracy can be obtained in 
such a complicated city environment with an embedded antenna. The horizontal 2D 
errors are about 1.3 m and 3D errors 2.4 m in a percentage of 95%. However, once the 
external antenna is used, the accuracies of each coordinate component are improved 
to as high as centimeters, and the 3D and horizontal errors are about 20 cm and 
10 cm by 95%, respectively. Such accurate positioning is very promising, allowing 
the variety of high-precision location-based services in the city environment, for 
instance, the vehicular-lane accurate positioning for intelligent transportation. 

Fig. 13.5 Positioning errors and their CDFs for Mate20 with embedded (left) or external (right) 
antenna in Kin#2



292 13 CRTK: Cost-Effective RTK

Table 13.8 Positioning statistics of Mate20 with embedded and external antennas in Kin#2 

Embedded antenna External antenna 

E N U E N U 

RMS (m) 0.36 0.79 0.99 0.03 0.07 0.09 

Fix rate (%) 36.2 75.7 

TTFF (s) 111 30 

13.5 Conclusion 

This contribution investigated three factors hindering smartphone IAR, including 
the smartphone brands, operating systems and smartphone attitudes. The success of 
IAR and positioning capability were assessed by using static and kinematic datasets. 
During the whole analysis, the geodetic-grade antenna was used to evaluate the 
impacts brought by the smartphone antennas. The research findings are summarized 
as follows. 

The embedded antenna of smartphone is an important factor affecting the data 
quality. The data gap rates of Mate20 are larger than 20% and can be reduced to 
about 7% once the external antenna is applied. The C/N0 values are about 35 dB-Hz 
and smaller by 7 dB-Hz than the external antenna. 

The antenna attitude also affects the data quality and ambiguity fixing rate. The 
upward attitude for both Mate20 and Mi8 achieves the best data quality with the 
smallest data gaps and largest data availability and then the highest ambiguity fixing 
rate. 

The integer properties of phase ambiguities are related not only to smartphone 
brands but also to mobile operating systems. The phase ambiguities of Mate20 under 
Android 9.0.1 can be successfully fixed once the frequency-related constant offsets 
are properly calibrated. The fixing rate exceeds 90% in static scenarios and is higher 
than that of Mi8. 

For a static dataset with an open-sky environment, the centimeter-accurate posi-
tioning solutions are achievable with 3D positioning errors smaller than 10 cm by 
95%; while for city-environment with complicated obstructions, only the meter-level 
accuracy is obtained, which however can be significantly improved to centimeter to 
decimeter-level with positioning errors are smaller than 0.22 m by 95% if an external 
antenna is employed instead of embedded antenna. Such results are promising to 
satisfy with a lot of location-based services, such as the vehicular-lane accurate 
positioning for intelligent transportation. 
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Chapter 14 
SSR-RTK: RTK with SSR Corrections 

14.1 Introduction 

In traditional real time kinematic positioning (RTK) models, precise positioning 
is usually performed using observations space representation (OSR) corrections 
generated by the reference station or reference station network. In recent years, 
precise positioning models based on precise point positioning (PPP)/PPP ambiguity 
resolution (PPP-AR)/PPP-RTK have tended to use state space representation (SSR) 
corrections for positioning solutions. In fact, there is a relationship between OSR 
corrections and SSR corrections showed in Fig. 14.1. Let  yOSR represent the OSR 
correction. Based on the functional relationship between OSR and SSR corrections, 
we can establish the following function between OSR and SSR: yOSR = AxSSR+e. By  
employing a suitable parameter estimation criterion, SSR corrections can be derived 
from OSR corrections. Conversely, OSR corrections can be obtained by combining 
the generated SSR corrections. However, it should be noted that when converting 
OSR to SSR corrections, the “information” in OSR is distributed between the SSR 
xSSR and the residual e. In general, it is assumed that the residual e is white noise and 
is not considered in practical data processing. Under this assumption, the corrections 
expressed by OSR and SSR are equivalent. However, if the residual e is not white 
noise, the information expressed by the corrections of OSR and SSR will no longer 
be equivalent.

The sources of SSR corrections for precise positioning in practical applications 
are diverse. In recent years, the B2b signal of the BeiDou Global Navigation Satel-
lite System (BDS-3) system has provided an SSR correction for PPP/PPP-RTK 
positioning. 

The characteristics, capability, and applications of PPP-B2b service have since 
attracted great attentions in both academic and engineering fields. The PPP-B2b prod-
ucts are resolved by the shanghai astronomical observatory (SHAO) using observa-
tions of 7 stations in mainland China and 30 globally distributed stations for BDS-3
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Fig. 14.1 Relationship 
between different positioning 
methods

and Global Positioning System (GPS) respectively [1]. Limited by the station distri-
bution and resolving strategies, the accuracy of satellite orbit and clock products 
provided by PPP-B2b is inferior to that of real-time service (RTS) provided by the 
Centre National d’Etudes Spatiales (CNES), and the PPP-B2b service is capable 
of offering the effective positioning assistance only to users in the Asian-Pacific 
region [2]. When using the PPP-B2b service, critical factors should be carefully 
handled, for instance, the satellite-specific bias in the PPP-B2b clock offset, outage 
of PPP-B2b products, mismatching problems, etc. [3]. Thus far, the innovative appli-
cations of PPP-B2b service have been extensively investigated for future require-
ments, including marine positioning, time transfer, etc. [4]. Meanwhile, compensa-
tion methods for existing problems in PPP-B2b products are also proposed to improve 
service performance [5]. 

