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Preface
In this book we take a closer look at discrete models in differential geometry and dynamical systems. The curves used are polygonal, surfaces are made from triangles and quadrilaterals, and time runs discretely. Nevertheless, one can hardly see the difference to the corresponding smooth curves, surfaces, and classical dynamical systems with continuous time. This is the paradigm of structure-preserving discretizations. The common idea is to find and investigate discrete models that exhibit properties and structures characteristic of the corresponding smooth geometric objects and dynamical processes. These important and characteristic qualitative features should already be captured at the discrete level. The current interest and advances in this field are to a large extent stimulated by its relevance for computer graphics, mathematical physics, architectural geometry, etc.
The book focuses on differential geometry and dynamical systems, on smooth and discrete theories, and on pure mathematics and its practical applications. It demonstrates this interplay using a range of examples, which include discrete conformal mappings, discrete complex analysis, discrete curvatures and special surfaces, discrete integrable systems, special texture mappings in computer graphics, and freeform architecture. It was written by specialists from the DFG Collaborative Research Center “Discretization in Geometry and Dynamics”. The work involved in this book and other selected research projects pursued by the Center was recently documented in the film “The Discrete Charm of Geometry” by Ekaterina Eremenko.
Lastly, the book features a wealth of illustrations, revealing that this new branch of mathematics is both (literally) beautiful and useful. In particular the cover illustration shows the discretely conformally parametrized surfaces of the inflated letters A and B from the recent educational animated film “conform!” by Alexander Bobenko and Charles Gunn.
At this place, we want to thank the Deutsche Forschungsgesellschaft for its ongoing support.

Alexander I. Bobenko
Berlin, Germany
November 2015
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Abstract
We discuss several extensions and applications of the theory of discretely conformally equivalent triangle meshes (two meshes are considered conformally equivalent if corresponding edge lengths are related by scale factors attached to the vertices). We extend the fundamental definitions and variational principles from triangulations to polyhedral surfaces with cyclic faces. The case of quadrilateral meshes is equivalent to the cross ratio system, which provides a link to the theory of integrable systems. The extension to cyclic polygons also brings discrete conformal maps to circle domains within the scope of the theory. We provide results of numerical experiments suggesting that discrete conformal maps converge to smooth conformal maps, with convergence rates depending on the mesh quality. We consider the Fuchsian uniformization of Riemann surfaces represented in different forms: as immersed surfaces in [image: $$\mathbb {R}^{3}$$], as hyperelliptic curves, and as [image: $$\mathbb {CP}^{1}$$] modulo a classical Schottky group, i.e., we convert Schottky to Fuchsian uniformization. Extended examples also demonstrate a geometric characterization of hyperelliptic surfaces due to Schmutz Schaller.

1 Introduction
Not one, but several sensible definitions of discrete holomorphic functions and discrete conformal maps are known today. The oldest approach, which goes back to the early finite element literature, is to discretize the Cauchy–Riemann equations [10–14, 27]. This leads to linear theories of discrete complex analysis, which have recently returned to the focus of attention in connection with conformal models of statistical physics [8, 9, 22, 23, 29, 40–42], see also [4].[image: A371662_1_En_1_Fig1_HTML.gif]
Fig. 1Uniformization of compact Riemann surfaces. The uniformization of spheres is treated in Sect. 6. Tori are covered in Sect. 7, and Sect. 8 is concerned with surfaces of higher genus





The history of nonlinear theories of discrete conformal maps goes back to Thurston, who introduced patterns of circles as elementary geometric way to visualize hyperbolic polyhedra [45, Chapter 13]. His conjecture that circle packings could be used to approximate Riemann mappings was proved by Rodin and Sullivan [35]. This initiated a period of intensive research on circle packings and circle patterns, which lead to a full-fledged theory of discrete analytic functions and discrete conformal maps [44].
A related but different nonlinear theory of discrete conformal maps is based on a straightforward definition of discrete conformal equivalence for triangulated surfaces: Two triangulations are discretely conformally equivalent if the edge lengths are related by scale factors assigned to the vertices. This also leads to a surprisingly rich theory [5, 17, 18, 28]. In this article, we investigate different aspects of this theory (Fig. 1).
We extend the notion of discrete conformal equivalence from triangulated surfaces to polyhedral surfaces with faces that are inscribed in circles. The basic definitions and their immediate consequences are discussed in Sect. 2.
In Sect. 3, we generalize a variational principle for discretely conformally equivalent triangulations [5] to the polyhedral setting. This variational principle is the main tool for all our numerical calculations. It is also the basis for our uniqueness proof for discrete conformal mapping problems (Theorem 3.9).
Section 4 is concerned with the special case of quadrilateral meshes. We discuss the emergence of orthogonal circle patterns, a peculiar necessary condition for the existence of solutions for boundary angle problems, and we extend the method of constructing discrete Riemann maps from triangulations to quadrangulations.
In Sect. 5, we briefly discuss discrete conformal maps from multiply connected domains to circle domains, and special cases in which we can map to slit domains.
Section 6 deals with conformal mappings onto the sphere. We generalize the method for triangulations to quadrangulations, and we explain how the spherical version of the variational principle can in some cases be used for numerical calculations although the corresponding functional is not convex.
Section 7 is concerned with the uniformization of tori, i.e., the representation of Riemann surfaces as a quotient space of the complex plane modulo a period lattice. We consider Riemann surfaces represented as immersed surfaces in [image: $$\mathbb R^{3}$$], and as elliptic curves. We conduct numerical experiments to test the conjectured convergence of discrete conformal maps. We consider the difference between the true modulus of an elliptic curve (which can be calculated using hypergeometric functions) and the modulus determined by discrete uniformization, and we estimate the asymptotic dependence of this error on the number of vertices.
In Sect. 8, we consider the Fuchsian uniformization of Riemann surfaces represented in different forms. We consider immersed surfaces in [image: $$\mathbb R^{3}$$] (and [image: $$S^{3}$$]), hyperelliptic curves, and Riemann surfaces represented as a quotient of [image: $$\hat{\mathbb C}$$] modulo a classical Schottky group. That is, we convert from Schottky uniformization to Fuchsian uniformization. The section ends with two extended examples demonstrating, among other things, a remarkable geometric characterization of hyperelliptic surfaces due to Schmutz Schaller.

2 Discrete Conformal Equivalence of Cyclic Polyhedral Surfaces
2.1 Cyclic Polyhedral Surfaces
A euclidean polyhedral surface is a surface obtained from gluing euclidean polygons along their edges. (A surface is a connected two-dimensional manifold, possibly with boundary.) In other words, a euclidean polyhedral surface is a surface equipped with, first, an intrinsic metric that is flat except at isolated points where it has cone-like singularities, and, second, the structure of a CW complex with geodesic edges. The set of vertices contains all cone-like singularities. If the surface has a boundary, the boundary is polygonal and the set of vertices contains all corners of the boundary.

          Hyperbolic polyhedral surfaces and spherical polyhedral surfaces are defined analogously. They are glued from polygons in the hyperbolic and elliptic planes, respectively. Their metric is locally hyperbolic or spherical, except at cone-like singularities.
We will only be concerned with polyhedral surfaces whose faces are all cyclic, i.e., inscribed in circles. We call them cyclic polyhedral surfaces. More precisely, we require the polygons to be cyclic before they are glued together. It is not required that the circumcircles persist after gluing; they may be disturbed by cone-like singularities. A polygon in the hyperbolic plane is considered cyclic if it is inscribed in a curve of constant curvature. This may be a circle (the locus of points at constant distance from its center), a horocycle, or a curve at constant distance from a geodesic.
A triangulated surface, or triangulation for short, is a polyhedral surface all of whose faces are triangles. All triangulations are cyclic.

2.2 Notation
We will denote the sets of vertices, edges, and faces of a CW complex [image: $$\Sigma $$] by [image: $$V_{\Sigma }$$], [image: $$E_{\Sigma }$$], and [image: $$F_{\Sigma }$$], and we will often omit the subscript when there is no danger of confusion. For notational convenience, we require all CW complexes to be strongly regular. This means that we require that faces are not glued to themselves along edges or at vertices, that two faces are not glued together along more than one edge or one vertex, and that edges have distinct end-points and two edges have at most one endpoint in common. This allows us to label edges and faces by their vertices. We will write [image: $$ ij \in E$$] for the edge with vertices [image: $$i,j\in V$$] and [image: $$ ijkl \in F$$] for the face with vertices [image: $$i,j,k,l\in V$$]. We will always list the vertices of a face in the correct cyclic order, so that for example the face [image: $$ ijkl $$] has edges [image: $$ ij $$], [image: $$ jk $$], [image: $$ kl $$], and [image: $$ li $$]. The only reason for restricting our discussion to strongly regular CW complexes is to be able to use this simple notation. Everything we discuss applies also to general CW complexes.

2.3 Discrete Metrics
The discrete metric of a euclidean (or hyperbolic or spherical) cyclic polyhedral surface [image: $$\Sigma $$] is the function [image: $$\ell :E_{\Sigma }\rightarrow \mathbb R_{>0}$$] that assigns to each edge [image: $${ ij} \in E_{\Sigma }$$] its length [image: $$\ell _{ ij}$$]. It satisfies the polygon inequalities (one side is shorter than the sum of the others):[image: $$\begin{aligned} \left. \quad \begin{aligned} -\ell _{i_{1}i_{2}}+\ell _{i_{2}i_{3}}+&\ldots +\ell _{i_{n-1}i_{n}}>0\\ \ell _{i_{1}i_{2}}-\ell _{i_{2}i_{3}}+&\ldots +\ell _{i_{n-1}i_{n}}>0\\&\vdots \\ \ell _{i_{1}i_{2}}+\ell _{i_{2}i_{3}}+&\ldots -\ell _{i_{n-1}i_{n}} >0 \end{aligned} \quad \right\} \quad \text {for all}\,i_{1}i_{2}\ldots i_{n}\in F_{\Sigma } \end{aligned}$$]

 (1)

In the case of spherical polyhedral surfaces, we also require that[image: $$\begin{aligned} \ell _{i_{1}i_{2}}+\ell _{i_{2}i_{3}}+\ldots +\ell _{i_{n-1}i_{n}} <2\pi . \end{aligned}$$]

 (2)

The polygon inequalities (1) are necessary and sufficient for the existence of a unique cyclic euclidean polygon and a unique cyclic hyperbolic polygon with the given edge lengths. Together with inequality (2) they are necessary and sufficient for the existence of a unique cyclic spherical polygon. For a new proof of these elementary geometric facts, see [24]. Thus, a discrete metric determines the geometry of a cyclic polyhedral surface:
Proposition and Definition 2.1
If [image: $$\Sigma $$] is a surface with the structure of a CW complex and a function [image: $$\ell :E_{\Sigma }\rightarrow \mathbb R_{>0}$$] satisfies the polygon inequalities (1), then there is a unique euclidean cyclic polyhedral surface and also a unique hyperbolic cyclic polyhedral surface with CW complex [image: $$\Sigma $$] and discrete metric [image: $$\ell $$]. If [image: $$\ell $$] also satisfies the inequalities (2), then there is a unique spherical cyclic polyhedral surface with CW complex [image: $$\Sigma $$] and discrete metric [image: $$\ell $$].
We will denote the euclidean, hyperbolic, and spherical polyhedral surface with CW complex [image: $$\Sigma $$] and discrete metric [image: $$\ell $$] by [image: $$(\Sigma ,\ell )_{ euc }$$], [image: $$(\Sigma ,\ell )_{ hyp }$$], and [image: $$(\Sigma ,\ell )_{ sph }$$], respectively.


2.4 Discrete Conformal Equivalence
We extend the definition of discrete conformal equivalence from triangulations [5, 28] to cyclic polyhedral surfaces in a straightforward way (Definition 2.2). While some aspects of the theory carry over to the more general setting (e.g., Möbius invariance, Proposition 2.5), others do not, like the characterization of discretely conformally equivalent triangulations in terms of length cross-ratios (Sect. 2.5). We will discuss similar characterizations for polyhedral surfaces with 2-colorable vertices and the particular case of quadrilateral faces in Sects. 2.7 and 2.8.
We define discrete conformal equivalence only for polyhedral surfaces that are combinatorially equivalent (see Remark 2.4). Thus, we may assume that the surfaces share the same CW complex [image: $$\Sigma $$] equipped with different metrics [image: $$\ell $$], [image: $$\tilde{\ell }$$].
Definition 2.2

            Discrete conformal equivalence is an equivalence relation on the set of cyclic polyhedral surfaces defined as follows:	Two euclidean cyclic polyhedral surfaces [image: $$(\Sigma ,\ell )_{ euc }$$] and [image: $$(\Sigma ,\tilde{\ell })_{ euc }$$] are discretely conformally equivalent if there exists a function [image: $$u:V_{\Sigma }\rightarrow \mathbb R$$] such that [image: $$\begin{aligned} \tilde{\ell }_ ij =e^{\frac{1}{2}(u_{i}+u_{j})}\ell _ ij . \end{aligned}$$]

 (3)




	Two hyperbolic cyclic polyhedral surfaces [image: $$(\Sigma ,\ell )_{ hyp }$$] and [image: $$(\Sigma ,\tilde{\ell })_{ hyp }$$] are discretely conformally equivalent if there exists a function [image: $$u:V_{\Sigma }\rightarrow \mathbb R$$] such that [image: $$\begin{aligned} \sinh \Big (\frac{\tilde{\ell }_ ij }{2}\Big ) = e^{\frac{1}{2}(u_{i}+u_{j})}\, \sinh \Big (\frac{\ell _ ij }{2}\Big ). \end{aligned}$$]

 (4)




	Two spherical cyclic polyhedral surfaces [image: $$(\Sigma ,\ell )_{ sph }$$] and [image: $$(\Sigma ,\tilde{\ell })_{ sph }$$] are discretely conformally equivalent if there exists a function [image: $$u:V_{\Sigma }\rightarrow \mathbb R$$] such that [image: $$\begin{aligned} \sin \Big (\frac{\tilde{\ell }_ ij }{2}\Big ) = e^{\frac{1}{2}(u_{i}+u_{j})}\, \sin \Big (\frac{\ell _ ij }{2}\Big ). \end{aligned}$$]

 (5)








We will also consider mixed versions:	A euclidean cyclic polyhedral surface [image: $$(\Sigma ,\ell )_{ euc }$$] and a hyperbolic cyclic polyhedral surface [image: $$(\Sigma ,\tilde{\ell })_{ hyp }$$] are discretely conformally equivalent if [image: $$\begin{aligned} \sinh \Big (\frac{\tilde{\ell }_ ij }{2}\Big ) = e^{\frac{1}{2}(u_{i}+u_{j})}\ell _ ij . \end{aligned}$$]

 (6)




	A euclidean cyclic polyhedral surface [image: $$(\Sigma ,\ell )_{ euc }$$] and a spherical cyclic polyhedral surface [image: $$(\Sigma ,\tilde{\ell })_{ sph }$$] are discretely conformally equivalent if [image: $$\begin{aligned} \sin \Big (\frac{\tilde{\ell }_ ij }{2}\Big ) = e^{\frac{1}{2}(u_{i}+u_{j})}\ell _ ij . \end{aligned}$$]

 (7)




	A hyperbolic cyclic polyhedral surface [image: $$(\Sigma ,\ell )_{ hyp }$$] and a spherical cyclic polyhedral surface [image: $$(\Sigma ,\tilde{\ell })_{ sph }$$] are discretely conformally equivalent if [image: $$\begin{aligned} \sin \Big (\frac{\tilde{\ell }_ ij }{2}\Big ) = e^{\frac{1}{2}(u_{i}+u_{j})}\sinh \Big (\frac{\ell _ ij }{2}\Big ). \end{aligned}$$]

 (8)










              [image: A371662_1_En_1_Fig2_HTML.gif]
Fig. 2Spherical and hyperbolic chords




            
Remark 2.3
Note that relation (5) for spherical edge lengths is equivalent to relation (3) for the euclidean lengths of the chords in the ambient [image: $$\mathbb R^{3}$$] of the sphere (see Fig. 2, left). Likewise, relation (4) for hyperbolic edge lengths is equivalent to (3) for the euclidean lengths of the chords in the ambient [image: $$\mathbb R^{2,1}$$] of the hyperboloid model of the hyperbolic plane (see Fig. 2, right).

Remark 2.4
For triangulations, the definition of discrete conformal equivalence has been extended to meshes that are not combinatorially equivalent [5, Definition 5.1.4] [17, 18]. It is not clear whether or how the following definitions for cyclic polyhedral surfaces can be extended to combinatorially inequivalent CW complexes.

The discrete conformal class of a cyclic polyhedral surface embedded in n-dimensional euclidean space is invariant under Möbius transformations of the ambient space:
Proposition 2.5
(Möbius invariance) Suppose P and [image: $$\tilde{P}$$] are two combinatorially equivalent euclidean cyclic polyhedral surfaces embedded in [image: $$\mathbb R^{n}$$] (with straight edges and faces), and suppose there is a Möbius transformation of [image: $$\mathbb R^{n}\cup \{\infty \}$$] that maps the vertices of P to the corresponding vertices of [image: $$\tilde{P}$$]. Then P and [image: $$\tilde{P}$$] are discretely conformally equivalent.

Note that only vertices are related by the Möbius transformation, not edges and faces, which remain straight. The simple proof for the case of triangulations [5] carries over without change.

2.5 Triangulations: Characterization by Length Cross-Ratios
For euclidean triangulations, there is an alternative characterization of conformal equivalence in terms of length cross-ratios [5]. We review the basic facts in this section.
For two adjacent triangles [image: $${ ijk}\in F$$] and [image: $${ jil}\in F$$] (see Fig. 3), the length cross-ratio of the common interior edge [image: $${ ij}\in E$$] is defined as[image: $$\begin{aligned} {\text {lcr}}_{ ij}=\frac{\ell _{ il}\ell _{ jk}}{\ell _{ lj}\ell _{ ki}}. \end{aligned}$$]

 (9)

(If the two triangles are embedded in the complex plane, this is just the modulus of the complex cross-ratio of the four vertices.) This definition of length cross-ratios implicitly assumes that an orientation has been chosen on the surface. For non-orientable surfaces, the length cross-ratio is well-defined on the oriented double cover.[image: A371662_1_En_1_Fig3_HTML.gif]
Fig. 3Length cross-ratio





The product of length cross-ratios around an interior vertex [image: $$i\in V$$] is 1, because all lengths cancel:[image: $$\begin{aligned} \prod _{{ ij}\ni i} {\text {lcr}}_{ ij} = 1. \end{aligned}$$]

 (10)



Proposition 2.6
Two euclidean triangulations [image: $$(\Sigma , \ell )_{ euc }$$] and [image: $$(\Sigma , \tilde{\ell })_{ euc }$$] are discretely conformally equivalent if and only if for each interior edge [image: $${ ij}\in E^{ int }_{\Sigma }$$], the induced length cross-ratios agree.

Remark 2.7
Analogous statements hold for spherical and hyperbolic triangulations. Equation (9) has to be modified by replacing [image: $$\ell $$] with [image: $$\sin \frac{\ell }{2}$$] or [image: $$\sinh \frac{\ell }{2}$$], respectively (compare Remark 2.3).


2.6 Triangulations: Reconstructing Lengths from Length Cross-Ratios
To deal with Riemann surfaces that are given in terms of Schottky data (Sect. 8.2) we will need to reconstruct a function [image: $$\ell :E_{\Sigma }\rightarrow \mathbb R_{>0}$$] satisfying (9) from given length cross-ratios. (It is not required that the function [image: $$\ell $$] satisfies the triangle inequalities.) To this end, we define auxiliary quantities [image: $$c^{i}_{ jk}$$] attached to the angles of the triangulation. The value at vertex i of the triangle [image: $${ ijk}\in F$$] is defined as[image: $$\begin{aligned} c^{i}_{ jk}=\frac{\ell _{ jk}}{\ell _{ ij}\ell _{ ki}}. \end{aligned}$$]

 (11)

Then (9) is equivalent to[image: $$\begin{aligned} {\text {lcr}}_{ ij}=\frac{c^i_{ jk}}{c^i_{ lj}}. \end{aligned}$$]

 (12)

Now, given a function [image: $${\text {lcr}}:E^{ int }\rightarrow \mathbb R_{>0}$$] defined on the set of interior edges [image: $$E^{ int }$$] and satisfying the product condition (10) around interior vertices, one can find parameters [image: $$c^{i}_{ jk}$$] satisfying (11) by choosing one value at each vertex and then successively multiplying length cross-ratios. The corresponding function [image: $$\ell $$] is then determined by[image: $$\begin{aligned} \ell _{ ij} = \frac{1}{\sqrt{c^i_{ jk}c^j_{ ki}}} = \frac{1}{\sqrt{c^i_{ lj}c^j_{ il}}}. \end{aligned}$$]

 (13)




2.7 Bipartite Graphs: Characterization by Length Multi-Ratios
A different characterization of discrete conformal equivalence in terms of length multi-ratios holds if the 1-skeleton of the polyhedral surface is bipartite, i.e., if the vertices can be colored with two colors so that no two neighboring vertices share the same color.
Proposition 2.8
(i) If two combinatorially equivalent euclidean cyclic polyhedral surfaces [image: $$(\Sigma ,\ell )_{ euc }$$] and [image: $$(\Sigma ,\tilde{\ell })_{ euc }$$] with discrete metrics [image: $$\ell $$] and [image: $$\tilde{\ell }$$] are discretely conformally equivalent, then the length multi-ratios for even cycles[image: $$\begin{aligned} i_{1}i_{2},i_{2}i_{3}, \ldots , i_{2n}i_{1} \end{aligned}$$]


are equal:[image: $$\begin{aligned} \frac{\ell _{i_{1}i_{2}}\ell _{i_{3}i_{4}}\cdots \ell _{i_{2n-1}i_{2n}}}{\ell _{i_{2}i_{3}}\ell _{i_{4}i_{5}}\cdots \ell _{i_{2n}i_{1}}} = \frac{\tilde{\ell }_{i_{1}i_{2}}\tilde{\ell }_{i_{3}i_{4}}\cdots \tilde{\ell }_{i_{2n-1}i_{2n}}}{\tilde{\ell }_{i_{2}i_{3}}\tilde{\ell }_{i_{4}i_{5}}\cdots \tilde{\ell }_{i_{2n}i_{1}}} \,. \end{aligned}$$]

 (14)

(ii) If the 1-skeleton of [image: $$\Sigma $$] is bipartite, i.e., if all cycles are even, then this condition is also sufficient: If the length multi-ratios are equal for all cycles, then the polyhedral surfaces are discretely conformally equivalent.

Proof
(i) This is obvious, because all scale factors [image: $$e^{u}$$] cancel. (ii) It is easy to see that Eq. (3) can be solved for the scale factors [image: $$e^{u/2}$$] if the length multi-ratios are equal. Note that the scale factors are not uniquely determined: they can be multiplied by [image: $$\lambda $$] and [image: $$1/\lambda $$] on the two vertex color classes, respectively. To find a particular solution, one can fix the value of [image: $$e^{u/2}$$] at one vertex, and find the other values by alternatingly dividing and multiplying by [image: $$\tilde{\ell }/\ell $$] along paths. The equality of length multi-ratios implies that the obtained values do not depend on the path. [image: $$\square $$]
          

Remark 2.9
If a polyhedral surface is simply connected, then its 1-skeleton is bipartite if and only if all faces are even polygons. If a polyhedral surface is not simply connected, then having even faces is only a necessary condition for being bipartite.

A polyhedral surface with bipartite 1-skeleton has even faces. If a polyhedral surface has even faces and is simply connected, then its 1-skeleton is bipartite, and the face boundaries generate all cycles. Thus, Proposition 2.8 implies the following corollary.
Corollary 2.10
Two simply connected combinatorially equivalent euclidean cyclic polyhedral surfaces with even faces and with discrete metrics [image: $$\ell $$] and [image: $$\tilde{\ell }$$] are discretely conformally equivalent if and only if the multi-ratio condition (14) holds for every face boundary cycle.

Remark 2.11
Analogous statements hold for spherical and hyperbolic cyclic polyhedral surfaces. In the multi-ratio condition, one has to replace non-euclidean lengths [image: $$\ell $$] with [image: $$\sin \frac{\ell }{2}$$] or [image: $$\sinh \frac{\ell }{2}$$], respectively (compare Remark 2.3).


2.8 Quadrangulations: The Cross-Ratio System on Quad-Graphs
The case of cyclic quadrilateral faces is somewhat special (and we will return to it in Sect. 4), because equal length cross-ratio implies equal complex cross-ratio:
Proposition 2.12
If two euclidean polyhedral surfaces with cyclic quadrilateral faces are discretely conformally equivalent, then corresponding faces [image: $${ ijkl}\in F$$] have the same complex cross-ratio (when embedded in the complex plane):[image: $$\begin{aligned} \frac{(z_{i}-z_{j})(z_{k}-z_{l})}{(z_{j}-z_{k})(z_{l}-z_{i})}= \frac{(\tilde{z}_{i}-\tilde{z}_{j})(\tilde{z}_{k}-\tilde{z}_{l})}{(\tilde{z}_{j}-\tilde{z}_{k})(\tilde{z}_{l}- \tilde{z}_{i})} \end{aligned}$$]





Proof
This follows immediately from Proposition 2.8: The length multi-ratio of a quadrilateral is the modulus of the complex cross-ratio. If the (embedded) quadrilaterals are cyclic, then their complex cross-ratios are real and negative, so their arguments are also equal. [image: $$\square $$]
          

For planar polyhedral surfaces, i.e., for quadrangulations in the complex plane, Proposition 2.12 connects discrete conformality with the cross-ratio system on quad-graphs. A quad-graph in the most general sense is simply an abstract CW cell decomposition of a surface with quadrilateral faces. Often, more conditions are added to the definition as needed. Here, we will require that the surface is oriented and that the vertices are bicolored black and white. For simplicity, we will also assume that the CW complex is strongly regular (see Sect. 2.2). The cross-ratio system on a quad-graph [image: $$\Sigma $$] imposes equations (15) on variables [image: $$z_{i}$$] that are attached to the vertices [image: $$i\in V_{\Sigma }$$]. There is one equation per face [image: $${ ijkl}\in F_{\Sigma }$$]:[image: $$\begin{aligned} \frac{(z_{i}-z_{j})(z_{k}-z_{l})}{(z_{j}-z_{k})(z_{l}-z_{i})}=Q_{ ijkl}, \end{aligned}$$]

 (15)

where we assume that i is a black vertex and the boundary vertices [image: $$ ijkl$$] are listed in the positive cyclic order. (Here we need the orientation). On the right hand side of the equation, [image: $$Q:F_{\Sigma }\rightarrow \mathbb C\setminus \{0,1\}$$] is a given function. In particular, it is required that the values [image: $$z_{i},z_{j},z_{k},z_{l}$$] on a face are distinct.
By Proposition 2.12, two discretely conformally equivalent planar quadrangulations correspond to two solutions of the cross-ratio system on the same quad-graph with the same cross-ratios Q. The following proposition says that in the simply connected case, one can find complex factors w on the vertices whose absolute values [image: $$|w|=e^{u/2}$$] govern the length change of edges according to (3), and whose arguments govern the rotation of edges. Note that (3) is obtained from (16) by taking absolute values.
Proposition 2.13
Let [image: $$\Sigma $$] be a simply connected quad-graph. Two functions [image: $$z,\tilde{z}:V_{\Sigma }\rightarrow \mathbb C$$] are solutions of the cross-ratio system on [image: $$\Sigma $$] with the same cross-ratios Q if and only if there is a function [image: $$w:V_{\Sigma }\rightarrow \mathbb C$$] such that for all edges [image: $${ ij}\in E_{\Sigma }$$]
            [image: $$\begin{aligned} \tilde{z}_{j}-\tilde{z}_{i}=w_{i}w_{j}(z_{j}-z_{i}). \end{aligned}$$]

 (16)




Proof
As in the proof of Proposition 2.8, it is easy to see that the system of equations (16) is solvable for w if and only if the complex multi-ratios for even cycles are equal. Because [image: $$\Sigma $$] is simply connected, this is the case if and only if the complex cross-ratios of corresponding faces are equal. [image: $$\square $$]
          

Remark 2.14
The cross-ratio system on quad-graphs (15) is an integrable system (in the sense of 3D consistency [6, 7]) if the cross-ratios Q “factor”, i.e., if there exists a function on the set of edges, [image: $$a:E_{\Sigma }\rightarrow \mathbb C$$], that satisfies the following conditions for each quadrilateral [image: $${ ijkl}\in F$$]:	(i)It takes the same value on opposite edges, [image: $$\begin{aligned} a_{ ij}=a_{ kl}, \quad a_{ jk}=a_{ li}. \end{aligned}$$]

 (17)





 

	(ii)
                        [image: $$\begin{aligned} Q_{ ijkl} = \frac{a_{ ij}}{a_{ jk}}\ . \end{aligned}$$]

 (18)


                      


 





In Adler et al. classification of integrable equations on quad-graphs [2], the integrable cross-ratio system is called [image: $$(\mathrm{Q1})_{\delta =0}$$]. It is also known as the discrete Schwarzian Korteweg–de Vries (dSKdV) equation, especially when it is considered on the regular square lattice [33] with constant cross-ratios.
If the cross-ratios Q have unit modulus, the cross-ratio system on quad-graphs is connected with circle patterns with prescribed intersection angles [6, 7].

Remark 2.15
The system of equations (16) is also connected with an integrable system on quad-graphs. Let [image: $$b_{ ij}=z_{j}-z_{i}$$], so b is a function on the oriented edges with [image: $$b_{ ij}=-b_{ ji}$$]. Let us also assume that the quad-graph [image: $$\Sigma $$] is simply connected. Then the system (16) defines a function [image: $$z:V\rightarrow \mathbb C$$] (uniquely up to an additive constant) if and only if the complex scale factors [image: $$w:V_{\Sigma }\rightarrow \mathbb C$$] satisfy, for each face [image: $${ ijkl}\in F$$] the closure condition[image: $$\begin{aligned} b_{ ij}w_{i}w_{j}+b_{ jk}w_{j}w_{k}+b_{ kl}w_{k}w_{l}+b_{ li}w_{l}w_{i}=0. \end{aligned}$$]

 (19)

This system for w is integrable if, for each face [image: $${ ijkl}\in F$$],[image: $$\begin{aligned} b_{ ij}+b_{ kl}=0 \quad \text {and}\quad b_{ jk}+b_{ li}=0. \end{aligned}$$]


In this case, (19) is known as discrete modified Korteweg–de Vries (dmKdV) equation [33], or as Hirota equation [6, 7].



3 Variational Principles for Discrete Conformal Maps
3.1 Discrete Conformal Mapping Problems
We will consider the following discrete conformal mapping problems. (The notation [image: $$(\Sigma ,\ell )_{g}$$] was introduced in Definition 2.1.)
Problem 3.1
(prescribed angle sums) Given
            	A euclidean, spherical, or hyperbolic cyclic polyhedral surface [image: $$(\Sigma ,\ell )_{g}$$], where [image: $$g\in \{ euc , hyp , sph \}$$],

	a desired total angle [image: $$\varTheta _{i}>0$$] for each vertex [image: $$i\in V_{\Sigma }$$],

	a choice of geometry [image: $$\tilde{g}\in \{ euc , hyp , sph \}$$],




            find a discretely conformally equivalent cyclic polyhedral surface [image: $$(\Sigma ,\tilde{\ell })_{\tilde{g}}$$] of geometry [image: $$\tilde{g}$$] that has the desired total angles [image: $$\varTheta $$] around vertices.

For interior vertices, [image: $$\varTheta $$] prescribes a desired cone angle. For boundary vertices, [image: $$\varTheta $$] prescribes a desired interior angle of the polygonal boundary. If [image: $$\varTheta _{i}=2\pi $$] for all interior vertices i, then Problem 3.1 asks for a flat metric in the discrete conformal class, with prescribed boundary angles if the surface has a boundary.
More generally, we will consider the following problem, where the logarithmic scale factors u (see Definition 2.2) are fixed at some vertices and desired angle sums [image: $$\varTheta $$] are prescribed at the other vertices. The problems to find discrete Riemann maps (Sect. 4.2) and maps onto the sphere (Sect. 6.1) can be reduced to this mapping problem with some fixed scale factors.
Problem 3.2
(prescribed scale factors and angle sums) Given
            	A euclidean, spherical, or hyperbolic cyclic polyhedral surface [image: $$(\Sigma ,\ell )_{g}$$], where [image: $$g\in \{ euc , hyp , sph \}$$],

	a partition [image: $$V_{\Sigma }=V_0\dot{\cup }V_1$$]
                

	a prescribed angle [image: $$\varTheta _{i} > 0$$] for each vertex [image: $$i\in V_1$$],

	a prescribed logarithmic scale factor [image: $$u_i\in \mathbb R$$] for each vertex [image: $$i\in V_0$$],

	a choice of geometry [image: $$\tilde{g}\in \{ euc , hyp , sph \}$$],




            find a discretely conformally equivalent cyclic polyhedral surface [image: $$(\Sigma ,\tilde{\ell })_{\tilde{g}}$$] of geometry [image: $$\tilde{g}$$] that has the desired total angles [image: $$\varTheta $$] around vertices in [image: $$V_1$$] and the fixed scale factors u at vertices in [image: $$V_{0}$$].