Despite modifications that have been made, the PPP-B2b service is still limited 
in decimeter-level accuracy and long convergence time of real-time positioning [6]. 
Integer ambiguity resolution (IAR) is critical for precise positioning, which is, up to 
now, difficult to implement only with the PPP-B2b products. The primary reason is 
that ambiguities are contaminated by biases originating from receivers and satellites, 
and there is a lack of corrections for these biases. To enable IAR, the PPP is generally 
augmented by a network of continuously operating reference stations (CORS) [7, 8], 
where augmentation corrections in SSR format are provided to recover the integer 
property of ambiguities. Based on integer recovery strategies, the models can be cate-
gorized into the integer recovery clock (IRC) model [9], the uncalibrated phase delay 
(UPD) or the fractional cycle bias (FCB) model [10, 11] and the decoupled satellite 
clock (DSC) model [12] Accordingly, IAR-enabled precise point positioning (PPP-
RTK) using PPP-B2b products is preliminarily investigated. With a sparse station 
network, extra atmosphere, phase bias, and satellite clock products are resolved to 
enhance the user positioning performance [13]. However, the network processing 
scheme relies heavily on a substantial number of stations and favorable commu-
nication conditions. Given that the PPP-B2b service is typically applied to specific 
scenarios like marine surveys, developing infrastructure for augmentation corrections 
is quite challenging. Instead, single-station PPP-RTK, a special case of the network-
based PPP-RTK, outperforms due to its flexibility when only a few reference stations 
are available. Initial studies on single-station PPP-RTK are conducted based on the 
S-system theory [14, 15], demonstrating the feasibility of augmentation service on 
one reference station. Nonetheless, International GNSS Service (IGS) orbit/clock 
products are commonly used in the existing research, whereas investigations using
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PPP-B2b products are insufficient. This raises the question of whether the PPP-B2b 
service is compatible with the single-station PPP-RTK scheme. Taking the signif-
icant differences between the IGS and PPP-B2b products into account, one needs 
to comprehensively understand the characteristics of PPP-B2b products as well as 
develop the single-station IAR-enabled PPP-B2b precise positioning (SSR-RTK) for 
particular applications. 

To fulfill the centimeter-level real-time service, this contribution is devoted to 
offering a novel method of SSR-RTK, in which fast IAR is realized by PPP-B2b prod-
ucts and extra SSR corrections. Firstly, a full-rank version of the undifferenced and 
uncombined (UDUC) PPP-B2b model is formulated, considering the different refer-
ence signals of PPP-B2b clock products. The characteristics of PPP-B2b products 
are briefly analyzed to expound the impact on positioning. Then, SSR corrections, 
including satellite-specific phase biases and atmospheric corrections, are generated 
by using a single reference station to enhance the positioning. The single-station SSR-
RTK is thus realized within the PPP-B2b service. Finally, experiments are carried 
out in kinematic mode to demonstrate the positioning performance with discussions 
on specific IAR and atmospheric augmentation methods. 

The rest of the chapter is organized as follows. In Sect. 14.2, the full-rank PPP-B2b 
model is deduced with discussions on the characteristics of PPP-B2b products. On 
this basis, the single-station SSR-RTK model is presented in Sect. 14.3. Experiments 
are carried out in Sect. 14.4, demonstrating the PPP-B2b positioning performance 
based on raw observations. Finally, some conclusions are given in Sect. 14.5. 

14.2 Full-Rank PPP-B2b Model and Product 
Characteristics 

The PPP-B2b service currently provides satellite orbit and clock corrections for users 
to realize real-time PPP. Typically, two models are widely used in PPP, that is, the 
ionosphere-free (IF) combination model and the uncombined model [16]. The former 
is the most commonly used in PPP-B2b studies. Instead, this chapter prefers the latter, 
which retains all parameters and allows for flexible constraints to enhance the model 
[17]. In this section, we mainly deduce a full-rank PPP-B2b model considering the 
characteristics of PPP-B2b products. 

14.2.1 PPP Model with PPP-B2b Products 

The raw GNSS code and phase observation equations read 

Ps 
j,r = ρs 

r + T s r + μjι
s 
j + dtr − dts + Dj,r − ds 

j + εPs 
j,r 

Φs 
j,r = ρs 

r + T s r − μjι
s 
j + dtr − dts + Bj,r − bs j − λjas j,r + εΦs 

j,r 

(14.1)
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where the subscripts j, r, and s denote the frequency, receiver, and satellite, respec-
tively. Ps 

j,r and Φ
s 
j,r are the GNSS code and phase observations, respectively. ρ

s 
r 

denotes the satellite-to-receiver distance. T s r represents the slant tropospheric delay. 
ιs j represents the slant ionospheric delay and μj = f 2 1 /f 

2 
j is the ionospheric factor, 

where fj is the value of the jth frequency. dtr and dt
s are the clock offsets of the 

receiver and satellite, respectively. Dj,r and ds 
j are the receiver and satellite code 

hardware delays, respectively. Bj,r and bs j are the receiver and satellite phase hard-
ware delays, respectively. as j,r denotes the integer ambiguity with wavelength λj. εPs 

j,r 

and εΦs 
j,r 
are the measurement noises of code and phase observations, respectively. 

In addition, the relativistic effect, tide displacement, phase windup, etc., have been 
corrected by corresponding models [18–20]. 

To deduce a full-rank PPP-B2b model, firstly, satellite products are applied 
according to the PPP-B2b protocol [21]. In contrast to precise clock products 
provided by IGS, the B3I signal is selected as the reference for BDS-3 in the PPP-B2b 
service, while the L1/L2 IF combination is still the reference for GPS. Considering 
the difference, the following equations are based on BDS-3 and GPS dual-frequency 
observations, and it is easy to extend to other systems or frequencies. Assuming that 
each system has n satellites, the PPP-B2b precise clocks dts B2b can be expressed as 

dts B2b = dts + (Λ ⊗ In)ds ref (14.2) 

where dts =
[
dts C 

T 
, dts G 

T
]T 

and dts B2b are matrices composed of the original 

and the PPP-B2b clock products of BDS-3 and GPS satellites, respectively. 

dts k = [
dt1 k , . . . ,  dtn k

]T 
represents the satellite clocks of the specific system k.

� =
[
1 0 0  
0 λ2 

L2/(λ
2 
L2 − λ2 

L1) −λ2 
L1/(λ

2 
L2 − λ2 

L1)

]
represents the coefficient matrix. 

ds ref =
[
ds B3I 

T 
, ds L1 

T 
, ds L2 

T
]T 

denotes the satellite code hardware delays for BDS-

3 B3I signal, GPS L1 and L2 signal with ds j =
[
d1 
j , . . . ,  dn 

j

]T 
, j = B3I,L1,L2, 

respectively. The symbol ⊗ denotes the Kronecker product. When applying PPP-
B2b clock products, the corresponding code biases need to be corrected for code 
observations as 

PI = P − (e2 ⊗ Λ ⊗ In)ds ref + ds (14.3) 

where P = [
Ps 
1,C 

T , Ps 
1,G 

T , Ps 
2,C 

T , Ps 
2,G 

T]T and PI denote the dual-frequency 
code observation vectors before and after correcting, respectively. Ps 

j,k =[
P1 
j,k , . . . ,  Pn 

j,k

]T 
represents code observations on frequency j and system k. ds =

[
ds 1,C 

T 
, ds 1,G 

T 
, ds 2,C 

T 
, ds 2,G 

T
]T 

is the satellite code hardware delays of different 

systems and frequencies, which can be corrected by the code observable-specific 
signal biases (code OSBs). Substituting (14.2) and (14.3) into (14.1), they become
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PI = e2 ⊗ ρ + (e2 ⊗ I2 ⊗ en)dtr − e2 ⊗ dts B2b 
+ (μ ⊗ In)ι + e2 ⊗ Tr + (I4 ⊗ en)Dr + εPI 

Φ = e2 ⊗ ρ + (e2 ⊗ I2 ⊗ en)dtr − e2 ⊗ dts B2b − (μ ⊗ In)ι + e2 ⊗ Tr 

− λa + (I4 ⊗ en)Br − bs + (e2 ⊗ Λ ⊗ In)ds ref + εΦ (14.4) 

where dtr = [
dtr,C , dtr,G

]T 
denotes the receiver clock. ρ = [

ρC 
T, ρG 

T
]T 
, 

ι = [
ιC 

T, ιG T
]T 
, Tr = [

Tr,C 
T , Tr,G 

T
]T 
, and bs =

[
bs 1,C 

T 
, bs 1,G 

T 
, bs 2,C 

T 
, bs 2,G 

T
]T 

are the vectors of the satellite-specific distances, slant ionospheric delays, tropo-

spheric delays, and phase hardware delays, respectively. μ =
[
1 0  μC 0 
0 1  0  μG

]T 

is 

the coefficient matrix of slant ionospheric delays with μk = (fk,1/fk,2)
2 . Dr =[

D1,C , D1,G, D2,C , D2,G
]T 

and Br =
[
B1,C , B1,G, B2,C , B2,G

]T 
are the receiver hard-

ware delays of code and phase, respectively. a is the integer ambiguity vector in the 
unit of cycles. 