Note that for [image: $$V_{0}=\emptyset $$], [image: $$V_{1}=V$$], Problem 3.2 reduces to Problem 3.1.[image: A371662_1_En_1_Fig4_HTML.gif]
Fig. 4Notation of lengths and angles in a triangle [image: $${ ijk} \in F$$]
                






3.2 Analytic Formulation of the Mapping Problems
We rephrase the mapping Problem 3.2 analytically as Problem 3.4. The sides of a cyclic polygon determine its angles, but practical explicit equations for the angles as functions of the sides exist only for triangles, e.g., (21). For this reason it makes sense to triangulate the polyhedral surface. For the angles in a triangulation, we use the notation shown in Fig. 4. In triangle [image: $$ ijk$$], we denote the angle at vertex i by [image: $$\alpha ^i_{ jk}$$]. We denote by [image: $$\beta ^i_{ ij}$$] the angle between the circumcircle and the edge [image: $$ jk$$]. The angles [image: $$\alpha $$] and [image: $$\beta $$] are related by[image: $$\begin{aligned} \alpha _{ jk}^i+\beta _{ ki}^j+\beta _{ ij}^k=\pi , \end{aligned}$$]


so betas determine alphas and vice versa:[image: $$\begin{aligned} 2\beta _{ jk}^i = \pi + \alpha _{ jk}^i - \alpha _{ ki}^j - \alpha _{ ij}^k,\, \ldots \end{aligned}$$]

 (20)

For euclidean triangles,[image: $$\begin{aligned} \alpha _{ jk}^i+\alpha _{ ki}^j+\alpha _{ ij}^k=\pi , \qquad \beta _{ jk}^i=\alpha _{ jk}^i. \end{aligned}$$]


The half-angle equation can be used to express the angles as functions of lengths:[image: $$\begin{aligned} \tan \left( \frac{ \alpha _{ jk}^i}{2}\right) = {\left\{ \begin{array}{ll} \left( \dfrac{ (-\ell _{ ij} +\ell _{ jk} +\ell _{ ki}) (\ell _{ ij} +\ell _{ jk} -\ell _{ ki}) }{ (\ell _{ ij} -\ell _{ jk} +\ell _{ ki}) (\ell _{ ij} + \ell _{ jk} +\ell _{ ki}) }\right) ^{\frac{1}{2}} &{} ( euc )\\ \left( \dfrac{ \sinh \big ((\ell _{ ij}-\ell _{ jk}+\ell _{ ki})/2\big ) \sinh \big ((\ell _{ ij}+\ell _{ jk}-\ell _{ ki})/2\big ) }{ \sinh \big ((-\ell _{ ij}+\ell _{ jk}+\ell _{ ki})/2\big ) \sinh \big ((\ell _{ ij}+\ell _{ jk}+\ell _{ ki})/2\big ) }\right) ^{\frac{1}{2}} &{} ( hyp )\\ \left( \dfrac{ \sin \big ((\ell _{ ij}-\ell _{ jk}+\ell _{ ki})/2\big ) \sin \big ((\ell _{ ij}+\ell _{ jk}-\ell _{ ki})/2\big ) }{ \sin \big ((-\ell _{ ij}+\ell _{ jk}+\ell _{ ki})/2\big ) \sin \big ((\ell _{ ij}+\ell _{ jk}+\ell _{ ki})/2\big ) }\right) ^{\frac{1}{2}} &{} ( sph ) \end{array}\right. } \end{aligned}$$]

 (21)



Lemma 3.3
(analytic formulation of Problem 3.2) Let	the polyhedral surface [image: $$(\Sigma ,\ell )_{g}$$],

	the partition [image: $$V_{0}\dot{\cup }V_{1}$$],

	
                  [image: $$\varTheta _{i}$$] for [image: $$i\in V_{1}$$],

	
                  [image: $$u_{i}$$] for [image: $$i\in V_{0}$$],

	the geometry [image: $$\tilde{g}\in \{ euc , hyp , sph \}$$]
                



be given as in Problem 3.2. Let [image: $$\varDelta $$] be an abstract triangulation obtained by adding non-crossing diagonals to non-triangular faces of [image: $$\Sigma $$]. (So [image: $$V_{\Sigma }=V_{\varDelta }$$], [image: $$E_{\Sigma }\subseteq E_{\varDelta }$$], and the set of added diagonals is [image: $$E_{\varDelta }\setminus E_{\Sigma }$$].) For [image: $${ ij}\in E_{\Sigma }$$], define [image: $$\lambda _{ ij}$$] by[image: $$\begin{aligned} \lambda _{ ij}= {\left\{ \begin{array}{ll} 2\log \ell _{ ij} &{} \text {if}\quad g= euc \\ 2\log \sinh \frac{\ell _{ ij}}{2} &{} \text {if}\quad g= hyp \\ 2\log \sin \frac{\ell _{ ij}}{2} &{} \text {if}\quad g= sph \end{array}\right. } \end{aligned}$$]

 (22)

Then solving Problem 3.2 is equivalent to solving Problem 3.4 with [image: $$E_{0}=E_{\Sigma }$$] and [image: $$E_{1}=E_{\varDelta }\setminus E_{\Sigma }$$].

Problem 3.4

            Given
            	an abstract triangulation [image: $$\varDelta $$],

	a partition [image: $$V_{\varDelta }=V_0\dot{\cup }V_1$$],

	
                  [image: $$u_{i}\in \mathbb R$$] for [image: $$i\in {V_{0}}$$]
                

	
                  [image: $$\varTheta _{i}\in \mathbb R_{>0}$$] for [image: $$i\in {V_{1}}$$],

	a partition [image: $$E_{\varDelta }=E_{0}\dot{\cup }E_{1}$$],

	
                  [image: $$\lambda _{ ij}$$] for [image: $${ ij}\in {E_{0}}$$],

	
                  [image: $$\tilde{g}\in \{ euc , hyp , sph \}$$],




            find [image: $$u_{i}\in \mathbb R$$] for [image: $$i\in {V_{1}}$$] and [image: $$\lambda _{ ij}$$] for [image: $${ ij}\in {E_{1}}$$] such that[image: $$\begin{aligned} \tilde{\ell }:E_{\varDelta }\rightarrow \mathbb R_{>0} \end{aligned}$$]


defined by[image: $$\begin{aligned} \tilde{\lambda }_{ ij} = u_{i} + u_{j} + \lambda _{ ij}, \end{aligned}$$]

 (23)

and[image: $$\begin{aligned} \tilde{\ell }_{ ij} = {\left\{ \begin{array}{ll} e^{\frac{1}{2}\tilde{\lambda }_{ ij}} &{} \text {if}\, \tilde{g}= euc \\ 2{\text {arsinh}}e^{\frac{1}{2}\tilde{\lambda }_{ ij}} &{} \text {if}\, \tilde{g}= hyp \\ 2\arcsin e^{\frac{1}{2}\tilde{\lambda }_{ ij}} &{} \text {if}\, \tilde{g}= sph \\ \end{array}\right. } \end{aligned}$$]

 (24)

satisfies for all [image: $${ ijk}\in F_{\varDelta }$$] the triangle inequalities[image: $$\begin{aligned} \tilde{\ell }_{ ij}<\tilde{\ell }_{ jk}+\tilde{\ell }_{ ki},\qquad \tilde{\ell }_{ jk}<\tilde{\ell }_{ ki}+\tilde{\ell }_{ ij},\qquad \tilde{\ell }_{ ki}<\tilde{\ell }_{ ij}+\tilde{\ell }_{ jk}, \end{aligned}$$]

 (25)

and for [image: $$\tilde{g}= sph $$] also[image: $$\begin{aligned} \tilde{\ell }_{ ij}+\tilde{\ell }_{ jk}+\tilde{\ell }_{ ki}<2\pi , \end{aligned}$$]

 (26)

and such that[image: $$\begin{aligned} \sum _{{ jk}:{ ijk}\in F_{\varDelta }}\tilde{\alpha }_{ jk}^i&= \varTheta _i \quad \text {for all}\quad i\in V_{1},\end{aligned}$$]

 (27)


[image: $$\begin{aligned} \tilde{\beta }_{ ij}^k+\tilde{\beta }_{ ji}^l&= \pi \quad \text {for all}\quad \textit{ij} \in E_{1}, \end{aligned}$$]

 (28)

where [image: $$\tilde{\alpha }$$] and [image: $$\tilde{\beta }$$] are defined by (21) and (20) (with [image: $$\alpha $$], [image: $$\beta $$], [image: $$\ell $$] replaced by [image: $$\tilde{\alpha }$$], [image: $$\tilde{\beta }$$], [image: $$\tilde{\ell }$$]). Note that for [image: $$\tilde{g}= sph $$] it is also required that [image: $$\tilde{\lambda }<0$$] for [image: $$\tilde{\ell }$$] to be well-defined.

Proof
(of Lemma 3.3) Note that (27) says that the angle sums at vertices in [image: $$V_{1}$$] have the prescribed values, and (28) says that neighboring triangles of [image: $$(\varDelta ,\tilde{\ell })_{\tilde{g}}$$] belonging to the same face of [image: $$\Sigma $$] share the same circumcircle. So deleting the edges in [image: $$E_{\varDelta }\setminus E_{\Sigma }$$], one obtains a cyclic polyhedral surface [image: $$(\Sigma ,\tilde{\ell }|_{E_{\Sigma }})_{\tilde{g}}$$]. [image: $$\square $$]
          


3.3 Variational Principles
Definition 3.5
For an abstract triangulation [image: $$\varDelta $$] and a function [image: $$\varTheta \in \mathbb R_{>0}^{V_{\varDelta }}$$], define the three functions[image: $$\begin{aligned} E_{\varDelta ,\varTheta }^{ euc },E_{\varDelta ,\varTheta }^{ hyp },E_{\varDelta ,\varTheta }^{ sph }:&\, \mathbb R^{E_{\varDelta }} \times \mathbb R^{V_{\varDelta }} \longrightarrow \mathbb R,\\&\quad (\lambda , u) \longmapsto E_{\varDelta ,\varTheta }^{\tilde{g}}(\lambda , u) \end{aligned}$$]


by[image: $$\begin{aligned} E_{\varDelta ,\varTheta }^{\tilde{g}}(\lambda , u) = \sum _{{ ijk}\in F_{\varDelta }}\big (f^{\tilde{g}}(\tilde{\lambda }_{ ij},\tilde{\lambda }_{ jk},\tilde{\lambda }_{ ki}) - \frac{\pi }{2}(\tilde{\lambda }_{ jk} + \tilde{\lambda }_{ ki} + \tilde{\lambda }_{ ij})\big ) + \sum _{i\in V_{\varDelta }} \varTheta _i u_i, \end{aligned}$$]

 (29)

where [image: $$\tilde{g}\in \{ euc , hyp , sph \}$$], [image: $$\tilde{\lambda }$$] is defined as function of [image: $$\lambda $$] and u by (23), and the functions [image: $$f^{ euc }$$], [image: $$f^{ hyp }$$], [image: $$f^{ sph }$$] are defined in Sect. 3.4.

We will often omit the subscripts and write simply [image: $$E^{ euc },E^{ hyp },E^{ sph }$$] when this is unlikely to cause confusion.
Definition 3.6
We define the feasible regions of the functions [image: $$E_{\varDelta ,\varTheta }^{\tilde{g}}$$] as the following open subsets of their domains:	The feasible region of [image: $$E^{ euc }$$] and [image: $$E^{ hyp }$$] is the set of all [image: $$(\lambda , u)\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$] such that [image: $$\tilde{\ell }\in \mathbb R_{>0}^{E}$$] defined by (23) and (24) satisfies the triangle inequalities (25)

	The feasible region of [image: $$E^{ sph }$$] is the set of all [image: $$(\lambda , u)\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$] such that [image: $$\tilde{\lambda }$$] defined by (23) is negative, and [image: $$\tilde{\ell }$$], which is then well-defined by (24), satisfies the triangle inequalities (25) and the inequalities (26).






Theorem 3.7
(Variational principles) Every solution [image: $$(\Sigma ,\tilde{\ell })_{\tilde{g}}$$] of Problem 3.2 corresponds via (23) and (24) to a critical point [image: $$(\lambda , u)\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$] of the function [image: $$E^{\tilde{g}}_{\varDelta ,\varTheta }$$] under the constraints that [image: $$\lambda _{ ij}$$] and [image: $$u_{i}$$] are fixed for [image: $${ ij}\in E_{0}$$] and [image: $$i\in V_{0}$$], respectively. (The triangulation [image: $$\varDelta $$], and [image: $$E_{0}=E_{\Sigma }$$] and [image: $$E_{1}=E_{\varDelta }\setminus E_{\Sigma }$$] are as in Lemma 3.3, and the given function [image: $$\varTheta $$] is extended from [image: $$V_{1}$$] to V by arbitrary values on [image: $$V_{0}$$].)
Conversely, if [image: $$(\lambda , u)\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$] is a critical point of the function [image: $$E^{\tilde{g}}_{\varDelta ,\varTheta }$$] under the same constraints, and if [image: $$(\lambda , u)$$] is contained in the feasible region of [image: $$E^{\tilde{g}}_{\varDelta ,\varTheta }$$], then [image: $$(\Sigma ,\tilde{\ell })_{\tilde{g}}$$] defined by (23) and (24) is a solution of Problem 3.2.

Proof
This follows from the analytic formulation of Problem 3.2 (see Sect. 3.2) and Proposition 3.8. [image: $$\square $$]
          

Proposition 3.8
(First derivative of [image: $$E^{\tilde{g}}$$]) The partial derivatives of [image: $$E^{\tilde{g}}$$] are[image: $$\begin{aligned} \frac{\partial E^{\tilde{g}}}{\partial u_i}(\lambda ,u)&= \varTheta _i - \sum _{{ ijk}\ni i}\tilde{\alpha }_{ jk}^i \end{aligned}$$]

 (30)


[image: $$\begin{aligned} \frac{\partial E^{\tilde{g}}}{\partial \lambda _{ ij}}(\lambda ,u)&= \tilde{\beta }_{ ij}^k + \tilde{\beta }_{ ij}^l -\pi . \end{aligned}$$]

 (31)

Here [image: $$\tilde{\alpha }$$], [image: $$\tilde{\beta }$$] are defined by (21) and (20) (with [image: $$\alpha $$], [image: $$\beta $$], [image: $$\ell $$] replaced by [image: $$\tilde{\alpha }$$], [image: $$\tilde{\beta }$$], [image: $$\tilde{\ell }$$]) if [image: $$(\lambda ,u)$$] is contained in the feasible region of [image: $$E^{\tilde{g}}$$]. For [image: $$(\lambda ,u)$$] not contained in the feasible region, the definition of [image: $$\tilde{\alpha }$$], [image: $$\tilde{\beta }$$] is extended like in Definition 3.12.

Proof
Equations (30) and (31) follow from the definition of [image: $$E^{\tilde{g}}$$] and Proposition 3.14 on the partial derivatives of [image: $$f^{g}$$]. [image: $$\square $$]
          

Theorem 3.9
(Uniqueness for mapping problems) If Problem 3.2 with target geometry [image: $$\tilde{g}\in \{ euc , hyp \}$$] has a solution, then the solution is unique—except if [image: $$\tilde{g}= euc $$] and [image: $$V_{0}=\emptyset $$] (the case of Problem 3.1). In this case, the solution is unique up to scale.
The critical point [image: $$(\lambda , u)\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$] that corresponds, via (23) and (24), to a solution [image: $$(\Sigma ,\tilde{\ell })_{\tilde{g}}$$] of Problem 3.2 with [image: $$\tilde{g}\in \{ euc , hyp \}$$] is a minimizer of [image: $$E^{\tilde{g}}_{\varDelta ,\varTheta }$$] under the constraints described in Theorem 3.7. The minimizer is unique except in the following cases. If [image: $$\tilde{g}= euc $$] and [image: $$V_{0}=\emptyset $$], then [image: $$E^{\tilde{g}}_{\varDelta ,\varTheta }$$] is constant along all lines in the “scaling direction” [image: $$(0,1_{V_{\varDelta }})\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$]. If the 1-skeleton of [image: $$\Sigma $$] is bipartite and [image: $$V_{0}=\emptyset $$], then [image: $$E^{\tilde{g}}_{\varDelta ,\varTheta }$$] is constant in the direction that is [image: $$\pm 1$$] on the two color classes of [image: $$V_{\varDelta }$$], respectively, and takes appropriate values on [image: $$E_{\varDelta }\setminus E_{\Sigma }$$] so that [image: $$\tilde{\lambda }_{ ij}$$] defined by (23) remains constant for all [image: $${ ij}\in E_{\varDelta }$$]. (In both exceptional cases, one can obtain a unique minimizer by adding the constraint of fixing [image: $$u_{i}$$] for some [image: $$i~\in V_{\varDelta }$$].)

Proof
The theorem follows from Theorem 3.7 and the following observations.

                	(1)If the point [image: $$(\lambda , u)\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$] corresponds to a solution of Problem 3.2, it is contained in the feasible region of [image: $$E^{\tilde{g}}_{\varDelta ,\varTheta }$$].


 

	(2)By (29) and Proposition 3.16, the functions [image: $$E^{ euc }$$] and [image: $$E^{ hyp }$$] are convex.


 

	(3)For [image: $$(\lambda , u)$$] in the feasible region, the second derivative [image: $$D^{2}E^{ hyp }(\lambda ,u)$$] is a positive definite quadratic form of [image: $$d\tilde{\lambda }$$], i.e., [image: $$D^{2}E^{ hyp }(\lambda ,u)(\dot{\lambda },\dot{u})\ge 0$$] for all [image: $$(\dot{\lambda },\dot{u})\in \mathbb R^{E_{\varDelta }}\times \mathbb R^{V_{\varDelta }}$$] and [image: $$D^{2}E^{ hyp }(\lambda ,u)(\dot{\lambda },\dot{u})=0$$] if and only if [image: $$\begin{aligned} \dot{\lambda }_{ ij}+\dot{u}_{i}+\dot{u}_{j}=0 \quad \text {for all }{} { ij}\in E_{\varDelta }. \end{aligned}$$]






 

	(4)Similarly, for [image: $$(\lambda , u)$$] in the feasible region, the second derivative [image: $$D^{2}E^{ euc }(\lambda ,u)$$] is a positive semidefinite quadratic form with [image: $$D^{2}E^{ euc }(\lambda ,u)(\dot{\lambda },\dot{u})=0$$] if and only if [image: $$\begin{aligned} \dot{\lambda }_{ ij}+\dot{u}_{i}+\dot{u}_{j}=c \quad \text {for all }{} { ij}\in E_{\varDelta }, \text { for some } c\in \mathbb R. \end{aligned}$$]






 




                [image: $$\square $$]
              

In the following proposition, we collect explicit formulas for the second derivatives of the functions [image: $$E^{\tilde{g}}$$]. They are useful for the numerical minimization of [image: $$E^{ euc }$$] and [image: $$E^{ hyp }$$], and even for finding critical points of [image: $$E^{ sph }$$], as explained in Sect. 6.2.
Proposition 3.10
(Second derivative of [image: $$E^{\tilde{g}}$$]) The second derivatives of [image: $$E^{ euc }$$], [image: $$E^{ hyp }$$], and [image: $$E^{ sph }$$] are the quadratic forms[image: $$\begin{aligned} D^{2}E^{\tilde{g}}(\lambda ,u)=\frac{1}{2}\sum _{{ ijk}\in F_{\varDelta }} \big ( q_{ ij}^{k}(\lambda ,u) + q_{ jk}^{i}(\lambda ,u) + q_{ ki}^{j}(\lambda ,u) \big ), \end{aligned}$$]


where [image: $$q_{ ij}^{k}(\lambda ,u)=0$$] if [image: $$\tilde{\ell }_{ ij}, \tilde{\ell }_{ jk}, \tilde{\ell }_{ ki}$$] defined by (23), (24) violate the triangle inequalities (25), or, in the case of [image: $$\tilde{g}= sph $$], inequality (26). Otherwise, the quadratic forms [image: $$q_{ ij}^{k}(\lambda ,u)$$] are defined by[image: $$\begin{aligned} q_{ ij}^{k} = {\left\{ \begin{array}{ll} \cot \tilde{\alpha }_{ ij}^k\;(d\lambda _{ ki}-d\lambda _{ jk} + du_i - du_j)^2 &{} ( euc ) \\ \cot \tilde{\beta }^k_{ ij}\, \big ( (d\lambda _{ ik}-d\lambda _{ kj} + du_i-du_j)^2 +\tanh ^2 \big ( \tfrac{\tilde{\ell }_{ ij}}{2} \big ) (d\lambda _{ ij} +du_i+du_j)^2 \big ) &{} ( hyp ) \\ \cot \tilde{\beta }^k_{ ij}\; \big ( (d\lambda _{ ik}-d\lambda _{ kj} + du_i-du_j)^2 -\tan ^2 \big ( \tfrac{\tilde{\ell }_{ ij}}{2} \big ) (d\lambda _{ ij} +du_i+du_j)^2 \big ) &{} ( sph ) \end{array}\right. } \end{aligned}$$]


where [image: $$\tilde{\alpha }$$], [image: $$\tilde{\beta }$$] are defined by (21) and (20) (with [image: $$\alpha $$], [image: $$\beta $$], [image: $$\ell $$] replaced by [image: $$\tilde{\alpha }$$], [image: $$\tilde{\beta }$$], [image: $$\tilde{\ell }$$]).

Proposition 3.10 follows from (29) and Proposition 3.15 about the second derivatives of [image: $$f^{g}$$].

3.4 The Triangle Functions
This section is concerned with three real valued functions [image: $$f^{ euc }$$], [image: $$f^{ hyp }$$], [image: $$f^{ sph }$$] of three variables that are the main building blocks for the action functions [image: $$E^{ euc }$$], [image: $$E^{ hyp }$$], [image: $$E^{ sph }$$] of the variational principles. Since we consider single triangles in this section, not triangulations, we can use simpler notation. For [image: $$\{i,j,k\}=\{1,2,3\}$$], let[image: $$\begin{aligned} \lambda _{i}=\lambda _{ jk},\quad \ell _{i}=\ell _{ jk},\quad \alpha _{i}=\alpha _{ jk}^{i},\quad \beta _{i}=\beta _{ jk}^{i}. \end{aligned}$$]


The terminology introduced in the following definition makes Definition 3.12 easier to state.
Definition 3.11
Let the feasible region of [image: $$f^{ euc }$$] and [image: $$f^{ hyp }$$] be the open subset of all [image: $$\lambda \in \mathbb R^{3}$$] such that [image: $$\ell \in \mathbb R_{>0}^{3}$$] determined by (22) satisfies the triangle inequalities, i.e.,[image: $$\begin{aligned} \ell _{k}<\ell _{i}+\ell _{j} \end{aligned}$$]

 (32)

for [image: $$\{i,j,k\}=\{1,2,3\}$$].
Let the feasible region of [image: $$f^{ sph }$$] be the open subset of all [image: $$\lambda \in \mathbb R^{3}$$] such that [image: $$\lambda <0$$], and such that [image: $$\ell \in \mathbb R_{>0}^{3}$$], which is then well-defined by (22), satisfies the triangle inequalities (32) and[image: $$\begin{aligned} \ell _{1}+\ell _{2}+\ell _{3}<2\pi . \end{aligned}$$]

 (33)




Definition 3.12
We define the three functions[image: $$\begin{aligned} f^{ euc }, f^{ hyp },f^{ sph }:\mathbb R^{3}\rightarrow \mathbb R\end{aligned}$$]


by[image: A371662_1_En_1_Equ34_HTML.gif]

 (34)

where [image: $$g\in \{ euc , hyp , sph \}$$], [image: A371662_1_En_1_IEq336_HTML.gif] denotes Milnor’s Lobachevsky function [30][image: A371662_1_En_1_Equ35_HTML.gif]

 (35)

and,	if [image: $$\lambda $$] is in the feasible region of [image: $$f^{g}$$], then the angles [image: $$\alpha $$], [image: $$\beta $$] are defined as the angles (shown in Fig. 4) in a euclidean, hyperbolic, or spherical triangle (depending on [image: $$g$$]) with sides [image: $$\ell _{1}, \ell _{2}, \ell _{3}$$] determined by (22). That is, [image: $$\alpha $$] and [image: $$\beta $$] are defined by (21) and (20).

	Otherwise, if [image: $$g= sph $$], and if either at least two [image: $$\lambda $$]s are non-negative or [image: $$\lambda <0$$] and inequality (33) is violated, let [image: $$\begin{aligned} \alpha _{k}=\alpha _{i}=\alpha _{j}=\pi , \quad \beta _{k}=\beta _{i}=\beta _{j}=0. \end{aligned}$$]





	Otherwise, if the triangle inequality (32) is violated, or if [image: $$g= sph $$] and [image: $$\lambda _{k}\ge 0$$], let [image: $$\begin{aligned} \alpha _{k}=\beta _{k}=\pi , \quad \alpha _{i}=\alpha _{j}=\beta _{i}=\beta _{j}=0. \end{aligned}$$]











              [image: A371662_1_En_1_Fig5_HTML.gif]
Fig. 5Graph of Milnor’s Lobachevsky function, [image: A371662_1_En_1_IEq350_HTML.gif]
                




            
Figure 5 shows a graph of Milnor’s Lobachevsky function. It is continuous, [image: $$\pi $$]-periodic, odd, has zeros at the integer multiples of [image: $$\pi /2$$], and is real analytic except at integer multiples of [image: $$\pi $$], where the derivative tends to [image: $$+\infty $$].
Remark 3.13
In the euclidean case, (34) simplifies to[image: A371662_1_En_1_Equ36_HTML.gif]

 (36)

This follows immediately from [image: $$\alpha _{1}+\alpha _{2}+\alpha _{3}=\pi $$], [image: $$\alpha =\beta $$], and [image: A371662_1_En_1_IEq357_HTML.gif].

Proposition 3.14
(first derivative) The functions [image: $$f^{g}$$], [image: $$g\in \{ euc , hyp , sph \}$$], are continuously differentiable and[image: $$\begin{aligned} \frac{\partial f^{g}}{\partial \lambda _{i}}=\beta _{i}. \end{aligned}$$]

 (37)




Proof
Note that the angles [image: $$\alpha $$], [image: $$\beta $$] are continuous functions of [image: $$\lambda $$] on [image: $$\mathbb R^{3}$$]. Hence [image: $$f^{g}$$] defined by (34) is also continuous. We will show that [image: $$f^{g}$$] is continuously differentiable with derivative (37) on an open dense subset of the domain, namely, the union of (a) the feasible region and (b) the interior of its complement. Since [image: $$f^{g}$$] is continuous and [image: $$ df^{g}$$] extends continuously to [image: $$\mathbb R^{3}$$], the claim follows.
(a) First, suppose [image: $$\lambda $$] is contained in the feasible region of [image: $$f^{g}$$]. By symmetry, it suffices to consider the derivative with respect to [image: $$\lambda _{1}$$]. From (34) and (35) one obtains[image: $$\begin{aligned} \frac{\partial f^{g}}{\partial \lambda _{1}} = \beta _{1}&+ \sum _{i=1}^{3} \Big ( \big (\lambda _{i} - \log (2\sin \beta _{i})\big )\, \frac{\partial \beta _{i}}{\partial \lambda _{1}}+ \nonumber \\&\qquad \qquad \big ( - \log (2\sin \alpha _{i}) +\tfrac{1}{2} \log \big |2\sin (\tfrac{\pi -\alpha _{1}-\alpha _{2}-\alpha _{3}}{2})\big | \big )\, \frac{\partial \alpha _{i}}{\partial \lambda _{1}} \Big ) \end{aligned}$$]

 (38)

For hyperbolic and spherical triangles, one derives from the respective cosine rules[image: $$\begin{aligned} \sinh ^{2}\frac{\ell _{i}}{2}&= \frac{\sin \beta _{i}\sin \frac{\pi -\alpha _{1}-\alpha _{2}-\alpha _{3}}{2}}{\sin \alpha _{2} \sin \alpha _{3}} \qquad \text {(hyperbolic),}\\ \sin ^{2}\frac{\ell _{i}}{2}&= \frac{\sin \beta _{i}\sin \frac{\alpha _{1}+\alpha _{2}+\alpha _{3}-\pi }{2}}{\sin \alpha _{2} \sin \alpha _{3}} \qquad \text {(spherical).} \end{aligned}$$]


In both cases, expand the fraction on the right hand side by four and take logarithms to find[image: $$\begin{aligned} \lambda _{i}=\log (2\sin \beta _{i}) +\log \big |2\sin \tfrac{\pi -\alpha _{1}-\alpha _{2}-\alpha _{3}}{2}\big | -\log (2\sin \alpha _{j})-\log (2\sin \alpha _{k}). \end{aligned}$$]


Substitute this expression for [image: $$\lambda _{i}$$] in (38) and use [image: $$d\beta _{i}=\tfrac{1}{2}(d\alpha _{i}-d\alpha _{j}-d\alpha _{k})$$] to see that all terms on the right hand side of (38) cancel, except [image: $$\beta _{1}$$].
For euclidean triangles, (38) simplifies to[image: $$\begin{aligned} \frac{\partial f^{g}}{\partial \lambda _{1}} = \beta _{1} + \sum _{i=1}^{3} \big (\lambda _{i} - 2\log (2\sin \alpha _{i})\big ) \frac{\partial \alpha _{i}}{\partial \lambda _{1}}, \end{aligned}$$]


where[image: $$\begin{aligned} \lambda _{i}-2\log (2\sin \alpha _{i})=2\log \frac{\ell _{i}}{2\sin \alpha _{i}} =2\log R \end{aligned}$$]


does not depend on i. (R denotes the circumradius.) Equation (37) follows because the angle sum is constant.
(b) Now suppose [image: $$\lambda $$] is contained in the interior of the complement of the feasible region of [image: $$f^{g}$$]. Since [image: $$\beta _{1},\beta _{2},\beta _{3}$$] are constant on each connected component of the complement of the feasible region, and since[image: $$\begin{aligned} f^{g}(\lambda _{1}, \lambda _{2}, \lambda _{3}) = \beta _{1} \lambda _{1} + \beta _{2} \lambda _{2} + \beta _{3} \lambda _{3}, \end{aligned}$$]


outside the feasible region, Eq. (37) holds also in this case. This completes the proof. [image: $$\square $$]
          

Proposition 3.15
(second derivative) For [image: $$g\in \{ euc , hyp , sph \}$$] the function [image: $$f^{g}$$] is twice continuously differentiable on its feasible set and the second derivative is[image: $$\begin{aligned} D^{2}f^{ euc }&= \frac{1}{2}\sum _{i=1}^{3} \cot \alpha _{i}\, (d\lambda _{j}-d\lambda _{k})^{2},\end{aligned}$$]

 (39)


[image: $$\begin{aligned} D^{2}f^{ hyp }&= \frac{1}{2}\sum _{i=1}^{3} \cot \beta _{i}\, \big ( (d\lambda _{j}-d\lambda _{k})^{2} +\tanh ^{2}\big ( \tfrac{\ell _{i}}{2} \big )\, d\lambda _{i}^{2} \big ),\end{aligned}$$]

 (40)


[image: $$\begin{aligned} D^{2}f^{ sph }&= \frac{1}{2}\sum _{i=1}^{3} \cot \beta _{i}\, \big ( (d\lambda _{j}-d\lambda _{k})^{2} -\tan ^{2}\big ( \tfrac{\ell _{i}}{2} \big )\, d\lambda _{i}^{2} \big ). \end{aligned}$$]

 (41)

On each component of the complement of its feasible set, the function [image: $$f_{g}$$] is linear so the second derivative vanishes.

A proof of (39) is contained in [5] (Proposition 4.2.3), see Remark 3.17 below. Equations (40) and (41) can be derived by lengthy calculations.
Proposition 3.16
(i) The function [image: $$f^{ euc }$$] is convex. On its feasible set, the second derivative [image: $$D^{2}f^{ euc }$$] is positive semidefinite with one-dimensional kernel spanned by the “scaling direction” (1, 1, 1).
(ii) The function [image: $$f^{ hyp }$$] is convex. On its feasible set, the second derivative [image: $$D^{2}f^{ hyp }$$] is positive definite, so the functions is locally strictly convex.

Part (i) is proved in [5] (Propositions 4.2.4, 4.2.5, note the following remark) directly from (39). We do not know a similarly straightforward proof of part (ii). The proof in [5] (Sect. 6.​2) is based on a connection with 3-dimensional hyperbolic geometry: [image: $$f^{ hyp }$$] is the Legendre dual of the volume of an ideal hyperbolic prism considered as a function of the dihedral angles. This volume function is strictly concave, as shown by Leibon [26]. His argument uses the decomposition of an ideal prism into three ideal tetrahedra.
Remark 3.17
The functions f and [image: $$\hat{V}_{h}$$] defined in [5] (equations (4-3), (6-4)) are related to the functions [image: $$f^{ euc }$$] and [image: $$f^{ hyp }$$] by[image: $$\begin{aligned} f^{ euc }(\lambda _{1},\lambda _{2},\lambda _{3})&= 2f(\tfrac{\lambda _{1}}{2}, \tfrac{\lambda _{2}}{2}, \tfrac{\lambda _{3}}{2}),\end{aligned}$$]

 (42)


[image: $$\begin{aligned} f^{ hyp }(\lambda _{1},\lambda _{2},\lambda _{3})&= 2\hat{V}_{h}(\lambda _{1},\lambda _{2},\lambda _{3},0,0,0). \end{aligned}$$]

 (43)






4 Conformal Maps of Cyclic Quadrangulations
Having introduced the mapping problems and variational principles, we return to conformal maps of cyclic quadrangulations. Some basic facts were already discussed in Sect. 2.8. Here, in Sect. 4.1, we consider a simple experiment that demonstrates the somewhat unexpected appearance of orthogonal circle patterns, and also a necessary condition for the boundary angles. In Sect. 4.2, we discuss a discrete version of the Riemann mapping problem for quadrangulations.
4.1 Emerging Circle Patterns and a Necessary Condition
Consider the two discrete conformal maps shown in the two rows of Fig. 6. The domains (shown left) are a square and a rectangle, subdivided into [image: $$6\times 6$$] and [image: $$6\times 5$$] squares, respectively. We solve the mapping Problem 3.1 by minimizing [image: $$E^{ euc }$$] as explained in Sect. 3.3, prescribing boundary angles to obtain maps to parallelograms: [image: $$\varTheta =50^{\circ }$$] and [image: $$130^{\circ }$$] for the corner vertices, [image: $$\varTheta =180^{\circ }$$] for the other boundary vertices, and [image: $$\varTheta =360^{\circ }$$] for interior vertices. The resulting quadrangulations are shown in the middle.[image: A371662_1_En_1_Fig6_HTML.gif]
Fig. 6Mapping a rectangle to a parallelogram. Note the orthogonal circle pattern in the top row and the wiggly vertical lines in the bottom row
                





On first sight, the [image: $$6\times 6$$] example shown in the top row behaves rather like one would expect from a conformal map. The horizontal and vertical “coordinate lines” of the domain are mapped to polygonal curves that look more or less like they could be discretizations of reasonable smooth curves. In the [image: $$6\times 5$$] example shown in the bottom row, the images of the vertical lines zigzag noticeably.
A closer look at the [image: $$6\times 6$$] example reveals a remarkable phenomenon. Let us bicolor the vertices black and white so that neighboring vertices have different colors, with the corners colored white. Then, in the image quadrangulation, the edges incident with a black vertex meet at right angles, and the edges incident with a white vertex have the same length. One can therefore draw a circle around each white vertex through the neighboring black vertices as shown in Fig. 6 (top right). At the black vertices, these circles touch and intersect orthogonally. Such circle patterns were studied by Schramm [38] as discrete analogs of conformal maps.
Given such a circle pattern with orthogonally intersecting circles, the quadrangulation formed by drawing edges between circle centers and intersection points consists of quadrilaterals that are right-angled kites. Such kites have complex cross-ratio [image: $$-1$$]. Hence, the quadrangulation coming from an orthogonal circle pattern is discretely conformally equivalent (in our sense) to a combinatorially equivalent quadrangulation consisting of squares.
The conformal map shown in the top row of Fig. 6 “finds” the orthogonal circle pattern because that circle pattern exists and the conformal map is unique (by Theorem 3.9). For the [image: $$6\times 5$$] example shown in the bottom row, a corresponding orthogonal circle pattern does not exist. No matter which coloring is chosen, there are two black vertices at which the total angle changes (from [image: $$90^{\circ }$$] to [image: $$50^{\circ }$$] and [image: $$130^{\circ }$$], respectively). The neighbors of a vertex do not lie on a circle. Figure 6 (bottom right) shows two circles drawn through three out of four neighbors.
If we map an [image: $$m\times n$$] square grid to a parallelogram like in Fig. 6, an orthogonal circle pattern will appear if m an n are even. No such pattern will appear if one of the numbers is even and the other is odd. What happens if both m and n are odd? In this case, the conformal map does not exist. The corners with increasing angle and the corners with decreasing angle would have different colors. This violates the necessary condition expressed in the following theorem.
Theorem 4.1
(Necessary condition for the existence of a conformal map) Let [image: $$\Sigma $$] be an abstract quadrangulation of the closed disk, and let[image: $$\begin{aligned} z,\tilde{z}: V_{\Sigma }\rightarrow \mathbb C\end{aligned}$$]


determine two discretely conformally equivalent immersions of [image: $$\Sigma $$] into the complex plane. Denote their angle sums at boundary vertices [image: $$v\in V_{\Sigma }$$] by [image: $$\varTheta _{v}$$] and [image: $${\tilde{\varTheta }}_{v}$$], respectively. Since the 1-skeleton of [image: $$\Sigma $$] is bipartite, we may assume the vertices are colored black and white. Let [image: $$V^{\partial }_{b}$$] and [image: $$V^{\partial }_{w}$$] denote the sets of black and white boundary vertices of [image: $$\Sigma $$]. Then[image: $$\begin{aligned} \sum _{v\in V^{\partial }_b}({\tilde{\varTheta }}_v - \varTheta _v)&\equiv 0 \pmod {2\pi },\end{aligned}$$]

 (44)


[image: $$\begin{aligned} \sum _{v\in V^{\partial }_w}({\tilde{\varTheta }}_v - \varTheta _v)&\equiv 0 \pmod {2\pi }. \end{aligned}$$]

 (45)

(Since [image: $$\sum _{V^{\partial }_b \cup V^{\partial }_w}({\tilde{\varTheta }}_{v}-\varTheta _{v})=0$$], equations (45) and (44) are equivalent.)