14.2.2 Full-Rank PPP-B2b Model 

The observation equations formulated in Sect. 14.2.1 are unsolvable due to the rank-
deficient problem. Therefore, we turn to S-system theory to construct the full-rank 
PPP-B2b model [22]. Although the satellite code biases are eliminated in (14.3), they 
are introduced into phase observations simultaneously. Considering the receiver code 
hardware biases will be absorbed by the receiver clock and slant ionosphere, these 
parameters are shown as 

d̃tr = dtr + MDr (14.5) 

ι̃ = ι + (K ⊗ en)Dr (14.6) 

where d̃tr =
[
d̃tr,C , d̃tr,G

]T 
is the estimated receiver clock. M =

[
αC 0 βC 0 
0 αG 0 βG

]

captures the coefficient matrix for system-specific receiver code biases. αk = 
λ2 
k,2/(λ

2 
k,2− λ2 

k,1) and βk = −λ2 
k,1/(λ

2 
k,2− λ2 

k,1) are the factors for the dual-frequency 
of different systems that are distinguished by subscript k. ι̃ = [

ι̃T C , ̃ιT G
]T 

is the esti-

mated slant ionospheric vector with ι̃k =
[
ι̃1 k , . . . ,  ̃ιn k

]T 
. K =

[
βC 0 −βC 0 
0 βG 0 −βG

]

denotes the coefficient matrix. Substituting (14.5) and (14.6) to the raw observation 
equations, the linearized equations using PPP-B2b products read 

P̃ = (e2 ⊗ Ax)x + (e2 ⊗ I2 ⊗ en) ̃dtr
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+ (μ ⊗ In)ι̃ + (e2 ⊗ g)τ + ε ̃P 
Φ̃ = (e2 ⊗ Ax)x + (e2 ⊗ I2 ⊗ en) ̃dtr 

− (μ ⊗ In)ι̃ + (e2 ⊗ g)τ − λã + ε ̃
 (14.7) 

where P̃ and Φ̃ represent observed-minus-computed code and phase observations, 
respectively. Ax is the design matrix for coordinate corrections x. g = [

gC 
T, gG T

]T 
is 

the mapping function of residual zenith tropospheric delay with gk =
[
g1 k , . . . ,  gn k

]T 
. 

ã is the estimated ambiguity vector, which contains the original ambiguities a and 
bias terms. The float ambiguities ã read 

ã = a − (
(e2 ⊗ Λ ⊗ In)ds ref + (μK ⊗ en − (e2 ⊗ I2 ⊗ en)M)Dr

)
/λ 

− (
(I4 ⊗ en)Br − bs

)
/λ (14.8) 

To accurately describe the weight of code and phase observations, the stochastic 
model of (14.7) can be expressed as 

Q = blkdiag
([

σ 2 P , σ  2 Φ

]) ⊗ I2 ⊗ Q0 (14.9) 

where σ 2 P and σ 2 Φ capture the precisions of code and phase at the zenith direction, 
respectively. Q0 is the cofactor matrix with elevation-dependent dispersions [23]. 

14.2.3 Characteristics of PPP-B2b Products 

According to the Interface Control Document (ICD) published by the China Satellite 
Navigation Office [21], products of 7 types are broadcast for BDS-3 and GPS satel-
lites, as summarized in Table 14.1. The characteristics of these products determine 
how we establish a proper mathematical model for PPP-B2b precise positioning. 
In this section, we only summarize the characteristics of 31-day PPP-B2b products 
during Day of Year (DOY) 214–244 in 2020, while the accuracy assessments, which 
have been fully studied yet, are not discussed in this chapter.

• Satellite mask 

The satellite mask defines whether the corrections of one satellite are broadcast or 
not. In one message, there are a total of 255 bits to identify the broadcast status, in 
which BDS-3 occupies 63 bits while GPS, GLONASS, and Galileo each occupy 37 
bits. The corresponding position in a bit will be assigned to “1” if the corrections 
of one satellite are broadcast. Besides, to ensure the relevance between PPP-B2b 
corrections, the Issue Of Data, State Space Representation (IOD SSR) and Issue 
Of Data, PRN mask (IODP) information are also broadcast for matching. Shown in 
message type 1, corrections of 59 satellites, including 27 BDS-3 satellites and 32
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Table 14.1 PPP-B2b information 

Message content Message type Update interval Nominal validity 

Satellite mask 1 48 s – 

Orbit corrections 2, 6, 7 48 s 96 s 

DCB corrections 3 48 s 86,400 s 

Clock corrections 4, 6, 7 6 s 12 s 

User range index 5 48 s 96 s 

Reserved 8–62 – – 

Null 63 – –

GPS satellites, are broadcast by PPP-B2b service. Corrections for the Galileo and 
GLONASS systems have not been broadcast yet. 

• Orbit correction 

Satellite orbit corrections in radial, along-track, and cross-track are broadcast in 
message type 2. When applying orbit corrections, the coordinate transformation is 
required because the satellite position usually refers to the Earth Centered Earth Fixed 
(ECEF) coordinate system. Additionally, Issue Of Data, Navigation (IODN) and IOD 
Cor information are also broadcast for orbit corrections to match the ephemeris and 
clock corrections, respectively. 

The time series of PPP-B2b orbit corrections for BDS-3 and GPS satellites on 
August 1st, 2020 are computed. Apparently, the magnitude of orbit corrections for 
BDS-3 and GPS satellites is 0.2 m and 3 m respectively. It is also manifested that 
corrections in radial are much smaller than those in along-track and cross-track 
directions. Moreover, the seemingly irregular jumps existing in orbit corrections 
are caused by two aspects. Associated with the update rate of broadcast ephemeris 
CNAV1 and LNAV, large jumps occur every hour for BDS-3 satellites and every two 
hours for GPS satellites. Concerning the small jumps, orbit renewal in less than one 
hour is the dominant factor [1]. 

• Clock correction 

The PPP-B2b clock corrections in meters along with IODP and IOD Cor informa-
tion are broadcast in message type 4. The results showed that the clock corrections 
for BDS-3 are within 2 m whereas it is larger for GPS. The clock product for the 
corresponding satellite is marked invalid if the value equals − 26.2128 m. Besides 
obvious jumps due to ephemeris update, a small magnitude of jumps exist and may be 
caused by the resource information update when estimating real-time satellite clock 
offsets. Moreover, it should be noted that jumps in clock offsets can be absorbed by 
undifferenced ambiguities. 

• DCB correction 

The DCB in message type 3 defines the code biases of code observations between 
the ranging signal and the reference signal. From decoded PPP-B2b messages, DCB
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corrections for only BDS-3 satellites are provided whereas others are not. Since the 
B3I signal is taken as the reference signal, several DCBs including B1I-B3I, B1C-
B3I, B2a-B3I, and B2b-B3I are available to users. Furthermore, it is noted that the 
DCB corrections of a signal component for one satellite remain constant during DOY 
214–244. 

• PPP-B2b products availability 

The availability of PPP-B2b products is an essential prerequisite for precise posi-
tioning. As mentioned in [21], the PPP-B2b service mainly serves users in China 
and surrounding areas. The valid service scope is within latitude (48.47° S, 58.40° 
N) and longitude (16.36° W, 102.99° W) according to the figure. 

To visually represent the availability of PPP-B2b products, the average number of 
available satellites is counted by day. The average number of available orbit products 
for BDS-3 satellites is about 10, while the same indicator for clock products is 
about 11. The abnormal clock corrections of C19 continuously broadcast during this 
period can account for this difference. The average number of GPS satellites with 
available orbit and clock corrections is almost the same, with a maximum of 9.90 
(DOY 217) and a minimum of 9.32 (DOY 244). Furthermore, it should be noted 
that the interruption of PPP-B2b products may occur on certain satellites, which can 
influence the positioning performance and needs to be carefully handled. 

14.3 Single-Station Augmented SSR-RTK 

As for the PPP-B2b service, the real-time high-accuracy positioning can be effec-
tively improved by ambiguity fixing, which is currently hindered by the lack of 
augmentation corrections. Additionally, in particular scenarios like ocean, desert, 
etc., there are not enough reference stations for correction generation. Facing the 
above two problems, we propose the SSR-RTK model augmented by SSR corrections 
from a single reference station. Accordingly, a three-step process of single-station 
SSR-RTK is defined as follows. 

14.3.1 Generating the SSR Corrections 

To be compatible with the PPP-B2b service, a station-based computing mode is 
adopted to generate augmentation corrections. With the satellite orbit, clock, and 
station coordinates fixed, other parameters are estimated using the full-rank PPP-
B2b observation equations mentioned in Sect. 14.2. Firstly, phase bias products are 
derived from estimated ambiguities as [24] 

Npb = ã − round(ã) (14.10)
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Table 14.2 SSR corrections 
generated at a reference 
station 

Correction Notation and interpretation 

Ionospheric delay ι̃B = ιB + β(D1 − D2) 
Tropospheric delay τB 

Phase bias Npb = ã − round(ã) 
Atmospheric factor Qι̃B , QτB 

where round(∗) and Npb indicate the round operation and fractional part of esti-
mated ambiguities, respectively. To enable fast IAR, atmospheric corrections are 
considered for dynamic constraints. The estimated ionosphere ι̃B and residual zenith 
tropospheric delay τB at the reference station can be directly used for atmospheric 
constraints. Meanwhile, the variances of atmospheric corrections Qι̃B and QτB are 
introduced to define the constraint reliability, minimizing the impacts of inaccuracy 
or interruption on user positioning, especially in the single-station case. The notation 
and interpretation of SSR corrections are summarized in Table 14.2. 

In terms of broadcasting extra SSR corrections, the data format and transmission 
rate depend on the properties of corrections, and there are several ways to broadcast 
them via BDS-3 short message service, the Internet, radio, etc. for different scenarios. 
Since it is out of the scope of this chapter, the optimal broadcast strategy will be further 
studied in the future. 

14.3.2 SSR-RTK Model 

Based on the full-rank PPP-B2b model, phase bias corrections are applied to users 
to eliminate the effects of satellite phase biases. The single-difference equations 
between the user and the reference station are nominally formulated as 

P̃U =
(
e2 ⊗ AxU

)
xU + (e2 ⊗ I2 ⊗ en) ̃dtr,U + (μ ⊗ In)ι̃U 

+ (
e2 ⊗ gU

)
τU + ε ̃PU 

Φ̃U + λNpb =
(
e2 ⊗ AxU

)
xU + (e2 ⊗ I2 ⊗ en) ̃dtr,U − (μ ⊗ In)ι̃U 

+ (
e2 ⊗ gU

)
τU − λãU ,sd + ε ̃ΦU 

(14.11) 

where subscript U denotes the user side. ãU ,sd = ι̃U − Npb is the estimated ambi-
guity vector that absorbs phase bias corrections. The interpretations of other param-
eters are the same as (14.7). For the sake of fast ambiguity resolution, atmospheric 
corrections are utilized to form virtual observations. However, in the single-station 
case, the geospatial correlation of ionospheric and tropospheric delays can decline 
dramatically as the baseline length increases. To mitigate this impact, compensa-
tion is carried out by using empirical atmospheric models [15], and the constraint 
equations are written as
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yion = ι̃B − ionB + ionU 
= ι̃U + biasion + εyion (14.12) 

ytrop = τB 
= τU + εytrop 

(14.13) 

where subscript B denotes the base station. yion and ytrop are the compensated 
corrections for atmospheric constraints. ionB and ionU are the ionospheric delays 
calculated by the Klobuchar model [25]. The additional parameter biasion = 
−βk