Proof
Since z and [image: $$\tilde{z}$$] are two solutions of the cross-ratio system on [image: $$\Sigma $$] with the same cross-ratios (see Sect. 2.8), there exists by Proposition 2.13 a function [image: $$w:V_{\Sigma }\rightarrow \mathbb C$$] such that (16) holds for all edges [image: $$ ij \in E_{\Sigma }$$]. Now suppose [image: $$v_{0},\ldots ,v_{2n-1}\in V_{\Sigma }$$] are the boundary vertices in cyclic order (with indices taken modulo 2n). Then[image: $$\begin{aligned} e^{i({\tilde{\varTheta }}_{v_{k}} - \varTheta _{v_{k}})}= \frac{(\tilde{z}_{v_{k+1}}-\tilde{z}_{v_{k}})(z_{v_{k-1}}-z_{v_{k}})}{(\tilde{z}_{v_{k-1}}-\tilde{z}_{v_{k}})(z_{v_{k+1}}-z_{v_{k}})} =\frac{w_{v_{k+1}}}{w_{v_{k-1}}}, \end{aligned}$$]


so[image: $$\begin{aligned} \prod _{k=0}^{n-1}e^{i({\tilde{\varTheta }}_{v_{2k}} - \varTheta _{v_{2k}})}= \prod _{k=0}^{n-1}e^{i({\tilde{\varTheta }}_{v_{2k+1}} - \varTheta _{v_{2k+1}})}= 1. \end{aligned}$$]


Equations (44) and (45) follow. [image: $$\square $$]
          


4.2 Riemann Maps with Cyclic Quadrilaterals
Consider the following discrete version of the Riemann mapping problem: Map a cyclic polyhedral surface that is topologically a closed disk discretely conformally to a planar polygonal region with boundary vertices on a circle. An example is shown in Fig. 7, top row. This type of problem can often be reduced to Problem 3.2. Then, by the variational principle, if a solution exists, it can be found by minimizing a convex function. For triangulations, the reduction of the discrete Riemann mapping problem to Problem 3.2 is explained in [5] (Sect. 3.​3). Here, we consider the case of quadrangulations. (The arguments can be extended to even polygons with more than four sides. We restrict our attention to quadrilaterals because the combinatorial restrictions discussed in the following paragraph become even more involved for surfaces with hexagons, octagons, etc.)[image: A371662_1_En_1_Fig7_HTML.gif]
Fig. 7Riemann mapping with cyclic quadrilaterals





The basic idea is the same as for triangulations: First, map the polyhedral surface to the half plane with one boundary vertex at infinity. Then apply a Möbius transformation. This leads to a combinatorial restriction: No face may have more than one edge on the boundary. (The face would degenerate when the boundary is mapped to a straight line.) For triangulations, this means that no triangle may be connected to the surface by only one edge. If this condition is violated, cutting off such “ears” often leads to an admissible triangulation. For quadrangulations, this fix does not work in typical situations. Instead, if a quadrilateral contains two consecutive edges on the boundary, cut off a triangle. The resulting polyhedral surface will consist mostly of quadrilaterals with some triangles on the boundary, as in the example shown in Figs. 7,  8.
Suppose [image: $$(\Sigma ,\ell )_{ euc }$$] is a euclidean cyclic polyhedral surface that is homeomorphic to the closed disk and consists mostly of quadrilaterals. (For the following construction we really only need a boundary vertex that is incident with quadrilateral faces.) To map it to a polygonal region inscribed in a circle, proceed as follows (see Fig. 7):	(1)Choose a vertex k on the boundary of [image: $$\Sigma $$] such that all incident faces are quadrilaterals.


 

	(2)Apply a discrete conformal change of metric (3) such that all edges incident with k have the same length. One may choose [image: $$u=0$$] for all vertices except the neighbors of k. It does not matter if polygon inequalities are violated after this step.


 

	(3)Let [image: $$(\Sigma ',\ell ')_{ euc }$$] be the cyclic polyhedral complex obtained by removing vertex k and all incident quadrilaterals.


 

	(4)Solve Problem 3.2 for [image: $$(\Sigma ',\ell ')_{ euc }$$] with prescribed total angles [image: $$\varTheta _i=2\pi $$] for interior vertices of [image: $$\Sigma '$$], [image: $$\varTheta _i=\pi $$] for boundary vertices of [image: $$\Sigma '$$] that were not neighbors of k in [image: $$\Sigma $$], and fixed logarithmic scale factors [image: $$u_i=0$$] for those that were neighbors of k. The result is a planar polyhedral surface as shown in Fig. 7, bottom. The boundary consists of one straight line segment containing all boundary edges of [image: $$\Sigma '$$] that were also boundary edges of [image: $$\Sigma $$], and two or more straight line segments, each consisting of two edges that were incident with a removed quadrilateral.


 

	(5)Apply a Möbius transformation (e.g., [image: $$z\mapsto 1/z$$]) to the vertices that maps the boundary vertices of [image: $$\Sigma $$] to a circle and the other vertices to the inside of this circle. Reinsert k at the image point of [image: $$\infty $$] under this Möbius transformation. Each face [image: $${ ijmk} \in \Sigma $$] incident with k is cyclic because the three vertices i, j, and m are contained in a line before transformation.


 

	(6)Optionally apply a 2-dimensional version of the Möbius normalization described in Sect. 6.3.


 




[image: A371662_1_En_1_Fig8_HTML.gif]
Fig. 8Here we show the face circumcircles of the solution to the Riemann mapping problem of Fig. 7. It looks conspicuously like an orthogonal circle pattern. But the face circumcircles intersect only approximately but not exactly at right angles





Proposition 4.2
The result of this procedure is a planar cyclic polyhedral surface that is discretely conformally equivalent to [image: $$(\Sigma , \ell )_{ euc }$$] and has its boundary polygon inscribed in a circle.

Proof
That the boundary polygon is inscribed in a circle is obvious from the construction. Using the Möbius invariance of discrete conformal equivalence (Proposition 2.5), it is not difficult to see that the surfaces without quadrilaterals incident with k are discretely conformally equivalent. To show that the whole surfaces are equivalent, it suffices to show that corresponding quadrilaterals incident with k have the same complex cross-ratio.
After step (2), the length cross-ratio of a quadrilateral incident with k is equal to the simple length ratio of the two edges that are not incident with k.
After step (4), the length cross-ratio of these edges is unchanged due to the fixed logarithmic scale factors [image: $$u=0$$] on the neighbors of k. Also, these edges are now collinear because of the prescribed angle [image: $$\varTheta =\pi $$] between them.
After applying the Möbius transformation in step (5), the image of the point at infinity and the other three vertices of our quadrilateral incident with k form again a cyclic quadrilateral with the same complex cross-ratio as in the beginning. [image: $$\square $$]
          



5 Multiply Connected Domains
5.1 Circle Domains
Koebe’s generalization of the Riemann mapping theorem says that multiply connected domains are conformally equivalent to domains bounded by circles, and the uniformizing map to such a circle domain is unique up to Möbius transformations. A method to construct discrete Riemann maps is described in [5] (Sect. 3.​3) for triangulations and for mostly quadrilateral meshes in the previous Sect. 4.2. Having generalized the notion of discrete conformal equivalence from triangulations to cyclic polyhedral surfaces, it is straightforward to adapt this method to construct discrete maps to circle domains:	(1)Fill holes by gluing faces to all but one boundary component, so that the resulting surface is homeomorphic to a disk.


 

	(2)Construct the discrete Riemann map.


 

	(3)Remove the faces that were added in step (1).


 





Figure 9 shows an example.[image: A371662_1_En_1_Fig9_HTML.gif]
Fig. 9Discrete conformal map of a multiply-connected domain (left) to a circle domain (middle). The images of vertical and horizontal “parameter lines” are shown on the right
                






5.2 Special Slit Domains
Any multiply connected domain can be mapped to the complex plain with parallel slits [32]. In principle, it is possible to construct discrete conformal maps that map holes to slits by solving Problem 3.1. On each boundary component that should be mapped to a slit, set the desired total angle [image: $$\varTheta =2\pi $$] for the two vertices that should be mapped to the endpoints of the slit, and set [image: $$\varTheta =\pi $$] for all other vertices on that boundary component. However, this will not work in general. While the resulting surface will be flat, the developing map to the plane will in general have translational monodromy for a cycle around the hole. The surface will only close up in the plane if the vertices that should be mapped to the endpoints of the slit are chosen exactly right. (This will in general require modifying the original mesh.)[image: A371662_1_En_1_Fig10_HTML.gif]
Fig. 10Mapping surfaces with holes to slit surfaces. In all images, the left and right parts of the boundary are identified by a horizontal translation. Preimages of horizontal lines visualize the flow of an incompressible inviscid fluid around the hole in a channel with periodic boundary conditions. Top row A cylinder with a triangular hole is mapped to a cylinder with a slit. One vertex of the triangle and the midpoint of the opposite side are mapped to the endpoints of the slit. Middle row An arrow shaped slit is mapped to a straight slit. The two vertices at the arrow’s tip, on either side of the slit, are mapped to the endpoints of the straight slit. Bottom row Three circular boundary components are mapped to horizontal slits (The slit surface is not shown.)





Sometimes, the symmetry of the problem determines the right positions of the end-vertices, so that discrete conformal maps to slit surfaces can be computed. The first two rows of Fig. 10 show examples. The bottom row visualizes a discrete conformal map where circular holes are mapped to slits. Here, we use the following trick: We start with the slit surface and map it to a surface with circular holes as described in Sect. 5.1.


6 Uniformization of Spheres
This section is concerned with discrete conformal maps of polyhedral surfaces of genus 0 onto the round sphere. For triangulations, this is described in [5] (Sect. 3.​2). In Sect. 6.1, we adapt this method to quadrangulations. This is similar to the discrete Riemann mapping with quadrilaterals described in Sect. 4.2. Effectively, this method reduces the problem to minimizing the convex euclidean functional [image: $$E^{ euc }$$]. The spherical version of the variational principle (Theorem 3.7) involves the non-convex function [image: $$E^{ sph }$$]. It is not as practical for calculations, because one has to find a saddle point instead of a minimum. Nevertheless, the spherical functional can often be used to calculate maps to the sphere. This is explained in Sect. 6.2.
6.1 Uniformizing Quadrangulations of the Sphere
Suppose [image: $$(\Sigma ,\ell )_{ euc }$$] is a cyclic polyhedral surface with quadrilateral faces that is homeomorphic to the sphere.

              	(1)Choose a vertex [image: $$k\in V_{\Sigma }$$].


 

	(2)Apply a discrete conformal change of metric (3) such that all edges incident with k have the same length. One may choose [image: $$u=0$$] for all vertices except the neighbors of k. It does not matter if polygon inequalities are violated after this step.


 

	(3)Let [image: $$(\Sigma ',\ell ')_{ euc }$$] be the complex obtained by removing vertex k and all incident quadrilaterals.


 

	(4)Solve Problem 3.2 for [image: $$(\Sigma ',\ell ')_{ euc }$$] with prescribed total angles [image: $$\varTheta _i=2\pi $$] for interior vertices of [image: $$\Sigma '$$], [image: $$\varTheta _i=\pi $$] for boundary vertices of [image: $$\Sigma '$$] that were not neighbors of k in [image: $$\Sigma $$], and fixed scale factors [image: $$u_i=0$$] for vertices that were neighbors of k in [image: $$\Sigma $$]. The result is a planar polyhedral surface with cyclic quadrilaterals. Consecutive boundary edges that belonged to a face incident with vertex k in [image: $$\Sigma $$] are contained in a straight line.


 

	(5)Map the vertices to the unit sphere by stereographic projection and reinsert the vertex k at the image point of [image: $$\infty $$].


 

	(6)Optionally apply Möbius normalization, see Sect. 6.3.


 




            
Proposition 6.1
The result is a cyclic polyhedral surface with vertices on the unit sphere that is discretely conformally equivalent to [image: $$(\Sigma , \ell )_{ euc }$$].

This can be seen in the same way as the corresponding statement about discrete Riemann maps with quadrilaterals (Proposition 4.2). Figure 11 shows a discrete conformal map calculated by this method.[image: A371662_1_En_1_Fig11_HTML.gif]
Fig. 11Discrete conformal map from the cube to the sphere, calculated with the method described in Sect. 6.1. We apply Möbius normalization (Sect. 6.3) to the polyhedral surface with vertices on the sphere to achieve rotational symmetry






6.2 Using the Spherical Functional
It is possible to use the spherical functional [image: $$E^{ sph }$$] to calculate maps to the sphere even though it is not convex. For simplicity, we consider only triangulations, so all [image: $$\lambda $$] variables are fixed and we may consider [image: $$E^{ sph }$$] as function of the logarithmic scale factors u only (see Sect. 3.3). A numerical method has to find a saddle point of [image: $$E^{ sph }(u)$$].
Note that the scaling direction [image: $$1_{V_{\varDelta }}\in \mathbb R^{V_{\varDelta }}$$] is a negative direction of the Hessian at a critical point: Suppose [image: $$(\varDelta ,\ell )_{ sph }$$] is a spherical triangulation with the desired angle sum [image: $$\varTheta _{i}$$] at each vertex i. Then [image: $$0\in \mathbb R^{V_{\varDelta }}$$] is a critical point of [image: $$E^{ sph }_{\varDelta ,\varTheta }(u)$$]. If we enlarge all edge lengths by a common factor [image: $$e^{h}>1$$], then all angles become larger, so every component (30) of the gradient of [image: $$E^{ sph }$$] becomes negative. Following the negative gradient would result in even larger lengths.
The following minimax method works in many cases. Define the function [image: $$\tilde{E}$$] by maximizing the functional [image: $$E^{ sph }$$] in the scaling direction,[image: $$\begin{aligned} \tilde{E}(u)=\max _{h\in \mathbb R} \left\{ E^{ sph }(u + h1_{V_{\varDelta }})\right\} . \end{aligned}$$]

 (46)

Minimize functional [image: $$\tilde{E}$$] in a hyperplane of [image: $$\mathbb R^{V_{\varDelta }}$$] transverse to the direction [image: $$1_{V_{\varDelta }}$$].
Figure 1 (top) and Fig. 12 show examples of discrete conformal maps to polyhedral surfaces inscribed in a sphere that were calculated using this method.[image: A371662_1_En_1_Fig12_HTML.gif]
Fig. 12Mapping conformally to the sphere using the spherical functional. The spherical surfaces are Möbius-normalized to achieve rotational symmetry






6.3 Möbius Normalization
The notion of discrete conformal equivalence of euclidean polyhedral surfaces [image: $$(\Sigma ,\ell )_{ euc }$$] in [image: $$\mathbb R^{3}$$] is Möbius invariant (Proposition 2.5). If all vertices [image: $$v\in V_{\Sigma }$$] are contained in the unit sphere [image: $$S^{2}\subset \mathbb R^{3}$$], then there is a Möbius transformation T of [image: $$S^{2}$$] such that the center of mass of the transformed vertices is the origin [43],[image: $$\begin{aligned} \sum _{v\in V_{\Sigma }}T(v) = 0. \end{aligned}$$]


The Möbius transformation T is uniquely determined up to post-composition with a rotation around the origin.
The following method can be used to calculate such a Möbius transformation: Find the unique minimizer of the function [image: $$\delta $$] defined below. Then choose for T a Möbius transformation that maps [image: $$S^{2}$$] to itself and the minimizer to the origin. Here, we only provide explicit formulas for the function [image: $$\delta $$] and its first two derivatives. For a more detailed account, we refer the reader to [43]. The function [image: $$\delta $$] is defined on the open unit ball in [image: $$\mathbb R^{3}$$] by[image: $$\begin{aligned} \delta (x) = \sum _{v\in V} \log \left( \frac{-\langle x,v\rangle }{\sqrt{-\langle x,x\rangle }}\right) , \end{aligned}$$]

 (47)

where[image: $$\begin{aligned} \langle x,y\rangle =x_1y_1+x_2y_2+x_3y_3-1. \end{aligned}$$]

 (48)

The gradient and Hessian matrix of [image: $$\delta $$] are[image: $$\begin{aligned} {\text {grad}}\delta (x)&= \sum _{v\in V}\left( \frac{v}{\langle x,v\rangle } - \frac{x}{\langle x,x\rangle }\right) ,\end{aligned}$$]

 (49)


[image: $$\begin{aligned} {\text {Hess}}\delta (x)&= \sum _{v\in V}\left( 2\frac{x^Tx}{\langle x,x\rangle ^2}-\frac{v^Tv}{\langle x,v\rangle ^2} - \mathrm {diag}\left( \frac{1}{\langle x,x\rangle }\right) \right) . \end{aligned}$$]

 (50)





7 Uniformization of Tori
Every Riemann surface R of genus one is conformally equivalent to a flat torus, i.e., to a quotient space [image: $$\mathbb C/\Gamma $$], where [image: $$\Gamma =\mathbb Z\omega _{1}+\mathbb Z\omega _{2}$$] is some two-dimensional lattice in [image: $$\mathbb C$$]. The biholomorphic map from R to [image: $$\mathbb C/\Gamma $$], or from the universal cover of R to [image: $$\mathbb C$$], is called a uniformizing map. For a polyhedral surface of genus one, constructing a discrete uniformizing map amounts to solving Problem 3.1 with prescribed total angle [image: $$\varTheta =2\pi $$] at all vertices. This provides us with a method to calculate approximate uniformizing maps for Riemann surfaces of genus one given in various forms. We consider examples of tori immersed in [image: $$\mathbb R^{3}$$] in Sect. 7.1 and elliptic curves in Sect. 7.2. (We will also consider tori in the form of Schottky uniformization in Sect. 8.2, as a toy example after treating the higher genus case.)
The belief that discrete conformal maps approximate conformal maps is not based on a proven theorem but on experimental evidence like the Wente torus example of Sect. 7.1 and the numerical experiments of Sect. 7.4.
7.1 Immersed Tori
First we consider a simple example with quadrilateral faces. Figure 13 (left) shows a coarse discretization of a torus. The faces are isosceles trapezoids, so they are inscribed in circles. On the right, the figure shows the uniformization obtained by solving Problem 3.1 with prescribed total angle [image: $$\varTheta =2\pi $$] at all vertices.[image: A371662_1_En_1_Fig13_HTML.gif]
Fig. 13Uniformization of an immersed torus with cyclic quadrilateral faces





To test the numerical accuracy of our discrete uniformizing maps, we consider the famous torus of constant mean curvature discovered by Wente [47]. Explicit doubly periodic conformal immersion formulas (i.e., formulas for the inverse of a uniformizing map) are known in terms of elliptic functions [1, 3, 46].
Figure 14 (left) shows a triangulated model of the Wente torus constructed by sampling an explicit immersion formula [3] on a nearly square lattice containing the period lattice [image: $$\Gamma $$]. On the right, the figure shows the discrete uniformization, which reproduces the regular lattice [image: $$\Gamma $$] to high accuracy. The modulus [image: $$\tau =\omega _{2}/\omega _{1}$$] of the Wente torus has been determined numerically [19] as [image: $$\tau = 0.41300\ldots +i\;0.91073\ldots $$] . The modulus of the discrete uniformization of the discretized surface shown in the figure is [image: $$\tilde{\tau }= 0.41341\ldots + i\;0.91061\ldots $$] .[image: A371662_1_En_1_Fig14_HTML.gif]
Fig. 14Uniformization of the Wente torus






7.2 Elliptic Curves
An algebraic curve of the form[image: $$\begin{aligned} \mu ^{2}=a\prod _{j=1}^{k}(\lambda -\lambda _{j}), \end{aligned}$$]

 (51)

where the [image: $$\lambda _{j}\in \mathbb C$$] are distinct and [image: $$k=3$$] (an elliptic curve) or [image: $$k=4$$] (with the singularity at infinity resolved), represents a Riemann surface of genus one as branched double cover of the [image: $$\lambda $$]-sphere [image: $$\mathbb C\mathrm {P}^{1}$$], which we identify conformally with the unit sphere [image: $$S^{2}\subset \mathbb R^{3}$$]. The branch points are [image: $$\lambda _{1},\lambda _{2},\lambda _{3},\infty $$] if [image: $$k=3$$] and [image: $$\lambda _{1},\lambda _{2},\lambda _{3},\lambda _{4}$$] if [image: $$k=4$$]. Every Riemann surface of genus one can be represented in this way.
We construct a discrete model for a double cover of [image: $$S^{2}$$] branched at four points [image: $$\lambda _1,\ldots ,\lambda _{4}$$] in the following way. Choose n other points [image: $$p_1,\ldots ,p_n\in S^2$$] and let P be the boundary of the convex hull of the points [image: $$\{\lambda _1,\ldots ,\lambda _{4},p_1,\ldots ,p_n\}$$]. Then P is a convex polyhedron with [image: $$n+4$$] vertices and with faces inscribed in circles. (Generically, the faces will be triangles. In Sect. 7.3 we explain the method we used to obtain “good” triangles.) Find two disjoint simple edge paths [image: $$\gamma _1,\gamma _{2}$$] joining the branch points [image: $$\lambda _{j}$$] in pairs. Take a second copy [image: $$\hat{P}$$] of the polyhedron P. Cut and glue P and [image: $$\hat{P}$$] along the paths [image: $$\gamma _1,\gamma _{2}$$] to obtain a polyhedral surface of genus 1. Uniformize it by solving Problem 3.1. One obtains a discrete conformal map to a flat torus, whose inverse can be seen as a discrete elliptic function. Figure 15 shows examples. We will treat hyperelliptic curves in a similar fashion in Sect. 8.3.[image: A371662_1_En_1_Fig15_HTML.gif]
Fig. 15Discrete uniformization of elliptic curves. Left If the branch points in [image: $$S^{2}$$] are the vertices of a regular tetrahedron, period lattice is very close to a hexagonal lattice. Middle If the branch points form a square on the equator, the period lattice is very close to a square lattice. Right an example with branch points in unsymmetric position




[image: A371662_1_En_1_Fig16_HTML.gif]
Fig. 16Mapping the hexagonal torus [image: $$\mathbb C/(\mathbb Z+\tau \mathbb Z)$$], [image: $$\tau =\tfrac{1}{2}+i\tfrac{\sqrt{3}}{2}$$] (left) to a double cover of the sphere (right). Because the regular triangulation of the torus on the left is symmetric with respect to the elliptic involution, its image projects to a triangulation of the sphere seen on the right
                





Remark 7.1
Instead of constructing a doubly covered convex euclidean polyhedron with vertices on the unit sphere as described above, one could also construct a spherical triangulation of the doubly covered sphere that is invariant under the elliptic involution (exchanging sheets). These two approaches are in fact equivalent due to Remark 2.3.


          Mapping a flat torus to an elliptic curve. We can also go the opposite way, mapping a flat torus to a double cover of [image: $$S^{2}$$]. Start with a triangulated flat torus. The triangulation should be symmetric with respect to the elliptic involution, i.e., symmetric with respect to a half turn around one vertex (which is then also a half turn around three other vertices). The quotient space of the triangulated torus modulo the elliptic involution is then a triangulated sphere. Map it to the sphere by the procedure explained in [5] (Sect. 3.​2), see also Sect. 6.1 of the present article.
Figures 16 and 17 show examples where we started with a hexagonal and a square torus respectively.[image: A371662_1_En_1_Fig17_HTML.gif]
Fig. 17Mapping the square torus [image: $$\mathbb C/(\mathbb Z+i\mathbb Z)$$] (left) to a double cover of the sphere (right). Again, the triangulation on the left is symmetric with respect to the elliptic involution, so the image on the right projects to a triangulation of the sphere






7.3 Choosing Points on the Sphere
The uniformization procedure for elliptic curves described in Sect. 7.2 requires choosing points on the sphere in addition to the four given branch points. For numerical reasons, these points should be chosen so that taking the convex hull leads to triangles that are close to equilateral. We obtained good triangulations by minimizing the following energy for n points in [image: $$\mathbb R^{3}$$] while fixing the subset of branch points:[image: $$\begin{aligned} \mathcal E = n^2\sum _{v\in V}\left( \langle v,v \rangle - 1\right) ^2 + \sum _{\begin{array}{c} v,w\in V\\ w\ne v \end{array}} \frac{1}{\langle w-v, w-v \rangle }, \end{aligned}$$]

 (52)

where [image: $$\langle .,. \rangle $$] denotes the standard euclidean scalar product of [image: $$\mathbb R^{3}$$]. We do not enforce the constraint that the points should lie in the unit sphere [image: $$S^{2}$$]. Instead, we simply project back to [image: $$S^{2}$$] after the optimization.
As initial guess we choose points uniformly distributed in [image: $$S^{2}$$]. To achieve this we choose points with normally distributed coordinates and project them to [image: $$S^2$$] [31].

7.4 Numerical Experiments
Given the branch points of an elliptic curve, the modulus [image: $$\tau $$] can be calculated in terms of hypergeometric functions. In this section, we compare the theoretical value of [image: $$\tau $$] with the value [image: $$\hat{\tau }$$] that we obtain by the discrete uniformization method explained in Sect. 7.2.
We consider elliptic curves in Weierstrass normal form[image: $$\begin{aligned} {\begin{matrix} \mu ^2 &{}=4(z-\lambda _1)(z-\lambda _2)(z-\lambda _3)\\ &{}=4z^3-g_2z-g_3, \end{matrix}} \end{aligned}$$]

 (53)

so the branch points [image: $$\lambda _{1},\lambda _{2},\lambda _{3},\infty $$] satisfy [image: $$\lambda _1+\lambda _2+\lambda _3=0$$], and[image: $$\begin{aligned} g_{2}=-4(\lambda _1\lambda _2+\lambda _2\lambda _3+\lambda _3\lambda _1), \qquad g_{3}=4\lambda _1\lambda _2\lambda _3. \end{aligned}$$]

 (54)

We calculate the modulus [image: $$\tau $$] with Mathematica using the built-in function WeierstrassHalfPeriods
          [
          [image: $$\{g_2,g_3\}$$]
          ]. We normalize [image: $$\tau $$] and the value [image: $$\hat{\tau }$$] obtained by discrete uniformization so that they lie in the standard fundamental domain of the modular group, [image: $$|\tau |>1$$] and [image: $$|{\text {Re}}(\tau )| < \frac{1}{2}$$], and we consider the error [image: $$|\tau -\hat{\tau }|$$]. (We stay away from the boundary of the fundamental domain.)

          Subdivided icosahedron. In this experiment we start with the twelve vertices of a regular icosahedron and choose the branch points [image: $$\lambda _1,\ldots ,\lambda _4$$] among them. The remaining points act the role of [image: $$p_1,\ldots ,p_n$$]. To study the dependence of [image: $$|\tau -\hat{\tau }|$$] on the number of points we repeatedly subdivide all triangles into four similar triangles and project the new vertices to [image: $$S^2$$]. The number of vertices grows exponentially while the triangles remain close to equilateral. Figure 18 shows the result of this experiment. It suggests the error behaves like[image: $$\begin{aligned} |\tau -\hat{\tau }|=\mathcal O (n^\alpha ),\quad \alpha \approx -0.88. \end{aligned}$$]

 (55)


[image: A371662_1_En_1_Fig18_HTML.gif]
Fig. 18
                  Left Error for zero to six subdivision steps. The [image: $$\log $$]-[image: $$\log $$] plot shows the error [image: $$|\tau - \hat{\tau }|$$] against the number of vertices of the subdivided icosahedron (i.e., in one sheet of the doubly covered sphere). To estimate the asymptotic behavior of the error, we determine the slope [image: $$\alpha \approx -0.88$$] of a line through the last four points by linear regression. Right Result of the discrete uniformization after two subdivision steps






          Dependence on mesh quality. In the second experiment we choose the additional points randomly to analyze how the quality of the triangulation affects the approximation error. We use the following quantities to measure the quality of the triangulation based on length cross-ratios for edges:[image: $$\begin{aligned} Q_{{\text {lcr}}}(e):= & {} \frac{1}{2}\left( {\text {lcr}}(e) + \frac{1}{{\text {lcr}}(e)}\right) - 1,\\ Q_{{\text {lmr}}}(f):= & {} \frac{1}{2}\left( {\text {lmr}}(f) + \frac{1}{{\text {lmr}}(f)}\right) - 1, \end{aligned}$$]


where [image: $${\text {lcr}}$$] denotes the length cross-ratio (9) of an edge, and [image: $${\text {lmr}}$$] denotes the length multi-ratio defined for faces by [image: $${\text {lmr}}(f)=\prod _{e \in f}{\text {lcr}}(e)$$]. If [image: $$Q_{{\text {lcr}}}=0$$] for all edges, then the mesh is discretely conformally equivalent to a mesh consisting of equilateral triangles. So less is better for these quality measures. To get enough “good” triangulations in our samples, we improve random meshes with the procedure described in Sect. 7.3.
Figure 19 (left) shows a plot of 2600 triangulations ranging from [image: $$n=20$$] to [image: $$n=1500$$] vertices. No clear convergence rate is discernible. The situation improves when only samples with a certain minimal mesh quality are considered. For the plot in Fig. 19 (right) we selected only triangulations with [image: $$\max _e \{Q_{{\text {lmr}}}(e)\} < 0.3$$]. (The results are similar when using the quality measures [image: $$\max _e \{Q_{{\text {lcr}}}(e)\} < x$$] or [image: $${\text {mean}}_e \{Q_{{\text {lcr}}}(e)\} < x$$].)[image: A371662_1_En_1_Fig19_HTML.gif]
Fig. 19
                  Left [image: $$\log $$]-[image: $$\log $$] plot of the error [image: $$|\tau - \hat{\tau }|$$] against the number of vertices for a sample of optimized random triangulations with no quality constraint. Right Only triangulations with [image: $$\max _e \{Q_{{\text {lmr}}}(e)\} < 0.3$$] are considered. The regression line with slope [image: $$\alpha \approx -0.63$$] is shown in red
                





The results from these two experiments suggest that the error depends on the number n of vertices asymptotically like [image: $$n^{\alpha }$$], where the exponent [image: $$\alpha <0$$] depends on the mesh.