(
D1,k,U − D2,k,U

) + βk
(
D1,k,B − D2,k,B

)
contains receiver bias terms of user 

side and base station, which is system-specific and distinguished by subscript k. 
Considering that the unmodelled spatial errors enlarge with baseline extension, the 
distance-dependent variances for constraint equations can be empirically modeled 
as 

Qyion = Qι̃B + 
103

((
latipp,U − latipp,B

)2 + (
lonipp,U − lonipp,B

)2)

sin(elev)2
(14.14) 

Qytrop = QτB + 
Baseline2 

1012
(14.15) 

where Q(∗) indicates the variances of parameters. latipp,U , lonipp,U and 
latipp,B, lonipp,B are the latitude and longitude of the ionosphere pierce point (IPP) 
at the user side and base station, respectively. elev is the satellite elevation angle. 
Baseline is the distance between the user and the base station. 

14.3.3 Ambiguity Resolution 

Regarding float ambiguities in the single-station SSR-RTK model is still contam-
inated by receiver hardware delays, the difference between satellites is further 
performed to recover the ambiguity integer property. The most qualified satellite 
of each system is chosen as the reference satellite. Thus, the integer ambiguity is 
given as 

asv j,UB = asv j,U − asv j,B + round(ãsv j,B) (14.16) 

where asv j,r represents the single-difference ambiguity with respect to satellite s and 
v. The integer ambiguity asv j,UB consists of original ambiguities and is additionally 
biased by integer term round(ãsv j,B) after applying phase bias products. The integer 
ambiguities are partially fixed by the least-squares ambiguity decorrelation adjust-
ment (LAMBDA) method [26] and other parameters are updated at the same time. 
The overall flowchart of single-station SSR-RTK is shown in Fig. 14.2.
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Fig. 14.2 Flowchart of single-station SSR-RTK 

14.4 Experimental Analysis 

Based on the proposed method in Sect. 14.3, experiments in kinematic mode are 
carried out with PPP-B2b service. The first one is the precise point positioning test 
using PPP-B2b corrections, where continuous observation data from 8 stations are 
used to demonstrate the positioning performance. The second is the single-station
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Table 14.3 Processing strategies with PPP-B2b service 

Items Strategies 

Systems BDS-3 and GPS 

Observations BDS-3: B1I & B3I raw observations 
GPS: L1 & L2 raw observations 

Cut-off 
elevation 

10° 

Satellite orbit 
and clock 

Derived from CNAV1 and LNAV and corrected by PPP-B2b products during 
DOY 214–244, 2020 

Observation 
weighting 

Elevation-dependent [23] 

PCO/PCV Corrected with igs14.atx 

Solid tide IERS Conventions 2010 [19] 

Ocean loading IERS Conventions 2010 [19] 

Pole tide IERS Conventions 2010 [19] 

Coordinates Estimated in a way of epoch-wise, with a prior value obtained from Standard 

Point Positioning (SPP) and the epoch noise of 60 m/ 
√
s for kinematic 

positioning 

Receiver clock Estimated in a way of epoch-wise, with a prior value obtained from SPP and 

the epoch noise of 60 m/ 
√
s 

Ionosphere Estimated as random walk (4 × 10–2 m/ 
√
s) 

Troposphere Estimated as random walk (1 × 10–4 m/
√
s) with a priori model [27] and  GMF  

[28] 

Ambiguity Estimated as constant 

SSR-RTK experiment using extra SSR corrections generated by a single reference 
station. The processing strategies are listed in Table 14.3. 

14.4.1 PPP Experiment 

To investigate the PPP-B2b positioning performance based on raw observations 
and make preparations for augmentation generation, 30-s observations from 4 IGS 
stations and 4 International GNSS Monitoring and Assessment System (iGMAS) 
stations are selected for the experiment. The observation data duration is from DOY 
214 of 2020 to DOY 244 of 2020. The reference coordinates are derived from SINEX 
files for IGS stations, while those of iGMAS stations are conducted with PPP using 
precise orbit and clock products provided by IGS. 

During the 31-day test, one-day solutions of 3 stations are first selected for detailed 
comparison. The GPS-only (G), BDS-3-only (C), and combined GPS and BDS-3 
(GC) solutions are resolved respectively to demonstrate the PPP-B2b positioning 
errors in east (E), north (N), and up (U) directions as well as position dilution
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of precision (PDOP) values of BJF1, SHA1, and CUSV on DOY 214, 2020, as 
shown in Fig. 14.3. Evidently, centimeter-level accuracy can be achieved by GC-
combined PPP, and the results of BDS-only PPP are better than those of GPS-only 
PPP. Regarding the GPS-only PPP, the reduction in positioning is led by reduced 
satellites and poor geometry, especially within the period of 8:00 to 12:00 on the 
CUSV station. Among these stations, the positioning performance of CUSV is a 
little bit worse than others, which is related to the decrease of visible satellites with 
available PPP-B2b products. Taking 0.2 m for horizontal and 0.4 m for vertical as the 
convergence threshold, the averaged root mean square error (RMSE) of 31-day G, 
C, and GC solutions are computed. Statistically, the average RMSE values in E, N, 
and U directions are better than 7.93, 4.87, and 13.40 cm respectively for all stations, 
and the BDS-only solutions are superior to GPS-only solutions in most instances. 
Nevertheless, the positioning performance will be severely affected by the absence of 
observations and unavailable PPP-B2b products. Thus for POL2 and GUA1 stations, 
the BDS-only solutions are worse but explicable. For BDS and GPS dual-systems 
users, positioning accuracy of better than 4.75, 3.24, and 8.87 cm in E, N, and U 
directions is obtained with abundant observations and favorable geometry. 

In terms of the convergence time for PPP-B2b positioning, a series of thresh-
olds are set to reveal the convergence rate under different conditions. As shown in

Fig. 14.3 The PPP-B2b positioning errors in east, north, and up directions and PDOP values of 
BJF1, SHA1, and CUSV on DOY 214, 2020 
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Fig. 14.4 Averaged convergence (conv.) time of 8 stations with 31-day G, C, and GC solutions. 
The convergence thresholds vary from 0.1 to 0.5 m for horizontal, while it is double for vertical 

Fig. 14.4, less time is needed for GC combined PPP to achieve targeted accuracy, 
and at least 20 min is required to converge to 0.1 m horizontally. Fast convergence 
of about 12 min is obtained by GPS-only PPP with an undemanding convergence 
threshold, whereas 15 min is required for BDS-only PPP. On the contrary, GPS-only 
PPP takes about 66 min to satisfy the 0.1 m threshold, while BDS-only PPP takes 
about 52 min to achieve the targeted accuracy. 

14.4.2 SSR-RTK Experiment 

To enhance the traditional PPP-B2b positioning, field tests of single-station SSR-
RTK with different baselines are carried out to investigate the IAR and atmospheric 
augmentation. The station TJCH is selected as the reference station to provide extra 
SSR corrections. The other two rover stations TJJD and TJLG are set on different 
campuses of Tongji University with a baseline of about 27.6 km and 61.6 km respec-
tively. All three stations are equipped with multi-frequency GNSS receiver Alloy 
from Trimble. Multi-frequency observations are collected by 1 Hz on 16 August 
2020 at TJJD station and 14 November 2023 at TJLG station. Observations of BDS-
3 and GPS are used for PPP-B2b positioning, and all qualified satellites are chosen 
for ambiguity resolution. 

Float PPP with coordinates fixed is performed at the reference station TJCH using 
PPP-B2b products, and SSR corrections, such as phase bias, ionospheric delays, and 
residual zenith tropospheric delay, are generated for augmentation in the meantime. 
Actually, the corrections can be used even before PPP convergence [15], but a two-
hour operation is conducted at the reference station in advance to ensure the accuracy 
and stability of SSR corrections. The results of PPP and single-station SSR-RTK in
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kinematic mode are computed. Positioning errors in east, north, and up directions 
are detailedly compared between float PPP and single-station SSR-RTK. The time 
series of positioning errors for the first hour is also depicted. Apparently, instant 
centimeter-level positioning accuracy can be achieved with the SSR corrections, and 
the positioning series are quite stable particularly in horizontal direction. For tradi-
tional PPP-B2b positioning, the results of TJJD and TJLG are better than 2.59, 1.70, 
and 5.32 cm in E, N, and U directions as illustrated in Table 14.4. A better solution, by 
contrast, is obtained by single-station SSR-RTK. The positioning accuracy is better 
than 1.05, 1.11, and 3.58 cm in E, N, and U directions with relative improvements 
of 59.29%, 34.71%, and 32.75% respectively. The fixing rate of single-station SSR-
RTK exceeds 99% for two rover stations, though float solutions of a few epochs 
are conducted due to the missing PPP-B2b products. For single-station SSR-RTK 
in different baseline cases, the positioning accuracy may be severely affected by 
inaccurate atmospheric information and inappropriate stochastic models. However, 
users are still able to obtain centimeter-level positions as the baseline length grows 
longer, once the ambiguities are correctly fixed. 