7.5 Putting a Square Pattern on a Spherical Mesh
We can use a variant of the discrete uniformization of elliptic curves (Sect. 7.2) to put a square pattern on a surface that is homeomorphic to a sphere. Figure 20 shows an example.[image: A371662_1_En_1_Fig20_HTML.gif]
Fig. 20The discrete “Berlin Buddy Bear”, a mascot of the SFB/Transregio 109 “Discretization in Geometry and Dynamics”. The square pattern is put on a bear model as described in Sect. 7.5. Four ramification vertices (marked in red) are chosen at the paws. The uniformization of the branched double cover is shown in the middle. Each fundamental domain covers the bear twice. Fundamental domains of the group generated by rotations around the branch points are shown on the right. Each covers the bear once





Pick four vertices of the mesh as ramification points and create a two-sheeted branched cover of the mesh by gluing two copies along paths connecting the selected vertices. The resulting surface is a torus. It can be uniformized using the euclidean functional. The uniformizing group is generated by two translations. This group is a subgroup of the group generated by rotations around the branch vertices. Hence we can achieve the same result as follows. Instead of doubling the surface, prescribe total angles [image: $$\varTheta =\pi $$] at the ramification vertices and [image: $$\varTheta =2\pi $$] at all other vertices. The result is a flat surface with four cone-like singularities of cone-angle [image: $$\pi $$]. The monodromy of the developing map is generated by half-turns. Avoiding the double cover is more efficient because one only has to minimize a function of (approximately) half the number of variables.[image: A371662_1_En_1_Fig21_HTML.gif]
Fig. 21Discrete uniformization of an embedded triangulated surface of genus 3. A fundamental polygon with “canonical” edge pairing is shown on the right together with the image mesh. The edges of the polygon (brown) and the axes of the edge-pairing translations (blue) are pulled back to the embedded surface shown on the left
                







8 Uniformization of Surfaces of Higher Genus
As in the case of tori (Sect. 7), we can find uniformizing maps for cyclic polyhedral surfaces of genus [image: $$g\ge 2$$] by solving the hyperbolic version ([image: $$\tilde{g}= hyp $$]) of Problem 3.1 with prescribed total angle [image: $$\varTheta =2\pi $$] at all vertices. (We will only consider triangulations in the following.) This allows us to calculate approximate uniformizations for Riemann surfaces of genus [image: $$g\ge 2$$] given in various forms, by approximating them with polyhedral surfaces.
In Sect. 8.1, we briefly discuss how to construct fundamental polygons and group generators.
Not much needs to be said about the uniformization of immersed surfaces. Examples are shown in Figs. 1 (bottom), 21, and 22. In Sect. 5.1 we discussed mappings from multiply connected domains to circle domains. Analogously, one can construct uniformizations of polyhedral surfaces of genus [image: $$g\ge 2$$] with holes over the hyperbolic plane with circular holes. An example is shown in Fig. 23. More precisely, the holes are bounded by hyperbolic polygons with vertices on a circle.[image: A371662_1_En_1_Fig22_HTML.gif]
Fig. 22
                Left An embedded triangulated surface of genus 5. Right Fundamental polygon with non-canonical edge-pairing. The axes of the edge pairing translations are shown in blue
              




[image: A371662_1_En_1_Fig23_HTML.gif]
Fig. 23Uniformization of a genus 2 surface with three boundary components over the hyperbolic plane with three circular holes. The three holes are filled with polygons, which are then triangulated during the calculation, see Sects. 5.1 and 3
              





We explain how to calculate the Fuchsian uniformization for Riemann surfaces given in the form of a Schottky uniformization in Sect. 8.2. We discuss the uniformization of hyperelliptic curves in Sect. 8.3 and a geometric characterization of hyperelliptic Riemann surfaces in Sect. 8.4.
8.1 Fundamental Polygons and Group Generators

          Basic facts and notation. Every compact Riemann R of genus [image: $$g\ge 2$$] can be represented as the quotient of the hyperbolic plane [image: $$H^{2}$$] modulo the action of a discrete group G of hyperbolic translations,[image: $$\begin{aligned} R=H^{2} / G. \end{aligned}$$]

 (56)

Presentations of the group G play an important role. We will denote generators by capital letters and their inverses by primes,[image: $$\begin{aligned} A':=A^{-1}\in G. \end{aligned}$$]

 (57)

The uniformization group G can be presented with a finite set of generators[image: $$\begin{aligned} A,B,C,D,\ldots \in {\text {Isom}}(H^{2}) \end{aligned}$$]


subject to a single relation [image: $$r=1$$],[image: $$\begin{aligned} G= \langle A,B,C,D,\ldots \mid r=1 \rangle , \end{aligned}$$]

 (58)

where r is a product in which all generators and their inverses appear exactly once. Such presentations are closely related with fundamental polygons: Every fundamental polygon in which all vertices are identified leads to such a presentation.
A fundamental domain of G is an open connected subset D of the hyperbolic plane such that the G-orbit of the closure [image: $$\bar{D}$$] covers [image: $$H^{2}$$], and [image: $$gD\cap D=\emptyset $$] for all [image: $$g\in G\setminus \{1\}$$]. A fundamental polygon of G is a fundamental domain with polygonal boundary, i.e., the boundary consists of geodesic segments, the edges of the fundamental polygon, which are identified in pairs by the action of the group G. For each edge a, there is exactly one partner edge [image: $$a'$$] such that there exists a translation [image: $$A\in G$$] mapping a to [image: $$a'$$]. These edge-gluing translations form a generating set of G. If all vertices of the fundamental polygon are identified (i.e., they belong to the same G-orbit), then the fundamental polygon has 4g edges. In this case there is only one relation for these generators. The relation can be determined from the edge labels, which we always list in counterclockwise order. For example, if the edges of an octagon are labeled “canonically”,[image: $$\begin{aligned} aba'b'cdc'd', \end{aligned}$$]

 (59)

then the relation for the corresponding edge pairing translations is[image: $$\begin{aligned} DC'D'CBA'B'A, \end{aligned}$$]

 (60)

and if opposite edges are identified,[image: $$\begin{aligned} abcda'b'c'd', \end{aligned}$$]

 (61)

then the relation is[image: $$\begin{aligned} DC'BA'D'CB'A=1. \end{aligned}$$]

 (62)


          Computational aspects. Let [image: $$(\Sigma ,\ell )$$] be a closed (euclidean, spherical, or hyperbolic) triangulated surface of genus [image: $$g\ge 2$$]. We solve Problem 3.1 to obtain a combinatorially equivalent hyperbolic triangulated surface [image: $$(\Sigma ,\tilde{\ell })_{ hyp }$$] with angle sum [image: $$\varTheta =2\pi $$] at every vertex. We lay out the triangles in the hyperbolic plane one-by-one, following a breadth-first search of the the 1-skeleton of the dual cell complex of [image: $$\Sigma $$]. (Alternatively, one could use a shortest spanning tree of the 1-skeleton of the dual complex [15].) The result is a fundamental polygon with many vertices. An example is shown in Fig. 24a.[image: A371662_1_En_1_Fig24_HTML.gif]
Fig. 24Constructing a fundamental polygon with opposite edges identified. a Laying out hyperbolic triangles creates a fundamental polygon with many vertices. b Straighten the edges between vertices that are identified with more than one partner (shown in red). c Axes of the edge-pairing translations are shown in blue. d, e Two cut-and-paste operations lead to a fundamental polygon with one vertex class and opposite edges identified. The axes intersect in one point (see Sect. 8.4). We move this point to the origin. f Tiling the hyperbolic plane with fundamental polygons





We simplify this fundamental polygon by connecting vertices that are identified with more than one partner by geodesic arcs, as shown in Fig. 24b. The resulting polygon has in general more than one vertex class.
Now we perform the standard algorithm involving cut-and-glue operations (see, e.g., [20]) to obtain a fundamental polygon with one vertex class and so-called canonical edge identification[image: $$\begin{aligned} aba'b'cdc'd'\ldots \;. \end{aligned}$$]

 (63)

During this process we maintain edge-identification transformations, which we represent as [image: $$SO^{+}(2,1)$$] matrices.
Hyperbolic translations tend to accumulate numerical errors quite fast when building products. The situation could be ameliorated somewhat by using the [image: $$PSL(2,\mathbb R)$$]-representation of hyperbolic isometries [16], but the fundamental problem remains. For this reason, it is desirable to perform the cut-and-glue algorithm in such a way that the number of matrix products required to maintain the gluing translations is small. We follow the following greedy approach. Repeatedly we have to choose labels x, y such that the order in the polygon is [image: $$x\cdots y\cdots x'\cdots y'$$], and then perform a cut-and-glue sequence to bring the labels next to each other, [image: $$xyx'y'$$]. We always choose a pair x, y, for which this requires the minimal number of matrix multiplications.
The polygon with canonical edge identifications may not be convex. Following Keen [21], we can transform this domain into a strictly convex fundamental polygon by choosing a different base vertex for the same group of transformations. Let [image: $$aba'b'cdc'd'\ldots $$] be a fundamental polygon and let[image: $$\begin{aligned} G= \langle A,B,C,D,\ldots \in PSL (2,\mathbb R)\mid \ldots DC'D'CBA'B'A =1 \rangle \end{aligned}$$]

 (64)

be the corresponding presentation of the uniformization group, see Fig. 25 (left). Then the axes of the generators A and B intersect in a point [image: $$p_0$$]. Choosing [image: $$p_0$$] as the base point of a new fundamental polygon as shown in Fig. 25 (right) renders it convex and uniquely determined for the given group and presentation.[image: A371662_1_En_1_Fig25_HTML.gif]
Fig. 25The algorithm of Linda Keen to construct strictly convex fundamental polygons. Start with any canonical fundamental polygon [image: $$aba'b'cdc'd'$$] with a corresponding relation [image: $$DC'D'CBA'B'A=1$$] (left). We choose the intersection [image: $$p_0$$] of the axes of transformations A and B as base point for the new domain. The new vertices of the fundamental domain are calculated as [image: $$p_1=A'Bp_0$$], [image: $$p_2=A'p_0$$], [image: $$p_3=Bp_0$$], and [image: $$p_4=BA'p_0$$]. The other vertices are obtained similarly from [image: $$p_4$$] by applying C and D
                






          Fundamental polygons with opposite sides identified. When we consider the geometric characterization of hyperelliptic surfaces in Sect. 8.4, we want to transform fundamental polygons into fundamental polygons with opposite sides identified, i.e., polygons with edge labeling[image: $$\begin{aligned} abcd\cdots a'b'c'd'\cdots . \end{aligned}$$]


Any fundamental polygon can be transformed into a fundamental polygon with opposite edges identified by cut-and-glue operations: First transform the polygon to canonical form [image: $$aba'b'cdc'd'\ldots $$] by the standard algorithm. Playing a sequence of steps that transforms a polygon with opposite edges identified to canonical form backwards, transforms the canonical polygon to a polygon with opposite edges identified.
This algorithm is not optimal with respect to the number of multiplications necessary to maintain the edge-gluing translations. Especially if the original polygon is already “close” to one with opposite sides identified, the detour via a canonical polygon is inefficient.
In all examples, we use a heuristic method based on the following idea: Find a longest sequence of different letters in the edge labeling (ignoring primes), and then try to move a different letter into this sequence by cutting and gluing.

8.2 From Schottky to Fuchsian Uniformization
In this section, we consider Riemann surfaces presented as quotient spaces of classical Schottky groups.
Definition 8.1
Let [image: $$C_1,C'_1\ldots ,C_g,C'_g$$] be circles in [image: $$\hat{\mathbb C}$$] that bound disjoint disks. A classical Schottky group is a Kleinian group generated by Möbius transformations [image: $$\sigma _1,\ldots ,\sigma _g$$], where [image: $$\sigma _j$$] maps the outside of [image: $$C_j$$] onto the inside of [image: $$C'_j$$].

Each generator [image: $$\sigma _{j}$$] has fixed points [image: $$A_{j}$$], [image: $$B_{j}$$] inside [image: $$C_{j}$$] and [image: $$C'_{j}$$], respectively. The limiting set A of G is the union of orbits of the fixed points [image: $$A_{j}$$], [image: $$B_{j}$$]. G acts freely and properly discontinuously on the domain of discontinuity [image: $$\Omega =\hat{\mathbb C}\setminus A$$]. The quotient space [image: $$R=\Omega /G$$] is a Riemann surface of genus g. The domain outside all of the circles is a fundamental domain of G. The identified pairs of circles form handles.
We discretize the Riemann surface [image: $$R=\Omega /G$$] determined by a classical Schottky group G as follows. First, construct a triangulation of [image: $$\Omega $$] whose vertex set and combinatorics are invariant under the action of G. (Ignore the fact that a Möbius transformation maps straight edges to circular arcs as in Proposition 2.5 on the Möbius invariance of conformal classes.) For example, the triangulation may be the Delaunay triangulation of a G-invariant point set. The following construction avoids Delaunay triangulations of infinite (but symmetric) point configurations:
If necessary, choose a Möbius normalization for which the fundamental domain is bounded in [image: $$\mathbb C$$]. For each pair of circles [image: $$C_{j}, C'_{j}$$] we construct polygons [image: $$p_{1j},\ldots ,p_{n_{j}j}$$] inscribed in [image: $$C_{j}$$] and [image: $$p'_{1j},\ldots ,p'_{n_{j}j}$$] inscribed in [image: $$C'$$] such that [image: $$\sigma _{j}(p_{kj})=p'_{kj}$$]. For example, we may choose a regular n-gon inscribed in [image: $$C_{j}$$] and map the vertices by [image: $$\sigma _{j}$$] to [image: $$C'_{j}$$]. Triangulate the compact region bounded by these polygons, adding vertices in the interior as wanted. (For example, use a constrained Delaunay triangulation.) The images of this triangulation under the action of G (again, considering only combinatorics and vertex positions) form a G-invariant triangulation [image: $${\hat{\varDelta }}$$] of the universal cover of R, hence a triangulation [image: $$\varDelta $$] of R. More precisely, the triangulations [image: $${\hat{\varDelta }}$$] and [image: $$\varDelta $$] are only defined up to isotopy fixing the vertices. The edge-lengths [image: $$\hat{\ell }$$] (distances of vertices) do not project from [image: $${\hat{\varDelta }}$$] to [image: $$\varDelta $$], but the length cross-ratios [image: $$\widehat{\text {lcr}}$$] calculated from these edge lengths do, because they are Möbius invariant. The projected length cross-ratios [image: $${\text {lcr}}$$] determine a discrete conformal class for [image: $$\varDelta $$] (see Sect. 2.5).
To obtain a Fuchsian uniformization of R, construct edge lengths [image: $$\ell $$] from the length cross-ratios [image: $${\text {lcr}}$$] as described in Sect. 2.6. Then solve Problem 3.1 (or rather the corresponding analytic version, Problem 3.4) for [image: $$(\varDelta ,\ell )_{ euc }$$] with [image: $$\tilde{g}= hyp $$] and desired angle sums [image: $$\varTheta =2\pi $$] at all vertices.
Note that the lengths [image: $$\ell $$] calculated from length cross-ratios [image: $${\text {lcr}}$$] may not satisfy all triangle inequalities. This does not matter for the corresponding analytic Problem 3.4 (with [image: $$V=V_{1}$$], [image: $$E=E_{1}$$]). If Problem 3.4 has a solution, it is in the discrete conformal class determined by the length cross-ratios [image: $${\text {lcr}}$$]. Also, whether or not Problem 3.4 has a solution does not depend on the choice of edge lengths [image: $$\ell $$] provided they lead to the same length cross-ratios.[image: A371662_1_En_1_Fig26_HTML.gif]
Fig. 26Discrete Riemann surface of genus 3 given by Schottky data (left) and its Fuchsian uniformization (right). Circles with the same color are identified. The extra points of the triangulation are chosen so that the triangles are close to equilateral where possible. The shaded region in the right image corresponds to the fundamental domain of the Schottky group in the left image. Its boundary consists of curves corresponding to the circles and curves corresponding to lines connecting the circles (drawn in gray)




[image: A371662_1_En_1_Fig27_HTML.gif]
Fig. 27
                  Left Fundamental domains of Riemann surfaces of genus 1 given by Schottky data C, [image: $$C'$$], A, B, [image: $$\mu $$] (see (65)). The triangulations use only points on the circles C, [image: $$C'$$]. We deliberately chose non-concentric circles, i.e., with centers [image: $$A\ne B$$]. Right Representation of the same surfaces as [image: $$\mathbb C/\Gamma $$] for a lattice [image: $$\Gamma $$]. Top For real [image: $$\mu =0.3$$] we get a rectangular lattice. Bottom [image: $$\mu =0.08+0.01i$$] yields a parallelogram





Figure 26 shows an example of the Fuchsian uniformization of a genus three surface presented by its Schottky uniformization.

          Tori given by Schottky data. For tori, the Schottky data consist of one generator[image: $$\begin{aligned} \frac{\sigma (z)-A}{\sigma (z)-B}=\mu \,\frac{z-A}{z-B} \end{aligned}$$]

 (65)

and one pair of circles. To find a uniformization [image: $$\mathbb C/\Gamma $$] is elementary. It suffices to consider the case where [image: $$A=B=0$$] (and C, [image: $$C'$$] are concentric circles around 0 with radii i and [image: $$\mu $$]. Figure 27 shows two examples where we apply the discrete method without adding extra points inside the fundamental domain of the Schottky group.

8.3 Hyperelliptic Curves
A hyperelliptic curve is a complex algebraic curve of the form[image: $$\begin{aligned} \mu ^2=p(\lambda ), \end{aligned}$$]

 (66)

where p is a polynomial of degree [image: $$d\ge 5$$] with d distinct roots. For [image: $$d=2g+2$$] or [image: $$d=2g+1$$], the hyperelliptic curve becomes a compact Riemann surface of genus g after singularities at infinity are resolved. For our purposes, a hyperelliptic curve is just a branched double cover of the [image: $$\lambda $$]-sphere with branch points [image: $$\lambda _{1},\ldots ,\lambda _{2g+1},\infty $$] if [image: $$d=2g+1$$] and branch points [image: $$\lambda _{1},\ldots ,\lambda _{2g+2}$$] if [image: $$d=2g+2$$].
We construct a polyhedral approximation of a hyperelliptic curve in the same way as for elliptic curves (Sect. 7.2). We choose points [image: $$p_{1},\ldots ,p_{n}$$] in addition to the [image: $$2g+2$$] branch points and take the convex hull. We cut the resulting polyhedron open along edge paths joining pairs of branch points and glue a second copy along the cuts.
Figure 28 shows uniformizations of the curves[image: $$\begin{aligned} \mu ^2=\lambda \prod _{k=1}^{2g}\left( \lambda -e^{\frac{ik\pi }{g}}\right) \end{aligned}$$]

 (67)

for [image: $$g=2,3,4$$] that were obtained this way. The curves are branched at the 2gth roots of unity and at 0 and [image: $$\infty $$].[image: A371662_1_En_1_Fig28_HTML.gif]
Fig. 28Uniformizations of the hyperelliptic curves (67) with genus 2, 3, and 4. The triangulation of the surfaces is a regular 1-to-4 subdivision of the convex hull of the branch points. Due to the symmetries of these curves, the fundamental domains are regular hyperbolic 4g-gons. Since the triangulation is as symmetric as the curves, and because the solution of the discrete uniformization problem is unique, the fundamental domains of the polyhedral surfaces are also exactly regular hyperbolic 4g-gons. Any error in the domains is therefore due to numerics, and not due to the discretization






          Mapping a polyhedral surface to a hyperelliptic curve. We can also map a triangulated surface of genus g to a branched double cover of the sphere, provided it is symmetric with respect to a discrete conformal involution with [image: $$2g+2$$] fixed points, which are vertices. In the simplest case, the involution is an isometry. (Compare Sect. 7.2, where we map flat tori to elliptic curves.) Taking the quotient of the triangulation with respect to the involution, we get a triangulated sphere with a discrete conformal structure, which we map discretely conformally to the sphere. Figure 29 shows an example.[image: A371662_1_En_1_Fig29_HTML.gif]
Fig. 29A triangulated genus 2 surface is mapped to a branched cover of [image: $$\hat{\mathbb C}$$]. The [image: $$180^{\circ }$$] rotation about the horizontal symmetry axis is a discrete conformal involution with 6 fixed points marked in red, blue, and purple. The texture is a square grid in the plane, pulled back to the doubly covered sphere by Mercator projection, then pulled back to the surface. Bottom Branched cover of [image: $$\hat{\mathbb C}$$], and a closeup of three branch points






8.4 Geometric Characterization of Hyperelliptic Surfaces
A Riemann surface R of genus [image: $$g\ge 2$$] is called hyperelliptic, if one of the following equivalent conditions is true (and hence all are):	1.
                  R is conformally equivalent to some hyperelliptic curve.


 

	2.
                  R is conformally equivalent to a branched cover of the sphere with [image: $$2g+2$$] branch points.


 

	3.There is a conformal involution [image: $$\tau :R\rightarrow R$$] with exactly [image: $$2g+2$$] fixed points.


 





The involution [image: $$\tau $$] is called the hyperelliptic involution of R. By the Riemann-Hurwitz formula, the quotient surface [image: $$R/\tau $$] is a sphere.
All Riemann surfaces of genus two are hyperelliptic, but for every genus greater than two, there are Riemann surfaces that are not hyperelliptic. The following geometric characterization of hyperelliptic Riemann surfaces is due to Schmutz Schaller [36, 37].
Theorem 8.2
Let R be a closed hyperbolic surface of genus g. Then the following statements are equivalent:	(i)
                    R is hyperelliptic.


 

	(ii)
                    R has a set of [image: $$2g-2$$] simple closed geodesics which all intersect in one point and which intersect in no other point.


 

	(iii)
                    R has a set of 2g simple closed geodesics which all intersect in one point and which intersect in no other point.


 

	(iv)
                    R has a fundamental polygon that is a 4g-gon with opposite sides identified and equal opposite angles.


 






The fundamental polygon of condition (iv) is symmetric with respect to a [image: $$180^{\circ }$$] rotation around its center, which corresponds to the hyperelliptic involution on R. The [image: $$2g+2$$] fixed points on R are the vertex of the polygon, its center, and the 2g edge midpoints. The axes of the 2g edge-gluing translations all go through the center. They project to 2g simple closed geodesics on R which all intersect in one point and intersect in no other point.

8.5 Example: Deforming a Hyperelliptic Surface
We uniformize a hyperelliptic surface obtaining a centrally symmetric fundamental polygon with opposite edges identified as predicted by Theorem 8.2. The axes of the generators meet in one point. Then we deform the surface slightly to a non-hyperelliptic surface to see how the fundamental polygon and the axes change. The result is shown in Fig. 30.[image: A371662_1_En_1_Fig30_HTML.gif]
Fig. 30Hyperelliptic versus non-hyperelliptic. Left Uniformization of a hyperelliptic surface with a centrally symmetric fundamental polygon. The axes of the generators meet in a common point. Right Uniformization of the deformed surface, which is not hyperelliptic. The axes do not meet in one point





For this example, we construct an elliptic-hyperelliptic triangulated surface with additional symmetry. A surface is called elliptic-hyperelliptic if it is conformally equivalent to a two-sheeted branched cover of the torus.
Take two regular tetrahedra (the faces of which are subdivided several times to obtain a finer mesh), cut them across pairs of opposite edges and glue them together to obtain a two-sheeted cover of a tetrahedron branched at the four vertices. Now choose two paths in one of the sheets that connect the centers of the tetrahedron’s faces in pairs. Cut the surface along these paths, take another copy of this cut surface and glue corresponding cuts together to form an elliptic-hyperelliptic surface of genus three that is a four-fold cover of a regular tetrahedron. The surface possesses six anti-holomorphic involutions corresponding to the six reflectional symmetries of the tetrahedron, and three holomorphic involutions corresponding to the rotational symmetries of the tetrahedron of order two. Each of the holomorphic involutions has eight fixed points covering the midpoints of a pair of opposite edges. Thus, this elliptic-hyperelliptic surface is also hyperelliptic.
Figure 30 (left) shows a uniformization of the hyperelliptic elliptic-hyperelliptic surface. Destroying the symmetry by moving all points of the polyhedral surface in space by a small random offset destroys the hyperellipticity of the surface, see Fig. 30 (right).[image: A371662_1_En_1_Fig31_HTML.gif]
Fig. 31Generator labels






          Numerical Data. We list the numerical [image: $$SO^{+}(2,1)$$] matrices of the generators of the group[image: $$\begin{aligned} \langle T_1,T_2,T_3,T_4,T_5,T_6 \mid T_{6}{T_{5}}^{-1}T_{4}{T_{3}}^{-1}T_{2}{T_{1}}^{-1}{T_{6}}^{-1}T_{5}{T_{4}}^{-1}T_{3}{T_{2}}^{-1}T_{1}=1 \rangle \end{aligned}$$]

 (68)

representing the hyperelliptic elliptic-hyperelliptic surface constructed in this section (see Fig. 31). The matrices satisfy the relation with error [image: $$\approx 10^{-7}$$].[image: $$\begin{aligned} T_1&= \begin{bmatrix} 2.05443154523212&-4.021591426903446&-4.403849064057392\\ -4.021591427085276&16.338309707059754&16.796236533536394\\ -4.403849064222335&16.796236533484112&17.392741252301292\\ \end{bmatrix}\\ T_2&= \begin{bmatrix} 7.906334736200989&-6.57792280760043&-10.236171033333449\\ -6.5779228079025245&7.265127613618063&9.749417813849163\\ -10.236171033527825&9.749417813638956&14.171462349831586\\ \end{bmatrix}\\ T_3&= \begin{bmatrix} 933.210063638192&509.0929753776527&1063.0407708335915\\ 509.09297492442374&279.0228056502974&580.5414569092936\\ 1063.0407706165242&580.5414573067374&1211.2328692884857\\ \end{bmatrix}\\ T_4&= \begin{bmatrix} 47.8208492808903&21.282776040302117&-52.33345184418173\\ 21.28277609643665&10.67424906068982&-23.788571865092973\\ -52.333451867010325&-23.788571814871467&57.49509834158029\\ \end{bmatrix}\\ T_5&= \begin{bmatrix} 933.2100574645401&509.09297238055706&-1063.040763978619\\ 509.092972765322&279.02280467565924&-580.5414545474814\\ -1063.0407641628826&-580.5414542100707&1211.2328621402066\\ \end{bmatrix}\\ T_6&= \begin{bmatrix} 128.62265665383228&90.05086671584104&-157.0093831621644\\ 90.05086668827934&64.5401174556973&-110.78621463208009\\ -157.00938314635744&-110.78621465448322&192.16277410952506\\ \end{bmatrix} \end{aligned}$$]



[image: A371662_1_En_1_Fig32_HTML.gif]
Fig. 32Uniformization of the hyperelliptic curve [image: $$\mu ^2=\lambda ^6-1$$]. Left Triangulated double cover of the sphere branched at the 6th roots of unity, with the boundary of the fundamental domain shown in brown and the axes of generators shown in blue. Right Fuchsian uniformization and fundamental polygons. Canonical polygon (top), polygon with opposite sides identified (middle), and 12-gon specially adapted to the six-squares surface (bottom)




[image: A371662_1_En_1_Fig33_HTML.gif]
Fig. 33Uniformization of Lawson’s surface. Left Triangulated model [34], with the boundary of the fundamental domain shown in brown and the axes of the generators shown in blue. Right Fuchsian uniformizations and fundamental domains. Canonical domain (top), opposite sides domain (middle), and 12-gon (bottom)






8.6 Example: Different Forms of the Same Genus-2 Surface
In this section we present Fuchsian uniformizations of the same Riemann surface represented in three different ways:	as hyperelliptic curve [image: $$\mu ^2=\lambda ^6-1$$] (Fig. 32),

	as Lawson’s genus 2 minimal surface in [image: $$S^3$$] [25] (Fig. 33),

	and as a surface glued from six squares (Fig. 34).





For each representation we choose corresponding fundamental polygons that allow the comparison of the uniformization:	an octagon with canonical edge pairing [image: $$aba'b'cdc'd'$$],

	an octagon with opposite sides identified, [image: $$abcda'b'c'd'$$],

	a 12-gon that is adapted to the six-squares surface.





All data presented in this section is available on the DGD Gallery webpage [39].

          Hyperelliptic curve. We uniformize the hyperelliptic curve [image: $$\mu ^2=\lambda ^6-1$$] as described in Sect. 7.2. The results are shown in Fig. 32.
To understand the cuts on the hyperelliptic surface that lead to the 12-gon in the bottom row, imagine taking the canonical system of loops in the top row, meeting at the north pole, and deform them until they also meet at the south pole. This introduces a second vertex class in the fundamental polygon.

          Lawson’s surface. Figure 33 shows Fuchsian uniformizations of Lawson’s minimal surface in [image: $$S^{3}$$]. The triangulated surface model was kindly provided by Konrad Polthier [34].
This model of the Lawson surface realizes the hyperelliptic involution as a euclidean rotational symmetry. Its symmetry axis meets the surface in six points. These fixed points of the hyperelliptic involution correspond to the branch points of the hyperelliptic curve representation. This allows us to uniformize the model with corresponding fundamental domains.[image: A371662_1_En_1_Fig34_HTML.gif]
Fig. 34
                  Left A surface glued from six squares. Right Fuchsian uniformization and fundamental domain






          Six-squares surface. Figure 34 (left) shows a surface glued from six squares, which is conformally equivalent to Lawson’s surface and the hyperelliptic curve. Edges with the same marking are glued together. We calculate a uniformization using the triangulation with vertices added in the centers of the squares as shown. An adapted fundamental domain for this square-tiled translational surface arranges all squares around a single vertex, see Fig. 34 (right). By comparison with Fig. 32 (bottom) we see that the vertices in the center of the squares correspond to the branch points of the hyperelliptic representation of the surface. The black, gray, and white vertices correspond to the north and south pole of the hyperelliptic representation.
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Abstract
We develop further a linear theory of discrete complex analysis on general quad-graphs, extending previous work of Duffin, Mercat, Kenyon, Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach based on the medial graph leads to generalizations as well as to new proofs of previously known discrete analogs of classical theorems. New results include in particular discretizations of Green’s first identity and Cauchy’s integral formula for the derivative of a holomorphic function. Another contribution is a discussion on the product of discrete holomorphic functions that is itself discrete holomorphic in a specific sense. In this paper, we focus on planar quad-graphs, but many notions and theorems can be easily adapted to discrete Riemann surfaces. In the case of planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths explicit formulae for a discrete Green’s function and discrete Cauchy’s kernels are obtained. This slightly generalizes the previous results on rhombic lattices. When we further restrict to the integer lattice of a two-dimensional skew coordinate system a discrete Cauchy’s integral formulae for higher order derivatives is derived.

Keywords
Discrete complex analysisQuad-graphGreen’s functionCauchy’s integral formulaeParallelogram-graph
1 Introduction
Linear theories of discrete complex analysis look back on a long and varied history. We refer here to the survey of Smirnov [24]. Already Kirchhoff’s circuit laws describe a discrete harmonicity condition for the potential function whose gradient describes the current flowing through the electric network. A notable application of Kirchhoff’s laws in geometry was the article [4] of Brooks, Smith, Stone, and Tutte, who used coupled discrete harmonic functions (in fact, discrete holomorphic functions) to construct tilings of rectangles into squares with different integral side lengths. Discrete harmonic functions on the square lattice were studied by a number of authors in the 1920s, including Courant, Friedrichs, and Lewy, who showed convergence of solutions of the Dirichlet boundary value problem to their corresponding continuous counterpart [8].
Discrete holomorphic functions on the square lattice were studied by Isaacs [14]. He proposed two different definitions for holomorphicity. The first one is not symmetric on the square lattice, but it becomes symmetric on the triangular lattice obtained by inserting all southwest-to-northeast diagonals. Dynnikov and Novikov studied an equivalent notion in [11]. His second definition was reintroduced by Lelong-Ferrand in [12]. She developed the theory to a level that allowed her to prove the Riemann mapping theorem using discrete methods [18]. Duffin also studied discrete complex analysis on the square grid [9] and was the first who extended the theory to rhombic lattices [10]. Mercat [19], Kenyon [16], Chelkak and Smirnov [6] resumed the investigation of discrete complex analysis on rhombic lattices or, equivalently, isoradial graphs. In these settings, it was natural to split the real and the imaginary part of a discrete holomorphic function to the two vertex sets of a bipartite decomposition.
Some two-dimensional discrete models in statistical physics exhibit conformally invariant properties in the thermodynamical limit. Such conformally invariant properties were established by Smirnov for site percolation on a triangular grid [25] and for the random cluster model [26], by Chelkak and Smirnov for the Ising model [7], and by Kenyon for the dimer model on a square grid (domino tiling) [15]. In all cases, linear theories of discrete analytic functions on regular grids were highly important. Kenyon [16] as well as Chelkak and Smirnov [6] obtained important analytic results that were instrumental in the proof that the critical Ising model is universal, i.e., that the scaling limit is independent of the shape of the lattice [7]. Already Mercat related the theory of discrete complex analysis to the Ising model and investigated criticality [19].
Important non-linear discrete theories of complex analysis involve circle packings or, more generally, circle patterns. Rodin and Sullivan proved that the Riemann mapping of a complex domain to the unit disk can be approximated by circle packings [22]. A similar result for isoradial circle patterns, even with irregular combinatorics, is due to Bücking [5]. In [2] it was shown that discrete holomorphic functions describe infinitesimal deformations of circle patterns. Moreover, in the case of parallelogram-graphs it was discussed that the corresponding theory is integrable by embedding the quad-graph into [image: $$\mathbb Z^n$$].
Our setup in Sect. 2 is a strongly regular cellular decomposition of the complex plane into rectilinear quadrilaterals, called quad-graph. The medial graph of a quad-graph plays a crucial role in our work. It provides the connection between the notions of discrete derivatives of Kenyon [16], Mercat [20], Chelkak and Smirnov [6], extended from rhombic to general quad-graphs, and discrete differential forms and discrete exterior calculus as suggested by Mercat [19, 21]. Our treatment of discrete differential forms is close to what Mercat proposed in [21]. However, our version of discrete exterior calculus is slightly more general. Having introduced the basic notations in the first two sections and the discrete exterior derivative in Sect. 2.3.1, we come to Proposition 2.13. There, it is described how the medial graph allows to multiply discrete holomorphic functions to a function that is discrete holomorphic in a certain sense, in particular that it fulfills (discrete) Morera’s theorem.
The medial graph approach turns out to be quite useful for integration theory. Theorem 2.16 shows that the discrete exterior derivative is a derivation of the discrete wedge product. Many further results rely on this result and discrete Stokes’ Theorem 2.9. In particular, this concerns discrete Green’s identities (Theorem 2.23). A discretization of Green’s second identity was one ingredient in the proof of Skopenkov’s convergence result in [23]. Before the theorem is proved, we introduce the discrete wedge product, the discrete Hodge star, and the discrete Laplacian in Sects. 2.3 and 2.4.
Skopenkov’s results on the existence and uniqueness of solutions to the discrete Dirichlet boundary value problem [23] help us to prove Theorem 2.30. This theorem states surjectivity of the discrete derivatives and the discrete Laplacian seen as linear operators. This implies in particular the existence of discrete Green’s functions and discrete Cauchy’s kernels. Furthermore, discrete Cauchy’s integral formulae for discrete holomorphic functions are derived in Theorem 2.35 and for the discrete derivative of a discrete holomorphic function on the vertices of the quad-graph in Theorem 2.36. Note that discrete Cauchy’s integral formula was used by Chelkak and Smirnov to derive certain asymptotic estimates in [7].
Section 3 is devoted to discrete complex analysis on planar parallelogram-graphs. There, explicit formulae for discrete Green’s functions and discrete Cauchy’s kernels with asymptotics similar to the functions in the rhombic case [5, 6, 16] are given (Theorems 3.7, 3.8, and 3.10). The general assumption is that the interior angles and the ratio of side lengths of all parallelograms are bounded. The construction of these functions is based on the discrete exponential introduced by Kenyon on quasicrystallic rhombic quad-graphs [16] and its extension to quasicrystallic parallelogram-graphs [2].
In the end, we close with the very special case of the integer lattice of a skew coordinate system in the complex plane. In this case, discrete Cauchy’s integral formulae for higher order discrete derivatives of a discrete holomorphic function are derived in Theorem 3.11.

2 Discrete Complex Analysis on Planar Quad-Graphs
Although we focus on planar quad-graphs in this paper, many of our notions and theorems generalize to discrete Riemann surfaces. A corresponding linear theory of discrete Riemann surfaces is discussed in the subsequent paper [1] and can be found in more detail in the thesis [13].
2.1 Basic Definitions and Notation
The aim of this section is to introduce first planar quad-graphs and some basic notation in Sect. 2.1.1 and then to discuss the medial graph in Sect. 2.1.2.
2.1.1 Planar Quad-Graphs
Definition
A planar quad-graph [image: $$\varLambda $$] without boundary is an infinite graph embedded into the complex plane [image: $$\mathbb C$$] such that all edges are straight line segments and such that all faces are quadrilaterals which may be non-convex. In addition, we assume that [image: $$\varLambda $$] induces a cellular decomposition of the whole complex plane that is locally finite, i.e., a compact subset of [image: $$\mathbb C$$] contains only finitely many quadrilaterals, and strongly regular, i.e., two different faces are either disjoint or share exactly one vertex or share exactly one edge (but not two edges).
Let [image: $$V(\varLambda )$$] denote the set of vertices, [image: $$E(\varLambda )$$] the set of edges, and [image: $$F(\varLambda )$$] the set of faces of [image: $$\varLambda $$].