The atmospheric correlation between the reference and rover stations will degrade 
as the baseline length grows, affecting the rapid ambiguity resolution. To further 
explore the performance of single-station SSR-RTK, we reinitialize the positioning 
engine every hour and record the time to first fix (TTFF) of ambiguity resolution. 
The positioning errors with hourly reinitializing at rover station TJJD and TJLG are 
shown in Fig. 14.5, and the mean convergence time as well as the ambiguity fixing 
rate are simultaneously computed in Table 14.5. For a short baseline of 27.6 km, 
the ambiguities are instantly fixed within 8 s, in which only satellites continuously 
tracked for 5 epochs are considered for ambiguity fixing. When the baseline length 
extends to 61.6 km, the effect of atmospheric corrections is impaired for rapid ambi-
guity resolution. The convergence time, on average, is 71 s before ambiguities are 
correctly fixed. Meanwhile, the fixing rate is 99.74% and 97.45% for TJJD and 
TJLG respectively. Moreover, it should be noted that an extended period of fixing 
ambiguities is required due to the active ionosphere, especially during the GPS time 
6:00–8:00 and 12:00–16:00 in our tests. Hence a more adaptive stochastic model is 
expected to improve the mean convergence time and fixing rate for single-station 
SSR-RTK.

For single-station SSR-RTK, the station-generated augmentations are quite effec-
tive at a specific distance. However, the atmospheric conditions at the base and rover

Table 14.4 Mean RMSE of PPP and single-station SSR-RTK at station TJJD and TJLG 

Rover Mean RMSE of PPP (cm) Mean RMSE of single-station 
SSR-RTK (cm) 

East North Up East North Up 

TJJD 1.77 1.70 5.32 1.00 0.93 3.08 

TJLG 2.59 1.49 5.01 1.05 1.11 3.58 
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Fig. 14.5 Positioning errors 
of single-station SSR-RTK 
with reinitializing every hour 
at rover station TJJD and 
TJLG 

Table 14.5 Mean convergence time and fixing rate of single-station SSR-RTK at rover station 
TJJD and TJLG 

Rover Mean conv. time (s) Fixing rate (%) 

TJJD 8 99.74 

TJLG 71 97.45

station can be entirely distinct when the baseline length is enough long. The atmo-
spheric constraint, in the meantime, will have a small weight according to (14.14) and 
(14.15). Here we conduct an extra-long baseline case to discuss whether the phase 
bias products are still useful on this occasion. The IGS station JFNG is selected 
as the rover station, and SSR corrections generated by reference station TJCH are 
employed for single-station SSR-RTK. The test is performed in kinematic mode 
using 1-s observations from JFNG and TJCH stations on 14 November 2023. The 
baseline length is about 674.8 km, and the configuration is the same as above. For a 
simple demonstration, a set of 12-h data is continuously resolved with reinitializing 
the positioning engine every hour. The positioning error in time series and statistical 
results of station JFNG are shown in Fig. 14.6 and Table 14.6. The RMSE of fixed 
solutions are 0.90, 1.02, and 4.73 cm in east, north, and up directions. Compared to 
short baselines, the mean convergence time of this 674.8 km baseline soars to 673 s, 
mainly because the atmospheric augmentations do not work anymore. Nevertheless, 
there is strong evidence that phase bias products are still available for recovering the 
integer property of ambiguities, and the centimeter-level positions are obtained as 
the short baseline cases are.
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Fig. 14.6 Positioning errors 
of single-station SSR-RTK 
with reinitializing every hour 
at rover station JFNG 

Table 14.6 Mean convergence time and Mean RMSE of single-station SSR-RTK at station JFNG 

Rover Mean conv. time (s) Mean RMSE of single-station SSR-RTK (cm) 

East North Up 

JFNG 673 0.90 1.02 4.73 

14.5 Conclusion 

This study investigates a feasible method of PPP-B2b positioning with IAR and 
atmospheric augmentation on the basis of PPP-B2b product characteristics as well 
as PPP analysis. The proposed station-based processing mode is tested with PPP-B2b 
products and real observation data. Augmented by one reference station, significant 
improvements have been made in positioning accuracy and convergence time, which 
is more flexible and conducive for users. The research conclusions are summarized 
as follows: 

Regardless of the update of broadcast ephemeris, the discontinuity of PPP-B2b 
precise products is led by the real-time orbit and clock estimation strategies, resulting 
in small jumps in corrections. According to the characteristics of PPP-B2b products, 
the user algorithm is competitively optimized to enable IAR. 

For kinematic PPP-B2b positioning based on raw observations, the accuracy of 
better than 4.75, 3.24, and 8.87 cm in E, N, and U directions is achieved after 
at least 20 min convergence. However, restricted by the serving area, positioning 
performances vary by location under different observation conditions. 

The proposed single-station SSR-RTK is realized using PPP-B2b corrections and 
effective SSR corrections from one reference station. Compared to traditional PPP-
B2b positioning, the accuracy of 1.05, 1.11, and 3.58 cm in E, N, and U directions 
is obtained with improvements of 59.29%, 34.71%, and 32.75%, respectively. The 
convergence time is tens of seconds rather than minutes. Furthermore, the results of 
a 674.8 km baseline positioning test prove that phase bias products are still available 
when the baseline grows extremely long, and centimeter-level positions are obtained 
after a convergence time of 673 s. 

The ambiguity fixing rate exceeds 97% in our field test for single-station SSR-
RTK, but advancements can still be made considering the adaptive modeling for the 
atmosphere. Additionally, the positioning performance is influenced by the latency of
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corrections, atmospheric correlations between different stations, length of baseline, 
etc., and further investigation is clearly warranted. 
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