It is well known that any planar quad-graph is bipartite. We fix one decomposition of the vertices of [image: $$\varLambda $$] into two independent sets and refer to the vertices of this decomposition as black and white vertices, respectively.
Definition
Let [image: $$\varGamma $$] and [image: $$\varGamma ^*$$] be the graphs defined on the black and white vertices where [image: $$vv'$$] is an edge of [image: $$\varGamma $$] (or [image: $$\varGamma ^*$$]) if and only if its two black (or white) endpoints are vertices of a single face.

Remark
The assumption of strong regularity guarantees that any edge of [image: $$\varGamma $$] or [image: $$\varGamma ^*$$] is the (possibly outer) diagonal of exactly one quadrilateral.

In order to make the duality between [image: $$\varGamma $$] and [image: $$\varGamma ^*$$] apparent, we consider just for this paragraph the edges of [image: $$\varGamma $$] or [image: $$\varGamma ^*$$] as curves lying totally inside the face they are a diagonal of. Then, any black edge of [image: $$\varGamma $$] corresponds to the white edge of [image: $$\varGamma ^*$$] that crosses it and vice versa. The black and white vertices are in one-to-one correspondence to the faces of [image: $$\varGamma ^*$$] and [image: $$\varGamma $$] they are contained in.
Definition
The complex number assigned to a vertex of [image: $$\varLambda $$] is the corresponding complex value of its embedding in [image: $$\mathbb C$$]. To oriented edges of [image: $$\varLambda ,\varGamma ,\varGamma ^*$$] we assign the complex numbers determined by the difference of the complex numbers assigned to their two endpoints.

Remark
For simplicity, we perform our calculations hereafter directly with the vertices and oriented edges of [image: $$\varLambda ,\varGamma ,\varGamma ^*$$] rather than replacing them with their corresponding complex values.

Definition

              [image: $$\Diamond :=\varLambda ^*$$] is the dual graph of [image: $$\varLambda $$].

In general, we do not specify a planar embedding of the dual graph [image: $$\Diamond $$]. We will just identify vertices or faces of [image: $$\Diamond $$] with their corresponding dual faces and vertices of [image: $$\varLambda $$], respectively. However, in the particular case that all quadrilaterals are parallelograms, it makes sense to identify the vertices of [image: $$\Diamond $$] (i.e., faces of the quad-graph [image: $$\varLambda $$]) with the centers of the parallelograms. Here, the center of a parallelogram is the point of intersection of its two diagonals. Further details will be given in Sects. 2.2.1 and 2.2.3.
Definition
If a vertex [image: $$v \in V(\varLambda )$$] is a vertex of a quadrilateral [image: $$Q\in F(\varLambda )$$], we write [image: $$Q \sim v$$] or [image: $$v \sim Q$$] and say that v and Q are incident to each other.

Throughout our paper, we will denote the vertices of a single quadrilateral Q by [image: $$b_-,w_-,b_+,w_+$$] in counterclockwise order, where [image: $$b_\pm \in V(\varGamma )$$] and [image: $$w_\pm \in V(\varGamma ^*)$$].
Definition
For a quadrilateral [image: $$Q \in F(\varLambda )$$] we define[image: $$\rho _Q:= -i \frac{w_+-w_-}{b_+-b_-}.$$]


Moreover, let[image: $$ \varphi _Q:=\arccos \left( {{\mathrm{Re}}}\left( i\frac{\rho _Q}{|\rho _Q|}\right) \right) =\arccos \left( {{\mathrm{Re}}}\left( \frac{ \overline{(b_+ - b_-)}(w_+ - w_-)}{|b_+ - b_-||w_+ - w_-|}\right) \right) $$]


be the angle under which the diagonal lines of Q intersect.

Note that [image: $$0<\varphi _Q<\pi $$]. Figure 1 shows a finite bipartite quad-graph together with the notations we have introduced for a single quadrilateral Q and the notations we are using later for the star of a vertex v, i.e., the set of all faces incident to v.[image: A371662_1_En_2_Fig1_HTML.gif]
Fig. 1Bipartite quad-graph with notations





In addition, we denote by [image: $$\Diamond _0$$] a subgraph of [image: $$\Diamond $$] that we always assume to be connected and by [image: $$V(\Diamond _0)\subseteq V(\Diamond )$$] the corresponding subset of faces of the quad-graph [image: $$\varLambda $$]. Through our identification [image: $$V(\Diamond )\cong F(\varLambda )$$], we can call the elements of [image: $$V(\Diamond )$$] quadrilaterals and identify them with the corresponding faces of [image: $$\varLambda $$].
Definition

              [image: $$\Diamond _0\subseteq \Diamond $$] is said to form a simply-connected closed region if the union of all quadrilaterals in [image: $$V(\Diamond _0)$$] is a simply-connected closed region in [image: $$\mathbb C$$].

Definition
Let [image: $$\varLambda _0$$] be the subgraph of [image: $$\varLambda $$] whose vertices and edges are exactly the corners and edges of the quadrilaterals in [image: $$V(\Diamond _0)$$]. The interior faces of [image: $$\varLambda _0$$] are given by [image: $$V(\Diamond _0)$$]. Let [image: $$\varGamma _0$$] and [image: $$\varGamma _0^*$$] denote the subgraphs of [image: $$\varGamma $$] and of [image: $$\varGamma ^*$$] whose edges are the diagonals of quadrilaterals in [image: $$V(\Diamond _0)$$] and who do not contain isolated vertices.

Remark
Since [image: $$\Diamond _0\subseteq \Diamond $$] is connected, [image: $$\varGamma _0$$] and [image: $$\varGamma _0^*$$] are connected as well. Indeed, if [image: $$Q,Q' \in V(\Diamond _0)$$] are two quadrilaterals adjacent in [image: $$\Diamond _0$$], then the corresponding subgraphs on [image: $$\varGamma _0$$] and [image: $$\varGamma _0^*$$] consisting of the three black and white vertices of Q and [image: $$Q'$$] are paths of two edges each.

Definition

              [image: $$\varLambda _0$$] is called a (planar) quad-graph induced by the subgraph [image: $$\Diamond _0\subseteq \Diamond $$]. Its boundary [image: $$\partial \varLambda _0$$] is the subgraph of [image: $$\varLambda _0$$] that consists of all the edges of [image: $$\varLambda _0$$] that belong to both a quadrilateral in [image: $$V(\Diamond _0)$$] and one in [image: $$V(\Diamond )\backslash V(\Diamond _0)$$].

Remark
If [image: $$\Diamond _0\subseteq \Diamond $$] is finite and forms a simply-connected closed region, then the set of all interior faces of [image: $$\varLambda _0$$] is homeomorphic to a disk and [image: $$\partial \varLambda _0$$] is a closed broken line without self-intersections.


2.1.2 Medial Graph
Definition
The medial graph X of [image: $$\varLambda $$] is defined as follows. Its vertex set is given by all the midpoints of the edges of [image: $$\varLambda $$] embedded in [image: $$\mathbb C$$], and two vertices [image: $$x,x'$$] are adjacent if and only if the corresponding edges belong to the same face Q of [image: $$\varLambda $$] and have a vertex [image: $$v\in V(\varLambda )$$] in common. We denote this edge by [Q, v]. Taking [Q, v] as a straight line segment if v is a convex corner of the quadrilateral Q and as a curve lying inside Q that does not intersect the three other edges [image: $$[Q,v']$$] ([image: $$v'\sim Q$$], [image: $$v'\ne v$$]) inside Q if v is a concave corner, we get an embedding of X into [image: $$\mathbb C$$]. Then, the set F(X) of faces of X is in bijection with [image: $$V(\varLambda )\cup V(\Diamond )$$]: A face [image: $$F_v$$] of X corresponding to [image: $$v\in V (\varLambda )$$] has the midpoints of edges of [image: $$\varLambda $$] incident to v as vertices, and a face [image: $$F_Q$$] of X corresponding to [image: $$Q\in F(\varLambda )\cong V(\Diamond )$$] has the midpoints of the four edges of [image: $$\varLambda $$] belonging to Q as vertices. The vertices of [image: $$F_Q$$] and [image: $$F_v$$] are colored gray in Fig. 2.

Remark
Clearly, any pair [image: $$Q\sim v$$] of a face and an incident vertex of [image: $$\varLambda $$] corresponds to an edge [Q, v] of X. Moreover, a face [image: $$F_Q$$] lies inside Q and v is contained in [image: $$F_v$$].

Definition
As for the vertices and edges of [image: $$\varLambda $$], we assign to a vertex of X the complex number corresponding to its position in [image: $$\mathbb C$$], and to an oriented edge of X we assign the difference of the two endpoints.

Even though not all edges of X might be straight line segments, we actually think of them as being straight since we assign the vector of its endpoints to it if the edge is oriented. In this sense, any face [image: $$F_Q$$], [image: $$Q \in F(\varLambda )$$], is a parallelogram due to Varignon’s theorem. Moreover, the complex number assigned to the edge [image: $$[Q,v_0]$$], [image: $$v_0 \sim Q$$], if oriented from the midpoint of the edge [image: $$v_0v'_-$$] to the one of the edge [image: $$v_0v'_+$$] of [image: $$\varLambda $$] is just half of [image: $$e=v'_+-v'_-$$]. We will say that [image: $$[Q,v_0]$$] is parallel to e (disregarding the orientation), as it would be if we considered all edges of X as straight line segments.
Remark
If all quadrilaterals of [image: $$\varLambda $$] are convex, then the embedding of X given above consists of straight line segments only. If no Varignon parallelogram of a non-convex quadrilateral contains another vertex of X apart from its corners, then the corresponding straight line realization gives an embedding equivalent to the one above. In this case, the face [image: $$F_v$$] of X corresponding to a vertex [image: $$v \in V(\varLambda )$$] that is a concave corner of a quadrilateral does not contain v any longer. However, if such a Varignon parallelogram contains an additional vertex of X, then connecting adjacent vertices of X by straight line segments does not yield an embedding of X.


                [image: A371662_1_En_2_Fig2_HTML.gif]
Fig. 2Bipartite quad-graph (dashed) with medial graph (solid)




              
Definition
For a connected subgraph [image: $$\Diamond _0 \subseteq \Diamond $$], we denote by [image: $$X_0 \subseteq X$$] the connected subgraph of X consisting of all edges [Q, v] where [image: $$Q\in V(\Diamond _0)$$] and v is a corner of Q. The boundary [image: $$\partial X_0$$] is the subgraph of [image: $$X_0$$] whose edges are exactly those [Q, v] where [image: $$v \in V(\partial \varLambda _0)$$] and [image: $$Q \in V(\Diamond _0)$$] is incident to v. We consider the orientation on the boundary [image: $$\partial X_0$$] that is induced by orienting any of its edges [Q, v] counterclockwise with regard to Q. For a finite collection F of faces of [image: $$X_0$$], [image: $$\partial F$$] denotes the union of all counterclockwise oriented boundaries of faces in F, where oriented edges in opposite directions cancel each other out.

Remark
In the case that all quadrilaterals in [image: $$V(\Diamond _0)$$] are convex, [image: $$X_0$$] consists of all straight edges of X that lie inside the closed region formed by the quadrilaterals in [image: $$V(\Diamond _0)$$]. In any case, the medial graph X corresponds to a (strongly regular and locally finite) cellular decomposition of the plane in a canonical way. In particular, we can talk about a topological disk D in [image: $$F(X_0)$$] as a finite collection of faces of [image: $$X_0$$] that form a closed region homeomorphic to a disk, and we can consider its counterclockwise oriented boundary [image: $$\partial D$$] as a subgraph of [image: $$X_0$$].

Definition
For [image: $$v\in V(\varLambda )$$] and [image: $$Q \in F(\varLambda )$$], let [image: $$P_v$$] and [image: $$P_Q$$] be the closed paths on X connecting the midpoints of edges of [image: $$\varLambda $$] incident to v and Q, respectively, in counterclockwise direction. In Fig. 2, their vertices are colored gray. We say that [image: $$P_v$$] and [image: $$P_Q$$] are discrete elementary cycles.



2.2 Discrete Holomorphicity
To motivate the definition of discrete holomorphicity due to Mercat [21] that was also used previously in the rhombic setting by Duffin [10] and others, let us have a short look to the classical theory. There, a real differentiable complex function f defined on an open subset of the complex plane is holomorphic if and only if in any point all directional derivatives coincide. Moreover, holomorphic functions with nowhere-vanishing derivative preserve angles, and at a single point, infinitesimal lengths are uniformly scaled.
Definition
Let [image: $$Q \in V(\Diamond ) \cong F(\varLambda )$$] and f be a complex function on the vertices [image: $$b_-,w_-,b_+,w_+$$] of the quadrilateral Q. f is said to be discrete holomorphic at Q if the discrete Cauchy-Riemann equation is satisfied:[image: $$\begin{aligned} \frac{f(b_+)-f(b_-)}{b_+ - b_-}=\frac{f(w_+)-f(w_-)}{w_+ - w_-}. \end{aligned}$$]





Definition
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$]. f is said to be discrete holomorphic if f is discrete holomorphic at all [image: $$Q \in V(\Diamond _0)$$].

Note that if a discrete holomorphic function f does not have the same value on both black vertices [image: $$b_-$$] and [image: $$b_+$$], then it preserves the angle [image: $$\varphi _Q$$] and f uniformly scales the lengths of the diagonals of Q. However, the image of Q under f might be a degenerate or self-intersecting quadrilateral.
We immediately see that for discrete holomorphicity, only the differences at black and at white vertices matter. Hence, we should not consider constants on [image: $$V(\varLambda )$$], but biconstants [20] determined by each a value on [image: $$V(\varGamma )$$] and [image: $$V(\varGamma ^*)$$].
Definition
A function [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] that is constant on [image: $$V(\varGamma _0)$$] and constant on [image: $$V(\varGamma _0^*)$$] is said to be biconstant.

In the following, we will define discrete analogs of [image: $$\partial ,\bar{\partial }$$], first of functions on [image: $$V(\varLambda )$$] in Sect. 2.2.1 and later of functions on [image: $$V(\Diamond )$$] in Sect. 2.2.3. Before, we introduce discrete differential forms in Sect. 2.2.2.
2.2.1 Discrete Derivatives of Functions on the Vertices of [image: $$\varLambda $$]
          
Definition
Let [image: $$Q \in V(\Diamond ) \cong F(\varLambda )$$], and let f be a complex function on its vertices [image: $$b_-,w_-,b_+,w_+$$]. The discrete derivatives [image: $$\partial _\varLambda f$$], [image: $$\bar{\partial }_\varLambda f$$] are defined by[image: $$\begin{aligned} \partial _\varLambda f (Q)&:=\lambda _Q \frac{f(b_+)-f(b_-)}{b_+ - b_-}+\bar{\lambda }_Q\frac{f(w_+)-f(w_-)}{w_+ - w_-},\\ \bar{\partial }_\varLambda f (Q)&:=\bar{\lambda }_Q\frac{f(b_+)-f(b_-)}{\overline{b_+ - b_-}}+\lambda _Q\frac{f(w_+)-f(w_-)}{\overline{w_+ - w_-}}, \end{aligned}$$]


where [image: $$2\lambda _Q:=\exp \left( -i\left( \varphi _Q-\frac{\pi }{2}\right) \right) /\sin (\varphi _Q)$$].

Remark
Clearly, biconstant functions have vanishing discrete derivatives.

If the quadrilateral Q is a rhombus, then [image: $$\varphi _Q=\pi /2$$] and [image: $$\lambda _Q=1/2$$]. Therefore, the definition above then reduces to the previous one given by Chelkak and Smirnov [6]. The definition of discrete derivatives matches the notion of discrete holomorphicity; and the discrete derivatives approximate their smooth counterparts correctly up to order one for general quad-graphs and up to order two for parallelogram-graphs:
Proposition 2.1
Let Q be a face of the quad-graph [image: $$\varLambda $$] and f be a complex function on its vertices [image: $$b_-,w_-,b_+,w_+$$].

                  	(i)
                      f is discrete holomorphic at Q if and only if [image: $$\bar{\partial }_\varLambda f(Q)=0$$].


 

	(ii)For the function [image: $$f(v)= v$$], [image: $$\bar{\partial }_\varLambda f(Q)=0$$] and [image: $$\partial _\varLambda f (Q)=1$$].


 

	(iii)If Q is a parallelogram and [image: $$f(v)= v^2$$], then [image: $$\bar{\partial }_\varLambda f(Q)=0$$], [image: $$\partial _\varLambda f(Q)=2\hat{Q}$$].


 

	(iv)If Q is a parallelogram and [image: $$f(v)=|v|^2$$], then [image: $$\bar{\partial }_\varLambda f(Q)=\overline{\partial _\varLambda f(Q)}=\hat{Q}$$].


 




                
In parts (iii) and (iv), [image: $$\hat{Q}$$] denotes the center of the parallelogram Q.

Proof
(i) We observe that[image: $$\begin{aligned}\frac{2\sin (\varphi _Q)\bar{\lambda }_Q}{\overline{b_+-b_-}}&=\frac{\exp \left( i\left( \varphi _Q-\frac{\pi }{2}\right) \right) }{\overline{b_+-b_-}}=\frac{-i\exp \left( i\varphi _Q\right) \frac{b_+-b_-}{|b_+-b_-|}}{|b_+-b_-|}=\frac{-i\left( w_+-w_-\right) }{|w_+-w_-| |b_+-b_-|},\\ \frac{2\sin (\varphi _Q)\lambda _Q}{\overline{w_+-w_-}}&=\frac{\exp \left( i\left( \frac{\pi }{2}-\varphi _Q\right) \right) }{\overline{w_+-w_-}}=\frac{i\exp \left( -i\varphi _Q\right) \frac{w_+-w_-}{|w_+-w_-|}}{|w_+-w_-|}=\frac{i\left( b_+-b_-\right) }{|w_+-w_-| |b_+-b_-|}. \end{aligned}$$]


So if we multiply [image: $$\bar{\partial }_\varLambda f (Q)$$] by [image: $$2i|w_+-w_-| |b_+-b_-|\sin (\varphi _Q)\ne 0$$], we obtain[image: $$ \left( w_+-w_-\right) \left( f\left( b_+\right) -f\left( b_-\right) \right) -\left( b_+-b_-\right) \left( f\left( w_+\right) -f\left( w_-\right) \right) , $$]


which vanishes if and only if the discrete Cauchy-Riemann equation is satisfied.
(ii) Clearly, [image: $$f(v)=v$$] satisfies the discrete Cauchy-Riemann equation. By the first part, [image: $$\bar{\partial }_\varLambda f(Q)=0$$]. Due to [image: $$2\sin (\varphi _Q)=\exp \left( -i\left( \varphi _Q-\frac{\pi }{2}\right) \right) +\exp \left( i\left( \varphi _Q-\frac{\pi }{2}\right) \right) $$], [image: $$\partial _\varLambda f (Q)$$] simplifies to [image: $$\lambda _Q+\bar{\lambda }_Q=1$$].
(iii) For the function [image: $$f(v)=v^2$$], the discrete Cauchy-Riemann equation is equivalent to [image: $$b_++b_-=w_++w_-$$]. But since Q is a parallelogram, both [image: $$(b_++b_-)/2$$] and [image: $$(w_++w_-)/2$$] equal its center [image: $$\hat{Q}$$]. Thus, f is discrete holomorphic at Q and[image: $$\partial _\varLambda f (Q)=\lambda _Q (b_++b_-)+\bar{\lambda }_Q (w_++w_-)=2\hat{Q} (\lambda _Q+\bar{\lambda }_Q)=2\hat{Q}.$$]


(iv) Since f is a real function, [image: $$\bar{\partial }_\varLambda f(Q)=\overline{\partial _\varLambda f(Q)}$$] follows straight from the definition. Let [image: $$z\in \mathbb C$$] be arbitrary. If [image: $$g(v):=v\bar{z}$$], then [image: $$\partial _\varLambda g(Q)=\bar{z}$$] and [image: $$\partial _\varLambda \bar{g}(Q)=0$$] by the second part. So if we define the function [image: $$h(v):=|v-z|^2=|v|^2-v\bar{z}-\bar{v}z+|z|^2$$], then [image: $$\overline{\partial _\varLambda h(Q)}=\overline{\partial _\varLambda f(Q)}-z$$] using the second part and observing that constant functions have vanishing derivatives. Hence, the statement is invariant under translation, and it suffices to consider the case [image: $$\hat{Q}=0$$]. Then, [image: $$b_+=-b_-$$] and [image: $$w_+=-w_-$$] since Q is a parallelogram. It follows that [image: $$f(b_-)=f(b_+)$$] and [image: $$f(w_-)=f(w_+)$$], so [image: $$\partial _\varLambda f(Q)=0$$].

Our first discrete analogs of classical theorems are immediate consequences of the discrete Cauchy-Riemann equation:
Proposition 2.2
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] be discrete holomorphic.

                  	(i)If f is purely imaginary or purely real, then f is biconstant.


 

	(ii)If [image: $$\partial _\varLambda f\equiv 0$$], then f is biconstant.


 




                

Proof
(i) Let us assume that f is not biconstant. Then, without loss of generality, f is not constant on [image: $$\varGamma _0$$]. Since [image: $$\varGamma _0$$] is connected, there are two adjacent vertices [image: $$b_-$$], [image: $$b_+$$] of [image: $$\varGamma _0$$] such that [image: $$f(b_+)\ne f(b_-)$$]. Let [image: $$b_-,w_-,b_+,w_+ \in V(\varLambda _0)$$] be the vertices of the interior face of [image: $$\varLambda _0$$] with black diagonal [image: $$b_-b_+$$]. Due to the discrete Cauchy-Riemann equation,[image: $$\frac{f(w_+)-f(w_-)}{f(b_+)-f(b_-)}=\frac{w_+ - w_-}{b_+ - b_-}.$$]


The left hand side is real and well-defined since f is purely imaginary or purely real and [image: $$f(b_+)\ne f(b_-)$$]. But the right hand side is not, contradicting the assumption that f is not biconstant.
(ii) Since f is discrete holomorphic,[image: $$\frac{f(b_+)-f(b_-)}{b_+ - b_-}=\frac{f(w_+)-f(w_-)}{w_+ - w_-}.$$]



              [image: $$\partial _\varLambda f\equiv 0$$] then yields that both sides of the discrete Cauchy-Riemann equation equal zero, so f is constant on [image: $$V(\varGamma _0)$$] and on [image: $$V(\varGamma _0^*)$$] since both graphs are connected.


2.2.2 Discrete Differential Forms
In our paper, we mainly consider two type of functions, functions [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] and functions [image: $$h:V(\Diamond _0)\rightarrow \mathbb C$$]. An example for a function on [image: $$V(\Diamond _0)$$] is [image: $$\partial _\varLambda f$$].
Definition
A discrete one-form [image: $$\omega $$] is a complex function on the oriented edges of the medial graph [image: $$X_0$$] such that [image: $$\omega (-e)=\omega (e)$$] for any oriented edge e of [image: $$X_0$$]. Here, [image: $$-e$$] denotes the edge e with opposite orientation.
The evaluation of [image: $$\omega $$] at an oriented edge e of [image: $$X_0$$] is denoted by [image: $$\int _e \omega $$]. If P is a directed path in [image: $$X_0$$] consisting of oriented edges [image: $$e_1,e_2,\ldots ,e_n$$], then the discrete integral along P is [image: $$\int _P \omega =\sum _{k=1}^n \int _{e_k} \omega $$]. For closed paths P, we write [image: $$\oint _P \omega $$] instead. If P is the oriented boundary of a topological disk D in [image: $$F(X_0)$$], then we say that the discrete integral is a discrete contour integral with discrete contour P.

Since we consider the planar case, one-forms dz and [image: $$d\bar{z}$$] are globally defined.
Definition
The discrete one-forms dz and [image: $$d\bar{z}$$] are given by [image: $$\int _e dz=e$$] and [image: $$\int _e d\bar{z}=\bar{e}$$] for any oriented edge e of X.

It turns out that discrete one-forms that actually come from discrete one-forms on [image: $$\varGamma $$] and [image: $$\varGamma ^*$$] are of particular interest:
Definition
A discrete one-form [image: $$\omega $$] defined on the oriented edges of [image: $$X_0$$] is of type [image: $$\Diamond $$] if for any [image: $$Q \in V(\Diamond _0)$$] there exist complex numbers p, q such that [image: $$\omega =p dz+qd\bar{z}$$] on all edges [image: $$e=[Q,v]$$], [image: $$v \in V(\varLambda _0)$$] incident to Q. [image: $$\omega $$] is of type [image: $$\varLambda $$] if for any [image: $$v \in V(\varLambda _0)$$] there exist complex numbers p, q such that [image: $$\omega =p dz+qd\bar{z}$$] on all edges [image: $$e=[Q,v]$$], [image: $$Q\in V(\Diamond _0)$$] incident to v.

Remark
Discrete one-forms of type [image: $$\varLambda $$] do not play such an important role as discrete one-forms of type [image: $$\Diamond $$], although they occur as discrete differentials of functions defined on [image: $$V(\Diamond _0)$$]. This will become clear in the end of Sect. 2.3.2, one of the reasons being that discrete one-forms of type [image: $$\varLambda $$] are not defined on discrete Riemann surfaces, but discrete one-forms of type [image: $$\Diamond $$] are.

Definition
A discrete two-form [image: $$\varOmega $$] is a complex function on the faces of [image: $$X_0$$].
The evaluation of [image: $$\varOmega $$] at a face F of [image: $$X_0$$] is denoted by [image: $$\iint _F \varOmega $$]. If S is a set of faces [image: $$F_1,F_2,\ldots , F_n$$] of [image: $$X_0$$], then [image: $$\iint _S \varOmega =\sum _{k=1}^n \iint _{F_k} \varOmega $$] is the discrete integral of [image: $$\varOmega $$] over S.

As we are mainly interested in functions [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] and [image: $$h:V(\Diamond _0)\rightarrow \mathbb C$$], discrete two-forms of particular interest are those that vanish on faces of [image: $$X_0$$] corresponding to vertices of either [image: $$\Diamond $$] or [image: $$\varLambda $$].
Definition
A discrete two-form [image: $$\varOmega $$] defined on [image: $$F(X_0)$$] is of type [image: $$\varLambda $$] if [image: $$\varOmega $$] vanishes on all faces of [image: $$X_0$$] corresponding to [image: $$V(\Diamond _0)$$] and of type [image: $$\Diamond $$] if [image: $$\varOmega $$] vanishes on all faces of X corresponding to [image: $$V(\varLambda _0)$$].

Remark
These discrete two-forms correspond to functions on [image: $$V(\varLambda _0)$$] or [image: $$V(\Diamond _0)$$] by the discrete Hodge star that will be defined later in Sect. 2.3.3.

Since we did not give a precise embedding of the medial graph into the complex plane in the general case, we have to specify what the area of a face is. This area includes a factor of two in order to get the same coefficients in the discrete setup as in the smooth case.
Definition
Let F be a face of the medial graph X. We define [image: $$\text {ar}(F)$$] to be twice the Euclidean area of the polygon that results from connecting adjacent vertices of F by straight line segments in the complex plane. In contrast, [image: $$\text {area}(P)$$] will always denote the Euclidean area of a polygon P.

Remark
As we have mentioned before, our main objects either live on the quad-graph [image: $$\varLambda $$] or on its dual [image: $$\Diamond $$]. Thus, we have to deal with two different cellular decompositions at the same time. The medial graph has the crucial property that its faces are in one-to-one correspondence to vertices of [image: $$\varLambda $$] and of [image: $$\Diamond $$], i.e., to faces of [image: $$\Diamond $$] and of [image: $$\varLambda $$]. Furthermore, the Euclidean area of the Varignon parallelogram of [image: $$Q\in F(\varLambda )$$] is just half of the area of Q. In some sense, a corresponding statement is true for the cells of X corresponding to vertices of [image: $$\varLambda $$], i.e., faces of [image: $$\Diamond $$]. However, there is not only no canonical embedding of X, but also no natural embedding of [image: $$\Diamond $$] in the general setting. But in the particular case of parallelogram-graphs, when we have a canonical embedding of X with rectilinear edges, we can make the statement precise: If an edge [image: $$QQ'$$] of [image: $$\Diamond $$] is represented by the two line segments that connect the centers of the parallelograms Q and [image: $$Q'$$] with the midpoint of their common edge, then the Euclidean area of the face of X corresponding to a vertex [image: $$v \in V(\varLambda ) \cong F(\Diamond )$$] is exactly half of the area of the face of [image: $$\Diamond $$] corresponding to v.
In summary, the medial graph allows us to deal with just one decomposition of the complex plane, but we have to count areas twice in order to get the right coefficients as in the continuous setup.

Definition
The discrete two-forms [image: $$\varOmega _\varLambda $$] and [image: $$\varOmega _\Diamond $$] are defined as being zero on faces of X corresponding to vertices of [image: $$\Diamond $$] or [image: $$\varLambda $$], respectively, and defined by[image: $$\iint \limits _{F_v} \varOmega _\varLambda =-2i\text {ar}(F_v) \text { and } \iint \limits _{F_Q} \varOmega _\Diamond =-2i\text {ar}(F_Q)$$]


on faces [image: $$F_v$$] and [image: $$F_Q$$] corresponding to [image: $$v\in V(\varLambda )$$] or [image: $$Q\in V(\Diamond )$$]. As defined above, [image: $$\text {ar}(F)$$] is twice the Euclidean area of the straight-line embedding of [image: $$F_v$$] or [image: $$F_Q$$].

Remark

              [image: $$\varOmega _\varLambda $$] and [image: $$\varOmega _\Diamond $$] are the straightforward discretizations of [image: $$dz \wedge d\bar{z}$$] having in mind that they are essentially defined on faces of [image: $$\Diamond $$] or of [image: $$\varLambda $$], respectively. It turns out that in local coordinates, we can perform our calculations with [image: $$\varOmega _\varLambda $$] and [image: $$\varOmega _\Diamond $$] in the discrete setting exactly as we do with [image: $$dz \wedge d\bar{z}$$] in the smooth theory. We will see in Sect. 2.3.2 that [image: $$\varOmega _\Diamond $$] is indeed the discrete wedge product of dz and [image: $$d\bar{z}$$] seen as discrete one-forms of type [image: $$\Diamond $$]. The same would be true for [image: $$\varOmega _\varLambda $$] if we considered dz and [image: $$d\bar{z}$$] as being of type [image: $$\varLambda $$], but the discrete wedge product is of interest just for discrete one-forms of type [image: $$\Diamond $$] and we therefore define it just for these forms.

Definition
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$], [image: $$h:V(\Diamond _0)\rightarrow \mathbb C$$], [image: $$\omega $$] a discrete one-form defined on the oriented edges of [image: $$X_0$$], and [image: $$\varOmega _1,\varOmega _2$$] discrete two-forms defined on [image: $$F(X_0)$$] that are of type [image: $$\varLambda $$] and [image: $$\Diamond $$], respectively. For any oriented edge [image: $$e=[Q,v]$$] and any faces [image: $$F_v, F_Q$$] of [image: $$X_0$$] corresponding to [image: $$v\in V(\varLambda _0)$$] or [image: $$Q \in V(\Diamond _0)$$], we define the products [image: $$f\omega $$], [image: $$h\omega $$], [image: $$f\varOmega _1$$], and [image: $$h\varOmega _2$$] by[image: $$\begin{aligned} \int \limits _{e}f\omega :&=f(v)\int \limits _{e}\omega \ \quad \text { and } \, \iint \limits _{F_v} f\varOmega _1:=f(v)\iint \limits _{F_v}\varOmega _1,\,\iint \limits _{F_Q} f\varOmega _1:=0;\\ \int \limits _{e}h\omega :&=h(Q)\int \limits _{e}\omega \quad \text { and } \,\, \iint \limits _{F_v} h\varOmega _2:=0, \,\,\qquad \qquad \qquad \iint \limits _{F_Q} h\varOmega _2:=h(Q)\iint \limits _{F_Q}\varOmega _2. \end{aligned}$$]





In the following table, we give a quick overview of various discrete differential forms (most of them will be discussed in Sect. 2.3) and state whether they are essentially functions on [image: $$V(\varLambda )$$] (first column) or functions on [image: $$V(\Diamond )$$] (second column) or entirely objects on the cellular decomposition X (third column). In the first row we find functions, in the second discrete one-forms, and in the third discrete two-forms. So for example, the intersection of the second row with the third column lists discrete one-forms that are entirely objects on X and cannot be reduced to functions on [image: $$V(\varLambda )$$] or [image: $$V(\Diamond )$$].
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Remark
Although discrete one-forms of type [image: $$\varLambda $$] or of type [image: $$\Diamond $$] do not live themselves on [image: $$\varLambda $$] or [image: $$\Diamond $$], they are described by two functions defined on the vertices of [image: $$\varLambda $$] or [image: $$\Diamond $$], respectively.


2.2.3 Discrete Derivatives of Functions on the Faces of [image: $$\varLambda $$]
          
Before we pass on to discrete derivatives of functions on [image: $$V(\Diamond )$$], we first prove an alternative formula for the discrete derivatives of functions on [image: $$V(\varLambda )$$].
Lemma 2.3
Let [image: $$Q \in V(\Diamond )\cong F(\varLambda )$$] and f be a complex function on the vertices [image: $$b_-,w_-,b_+,w_+$$] of Q. Let [image: $$P_Q$$] be the discrete elementary cycle around Q and F the face of X corresponding to Q. Then,[image: $$\begin{aligned} \partial _\varLambda f(Q)=\frac{-1}{2i \mathrm{{ar}(F)}}\oint \limits _{P_Q} f d\bar{z} \quad \text {and} \quad \bar{\partial }_\varLambda f (Q)=\frac{1}{2i\mathrm {ar}(F)}\oint \limits _{P_Q} f dz. \end{aligned}$$]





Proof
Since we think of F as a parallelogram (see Sect. 2.1.2), its Euclidean area is half of the area of Q. So by definition,[image: $$\text {ar}(F) =\frac{1}{2}|b_+-b_-| |w_+-w_-| \sin (\varphi _Q).$$]


Furthermore, [image: $$f(b_+)$$] and [image: $$-f(b_-)$$] are multiplied by the same factor [image: $$\overline{(w_+-w_-)}/2$$] when evaluating the discrete contour integral [image: $$\oint _{P_Q} f d\bar{z}$$]. Therefore, the coefficient in front of [image: $$f(b_+)-f(b_-)$$] in the right hand side of the first equation in the lemma is[image: $$i\frac{\overline{w_+-w_-}}{4\text {ar}(F)}=-\overline{i}\frac{\overline{w_+-w_-}}{2 \sin (\varphi _Q)|w_+-w_-| |b_+-b_-|}=\frac{\exp \left( -i\left( \varphi _Q-\frac{\pi }{2}\right) \right) }{2\sin (\varphi _Q)(b_+-b_-)}=\frac{\lambda _Q}{b_+-b_-}$$]


(compare with the proof of Proposition 2.1(i)), which is exactly the coefficient appearing in [image: $$\partial _\varLambda f(Q)$$]. Analogously, the coefficients in front of [image: $$f(w_+)-f(w_-)$$] are equal. This shows the first equation. The second one follows from the first, noting that the coefficients in front of [image: $$f(b_+)-f(b_-)$$] and [image: $$f(w_+)-f(w_-)$$] on both sides of the second equation are just complex conjugates of the corresponding coefficients appearing in the first equation.
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Inspired by Lemma 2.3 that is illustrated by Fig. 3a, we can now define the discrete derivatives for complex functions on [image: $$V(\Diamond )$$], see Fig. 3b.
Definition
Let [image: $$v\in V(\varLambda )$$] and h be a complex function defined on all quadrilaterals that are incident to v. Let [image: $$P_v$$] be the discrete elementary cycle around v and F the face of X corresponding to v. Then, the discrete derivatives [image: $$\partial _\Diamond h$$], [image: $$\bar{\partial }_\Diamond h$$] at v are defined by[image: $$\begin{aligned} \partial _\Diamond h(v):=\frac{-1}{2i\text {ar}(F)}\oint \limits _{P_v} h d\bar{z} \quad \text {and} \quad \bar{\partial }_\Diamond h(v):=\frac{1}{2i\text {ar}(F)}\oint \limits _{P_v} h dz. \end{aligned}$$]



              h is said to be discrete holomorphic at v if [image: $$\bar{\partial }_\Diamond h (v)=0$$].

Definition

              [image: $$h:V(\Diamond _0)\rightarrow \mathbb C$$] is said to be discrete holomorphic if h is discrete holomorphic at all [image: $$v \in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$].

Note that in the rhombic case, our definition coincides with the one used by Chelkak and Smirnov in [6]. As an immediate consequence of the definition, we obtain a discrete Morera’s theorem.
Proposition 2.4
Functions [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] and [image: $$h:V(\Diamond _0)\rightarrow \mathbb C$$] are discrete holomorphic if and only if [image: $$\oint _{P} f dz=0$$] and [image: $$\oint _{P} h dz=0$$] for all discrete contours P on [image: $$X_0$$].

Proof
Clearly, [image: $$\oint _{P_v} f dz=f(v)\oint _{P_v} dz=0$$] for any discrete elementary cycle [image: $$P_v$$] around a vertex v of [image: $$V(\varLambda _0)$$]. Similarly, [image: $$\oint _{P_Q} h dz=0$$] for any [image: $$Q\in V(\Diamond _0)$$]. Using Lemma 2.3 and the definition of [image: $$\bar{\partial }_\Diamond $$], f and h are discrete holomorphic if and only if [image: $$\oint _{P} f dz=0$$] and [image: $$\oint _{P} h dz=0$$] for all discrete elementary cycles P. To conclude the proof, we observe that any integration along a discrete contour can be decomposed into integrations along discrete elementary cycles since by definition, a discrete contour is the boundary of a topological disk in [image: $$F(X_0)$$].

The discrete derivatives of constant functions on [image: $$V(\Diamond )$$] vanish. As an analog of Proposition 2.1, we prove that the discrete derivatives [image: $$\partial _\Diamond ,\bar{\partial }_\Diamond $$] locally approximate their smooth counterparts correctly up to order one if the quadrilaterals in [image: $$V(\Diamond )$$] are identified with the midpoints of their black or white edges. In a parallelogram-graph, these two midpoints coincide for each face, which then gives a global approximation statement. Note that even for rhombic quad-graphs, the discrete derivatives [image: $$\partial _\Diamond ,\bar{\partial }_\Diamond $$] generally do not coincide with the smooth derivatives in order two.
Proposition 2.5
Let [image: $$v \in V(\varLambda )$$], and let h be a complex function on all faces incident to v. As illustrated in Fig. 3b, we counterclockwise enumerate them by [image: $$Q_1, \ldots , Q_k$$], where k is the degree of v in [image: $$\varLambda $$], and their vertices adjacent to v by [image: $$v'_1,v'_2,\ldots ,v'_k$$], [image: $$v'_{k+1}=v_1$$]. Let [image: $$\hat{Q}_s=(v'_{s-1}+v'_{s})/2$$]. Then, if [image: $$h(Q_s)=\hat{Q}_s$$] for all s, [image: $$\bar{\partial }_\Diamond h(v)=0$$] and [image: $$\partial _\Diamond h (v)= 1$$] hold true.

Proof

[image: $$\begin{aligned} 4\oint \limits _{P_v} h dz&=\sum \limits _{Q_s\sim v} 2h(Q_s) (v'_{s}-v'_{s-1})=\sum \limits _{Q_s\sim v} (v'_{s-1}+v'_{s}) (v'_{s}-v'_{s-1})\\ {}&=\sum \limits _{Q_s\sim v} \left( \left( v'_{s}\right) ^2-\left( v'_{s-1}\right) ^2\right) =0,\\ 4\oint _{P_v} h d\bar{z}&=\sum \limits _{Q_s\sim v} (v'_{s-1}+v'_{s}) \overline{(v'_{s}-v'_{s-1})}=\sum \limits _{Q_s\sim v} \left( \left| v'_{s}\right| ^2-\left| v'_{s-1}\right| ^2-2i{{\mathrm{Im}}}\left( v'_s\bar{v}'_{s-1} \right) \right) \\ {}&=-2i\sum \limits _{Q_s\sim v} {{\mathrm{Im}}}\left( v'_s\bar{v}'_{s-1} \right) =-8i\text {ar}(F_v). \end{aligned}$$]


Thus, [image: $$\bar{\partial }_\Diamond h(v)=0$$] and [image: $$\partial _\Diamond h(v)=1$$]. Here, we have used that by definition, [image: $$\text {ar}(F_v)$$] is half of the Euclidean area of the polygon [image: $$v'_1v'_2\ldots v'_k$$], so [image: $$\text {ar}(F)$$] equals[image: $$\frac{1}{2}\sum \limits _{Q_s \sim v}\text {area}(\triangle vv'_{s-1} v'_{s})=\frac{1}{4}\sum \limits _{Q_s \sim v}{{\mathrm{Im}}}\left( \left( v'_s-v\right) \overline{\left( v'_{s-1}-v\right) }\right) =\frac{1}{4}\sum \limits _{Q_s \sim v}{{\mathrm{Im}}}\left( v'_s\bar{v}'_{s-1}\right) ,$$]


using that [image: $$\sum _{Q_s \sim v} \left( v \bar{v}'_{s-1}+\bar{v}v'_{s}\right) =\sum _{Q_s \sim v} \left( v \bar{v}'_{s}+\bar{v}v'_{s}\right) $$] is real.

In [6], Chelkak and Smirnov used averaging operators to map functions on [image: $$V(\varLambda )$$] to functions on [image: $$V(\Diamond )$$] and vice versa. On parallelogram-graphs, the averaging operator [image: $$m(f)(Q):=\sum _{v \sim Q}f(v)/4$$] actually maps discrete holomorphic functions f on [image: $$V(\varLambda )$$] to discrete holomorphic functions on [image: $$V(\Diamond )$$]. Our proof will be similar as the one for rhombic quad-graphs in [6]. Note that discrete holomorphic functions on [image: $$V(\Diamond )$$] cannot be averaged to discrete holomorphic functions on [image: $$V(\varLambda )$$] in general, so the averaging operator of Chelkak of Smirnov that mapped functions on [image: $$V(\Diamond )$$] to functions on [image: $$V(\varLambda )$$] did not preserve discrete holomorphicity.
Proposition 2.6
Let [image: $$\varLambda $$] be a parallelogram-graph and [image: $$f:V(\varLambda )\rightarrow \mathbb C$$] be discrete holomorphic. Then, [image: $$m(f):V(\Diamond )\rightarrow \mathbb C$$] is discrete holomorphic.

Proof
Let us consider the star of the vertex [image: $$v\in V(\varLambda )$$] and use the notation we used in Proposition 2.5 (illustrated by Fig. 3b). Since f is discrete holomorphic, the discrete Cauchy-Riemann equation is satisfied on any [image: $$Q_s \sim v$$]. Therefore, we can express [image: $$f(v_s)$$] in terms of f(v), [image: $$f(v'_s)$$] and [image: $$f(v'_{s-1})$$]. Plugging this in the definition of the averaging operator, we obtain[image: $$\begin{aligned}4m(f)(Q_s)&=2f(v)+\frac{v_s-v+v'_{s}-v'_{s-1}}{v'_{s}-v'_{s-1}}f(v'_{s})-\frac{v_s-v-v'_{s}+v'_{s-1}}{v'_{s}-v'_{s-1}}f(v'_{s-1})\\ {}&=2f(v)+2\frac{v'_{s}-v}{v'_{s}-v'_{s-1}}f(v'_{s}) -2\frac{v'_{s-1}-v}{v'_{s}-v'_{s-1}}f(v'_{s-1}).\end{aligned}$$]


Here, we have used the properties [image: $$v_s-v'_{s-1}=v'_{s}-v$$] and [image: $$v_s-v'_{s}=v'_{s-1}-v$$] of the parallelogram [image: $$Q_s$$]. Hence, m(f) is discrete holomorphic at v by definition due to[image: $$4\oint \limits _{P_v}m(f)dz=2f(v)\oint \limits _{P_v}dz+\sum \limits _{Q_s \sim v}(v'_{s}-v)f(v'_{s})-\sum \limits _{Q_s \sim v}(v'_{s-1}-v)f(v'_{s-1})=0.$$]





Remark
As mentioned above, our main interest lies in functions that are defined either on the vertices or the faces of the quad-graph. Now, extending [image: $$f: V(\varLambda ) \rightarrow \mathbb C$$] to a complex function on F(X) by using its average m(f) on [image: $$V(\Diamond )$$] seems to be an option. However, functions on [image: $$V(\varLambda )$$] and on [image: $$V(\Diamond )$$] behave differently. In Corollary 2.11 we will see that [image: $$\partial _\varLambda f$$] is discrete holomorphic if f is, but [image: $$\partial _\Diamond m(f)$$] does not need to be discrete holomorphic in general. So to make sense of differentiating twice, we can only consider functions on [image: $$V(\varLambda )$$].

Definition
Let [image: $$f_1,f_2:V(\varLambda _0)\rightarrow \mathbb C$$] and [image: $$h_1,h_2:V(\Diamond _0)\rightarrow \mathbb C$$]. Their discrete scalar products are defined as[image: $$\langle f_1,f_2 \rangle := -\frac{1}{2i}\iint \limits _{F(X_0)} f_1\bar{f}_2\varOmega _\varLambda \quad \text {and} \quad \langle h_1,h_2 \rangle := -\frac{1}{2i}\iint \limits _{F(X_0)} h_1\bar{h}_2\varOmega _\Diamond ,$$]


whenever the right hand side converges absolutely.

Proposition 2.7

              [image: $$-\partial _\Diamond $$] and [image: $$-\bar{\partial }_\Diamond $$] are the formal adjoints of [image: $$\bar{\partial }_\varLambda $$] and [image: $$\partial _\varLambda $$], respectively. That is, if [image: $$f:V(\varLambda )\rightarrow \mathbb C$$] or [image: $$h:V(\Diamond ) \rightarrow \mathbb C$$] is compactly supported, then[image: $$\langle \partial _\varLambda f, h\rangle +\langle f, \bar{\partial }_\Diamond h \rangle =0=\langle \bar{\partial }_\varLambda f, h\rangle +\langle f, \partial _\Diamond h\rangle .$$]





Proof
In Lemma 2.3, we showed how the discrete derivative [image: $$\partial _\varLambda f(Q)$$] can be expressed as a contour integration around the face of X associated to [image: $$Q \in V(\Diamond )$$]. Using this, the definitions of [image: $$\varOmega _\varLambda $$] and [image: $$\varOmega _\Diamond $$], and [image: $$\partial _\Diamond \bar{h}=\overline{\bar{\partial }_\Diamond h}$$], we get[image: $$\begin{aligned} \langle \partial _\varLambda f, h\rangle +\langle f, \bar{\partial }_\Diamond h \rangle&=\sum \limits _{Q\in V(\Diamond )} \partial _\varLambda f(Q)\bar{h}(Q) \text {ar}(F_Q)+\sum \limits _{v\in V(\varLambda )} f(v) \overline{\bar{\partial }_\Diamond h (v)} \text {ar}(F_v) \\&=\frac{i}{2}\sum \limits _{Q\in V(\Diamond )} \bar{h}(Q) \oint \limits _{P_Q} fd\bar{z}+\frac{i}{2}\sum \limits _{v\in V(\varLambda )} f(v) \oint \limits _{P_v} \bar{h} d\bar{z} \\&=\frac{i}{2}\oint \limits _P f\bar{h}d\bar{z}=0,\end{aligned}$$]


where P is a large contour enclosing all the vertices of [image: $$\varLambda $$] and [image: $$\Diamond $$] where f or h do not vanish. In particular, [image: $$f\bar{h}$$] vanishes in a neighborhood of P. In the same way, [image: $$\langle \bar{\partial }_\varLambda f, h\rangle +\langle f, \partial _\Diamond h\rangle =0$$].

Remark
Note that in their work on discrete complex analysis on rhombic quad-graphs, Kenyon [16] and Mercat [20] did not give explicit formulae for the discrete derivatives, but defined [image: $$-\partial _\Diamond $$] and [image: $$-\bar{\partial }_\Diamond $$] instead as the formal adjoints of the discrete derivatives [image: $$\bar{\partial }_\varLambda $$] and [image: $$\partial _\varLambda $$], respectively. In contrast, we derived the formal adjoint property from our explicit formulae for the discrete derivatives.

In Corollary 2.11, we will prove that [image: $$\partial _\varLambda f$$] is discrete holomorphic if the function [image: $$f:V(\varLambda ) \rightarrow \mathbb C$$] is. Conversely, we can find discrete primitives of discrete holomorphic functions on subgraphs [image: $$\Diamond _0\subseteq \Diamond $$] that form a simply-connected closed region, extending the corresponding result for rhombic quad-graphs given by Chelkak and Smirnov [6].
Proposition 2.8
Let [image: $$\Diamond _0 \subseteq \Diamond $$] form a simply-connected closed region. Then, for any discrete holomorphic function h on [image: $$V(\Diamond _0)$$], there is a discrete primitive [image: $$f:=\int h$$] on [image: $$V(\varLambda _0)$$], i.e., f is discrete holomorphic and [image: $$\partial _\varLambda f=h$$]. f is unique up to two additive constants on [image: $$\varGamma _0$$] and [image: $$\varGamma ^*_0$$].

Proof
Since h is discrete holomorphic, [image: $$\oint _P hdz=0$$] for any discrete contour P in [image: $$X_0$$] by discrete Morera’s Theorem 2.23. Therefore, hdz can be integrated to a well-defined function [image: $$f_X$$] on V(X) that is unique up to an additive constant. The equation [image: $$f_X\left( \left( v+w\right) /2\right) =\left( f(v)+f(w)\right) /2$$] for any edge (v, w) of [image: $$\varLambda $$] defines a function f on [image: $$V(\varLambda )$$]. Indeed, since [image: $$\Diamond _0$$] forms a simply-connected closed region, it suffices to check the compatibility of the equations defining f just for one quadrilateral face Q. Now, the differences of f along the black and white diagonals of Q are given by integration of hdz along the edges of X that are parallel to these diagonals. Since hdz is a discrete one-form of type [image: $$\Diamond $$], the two integrations along the edges of X parallel to one diagonal are the same if they are oriented the same, and compatibility follows. Given [image: $$f_X$$], f is unique up to another additive constant.
In summary, f is unique up to two additive constants that can be chosen independently on [image: $$\varGamma _0$$] and [image: $$\varGamma ^*_0$$]. By construction, f satisfies[image: $$\begin{aligned} \frac{f(b_+)-f(b_-)}{b_+-b_-}=h(Q)=\frac{f(w_+)-f(w_-)}{w_+-w_-} \end{aligned}$$]


on any quadrilateral [image: $$Q \in V(\Diamond _0)$$]. So f is discrete holomorphic and [image: $$\partial _\varLambda f=h$$].



2.3 Discrete Exterior Calculus
Our treatment of discrete exterior calculus is similar to the approach of Mercat in [19–21], but differs in some aspects. The main differences are due to our different notation of multiplication of functions with discrete one-forms, which allows us to define a discrete exterior derivative on a larger class of discrete one-forms in Sect. 2.3.1. It coincides with Mercat’s discrete exterior derivative in the case of discrete one-forms of type [image: $$\Diamond $$] that Mercat considers. In contrast, our definitions are based on a coordinate representation and mimic the smooth case. Eventually, they lead to essentially the same definitions of a discrete wedge product in Sect. 2.3.2 and a discrete Hodge star in Sect. 2.3.3 as in [21].
2.3.1 Discrete Exterior Derivative
Definition
Let [image: $$f:V(\varLambda _0) \rightarrow \mathbb C$$], [image: $$h:V(\Diamond _0) \rightarrow \mathbb C$$]. We define the discrete exterior derivatives df and dh as the discrete one-forms on oriented edges of [image: $$X_0$$] given by[image: $$\begin{aligned} df:=\partial _\varLambda f dz+\bar{\partial }_\varLambda f d\bar{z} \quad \text {and} \quad dh:=\partial _\Diamond h dz+\bar{\partial }_\Diamond h d\bar{z}. \end{aligned}$$]





Definition
Let [image: $$\omega $$] be a discrete one-form defined on all boundary edges of a face [image: $$F_v$$] of the medial graph X corresponding to [image: $$v\in V(\varLambda )$$] or on all four boundary edges of a face [image: $$F_Q$$] of X corresponding to [image: $$Q\in F(\varLambda )$$]. In the first case, we write [image: $$\omega =p dz+ q d\bar{z}$$] with functions p, q defined on all faces of [image: $$\varLambda $$] that are incident to v, and in the second case, we write [image: $$\omega =p dz+ q d\bar{z}$$] with functions p, q defined on all vertices of [image: $$\varLambda $$] that are incident to Q. The discrete exterior derivative [image: $$d\omega $$] on [image: $$F_v$$] or [image: $$F_Q$$] is given by[image: $$\begin{aligned} d\omega |_{F_v}:=\left( \partial _\Diamond q - \bar{\partial }_\Diamond p\right) \varOmega _\varLambda \quad \text {and} \quad d\omega |_{F_Q}:=\left( \partial _\varLambda q - \bar{\partial }_\varLambda p\right) \varOmega _\Diamond . \end{aligned}$$]





The representation of [image: $$\omega $$] as [image: $$p dz+ q d\bar{z}$$] (p, q defined on edges of X) we have used above may be nonunique. However, [image: $$d\omega $$] is well-defined by the following discrete Stokes’ theorem that also justifies our definition of df and [image: $$d\omega $$]. Note that Mercat defined the discrete exterior derivative by the discrete Stokes’ theorem [19].
Theorem 2.9
Let [image: $$f:V(\varLambda _0) \rightarrow \mathbb C$$] and [image: $$\omega $$] be a discrete one-form defined on oriented edges of [image: $$X_0$$]. Then, for any directed edge e of [image: $$X_0$$] starting in the midpoint of the edge [image: $$vv'_-$$] and ending in the midpoint of the edge [image: $$vv'_+$$] of [image: $$\varLambda _0$$] and for any finite collection of faces F of [image: $$X_0$$] with counterclockwise oriented boundary [image: $$\partial F$$] we have:[image: $$\begin{aligned} \int \limits _e df=\frac{f(v'_+)-f(v'_-)}{2}=\frac{f(v)+f(v'_+)}{2}-\frac{f(v)+f(v'_-)}{2} \quad \text {and} \quad \iint \limits _F d\omega =\oint \limits _{\partial F} \omega . \end{aligned}$$]





Proof
Let [image: $$v_-$$] be the other vertex of the quadrilateral Q with vertices v, [image: $$v'_-$$] and [image: $$v'_+$$]. Without loss of generality, let v be white. Since [image: $$df=\partial _\varLambda f dz+\bar{\partial }_\varLambda f d\bar{z}$$], [image: $$\int _e df$$] equals[image: $$\begin{aligned}&\partial _\varLambda f \frac{v'_+-v'_-}{2}+\bar{\partial }_\varLambda f \frac{\overline{v'_+-v'_-}}{2}\\ =&\frac{1}{2}(\lambda _Q+\bar{\lambda }_Q)(f(v'_+)-f(v'_-))+\frac{1}{2}\left( \bar{\lambda }_Q\frac{v'_+-v'_-}{v-v_-}+\lambda _Q{\frac{\overline{v'_+-v'_-}}{\overline{v-v_-}}}\right) \left( f(v)-f(v_-)\right) \\ =&\frac{f(v'_+)-f(v'_-)}{2}+{{\mathrm{Re}}}\left( \bar{\lambda }_Q\frac{v'_+-v'_-}{v-v_-}\right) \left( f(v)-f(v_-)\right) =\frac{f(v'_+)-f(v'_-)}{2}. \end{aligned}$$]


To get to the third line, we used [image: $$\lambda _Q+\bar{\lambda }_Q=1$$], and for the last step we used[image: $$\text {arg}\left( \bar{\lambda }_Q\frac{v'_+-v'_-}{v-v_-}\right) =\text {arg}\left( \pm \exp \left( i\left( \varphi _Q-\frac{\pi }{2}\right) \right) \exp \left( -i\varphi _Q\right) \right) =\pm \pi /2.$$]


The sign depends on whether [image: $$v,v'_-,v_-,v'_+$$] denote the corners of Q in clockwise or counterclockwise order. In either case, the expression inside [image: $$\text {arg}$$] is purely imaginary.
The second identity has to be shown just for one single face of [image: $$X_0$$]. Let us write [image: $$\omega =p dz+q d\bar{z}$$] on all edges of [image: $$X_0$$] that are boundary edges of [image: $$F_Q$$] or [image: $$F_v$$], where p, q are functions defined on the vertices of the quadrilateral [image: $$Q\in V(\Diamond _0)$$] or on the faces incident to [image: $$v\in V(\varLambda _0)$$]. Then, by the representation of [image: $$\partial _\varLambda ,\bar{\partial }_\varLambda $$] as discrete contour integrals in Lemma 2.3 and the definition of the discrete derivatives [image: $$\partial _\Diamond ,\bar{\partial }_\Diamond $$],[image: $$\begin{aligned}\iint \limits _{F_Q} d\omega&=\iint \limits _{F_Q} \left( \partial _\Diamond q -\bar{\partial }_\Diamond p\right) \varOmega _\Diamond =-2i\text {ar}(F_Q)\left( \partial _\Diamond q -\bar{\partial }_\Diamond p \right) =\oint \limits _{\partial F_Q}\left( pdz+qd\bar{z}\right) , \\ \iint \limits _{F_v} d\omega&=\iint \limits _{F_v} \left( \partial _\varLambda q -\bar{\partial }_\varLambda p\right) \varOmega _\varLambda =-2i\text {ar}(F_v)\left( \partial _\varLambda q -\bar{\partial }_\varLambda p \right) =\oint \limits _{\partial F_v}\left( pdz+qd\bar{z}\right) .\end{aligned}$$]





Definition
Let [image: $$\Diamond _0 \subseteq \Diamond $$] form a simply-connected closed region. A discrete one-form [image: $$\omega $$] defined on oriented edges of [image: $$X_0$$] is said to be closed if [image: $$d\omega \equiv 0$$].

Note that if [image: $$\omega $$] is a discrete one-form of type [image: $$\Diamond $$], then [image: $$\iint _{F} d\omega =0$$] for any face F corresponding to a face of [image: $$\varLambda $$]. Examples for closed discrete one-forms are discrete exterior derivatives of complex functions on [image: $$V(\varLambda )$$]:
Proposition 2.10
Let [image: $$f:V(\varLambda _0) \rightarrow \mathbb C$$]. Then, [image: $$ddf=0$$] on any face [image: $$F_v$$] of [image: $$X_0$$] corresponding to [image: $$v\in V(\varLambda _0) \backslash V(\partial \varLambda _0)$$].

Proof
By discrete Stokes’ Theorem 2.9, we have to show [image: $$\oint _P df=0$$] for any discrete elementary cycle P in [image: $$X_0$$] in order to prove [image: $$ddf=0$$]. Since df is of type [image: $$\Diamond $$], the statement is trivially true if [image: $$P=P_Q$$] for [image: $$Q\in V(\Diamond _0)$$]. So let [image: $$P=P_v$$] for [image: $$v\in V(\varLambda _0) \backslash V(\partial \varLambda _0)$$]. Using discrete Stokes’ Theorem 2.9 again,[image: $$\oint \limits _{P_v} df=\sum \limits _{Q_s \sim v} \frac{f(v'_{s})-f(v'_{s-1})}{2}=0. $$]





An immediate corollary of the last proposition is the commutativity of discrete derivatives, generalizing the known result for rhombic quad-graphs in [6].
Corollary 2.11
Let [image: $$f:V(\varLambda _0) \rightarrow \mathbb C$$]. Then, [image: $$\partial _\Diamond \bar{\partial }_\varLambda f(v)=\bar{\partial }_\Diamond \partial _\varLambda f(v)$$] for all vertices [image: $$v\in V(\varLambda _0) \backslash V(\partial \varLambda _0)$$]. In particular, [image: $$\partial _\varLambda f$$] is discrete holomorphic if f is discrete holomorphic.

Proof
Due to the preceding Proposition 2.10 and the definition of the discrete derivative, the equation [image: $$0=ddf=\left( \partial _\Diamond \bar{\partial }_\varLambda f-\bar{\partial }_\Diamond \partial _\varLambda f\right) \varOmega _\varLambda $$] holds on all faces of [image: $$X_0$$] corresponding to a vertex of [image: $$\varLambda _0$$] that is not on the boundary [image: $$\partial \varLambda _0$$]. The claim follows since [image: $$\varOmega _\varLambda $$] is nonzero on these faces.

Remark
Note that even in the generic rhombic case, [image: $$\partial _\varLambda \bar{\partial }_\Diamond h$$] does not always equal [image: $$\bar{\partial }_\varLambda \partial _\Diamond h$$] for a function [image: $$h:V(\Diamond )\rightarrow \mathbb C$$] [6]. Hence, [image: $$ddh=0$$] cannot hold for such functions h in general.

Corollary 2.12
Let [image: $$f:V(\varLambda _0) \rightarrow \mathbb C$$]. Then, f is discrete holomorphic if and only if [image: $$df=p dz$$] for some [image: $$p:V(\Diamond _0) \rightarrow \mathbb C$$]. In the case that f is discrete holomorphic, p is discrete holomorphic as well.

Proof
Since all quadrilaterals [image: $$Q\in V(\Diamond _0)$$] are nondegenerate, the representation of [image: $$df|_{\partial {F_Q}}$$] as [image: $$pdz+qd\bar{z}$$] is unique (see Lemma 2.14 below). Clearly, we have [image: $$df=\partial _\varLambda f dz+\bar{\partial }_\varLambda f d\bar{z}$$]. It follows that f is discrete holomorphic at Q if and only if [image: $$df|_{\partial {F_Q}}=p dz$$].
Assuming that [image: $$df=pdz$$] for some [image: $$p:V(\Diamond _0) \rightarrow \mathbb C$$], [image: $$ddf=0$$] on any face [image: $$F_v$$] of [image: $$X_0$$] corresponding to [image: $$v\in V(\varLambda _0) \backslash V(\partial \varLambda _0)$$] by Proposition 2.10. Thus, [image: $$\bar{\partial }_\Diamond p(v)=0$$] for any such v and f is discrete holomorphic.

Definition
Let [image: $$\Diamond _0 \subseteq \Diamond $$] form a simply-connected closed region. A discrete one-form [image: $$\omega $$] defined on the oriented edges of [image: $$X_0$$] is discrete holomorphic if [image: $$\omega =p dz$$] for some [image: $$p:V(\Diamond _0) \rightarrow \mathbb C$$] and [image: $$d\omega =0$$].

Remark
This notion recurs in the more general setting of discrete Riemann surfaces in [1]. By Corollary 2.12, df is discrete holomorphic if f is, and by Proposition 2.8 on the existence of a discrete primitive for discrete holomorphic functions defined on the vertices of a subset [image: $$\Diamond _0\subseteq \Diamond $$] that forms a simply-connected closed region, any discrete holomorphic one-form [image: $$\omega $$] defined on the oriented edges of [image: $$X_0$$] is the discrete exterior derivative of a discrete holomorphic function on [image: $$V(\varLambda _0)$$].

Due to Chelkak and Smirnov [6], one of the unpleasant facts of all discrete theories of complex analysis is that (pointwise) multiplication of discrete holomorphic functions does not yield a discrete holomorphic function in general. We define a product of complex functions on [image: $$V(\varLambda )$$] that is defined on V(X) and a product of complex functions on [image: $$V(\varLambda )$$] with functions on [image: $$V(\Diamond )$$] that is defined on E(X). In general, the product of two discrete holomorphic functions is not discrete holomorphic according to the classical quad-based definition (on planar quad-graphs different from [image: $$\varLambda $$]), but it will be discrete holomorphic in the sense that a discretization of its exterior derivative is closed and is of the form pdz, p defined on the edges of the medial graph of the new quad-graph, or in the sense that it fulfills a discrete Morera’s theorem.
Proposition 2.13
Let [image: $$f,g:V(\varLambda ) \rightarrow \mathbb C$$] and [image: $$h:V(\Diamond ) \rightarrow \mathbb C$$].

                  	(i)
                      [image: $$fdg+g df$$] is a closed discrete one-form.


 

	(ii)If f and h are discrete holomorphic, then fhdz is a closed discrete one-form.


 




                

Proof
(i) Let [image: $$\omega :=fdg+g df$$]. By Proposition 2.10, [image: $$ddf=0$$] and [image: $$ddg=0$$], i.e., df and dg are closed. Thus,[image: $$\begin{aligned} \oint \limits _{\partial F_v} \omega =f(v) \oint \limits _{\partial F_v} dg+g(v)\oint \limits _{\partial F_v}df= 0 \end{aligned}$$]


for any face [image: $$F_v$$] corresponding to [image: $$v\in V(\varLambda )$$]. Using Lemma 2.3 that relates discrete derivatives with discrete contour integration,[image: $$\begin{aligned}2i\text {ar}(F_Q)\oint \limits _{\partial F_Q} \omega&= 2i\text {ar}(F_Q)\oint \limits _{\partial F_Q} \left( f\partial _\varLambda gdz+f\bar{\partial }_\varLambda gd\bar{z}+g\partial _\varLambda fdz+g\bar{\partial }_\varLambda fd\bar{z} \right) \\ {}&=\left( \bar{\partial }_\varLambda f \partial _\varLambda g - \partial _\varLambda f \bar{\partial }_\varLambda g +\bar{\partial }_\varLambda g \partial _\varLambda f -\partial _\varLambda g \bar{\partial }_\varLambda f\right) (Q)=0\end{aligned}$$]


for any face [image: $$F_Q$$] corresponding to [image: $$Q\in F(\varLambda )$$]. It follows by discrete Stokes’ Theorem 2.9 that [image: $$d\omega =0$$].
(ii) By discrete Morera’s Theorem 2.23, discrete holomorphicity of f and h implies that fdz and hdz are closed. Thus, [image: $$\oint _{\partial F_v} fh dz=f(v)\oint _{\partial F_v} h dz=0$$] as well as [image: $$\oint _{\partial F_Q} fh dz=h(Q)\oint _{\partial F_Q} f dz=0$$] for any faces [image: $$F_v$$] and [image: $$F_Q$$] of X corresponding to [image: $$v \in V(\varLambda )$$] and [image: $$Q\in F(\varLambda )$$]. Therefore, fhdz is closed.

Remark
In particular, for any [image: $$f,g:V(\varLambda ) \rightarrow \mathbb C$$] a product [image: $$f\cdot g: V(X)\rightarrow \mathbb C$$] can be defined by integration of [image: $$fdg+gdf$$]. Note that this product [image: $$f \cdot g$$] is defined up to an additive constant. Furthermore, [image: $$f \cdot h:E(X) \rightarrow \mathbb C$$] can be defined by “pointwise” multiplication. If f, g, h are discrete holomorphic, then [image: $$fdg+g df=p dz$$] is closed, where [image: $$p=f\cdot \partial _\varLambda g+g\cdot \partial _\varLambda f:E(X)\rightarrow \mathbb C$$], and so to say a discrete holomorphic one-form, meaning that [image: $$f\cdot g$$] is discrete holomorphic in this sense. Similarly, fhdz is closed, so [image: $$f\cdot h$$] is discrete holomorphic in the sense that a discrete Morera’s theorem holds true. Even though [image: $$f\cdot g$$] is defined on the vertices of the dual of a planar quad-graph different from [image: $$\varLambda $$], as well is [image: $$f\cdot h$$] on the dual of a different planar quad-graph, these products are generally not discrete holomorphic everywhere according to the quad-based definition of discrete holomorphicity on the dual of a bipartite quad-graph given by the definition in Sect. 2.2.3. To define the mentioned planar quad-graphs, we identify [image: $$Q\in V(\Diamond )$$] with such a point in the interior of the face Q that all line segments connecting it to the four corners of Q lie inside the quadrilateral.
First, [image: $$f\cdot g$$] is a complex function on the vertices of X. The medial graph X is the dual of the bipartite quad-graph with vertex set [image: $$V(\varLambda )\sqcup V(\Diamond )$$], edges connecting points [image: $$Q\in V(\Diamond )$$] with all incident vertices [image: $$v\in V(\varLambda )$$], and faces in one-to-one correspondence to edges of [image: $$\varLambda $$]. But even if f and g are discrete holomorphic on [image: $$V(\varLambda )$$], [image: $$f\cdot g$$] does not need to be a discrete holomorphic function on the faces of the quad-graph we just defined. For example, consider [image: $$f(v)=0$$] if v is black and [image: $$f(v)=1$$] if v is white and a discrete holomorphic g that is not biconstant. Then, the product [image: $$f\cdot g$$] is not discrete holomorphic at all [image: $$Q \in V(\Diamond )$$] (seen as vertices of the quad-graph described above) where [image: $$\partial _\varLambda g (Q)\ne 0$$].
Second, [image: $$f \cdot h$$] is a complex function on the edges of X, so it is a function on the vertices of the medial graph of X. The medial graph of the medial graph of [image: $$\varLambda $$] is the dual of the quad-graph with vertex set [image: $$\left( V(\varLambda )\cup V(\Diamond )\right) \sqcup V(X)$$], edges connecting points [image: $$v\in V(\varLambda )$$] or [image: $$Q\in V(\Diamond )$$] with the midpoints of all incident edges, and each face being in one-to-one correspondence to an edge of X. Since fhdz is closed, [image: $$f \cdot h$$] is discrete holomorphic on the new quad-graph at vertices of [image: $$\varLambda $$] or [image: $$\Diamond $$] by discrete Morera’s Theorem 2.23. But there is no need for [image: $$f \cdot h$$] to be discrete holomorphic at vertices of X, even for constant h. For example, take the function f defined by [image: $$f(v)=0$$] if v is black and [image: $$f(v)=1$$] if v is white.
In summary, we defined products [image: $$f\cdot g$$] and [image: $$f \cdot h$$], where [image: $$f,g:V(\varLambda ) \rightarrow \mathbb C$$] and [image: $$h:V(\Diamond )\rightarrow \mathbb C$$] are discrete holomorphic, that are local (on each vertex, they depend just on the values of f and g in a small neighborhood) and discrete holomorphic at least in the sense that its discrete exterior derivative is closed and of the form pdz or in the sense that it fulfills a discrete Morera’s theorem.
Somehow missing is a product [image: $$h\cdot h'$$], where [image: $$h,h':V(\Diamond )\rightarrow \mathbb C$$]. In the general case, we do not know an appropriate product so far. But we want to point out that Chelkak and Smirnov showed in [7] that for so-called spin holomorphic functions [image: $$h,h'$$], the pointwise product satisfies [image: $${{\mathrm{Re}}}\left( \bar{\partial }_{\Diamond }\left( h \cdot h'\right) \right) \equiv 0$$].


2.3.2 Discrete Wedge Product
Following Whitney [27], Mercat defined in [19] a discrete wedge product for discrete one-forms living on the edges of [image: $$\varLambda $$]. Then, the discrete exterior derivative defined by a discretization of Stokes’ theorem is a derivation for the discrete wedge product. However, a discrete Hodge star cannot be defined on [image: $$\varLambda $$]. To circumvent this problem, Mercat used an averaging map to relate discrete one-forms on the edges of [image: $$\varLambda $$] with discrete one-forms on the edges of [image: $$\varGamma $$] and [image: $$\varGamma ^*$$], i.e., discrete one-forms of type [image: $$\Diamond $$]. Then, he could define a discrete Hodge star; however, the discrete exterior derivative was not a derivation for the now heterogeneous discrete wedge product.
In this section, a different interpretation of the discrete wedge product is proposed. Still, the notions of Mercat in [19–21] are recovered. Starting with discrete one-forms of type [image: $$\Diamond $$] that are defined on the edges of X, a discrete wedge product on (half of) the faces of X is defined. This definition is different from Whitney’s [27] and has the advantage that both a discrete wedge product and a discrete Hodge star can be defined on the same structure. In addition, the discrete exterior derivative is now a derivation for the discrete wedge product in a well-defined sense, see Theorem 2.16. It turns out that Theorem 2.16 is a powerful tool leading to discretizations of Green’s identities in Sect. 2.4.1 and of a Cauchy’s integral formula for the discrete derivative of a discrete holomorphic function in Sect. 2.6.
Lemma 2.14
Let [image: $$\omega $$] be a discrete one-form of type [image: $$\Diamond $$] defined on the oriented edges of [image: $$X_0$$]. Then, there is a unique representation [image: $$\omega =p dz+q d\bar{z}$$] with [image: $$p,q:V(\Diamond _0)\rightarrow \mathbb C$$]. On a quadrilateral [image: $$Q \in V(\Diamond _0)$$], p and q are given by[image: $$\begin{aligned} p(Q)=\lambda _Q\frac{\int _e \omega }{e}+\bar{\lambda }_Q\frac{\int _{e^*} \omega }{e^*} \quad \text {and} \quad q(Q)=\bar{\lambda }_Q\frac{\int _e \omega }{\bar{e}}+\lambda _Q\frac{\int _{e^*} \omega }{\bar{e}^*}. \end{aligned}$$]


Here, e is an oriented edge of [image: $$X_0$$] parallel to a black edge of [image: $$\varGamma _0$$], and [image: $$e^*$$] is parallel to a white edge of [image: $$\varGamma ^*_0$$].

Proof
First, we show that a representation [image: $$\omega |_{\partial F_Q}=p dz+q d\bar{z}$$] exists for any face [image: $$F_Q$$] of [image: $$X_0$$] corresponding to a quadrilateral [image: $$Q\in V(\Diamond _0)$$]. Given [image: $$\omega $$], we have to solve the system of linear equations [image: $$\int _{e_Q} \omega =p \int _{e_Q} dz+q \int _{e_Q} d\bar{z}$$] for all four boundary edges [image: $$e_Q$$] of [image: $$F_Q$$]. Since [image: $$\omega $$] is of type [image: $$\Diamond $$], we just have to consider two equations, namely one for a boundary edge [image: $$e_b$$] of [image: $$F_Q$$] parallel to a black edge of [image: $$\varGamma _0$$] and one equation for a boundary edge [image: $$e_w$$] parallel to a white edge of [image: $$\varGamma ^*_0$$]. Since all quadrilaterals are nondegenerate, the diagonals are not parallel to each other and it follows that the pair [image: $$(dz,d\bar{z})$$] gives different values when integrated over [image: $$e_b$$] and [image: $$e_w$$]. Thus, this system of two linear equations in two variables is nondegenerate. It follows that p, q are uniquely defined on [image: $$V(\Diamond _0)$$].
Furthermore, we can find for any quadrilateral [image: $$Q\in V(\Diamond _0)\cong F(\varLambda _0)$$] a function f that is defined on the vertices [image: $$b_\pm , w_\pm $$] of Q such that [image: $$2\int _e \omega =f(b_+)-f(b_-)$$] and [image: $$2\int _{e^*} \omega =f(w_+)-f(w_-)$$], where e is one of the two oriented edges of [image: $$X_0$$] going from the midpoint of [image: $$b_-$$] and [image: $$w_\pm $$] to the midpoint of [image: $$b_+$$] and [image: $$w_\pm $$], and [image: $$e^*$$] is one of the two edges connecting the midpoint of [image: $$w_-$$] and [image: $$b_\pm $$] with the midpoint of [image: $$w_+$$] and [image: $$b_\pm $$]. By discrete Stokes’ Theorem 2.9, we get [image: $$\omega |_{\partial F_Q}=df=p dz +qd\bar{z}$$] with [image: $$p=\partial _\varLambda f (Q)$$] and [image: $$q=\bar{\partial }_\varLambda f (Q)$$]. Replacing the differences of f in the definition of the discrete derivative by discrete integrals of [image: $$\omega $$] yields the desired result.

Definition
Let [image: $$\omega =p dz+ q d\bar{z}$$] and [image: $$\omega '=p' dz+ q' d\bar{z}$$] be two discrete one-forms of type [image: $$\Diamond $$] defined on the oriented edges of [image: $$X_0$$]. Here, [image: $$p,p',q,q':V(\Diamond _0) \rightarrow \mathbb C$$] are given by the above Lemma 2.14. Then, the discrete wedge product [image: $$\omega \wedge \omega '$$] is defined as the discrete two-form of type [image: $$\Diamond $$] defined on [image: $$F(X_0)$$] that equals[image: $$\begin{aligned} \left( pq'-qp'\right) \varOmega _\Diamond \end{aligned}$$]


on faces of X corresponding to interior faces of the quad-graph [image: $$\varLambda _0$$].

Remark
Note that if one considers dz and [image: $$d\bar{z}$$] as discrete one-forms of type [image: $$\Diamond $$], then [image: $$\varOmega _\Diamond =dz \wedge d\bar{z}$$].

Proposition 2.15
Let F be a face of [image: $$X_0$$] corresponding to [image: $$Q\in F(\varLambda _0)$$], and let [image: $$e,e^*$$] be oriented edges of X parallel to the black and white diagonal of the quadrilateral Q, respectively, such that [image: $${{\mathrm{Im}}}\left( e^*/e\right) >0$$]. If [image: $$\omega ,\omega '$$] are discrete one-forms of type [image: $$\Diamond $$] defined on the oriented edges of [image: $$\partial F$$], then[image: $$\iint \limits _F \omega \wedge \omega ' = 2\int \limits _e \omega \int \limits _{e^*} \omega '- 2\int \limits _{e^*} \omega \int \limits _e \omega '.$$]





Proof
Both sides of the equation are bilinear and antisymmetric in [image: $$\omega ,\omega '$$]. Hence, it suffices to check the identity for [image: $$\omega =dz$$], [image: $$\omega '=d\bar{z}$$]. On the left hand side, we get [image: $$\iint _F \omega \wedge \omega '=-2i\text {ar}(F)$$]. This equals the right hand side[image: $$2e\bar{e}^*-2e^*\bar{e}=4i{{\mathrm{Im}}}(e\bar{e}^*)=-i|2e||2e^*|\sin (\varphi _Q)=-2i\text {ar}(F). $$]





Remark
Since the complex numbers e and [image: $$e^*$$] are just half of the oriented diagonals, the above definition of the discrete wedge product is essentially the same as the one given by Mercat in [19–21].

The discrete exterior derivative is a derivation for the discrete wedge product if one considers functions on [image: $$\varLambda $$] and discrete one-forms of type [image: $$\Diamond $$]:
Theorem 2.16
Let [image: $$f:V(\varLambda _0) \rightarrow \mathbb C$$] and [image: $$\omega $$] be a discrete one-form of type [image: $$\Diamond $$] defined on the oriented edges of [image: $$X_0$$]. Then, the following identity holds on [image: $$F(X_0)$$]:[image: $$\begin{aligned} d(f\omega )=df\wedge \omega +fd\omega . \end{aligned}$$]





Proof
Let [image: $$\omega =pdz+qd\bar{z}$$] with [image: $$p,q:V(\Diamond _0)\rightarrow \mathbb C$$] given by Lemma 2.14. If [image: $$F_v$$] and [image: $$F_Q$$] are faces of [image: $$X_0$$] corresponding to a vertex v and a face Q of [image: $$\varLambda _0$$], then[image: $$\begin{aligned} d(f\omega )|_{F_v}&=\left( f(v)\left( \partial _\Diamond q\right) (v) - f(v)\left( \bar{\partial }_\Diamond p\right) (v)\right) \varOmega _\varLambda =fd\omega |_{F_v},\\ d(f\omega )|_{F_Q}&=\left( q(Q)\left( \partial _\varLambda f\right) (Q) - p(Q)\left( \bar{\partial }_\varLambda f\right) (Q)\right) \varOmega _\Diamond =(df\wedge \omega )|_{F_Q}. \end{aligned}$$]


But [image: $$(df\wedge \omega )|_{F_v}=0$$] since [image: $$\varOmega _\Diamond |_{F_v}=0$$] and [image: $$fd\omega |_{F_Q}=0$$] since [image: $$\omega $$] is of type [image: $$\Diamond $$], so [image: $$d(f\omega )=df\wedge \omega +fd\omega $$].

Remark
In [19], Mercat formulated an analog of the above Theorem 2.16 in a setting where discrete one-forms are defined on edges of [image: $$\varLambda $$]. In the setting of discrete one-forms defined on edges of [image: $$\varGamma $$] and [image: $$\varGamma ^*$$], the claim [image: $$d(f\omega )=df\wedge \omega +fd\omega $$] could not be well-defined.

Above, a discrete wedge product just of two discrete one-forms of type [image: $$\Diamond $$] is defined. Actually, we could define a discrete wedge product of two discrete one-forms of type [image: $$\varLambda $$] in essentially the same way, getting a discrete two-form of type [image: $$\varLambda $$]. Then, the analog of Theorem 2.16 would be true for this kind of discrete wedge product and functions on [image: $$V(\Diamond _0)$$]. Also the discrete Hodge star of a discrete one-form in the next section could be defined not only for those of type [image: $$\Diamond $$]. However, there exist no analogs of Propositions 2.15 and 2.18. These propositions imply that the discrete wedge product as well as the discrete Hodge star of discrete one-forms of type [image: $$\Diamond $$] can be defined in a chart-independent way. This enables one to consider these objects on discrete Riemann surfaces, see [1]. There are no such statements if one chooses discrete one-forms of type [image: $$\varLambda $$]. In fact, a discrete one-form of type [image: $$\varLambda $$] cannot be canonically defined on a discrete Riemann surface as opposed to discrete one-forms of type [image: $$\Diamond $$]. So since our interest lies in the latter, we do not define a discrete wedge product or a discrete Hodge star for discrete one-forms of type [image: $$\varLambda $$].

2.3.3 Discrete Hodge Star
Definition
Let [image: $$f:F(\varLambda _0)\rightarrow \mathbb C$$] and [image: $$h:V(\Diamond _0)\rightarrow \mathbb C$$], let [image: $$\omega =p dz +qd\bar{z}$$] be a discrete one-form of type [image: $$\Diamond $$] defined on oriented edges of [image: $$X_0$$] with [image: $$p,q:V(\Diamond _0)\rightarrow \mathbb C$$], and let [image: $$\varOmega _1,\varOmega _2:F(X_0)\rightarrow \mathbb C$$] be discrete two-forms of type [image: $$\varLambda $$] and [image: $$\Diamond $$]. Then, the discrete Hodge star is given by[image: $$\begin{aligned} \star f&:= -\frac{1}{2i}f \varOmega _\varLambda ; \quad \star h:= -\frac{1}{2i}h \varOmega _\Diamond ; \quad \star \omega :=-ip dz+iq d\bar{z};\\ \star \varOmega _1&:=-2i\frac{\varOmega _1}{\varOmega _\varLambda }; \quad \star \varOmega _2:=-2i\frac{\varOmega _2}{\varOmega _\Diamond }. \end{aligned}$$]


If [image: $$\omega $$] and [image: $$\omega ^\prime $$] are both discrete one-forms of type [image: $$\Diamond $$] defined on oriented edges of [image: $$X_0$$], we define their discrete scalar product
              [image: $$\langle \omega , \omega ^\prime \rangle :=\iint \limits _{F(X_0)} \omega \wedge \star \bar{\omega }^\prime ,$$]


whenever the right hand side converges absolutely. Similarly, a discrete scalar product for discrete two-forms of the same type is defined.

Remark
As in the classical theory, the Hodge star corresponds to a [image: $$\pi /2$$]-rotation: [image: $$\int _{ie}\star \omega =\int _e \omega $$] where [image: $$\omega $$] is a discrete one-form of type [image: $$\Diamond $$], e an oriented edge of X and ie its (virtual) image under [image: $$\pi /2$$]-rotation around the origin.

Corollary 2.17
The following statements are true:	(i)
                      [image: $$\star ^2=-\text {Id}$$] on discrete one-forms of type [image: $$\Diamond $$] defined on oriented edges of [image: $$X_0$$].


 

	(ii)
                      [image: $$\star ^2=\text {Id}$$] on complex functions on [image: $$V(\varLambda _0)$$] or [image: $$V(\Diamond _0)$$] and discrete two-forms defined on [image: $$F(X_0)$$] of type [image: $$\varLambda $$] or [image: $$\Diamond $$].


 

	(iii)
                      [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] is discrete holomorphic if and only if [image: $$\star df=-idf$$].


 

	(iv)
                      [image: $$\langle f_1,f_2 \rangle = \iint _{F(X_0)} f_1 \overline{\star f_2}$$] for functions [image: $$f_1,f_2:V(\varLambda _0)\rightarrow \mathbb C$$] and

                      [image: $$\langle h_1,h_2 \rangle = \iint _{F(X_0)} h_1 \overline{\star h_2}$$] for functions [image: $$h_1,h_2:V(\Diamond _0)\rightarrow \mathbb C$$].


 

	(v)
                      [image: $$\langle \cdot ,\cdot \rangle $$] is a Hermitian scalar product on discrete differential forms (of type [image: $$\varLambda $$] or of type [image: $$\Diamond $$]).


 






Proposition 2.18
Let [image: $$Q\in V(\Diamond )$$], and let [image: $$e,e^*$$] be oriented edges of X parallel to the black and white diagonal of Q, respectively, such that [image: $${{\mathrm{Im}}}\left( e^*/e\right) >0$$]. If [image: $$\omega $$] is a discrete one-form of type [image: $$\Diamond $$] defined on the oriented edges of the boundary of the face of X corresponding to Q, then[image: $$\begin{aligned} \int \limits _e \star \omega&=\cot \left( \varphi _Q\right) \int \limits _e \omega -\frac{|e|}{|e^*| \sin \left( \varphi _Q\right) }\int \limits _{e^*}\omega ,\\ \int \limits _{e^*} \star \omega&=\frac{|e^*|}{|e| \sin \left( \varphi _Q\right) } \int \limits _e \omega -\cot \left( \varphi _Q\right) \int \limits _{e^*}\omega . \end{aligned}$$]





Proof
Both sides of any of the two equations are linear and behave the same under complex conjugation. Thus, it suffices to check the statement for [image: $$\omega =dz$$]. Hence, it remains to show that[image: $$\begin{aligned} -ie=\cot \left( \varphi _Q\right) e-\frac{|e|}{|e^*| \sin \left( \varphi _Q\right) }e^* \quad \text {and}\quad e^*=\frac{|e^*|}{|e| \sin \left( \varphi _Q\right) } e-\cot \left( \varphi _Q\right) e^*. \end{aligned}$$]


Now, both sides of the first equation behave the same under scaling and simultaneous rotation of e and [image: $$e^*$$], the same statement is true for the second equation. Thus, we may assume [image: $$e=1$$] and [image: $$e^*=\cos \left( \varphi _Q\right) +i\sin (\varphi _Q)$$]. Multiplying both equations by [image: $$\sin (\varphi _Q)$$] gives the equivalent statements[image: $$\begin{aligned} -i\sin (\varphi _Q)&=\cos \left( \varphi _Q\right) -\left( \cos \left( \varphi _Q\right) +i\sin (\varphi _Q)\right) ,\\ -i\sin (\varphi _Q)\exp (i\varphi _Q)&=1-\cos \left( \varphi _Q\right) \exp (i\varphi _Q). \end{aligned}$$]


Both equations are true, noting that [image: $$\cos \left( \varphi _Q\right) -i\sin (\varphi _Q)=\exp (-i\varphi _Q).$$]
            

Remark
Proposition 2.18 shows that our definition of a discrete Hodge star on discrete one-forms coincides with Mercat’s definition given in [21]. But on discrete two-forms and complex functions, our definition of the discrete Hodge star includes an additional factor of the area of the corresponding face of X.

Proposition 2.19

              [image: $$\delta :=-\star d \star $$] is the formal adjoint of the discrete exterior derivative d: Let [image: $$f:V(\varLambda )\rightarrow \mathbb C$$], and let [image: $$\omega $$] be a discrete one-form of type [image: $$\Diamond $$] defined on the oriented edges of X and [image: $$\varOmega :F(X)\rightarrow \mathbb C$$] a discrete two-form of type [image: $$\varLambda $$]. Assume that all of them are compactly supported. Then,[image: $$\langle df, \omega \rangle =\langle f, \delta \omega \rangle \text { and }\langle d\omega ,\varOmega \rangle = \langle \omega , \delta \varOmega \rangle .$$]





Proof
By the assumption that all forms are compactly supported, we can take a large enough finite [image: $$\Diamond _0\subseteq \Diamond $$] that forms a simply-connected closed region such that [image: $$f, \omega , \varOmega $$] vanish outside [image: $$\varLambda _0, X_0, \Diamond _0$$] and [image: $$\omega $$] is zero on the boundary [image: $$\partial X_0$$]. By discrete Stokes’ Theorem 2.9 and Theorem 2.16 that states that the discrete exterior derivative is a derivation for the discrete wedge product,[image: $$\begin{aligned}0&=\oint \limits _{\partial X_0}f\star \bar{\omega }= \iint \limits _{F(X_0)} d(f\star \bar{\omega })=\iint \limits _{F(X_0)} fd\star \bar{\omega }+\iint \limits _{F(X_0)} df\wedge \star \bar{\omega } =\langle f, \star d \star \omega \rangle + \langle df, \omega \rangle ,\\ 0&=\oint \limits _{\partial X_0}\star \bar{\varOmega } \omega =\iint \limits _{F(X_0)} d(\star \bar{\varOmega } \omega )=\iint \limits _{F(X_0)} \star \bar{\varOmega }d\omega +\iint \limits _{F(X_0)} (d\star \bar{\varOmega })\wedge \omega = \langle d\omega , \varOmega \rangle -\langle \omega , \delta \varOmega \rangle . \end{aligned}$$]


In the last equalities, we have used Corollary 2.17(ii) and (iv) (the basic properties of the discrete Hodge star) and the observation that complex conjugation commutes with the discrete Hodge star and the discrete exterior derivative. The latter observation immediately follows from the definitions that mimic the classical theory.



2.4 Discrete Laplacian
The discrete Laplacian and the discrete Dirichlet energy on general quad-graphs were introduced by Mercat in [21]. Later, Skopenkov reintroduced these definitions in [23], taking the same definition in a different notation. In our discussion of the discrete Laplacian in Sect. 2.4.1, we follow the classical approach of Mercat (up to sign) and adapt it to our notations. A feature of the medial graph approach is that it allows to formulate a discrete analog of Green’s first identity from which discrete Green’s second identity immediately follows.
In Sect. 2.4.2, the discrete Dirichlet energy is investigated. In particular, in Theorem 2.30 it is shown how uniqueness and existence of solutions to the discrete Dirichlet boundary value problem imply surjectivity of the discrete derivatives and the discrete Laplacian. We conclude this section with a result concerning the asymptotics of discrete harmonic functions.
2.4.1 Definition and Basic Properties
Definition
The discrete Laplacian on functions [image: $$f:V(\varLambda )\rightarrow \mathbb C$$], discrete one-forms of type [image: $$\Diamond $$], or discrete two-forms of type [image: $$\varLambda $$] is defined as the linear operator[image: $$\triangle :=-\delta d-d\delta =\star d \star d +d \star d \star .$$]


For a connected subgraph [image: $$\Diamond _0\subseteq \Diamond $$] and [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$], [image: $$\triangle f$$] is still defined by the formula above as a complex function on [image: $$V(\varLambda _0)\backslash V(\partial \varLambda _0)$$]. f is said to be discrete harmonic at [image: $$v\in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$] if [image: $$\triangle f(v)=0$$]. f is discrete harmonic if it is discrete harmonic at all such v.

The following factorization of the discrete Laplacian in terms of discrete derivatives generalizes the corresponding result given by Chelkak and Smirnov in [6] to general quad-graphs. The local representation of [image: $$\triangle f$$] at [image: $$v\in V(\varLambda )$$] is, up to a factor involving the area of the face [image: $$F_v$$] of X corresponding to v, the same as Mercat’s [21].
Corollary 2.20
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$]. Then, [image: $$\triangle f(v)=4\partial _\Diamond \bar{\partial }_\varLambda f(v)=4\bar{\partial }_\Diamond \partial _\varLambda f(v)$$] for all vertices [image: $$v\in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$] and[image: $$\begin{aligned} \triangle f(v) = \frac{1}{2\text {ar}(F_v)}\sum \limits _{Q_s\sim v}\frac{1}{{{\mathrm{Re}}}\left( \rho _s\right) }\left( |\rho _s|^2 \left( f(v_s)-f(v)\right) +{{\mathrm{Im}}}\left( \rho _s\right) \left( f(v'_s)-f(v'_{s-1})\right) \right) . \end{aligned}$$]


Here, [image: $$\rho _s:=\rho _{Q_s}$$] if v is black, and [image: $$\rho _s:=1/\rho _{Q_s}$$] if v is white.
In particular, [image: $${{\mathrm{Re}}}(\triangle f)\equiv \triangle {{\mathrm{Re}}}(f)$$] and [image: $${{\mathrm{Im}}}(\triangle f)\equiv \triangle {{\mathrm{Im}}}(f)$$].

Proof
Since the definitions of the discrete Hodge star and the discrete exterior derivative mimic the classical theory and [image: $$\partial _\Diamond \bar{\partial }_\varLambda f(v)=\bar{\partial }_\Diamond \partial _\varLambda f(v)$$] by Corollary 2.11,[image: $$\triangle f(v) = \star d \star d f (v)= 2 \partial _\Diamond \bar{\partial }_\varLambda f (v)+2\bar{\partial }_\Diamond \partial _\varLambda f (v)=4\partial _\Diamond \bar{\partial }_\varLambda f (v)=4\bar{\partial }_\Diamond \partial _\varLambda f (v)$$]


holds exactly as in the smooth setting.
For the second statement, let us assume without loss of generality that [image: $$v\in V(\varGamma _0)$$]. Then, we have to show that[image: $$\begin{aligned} \triangle f(v) = \frac{1}{2\text {ar}(F_v)}\sum \limits _{Q_s\sim v}\left( \frac{|\rho _{Q_s}|}{\sin (\varphi _{Q_s})} \left( f(v_s)-f(v)\right) -\cot (\varphi _{Q_s})\left( f(v'_s)-f(v'_{s-1})\right) \right) . \end{aligned}$$]


The structure is similar to the formula of the discrete Hodge star in Proposition 2.18. Indeed, if [image: $$e_s$$] denotes an edge of X parallel to the black diagonal [image: $$vv_s$$] and [image: $$e^*_s$$] an edge parallel to the dual diagonal, then[image: $$\begin{aligned} \triangle f(v) =&\frac{1}{\text {ar}(F_v)}\iint \limits _{F_v} d \star df=\frac{1}{\text {ar}(F_v)}\oint \limits _{\partial F_v} \star df\\ =&\frac{1}{\text {ar}(F_v)}\sum \limits _{Q_s\sim v}\left( \frac{|e^*_s|}{|e_s|\sin (\varphi _{Q_s})} \int \limits _{e_s} df-\cot (\varphi _{Q_s})\int \limits _{e^*_s} df\right) \\=&\frac{1}{2\text {ar}(F_v)}\sum \limits _{Q_s\sim v}\left( \frac{|\rho _{Q_s}|}{\sin (\varphi _{Q_s})} \left( f(v_s)-f(v)\right) -\cot (\varphi _{Q_s})\left( f(v'_s)-f(v'_{s-1})\right) \right) , \end{aligned}$$]


using discrete Stokes’ Theorem 2.9 in the first and third equality, Proposition 2.18 that compares the integration of the discrete Hodge star of a discrete one-form of type [image: $$\Diamond $$] with the integration of the discrete one-form df itself in the second equality, and [image: $$|\rho _{Q_s}|=|e^*_s|/|e_s|$$] for the last step.

Remark
In the case when the diagonals of the quadrilaterals are orthogonal to each other, [image: $$\rho _Q$$] is always a positive real number. In this case, the discrete Laplacian splits into two separate discrete Laplacians on [image: $$\varGamma $$] and [image: $$\varGamma ^*$$]. In this case, it is known and actually an immediate consequence of the local representation in Corollary 2.20 that a discrete maximum principle holds true, i.e., a discrete harmonic function can attain its maximum only at the boundary of a closed region. This is not true for general quad-graphs, see for example Skopenkov’s paper [23].

Corollary 2.21
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$].

                  	(i)If f is discrete harmonic, then [image: $$\partial _\varLambda f$$] is discrete holomorphic.


 

	(ii)If f is discrete holomorphic, then f, [image: $${{\mathrm{Re}}}f$$], and [image: $${{\mathrm{Im}}}f$$] are discrete harmonic.


 




                

Proof
By Corollary 2.20, [image: $$\triangle f \equiv 4 \bar{\partial }_\Diamond \partial _\varLambda f\equiv 4 \partial _\Diamond \bar{\partial }_\varLambda f$$]. In particular, [image: $$\bar{\partial }_\Diamond \partial _\varLambda f \equiv 0$$] if [image: $$\triangle f \equiv 0$$], which shows (i). Also, f is discrete harmonic if it is discrete holomorphic. Using [image: $${{\mathrm{Re}}}(\triangle f)\equiv \triangle {{\mathrm{Re}}}(f)$$] and [image: $${{\mathrm{Im}}}(\triangle f)\equiv \triangle {{\mathrm{Im}}}(f)$$], [image: $${{\mathrm{Re}}}(f)$$] and [image: $${{\mathrm{Im}}}(f)$$] are discrete harmonic if f is.

Similar to Proposition 2.1 that compares the discrete derivative [image: $$\partial _\varLambda $$] with the smooth derivative, the discrete Laplacian coincides with the smooth one up to order one in the general case and up to order two for parallelogram-graphs. This was already shown by Skopenkov in [23]. Since this result follows immediately from our previous ones, we give a proof here as well.
Proposition 2.22
Let [image: $$f_{\mathbb C}:\mathbb C\rightarrow \mathbb C$$] and f its restriction to [image: $$V(\varLambda )$$].

                  	(i)If [image: $$f_{\mathbb C}(z)$$] is a polynomial in [image: $${{\mathrm{Re}}}(z)$$] and [image: $${{\mathrm{Im}}}(z)$$] of degree at most one, then the smooth and the discrete Laplacian coincide on vertices: [image: $$\triangle _{\mathbb C} f_{\mathbb C} (v)=\triangle f (v)=0$$].


 

	(ii)Let all faces of [image: $$\varLambda $$] be parallelograms. If [image: $$f_{\mathbb C}(z)$$] is a polynomial in [image: $${{\mathrm{Re}}}(z)$$] and [image: $${{\mathrm{Im}}}(z)$$] of degree at most two, then the smooth and the discrete Laplacian coincide on vertices: [image: $$\triangle _{\mathbb C} f_{\mathbb C} (v)=\triangle f (v)$$].


 




                

Proof
(i) Proposition 2.1(ii) says that the function [image: $$f(v)=v$$] is discrete holomorphic and Corollary 2.21(ii) that real and imaginary part of discrete holomorphic functions are discrete harmonic. Since constants are discrete harmonic, the statement follows.
(ii) In the parallelogram case, let [image: $$\hat{Q}$$] denote the center of the parallelogram [image: $$Q \in F(\varLambda )\cong V(\Diamond )$$]. Analogously to (i), [image: $$f(v)=v^2$$] is discrete harmonic by Proposition 2.1(iii) and Corollary 2.21(ii). Looking at real and imaginary part separately, [image: $$\triangle f_1^2 \equiv \triangle f_2^2$$] and [image: $$\triangle \left( f_1 f_2\right) \equiv 0$$] where we consider [image: $$f_1(v)={{\mathrm{Re}}}(v), f_2(v)={{\mathrm{Im}}}(v)$$]. Finally,[image: $$\triangle |f|^2 \equiv 4 \partial _\Diamond \bar{\partial }_\varLambda |f|^2\equiv 4 \partial _\Diamond h=4$$]


with [image: $$h(Q)=\hat{Q}$$] for all [image: $$Q \in V(\Diamond )$$], due to Propositions 2.1(iv) and 2.5 that implied [image: $$\bar{\partial }_\varLambda |f|^2 \equiv h$$] and [image: $$\partial _\Diamond h \equiv 1$$]. Since any polynomial in [image: $${{\mathrm{Re}}}(z)$$] and [image: $${{\mathrm{Im}}}(z)$$] of monomials of degree two is a linear combination of [image: $$f_1^2-f_2^2$$], [image: $$f_1^2+f_2^2$$], and [image: $$f_1f_2$$], and since we have shown that the discrete Laplacian [image: $$\triangle $$] and the smooth Laplacian [image: $$\triangle _\mathbb C$$] coincide on these, we are done.
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Fig. 4
                    [image: $$\triangle f (0)\ne 0$$] for [image: $$f(v)=v^2$$]
                  




              
Remark
The second part of the last proposition generalizes the known result for rhombi given by Chelkak and Smirnov [6]. Note that this is not true for general quadrilaterals even if one assumes that the diagonals of quadrilaterals are orthogonal to each other. For this, consider the following (finite) bipartite quad-graph of Fig. 4: the black vertex 0 is adjacent to the white vertices [image: $$\pm 1$$] and [image: $$\pm i$$] in the quad-graph and adjacent to the black vertices [image: $$2+2i$$], [image: $$-1\pm i$$], and [image: $$1-i$$] in the graph on black vertices. There are no further vertices. Then, [image: $$\triangle f (0)\ne 0$$] for [image: $$f(v)=v^2$$]. Indeed, we would get [image: $$\triangle f (0)= 0$$] if we had replaced [image: $$v=2+2i$$] by [image: $$v=1+i$$] obtaining a rhombic quad-graph; but [image: $$\left( |\rho _Q|^2/{{\mathrm{Re}}}(\rho _Q)\right) \left( f(v)-f(0)\right) $$] scales by a factor of 2, whereas the other nonzero summands in the formula for [image: $$\triangle f (0)$$] remain invariant.
In the case of general quad-graphs, smooth functions [image: $$f_\mathbb C:\mathbb C\rightarrow \mathbb C$$], and restrictions f to [image: $$V(\varLambda )$$], Skopenkov compared the integral of [image: $$\triangle _\mathbb Cf_\mathbb C$$] over a square domain R and a sum of [image: $$\triangle f (v)$$] over black vertices v in R [23]. Moreover, he showed that for [image: $$f(v)=|v|^2$$],[image: $$\triangle f(v)=\frac{2}{ \text {ar}(F_v)} \sum \limits _{Q_s \sim v} \text {area}(vv'_{s-1}\hat{Q}_sv'_s)$$]


when [image: $$\hat{Q}_s$$] is the intersection point of the middle perpendiculars to the diagonals of the quadrilateral [image: $$Q_s$$] (which equals the intersection point of the diagonals if [image: $$Q_s$$] is a parallelogram). Note that in general, [image: $$h(Q)=\hat{Q}$$] is not discrete holomorphic if [image: $$\hat{Q}$$] is the intersection of these middle perpendiculars.

Definition
For a finite connected subset [image: $$\Diamond _0 \subset \Diamond $$], let [image: $$F_0$$] be the set of faces of [image: $$X_0$$] that correspond to a quadrilateral [image: $$Q\in V(\Diamond _0)$$] that is incident to a vertex in [image: $$V(\varLambda _0)\backslash V(\partial \varLambda _0)$$]. Now, let [image: $$f_1:V(\varLambda _0)\rightarrow \mathbb C$$] and [image: $$f_2:V(\varLambda _0)\backslash V(\partial \varLambda _0) \rightarrow \mathbb C$$] (or vice versa) be given. Then, we denote by[image: $$\langle f_1,f_2\rangle :=-\frac{1}{2i}\iint \limits _{F_0} f_1 \bar{f_2} \varOmega _\varLambda $$]


the discrete scalar product of [image: $$f_1$$] and [image: $$f_2$$] seen as functions on [image: $$V(\varLambda _0)\backslash V(\partial \varLambda _0)$$].

In the rhombic setup, discrete versions of Green’s second identity were already stated by Mercat [19], whose integrals were not well-defined separately, and Chelkak and Smirnov [6], whose boundary integral was an explicit sum involving boundary angles. Skopenkov formulated a discrete Green’s second identity with a vanishing boundary term [23].
Theorem 2.23
Let [image: $$\Diamond _0 \subset \Diamond $$] be finite, and let [image: $$f,g:V(\varLambda _0)\rightarrow \mathbb C$$].

                  	(i)Discrete Green’s first identity: [image: $$\langle f,\triangle g\rangle + \langle df, dg\rangle =\oint \limits _{\partial X_0} f \star d\bar{g}.$$]
                    


 

	(ii)Discrete Green’s second identity: [image: $$\langle f, \triangle g\rangle -\langle \triangle f, g\rangle =\oint \limits _{\partial X_0} \left( f \star d\bar{g} - \bar{g} \star df\right) .$$]
                    


 




                

Proof
(i) Since the discrete exterior derivative is a derivation for the discrete wedge product by Theorem 2.16,[image: $$d\left( f \star d\bar{g}\right) =df\wedge \star d\bar{g}+f \star (\star d \star d \bar{g})=df\wedge \star d\bar{g}+f \star \triangle \bar{g}.$$]


Now, integration over [image: $$F(X_0)$$] yields the desired result together with discrete Stokes’ Theorem 2.9 and the basic properties of the discrete Hodge star given in Corollary 2.17(ii) and (iv).
(ii) Just apply twice discrete Green’s first identity, once with the roles of f and g interchanged, and subtract the equations from another.

The following discrete Weyl’s lemma is a direct consequence of discrete Green’s second identity, Theorem 2.23(ii). A version for rhombic quad-graphs was given by Mercat in [19], proven by an explicit calculation.
Corollary 2.24

              [image: $$f:V(\varLambda )\rightarrow \mathbb C$$] is discrete harmonic if and only if [image: $$\langle f, \triangle g \rangle =0$$] for every compactly supported [image: $$g:V(\varLambda )\rightarrow \mathbb C$$].

Skopenkov introduced the notion of discrete harmonic conjugates in [23]. We recover his definitions in our notation, observing that his discrete gradient corresponds to the discrete exterior derivative and his counterclockwise rotation by [image: $$\pi /2$$] to the discrete Hodge star.
Definition
Let f be a real (discrete harmonic) function on [image: $$V(\varLambda _0)$$]. A real discrete harmonic function [image: $$\tilde{f}$$] on [image: $$V(\varLambda _0)$$] is said to be a discrete harmonic conjugate of f if [image: $$f+i\tilde{f}$$] is discrete holomorphic at all vertices of [image: $$\Diamond _0$$].

Note that the existence of a real function [image: $$\tilde{f}$$] such that [image: $$f+i\tilde{f}$$] is discrete holomorphic requires already that f is discrete harmonic at all interior vertices of [image: $$\varLambda _0$$] (i.e., [image: $$V(\varLambda _0)\backslash V(\partial \varLambda _0)$$]) due to Corollary 2.21(ii) implying that the real part of a discrete holomorphic function is discrete harmonic.
Lemma 2.25
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb R$$] satisfy [image: $$\triangle f(v)=0$$] for all [image: $$v \in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$].

                  	(i)The discrete harmonic conjugate [image: $$\tilde{f}$$] is unique up to two additive real constants on [image: $$\varGamma _0$$] and [image: $$\varGamma _0^*$$].


 

	(ii)If [image: $$\Diamond _0$$] forms a simply-connected closed region, then a discrete harmonic conjugate [image: $$\tilde{f}$$] exists.


 




                

Proof
(i) If [image: $$\tilde{f}_1$$] and [image: $$\tilde{f}_2$$] are two real discrete harmonic conjugates, then their difference [image: $$\tilde{f}_1-\tilde{f}_2$$] is real and discrete holomorphic at all vertices of [image: $$\Diamond _0$$]. So by Proposition 2.2(ii) ([image: $$\Diamond _0$$] is connected), it is biconstant as a real discrete holomorphic function.
(ii) Since f is harmonic, [image: $$d\star d f=0$$], i.e., [image: $$\star df$$] is closed and of type [image: $$\Diamond $$]. Moreover, reality of f implies [image: $$\star df=-i \partial _\varLambda f dz + i\bar{\partial }_\varLambda f d\bar{z}= 2{{\mathrm{Im}}}\left( \partial _\varLambda f dz \right) $$]. So in the same manner as in the proof of Proposition 2.8 (existence of a discrete primitive if [image: $$\Diamond _0$$] forms a simply-connected closed region), [image: $$\star df$$] can be integrated to a real function [image: $$\tilde{f}$$] on [image: $$V(\varLambda _0)$$]. Since[image: $$d(f+i\tilde{f})=df+i\star df=2{{\mathrm{Re}}}\left( \partial _\varLambda f dz\right) +2i{{\mathrm{Im}}}\left( \partial _\varLambda f dz \right) =2\partial _\varLambda f dz$$]


is of the form pdz and of type [image: $$\Diamond $$], [image: $$f+i\tilde{f}$$] is discrete holomorphic by Corollary 2.12.

Note that in the case of quadrilaterals with orthogonal diagonals, such that [image: $$\triangle $$] splits into two discrete Laplacians on [image: $$\varGamma $$] and [image: $$\varGamma ^*$$], it follows that a discrete harmonic conjugate of a discrete harmonic function on [image: $$V(\varGamma )$$] can be defined on [image: $$V(\varGamma ^*)$$] and vice versa, as was already noted by Chelkak and Smirnov in [6].
Corollary 2.26
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] be discrete holomorphic at all vertices of [image: $$\Diamond _0$$]. Then, [image: $${{\mathrm{Im}}}(f)$$] is uniquely determined by [image: $${{\mathrm{Re}}}(f)$$] up to two additive constants on [image: $$\varGamma _0$$] and [image: $$\varGamma _0^*$$].


2.4.2 Discrete Dirichlet Energy
We follow the classical approach of discretizing the Dirichlet energy introduced by Mercat in [21]. Note that Skopenkov’s definition in [23] is exactly the same. In particular, Skopenkov’s results, including an approximation property of the Laplacian, convergence of the discrete Dirichlet energy to the smooth Dirichlet energy for nondegenerate uniform sequences of quad-graphs, and further theorems for quad-graphs with orthogonal diagonals apply as well in our setting. We refer to his work [23] for details on these results.
Definition
For a function [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$], we define the discrete Dirichlet energy of f on [image: $$\Diamond _0$$] as [image: $$E_{\Diamond _0}(f):=\langle df,df \rangle \in [0,\infty ]$$].
If [image: $$\Diamond _0$$] is finite, then the discrete Dirichlet boundary value problem asks for a real function f on [image: $$V(\varLambda _0)$$] such that f is discrete harmonic at all points of [image: $$V(\varLambda _0) \backslash V(\partial \varLambda _0)$$] and such that f agrees with a preassigned real function [image: $$f_0$$] on the boundary [image: $$V(\partial \varLambda _0)$$].

Proposition 2.27
Let [image: $$\Diamond _0 \subseteq \Diamond $$] be finite, and let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$]. Then,[image: $$\begin{aligned} E_{\Diamond _0}(f)&=\sum \limits _{Q\in V(\Diamond _0)}\frac{1}{2{{\mathrm{Re}}}\left( \rho _Q\right) }\left( |\rho _Q|^2\left| f(b_+)-f(b_-)\right| ^2+\left| f(w_+)-f(w_-)\right| ^2\right) \\ {}&+\sum \limits _{Q\in V(\Diamond _0)}\frac{{{\mathrm{Im}}}\left( \rho _Q\right) }{{{\mathrm{Re}}}\left( \rho _Q\right) }{{\mathrm{Re}}}\left( \left( f(b_+)-f(b_-)\right) \overline{\left( f(w_+)-f(w_-)\right) }\right) . \end{aligned}$$]





Proof
Since [image: $$E_{\Diamond _0}(f)$$] is a sum over [image: $$Q \in V(\Diamond _0)$$], it suffices to check the identity for just a singular quadrilateral Q. Furthermore, [image: $$E_{\Diamond _0}(f)=E_{\Diamond _0}({{\mathrm{Re}}}(f))+E_{\Diamond _0}({{\mathrm{Im}}}(f))$$] allows us to restrict to real functions f. Then, [image: $$E_Q(f)$$] equals[image: $$\begin{aligned} \iint \limits _{F_Q} df \wedge \star df&=4\text {area}(Q)\partial _\varLambda f(Q)\bar{\partial }_\varLambda f(Q)\\ {}&=2|w_+-w_-||b_+-b_-|\sin (\varphi _Q)|\bar{\partial }_\varLambda f(Q)|^2. \end{aligned}$$]


Here, [image: $$b_-,w_-,b_+,w_+$$] are the vertices of Q in counterclockwise order, starting with a black vertex, and [image: $$F_Q$$] is the face of X corresponding to Q.
In the proof of Proposition 2.1(i), we calculated[image: $$\bar{\partial }_\varLambda f (Q)=\frac{\left( w_+-w_-\right) \left( f\left( b_+\right) -f\left( b_-\right) \right) -\left( b_+-b_-\right) \left( f\left( w_+\right) -f\left( w_-\right) \right) }{2i|w_+-w_-| |b_+-b_-|\sin (\varphi _Q)}.$$]


It follows that [image: $$E_Q(f)$$] equals[image: $$\begin{aligned}&\frac{|w_+-w_-|}{2|b_+-b_-|\sin (\varphi _Q)}\left| f(b_+)-f(b_-)\right| ^2+\frac{|b_+-b_-|}{2|w_+-w_-|\sin (\varphi _Q)}\left| f(w_+)-f(w_-)\right| ^2\\ {}&-{{\mathrm{Re}}}\left( \frac{(w_+-w_-)\overline{(b_+-b_-)}}{|w_+-w_-||b_+-b_-|\sin (\varphi _Q)}\left( f(b_+)-f(b_-)\right) \left( f(w_+)-f(w_-)\right) \right) .\end{aligned}$$]


Remembering [image: $$\rho _Q=-i\exp (i\varphi _Q)|w_+-w_-|/|b_+-b_-|$$], the claim follows from[image: $$\begin{aligned}\frac{|w_+-w_-|}{2|b_+-b_-|\sin (\varphi _Q)}=\frac{|\rho _Q|^2}{2{{\mathrm{Re}}}\left( \rho _Q\right) }, \quad \frac{|b_+-b_-|}{2|w_+-w_-|\sin (\varphi _Q)}&=\frac{1}{2{{\mathrm{Re}}}\left( \rho _Q\right) },\\ \quad -{{\mathrm{Re}}}\left( \frac{(w_+-w_-)\overline{(b_+-b_-)}}{|w_+-w_-||b_+-b_-|\sin (\varphi _Q)}\right)&=\frac{{{\mathrm{Im}}}(\rho _Q)}{{{\mathrm{Re}}}(\rho _Q)}. \end{aligned}$$]





The same formula of [image: $$E_{\Diamond _0}(f)$$] was given by Mercat [21].
In the case of rhombic quad-graphs, Duffin proved in [10] that the discrete Dirichlet boundary value problem has a unique solution. The same argument applies for general quad-graphs with the discrete Dirichlet energy defined here. Using a different notation, Skopenkov proved existence and uniqueness of solutions of the discrete Dirichlet boundary value problem as well [23].
Lemma 2.28
Let [image: $$\Diamond _0 \subset \Diamond $$] be finite and [image: $$f_0:V(\partial \varLambda _0)\rightarrow \mathbb R$$]. We consider the affine space of real functions [image: $$f:V(\varLambda _0)\rightarrow \mathbb R$$] that agree with [image: $$f_0$$] on the boundary.
Then, [image: $$E_{\Diamond _0}$$] is a strictly convex nonnegative quadratic functional in terms of the interior values f(v). Furthermore,[image: $$-\frac{\partial E_{\Diamond _0}}{\partial f(v)}(f)=2\mathrm{ar}(F_v )\triangle f(v)$$]


for any [image: $$v \in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$]. In particular, the solution of the discrete Dirichlet boundary value problem is given by the unique minimizer of [image: $$E_{\Diamond _0}$$].

Proof
By construction, [image: $$E_{\Diamond _0}$$] is a quadratic form in the vector space of real functions [image: $$f:V(\varLambda _0)\backslash V(\partial \varLambda _0)\rightarrow \mathbb R$$]. In particular, it is convex, nonnegative, and quadratic in terms of the values f(v). Thus, global minima exist. To prove strict convexity, it suffices to check that the minimum is unique.
For an interior vertex [image: $$v_0 \in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$], let [image: $$\phi (v):=\delta _{vv_0}$$] be the Kronecker delta function on [image: $$V(\varLambda _0)$$]. Then,[image: $$\frac{\partial E_{\Diamond _0}}{\partial f(v_0)}(f)=\frac{d}{dt}E_{\Diamond _0}(f+t\phi )|_{t=0}=2\langle df,d\phi \rangle =-2 \langle \triangle f, \phi \rangle =-2\text {ar}(F_{v_0} )\triangle f(v_0)$$]


due to Proposition 2.19 that stated that [image: $$\delta $$] is the formal adjoint of d. To apply the proposition, we consider [image: $$\phi $$] as a function on [image: $$V(\varLambda )$$] and extend f to [image: $$V(\varLambda )$$] by setting it zero on [image: $$V(\varLambda )\backslash V(\varLambda _0)$$]. This changes neither [image: $$\langle df,d\phi \rangle $$] nor [image: $$2 \langle \triangle f, \phi \rangle $$].
It follows that exactly the minima of [image: $$E_{\Diamond _0}$$] are discrete harmonic and therefore solve the discrete Dirichlet boundary value problem. The difference g of two minima is a discrete harmonic function vanishing on the boundary. Similar to the argument given in the previous paragraph, [image: $$E_{\Diamond _0}(g)=\langle dg,dg \rangle =-\langle \triangle g,g\rangle =0$$] by Proposition 2.19 since g is zero on [image: $$V(\partial \varLambda _0)$$]. But only biconstant functions have zero energy. Thus, the difference has to vanish everywhere, i.e., minima are unique.

In the following, we apply Lemma 2.28 to show that [image: $$\partial _\varLambda ,\bar{\partial }_\varLambda ,\partial _\Diamond ,\bar{\partial }_\Diamond ,\triangle $$] are surjective operators. This implies immediately the existence of discrete Green’s functions and discrete Cauchy’s kernels, as we will see in Sects. 2.5 and 2.6.
Lemma 2.29
Let [image: $$\Diamond _0\subset \Diamond $$] be finite and assume that it forms a simply-connected closed region. Then, the discrete derivatives [image: $$\partial _\varLambda , \bar{\partial }_\varLambda ,\partial _\Diamond , \bar{\partial }_\Diamond $$] and the discrete Laplacian [image: $$\triangle $$] are surjective operators. That means, given any complex functions [image: $$h_0$$] on [image: $$V(\Diamond _0)$$] and [image: $$f_0$$] on [image: $$V(\varLambda _0) \backslash V(\partial \varLambda _0)$$], there exist functions [image: $$h_\partial , h_{\bar{\partial }}$$] on [image: $$V(\Diamond _0)$$] and [image: $$f_\partial , f_{\bar{\partial }}, f_\triangle $$] on [image: $$V(\varLambda _0)$$] such that [image: $$\partial _\Diamond h_\partial = \bar{\partial }_\Diamond h_{\bar{\partial }}=\triangle f_\triangle =f_0$$] and [image: $$\partial _\varLambda f_\partial = \bar{\partial }_\varLambda f_{\bar{\partial }}=h_0$$]. If [image: $$f_0$$] is real-valued, then [image: $$f_\triangle $$] can be chosen real-valued as well.

Proof
Denote by B the number of vertices of [image: $$\partial \varLambda _0$$]. By assumption, [image: $$\partial \varLambda _0$$] is a simple closed broken line with B edges.
By the previous Lemma 2.28, the space of real discrete harmonic functions on [image: $$V(\varLambda _0)$$] has dimension B. Clearly, real and imaginary part of a discrete harmonic function are itself discrete harmonic. Therefore, the complex dimension of the space of complex discrete harmonic functions, i.e., of the kernel of [image: $$\triangle $$], is B as well. Thus, [image: $$\triangle :\mathbb {K}^{V(\varLambda _0)} \rightarrow \mathbb {K}^{V(\varLambda _0\backslash \partial \varLambda _0)}$$] is a surjective linear operator with [image: $$\mathbb {K}\in \{\mathbb R,\mathbb C\}$$].
Now, [image: $$\triangle =4\partial _\Diamond \bar{\partial }_\varLambda =4\bar{\partial }_\Diamond \partial _\varLambda $$] by Corollary 2.20, so [image: $$\partial _\Diamond ,\bar{\partial }_\Diamond :\mathbb C^{V(\Diamond _0)} \rightarrow \mathbb C^{V(\varLambda _0\backslash \partial \varLambda _0)}$$] are surjective as well. The kernel of [image: $$\bar{\partial }_\Diamond $$] consists of all discrete holomorphic functions on [image: $$V(\Diamond _0)$$]. By Proposition 2.8 ([image: $$\Diamond _0$$] forms a simply-connected closed region), any such function has a discrete primitive, i.e., the kernel is contained in the image of [image: $$\partial _\varLambda $$]. Using the surjectivity of [image: $$\triangle $$], it follows that [image: $$\partial _\varLambda :\mathbb C^{V(\varLambda _0)} \rightarrow \mathbb C^{V(\Diamond _0)}$$] is surjective. The same is true for [image: $$\bar{\partial }_\varLambda $$].

Theorem 2.30
The discrete derivatives [image: $$\partial _\varLambda ,\bar{\partial }_\varLambda ,\partial _\Diamond ,\bar{\partial }_\Diamond $$] and the discrete Laplacian [image: $$\triangle $$] (defined on complex or real functions) are surjective operators on the vector space of functions on [image: $$V(\varLambda )$$] or [image: $$V(\Diamond )$$].

Proof
Let [image: $$\Diamond _0 \subset \Diamond _1 \subset \Diamond _2 \subset \ldots \subset \Diamond $$] be a sequence of finite subgraphs forming simply-connected closed regions such that [image: $$\bigcup _{k=0}^\infty \Diamond _k=\Diamond $$]. By [image: $$\varLambda _k$$] we denote the subgraph of [image: $$\varLambda $$] whose vertices and edges are the vertices and edges of quadrilaterals in [image: $$\Diamond _k$$].
Let us first prove that any [image: $$h:V(\Diamond )\rightarrow \mathbb C$$] has a preimage under the discrete derivatives [image: $$\partial _\varLambda , \bar{\partial }_\varLambda $$]. By the previous Lemma 2.29, the affine space [image: $$A^{(0)}_k$$] of all complex functions on [image: $$V(\varLambda _k)$$] that are mapped to [image: $$h|_{V(\Diamond _k)}$$] by [image: $$\partial _\varLambda $$] (or [image: $$\bar{\partial }_\varLambda $$]) is nonempty. Let [image: $$A^{(0)}_k\Big |_{\varLambda _j}$$] denote the affine space of restrictions of these functions to [image: $$V(\varLambda _j)\subseteq V(\varLambda _k)$$]. Clearly,[image: $$A^{(0)}_0\supseteq A^{(0)}_1\Big |_{\varLambda _0}\supseteq A^{(0)}_2\Big |_{\varLambda _0}\supseteq \ldots $$]


Since all affine spaces are finite-dimensional and nonempty, this chain becomes stationary at some point, giving a function [image: $$f_0$$] on [image: $$V(\varLambda _0)$$] mapped to [image: $$h|_{V(\Diamond _0)}$$] by [image: $$\partial _\varLambda $$] (or [image: $$\bar{\partial }_\varLambda $$]) that can be extended to a function in [image: $$A^{(0)}_k$$] for any k.
Inductively, assume that [image: $$f_j:V(\varLambda _j)\rightarrow \mathbb C$$] is mapped to [image: $$h|_{V(\Diamond _j)}$$] by [image: $$\partial _\varLambda $$] (or [image: $$\bar{\partial }_\varLambda $$]) and that [image: $$f_j$$] can be extended to a function in [image: $$A^{(j)}_k$$] for all [image: $$k\geqslant j$$]. Let [image: $$A^{(j+1)}_k$$], [image: $$k\geqslant j+1$$], be the affine space of all complex functions on [image: $$V(\varLambda _k)$$] that are mapped to [image: $$h|_{V(\Diamond _k)}$$] by [image: $$\partial _\varLambda $$] (or [image: $$\bar{\partial }_\varLambda $$]) and whose restriction to [image: $$V(\varLambda _j)$$] is equal to [image: $$f_j$$]. By assumption, all these spaces are nonempty. In the same way as above, there is a function [image: $$f_{j+1}$$] extending [image: $$f_j$$] to [image: $$V(\varLambda _{j+1})$$] that is mapped to [image: $$h|_{V(\Diamond _{j+1})}$$] by [image: $$\partial _\varLambda $$] (or [image: $$\bar{\partial }_\varLambda $$]) and that can be extended to a function in [image: $$A^{(j+1)}_k$$] for all [image: $$k\geqslant j+1$$].
For [image: $$v \in V(\varLambda _k)$$], define [image: $$f(v):=f_k(v)$$]. f is a well-defined complex function on [image: $$V(\varLambda )$$] with [image: $$\partial _\varLambda f=h$$] (or [image: $$\bar{\partial }_\varLambda f=h$$]). Hence, [image: $$\partial _\varLambda ,\bar{\partial }_\varLambda :\mathbb C^{V(\varLambda )}\rightarrow \mathbb C^{V(\Diamond )}$$] are surjective.
Replacing [image: $$V(\Diamond _k)$$] by [image: $$V(\varLambda _k) \backslash V(\partial \varLambda _k)$$], we obtain with the same arguments that [image: $$\triangle $$] is surjective, regardless whether [image: $$\triangle $$] is defined on real or complex functions. Finally, [image: $$\partial _\Diamond ,\bar{\partial }_\Diamond :\mathbb C^{V(\Diamond )}\rightarrow \mathbb C^{V(\varLambda )}$$] are surjective due to [image: $$\triangle =4\partial _\Diamond \bar{\partial }_\varLambda =4\bar{\partial }_\Diamond \partial _\varLambda $$] by Corollary 2.20.

In the case of rhombic quad-graphs with bounded interior angles, Kenyon proved the existence of a discrete Green’s function and a discrete Cauchy’s kernel with asymptotic behaviors similar to the classical setting [16]. But in the general case, it seems to be practically impossible to speak about any asymptotic behavior of certain discrete functions. For this reason, we will consider functions that discretize Green’s functions and Cauchy’s kernels apart from their asymptotics in Sects. 2.5 and 2.6. Not requiring a certain asymptotic behavior leads to non-uniqueness of these functions.
Still, one can expect results concerning the asymptotics of special discrete functions if the interior angles and the side lengths of the quadrilaterals are bounded, meaning that the quadrilaterals do not degenerate at infinity. And indeed, on such quad-graphs any discrete harmonic function whose difference functions on [image: $$V(\varGamma )$$] and [image: $$V(\varGamma ^*)$$] have asymptotics [image: $$o(v^{-1/2})$$] as [image: $$|v|\rightarrow \infty $$] is biconstant. In the rhombic setting, Chelkak and Smirnov showed that a discrete Liouville’s theorem holds true, i.e., any bounded discrete harmonic function on [image: $$V(\varLambda )$$] vanishes [6].
Theorem 2.31
Assume that there exist constants [image: $$\alpha _{0}>0$$] and [image: $$E_{1}\geqslant E_{0}>0$$] such that [image: $$\alpha \geqslant \alpha _{0}$$] and [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all interior angles [image: $$\alpha $$] and side lengths e of quadrilaterals [image: $$Q\in F(\varLambda )$$]. If [image: $$f:V(\varLambda ) \rightarrow \mathbb C$$] is discrete harmonic and [image: $$f(v_+)-f(v_-)=o(v_{\pm }^{-1/2})$$] for any two adjacent [image: $$v_\pm \in V(\varGamma )$$] or [image: $$v_\pm \in V(\varGamma ^*)$$] as [image: $$|v_\pm |\rightarrow \infty $$], then f is biconstant.

Proof
Without loss of generality, we can restrict to real functions f. Assume that f is not biconstant. Then, [image: $$df \wedge \star df$$] is nonzero somewhere on a face F of X. In particular, the discrete Dirichlet energy of f is bounded away from zero if a domain contains F. Now, the idea of proof is to show that if the domain is large enough but still compact, the function being zero in the interior and equal to f on the boundary has a smaller discrete Dirichlet energy than f, contradicting Lemma 2.28 that implies that f is the unique minimizer of the discrete Dirichlet energy on that domain.
Let us first bound the intersection angles and the lengths of diagonals of the quadrilaterals. Take [image: $$Q \in F(\varLambda )$$] and denote its vertices by [image: $$b_-,w_-,b_+,w_+$$] in counterclockwise order, starting with a black vertex. Then, there are two opposite interior angles that are less than [image: $$\pi $$], say [image: $$\alpha _\pm $$] at vertices [image: $$b_\pm $$]. Since all interior angles are bounded by [image: $$\alpha _0$$] from below, one of [image: $$\alpha _\pm $$] is less than or equal to [image: $$\pi -\alpha _0$$], say [image: $$\alpha _0\leqslant \alpha _-\leqslant \pi -\alpha _0$$].
By triangle inequality, [image: $$|b_+-b_-|,|w_+-w_-|<2E_1$$]. Twice the area of Q equals[image: $$|w_--b_-||w_+-b_-|\sin (\alpha _-)+|w_--b_+||w_+-b_+|\sin (\alpha _+)\geqslant E_0^2 \sin (\alpha _0),$$]


so [image: $$|b_+-b_-||w_+-w_-|\sin (\varphi _Q)=2\text {area}(Q)\geqslant E_0^2 \sin (\alpha _0)$$]. It follows that[image: $$|b_+-b_-|\geqslant \frac{E_0^2 \sin (\alpha _0)}{|w_+-w_-|\sin (\varphi _Q)}>\frac{E_0^2 \sin (\alpha _0)}{2E_1}=:E_0'.$$]


Similarly, [image: $$|w_+-w_-|>E_0'$$] and [image: $$\sin (\varphi _Q)>E_0'/(2E_1)$$]. Thus, we can bound[image: $$\begin{aligned} \rho _Q=\frac{|w_+-w_-|}{|b_+-b_-|}\exp \left( i\left( \varphi _Q-\frac{\pi }{2}\right) \right) =\frac{|w_+-w_-|}{|b_+-b_-|}\left( \sin (\varphi _Q)-i\cos (\varphi _Q)\right) \end{aligned}$$]



[image: $$\begin{aligned} \text {by }|\rho _Q|<\frac{2E_1}{E_0'} \text { and } {{\mathrm{Re}}}\left( \rho _Q\right) >\left( \frac{E_0'}{2E_1}\right) ^2. \end{aligned}$$]


For some [image: $$r>0$$], denote by [image: $$B_{\Diamond }(0,r)\subset V(\Diamond )$$] the set of quadrilaterals that have a nonempty intersection with the open ball B(0, r) around 0 and radius r. Let [image: $$R>2E_1$$], and consider the ball [image: $$B_{\Diamond }(0,R)\subset V(\Diamond )$$]. Since [image: $$\varLambda $$] is locally finite, [image: $$B_{\Diamond }(0,R)$$] is finite. Also, if we connect two elements of [image: $$B_{\Diamond }(0,R)$$] if they are adjacent in [image: $$\Diamond $$], then we obtain a connected subgraph of [image: $$\Diamond $$] that we will also denote by [image: $$B_{\Diamond }(0,R)$$]. To see that it is connected, we observe that the closed region in the complex plane formed by the quadrilaterals in [image: $$B_{\Diamond }(0,R)$$] is connected, and that if [image: $$Q \in B_{\Diamond }(0,R)$$], then one of its corners, say v, has to lie in B(0, R) and so all quadrilaterals incident to v are in [image: $$B_{\Diamond }(0,R)$$]. We denote by [image: $$\varLambda _R$$] the subgraph of [image: $$\varLambda $$] that consists of all the vertices and edges of quadrilaterals in [image: $$B_{\Diamond }(0,R)$$]
            
Since edge lengths are bounded by [image: $$E_1$$], all elements of [image: $$B_{\Diamond }(0,R)$$] that are not completely contained in B(0, R) are contained in [image: $$B(0,R+2E_1)\backslash B(0,R-2E_1)$$]. The area of the latter is [image: $$8\pi R E_1$$]. Any quadrilateral has area at least [image: $$E_0^2 \sin (\alpha _0)/2$$], so at most [image: $$16\pi R E_1/(E_0^2 \sin (\alpha _0))$$] quadrilaterals of [image: $$B_{\Diamond }(0,R)$$] do not lie completely in B(0, R). We call these quadrilaterals for short boundary faces.
Consider the real function [image: $$f_R$$] defined on [image: $$V(\varLambda _R)$$] that is equal to f at [image: $$V(\partial \varLambda _R)$$] and equal to 0 in [image: $$V(\varLambda _R)\backslash V(\partial \varLambda _R)$$]. When computing the discrete Dirichlet energy of [image: $$f_R$$] on [image: $$B_{\Diamond }(0,R)$$], only boundary faces can give nonzero contributions. If we look at the formula of the discrete Dirichlet energy in Proposition 2.27 and use in addition that [image: $$f(v_+)-f(v_-)=o(R^{-1/2})$$] for vertices of boundary faces, then we see that any contribution of a boundary face has asymptotics [image: $$o(R^{-1})$$]. For this, we use that [image: $$\left| {{\mathrm{Re}}}\left( \rho _Q)\right) \right| $$] is bounded from below by a constant and [image: $$\left| {{\mathrm{Im}}}\left( \rho _Q\right) \right| \leqslant \left| \rho _Q\right| <2E_1/E'_0$$]. Using that there are only O(R) faces in the boundary (the constant depending on [image: $$E_0,E_1,\alpha _0$$] only), the discrete Dirichlet energy [image: $$E_{B_{\Diamond }(0,R)}(f_R)$$], considered as a function of R, behaves as o(1). So if R is large enough, then[image: $$E_{B_{\Diamond }(0,R)}(f_R)<\iint \limits _F df \wedge \star df \leqslant E_{B_{\Diamond }(0,R)}(f),$$]


contradicting that f minimizes the discrete Dirichlet energy by Lemma 2.28.



2.5 Discrete Green’s Functions
Definition
Let [image: $$v_0 \in V(\varLambda )$$]. A real function [image: $$G(\cdot ;v_0)$$] on [image: $$V(\varLambda )$$] is a (free) discrete Green’s function for [image: $$v_0$$] if[image: $$G(v_0;v_0)=0\text { and }\triangle G(v;v_0)=\frac{1}{2\text {ar}(F_{v_0})}\delta _{vv_0} \text { for all }v \in V(\varLambda ).$$]





Remark
It is important to note that discrete Green’s functions as we defined them are far from being unique. The contrast to the smooth setting or the rhombic case investigated by Kenyon [16], Chelkak and Smirnov [6] is that no asymptotics are required. So it might be more appropriate to call these functions functions of discrete Green’s function type, but for the sake of convenience, we still call them discrete Green’s functions.
However, when considering planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths in Sect. 3.3, existence of a discrete Green’s function with asymptotics generalizing the corresponding result for rhombic quad-graphs is proven.

As a corollary of Theorem 2.30 we get existence of discrete Green’s functions.
Corollary 2.32
A discrete Green’s function exists for any [image: $$v_0 \in V(\varLambda )$$].

Proof
By Theorem 2.30, [image: $$\triangle $$] is surjective, so there exists a function [image: $$G:V(\varLambda )\rightarrow \mathbb R$$] with [image: $$\triangle G(v)=\delta _{vv_0}/\left( 2\text {ar}(F_{v_0})\right) $$]. Since constant functions are discrete harmonic, we can adjust G to get [image: $$G(v_0)=0$$].

The following notion of discrete Greens’ functions in a discrete domain follows the presentation of Chelkak and Smirnov in [6].
Definition
Let [image: $$\Diamond _0 \subset \Diamond $$] be finite and form a simply-connected closed region. For a vertex [image: $$v_0 \in V(\varLambda _0) \backslash V(\partial \varLambda _0)$$], a real function [image: $$G_{\varLambda _0}(\cdot ;v_0)$$] on [image: $$V(\varLambda _0)$$] is a discrete Green’s function in 
            [image: $$\varLambda _0$$] for [image: $$v_0$$] if[image: $$\begin{aligned} G_{\varLambda _0}(v;v_0)&= 0\text { for all }v\in V(\partial \varLambda _0)\\ \text { and }\triangle G_{\varLambda _0}(v;v_0)&=\frac{1}{2\text {ar}(F_{v_0})}\delta _{vv_0} \text { for all }v\in V(\varLambda _0) \backslash V(\partial \varLambda _0).\end{aligned}$$]





An immediate corollary of Lemma 2.29 is now the existence of these functions.
Corollary 2.33
Let [image: $$\Diamond _0\subset \Diamond $$] be finite and form a simply-connected closed region. Furthermore, let [image: $$v_0 \in V(\varLambda _0) \backslash V(\partial \varLambda _0)$$]. Then, there exists a unique discrete Green’s function in [image: $$\varLambda _0$$] for [image: $$v_0$$].

Proof
Due to our assumptions on [image: $$\Diamond _0$$], existence follows from Lemma 2.29 stating surjectivity of [image: $$\triangle $$] on such domains. Since the difference of two discrete Green’s functions in [image: $$\varLambda _0$$] for [image: $$v_0$$] is discrete harmonic on [image: $$V(\varLambda _0)$$] and equals zero on the boundary [image: $$V(\partial \varLambda _0)$$], it has to be identically zero by Lemma 2.28 since the zero function is the unique solution of the corresponding discrete Dirichlet boundary value problem.


2.6 Discrete Cauchy’s Integral Formulae
In this section, we first formulate discretizations of the standard Cauchy’s integral formula, both for discrete holomorphic functions on [image: $$V(\varLambda )$$] and [image: $$V(\Diamond )$$]. Later, we give with Theorem 2.36 a discrete formulation of Cauchy’s integral formula for the derivative of a holomorphic function. We conclude this part with Sect. 2.6.1, where we relate our formulation of the discrete Cauchy’s integral formula for discrete holomorphic functions on [image: $$V(\Diamond )$$] with Chelkak’s and Smirnov’s notation in [6].
Definition

            Discrete Cauchy’s kernels with respect to [image: $$Q_0 \in V(\Diamond )$$] and [image: $$v_0\in V(\varLambda )$$] are functions [image: $$K_{Q_0}:V(\varLambda ) \rightarrow \mathbb C$$] and [image: $$K_{v_0}:V(\Diamond ) \rightarrow \mathbb C$$], respectively, that satisfy for all [image: $$Q \in V(\Diamond )$$], [image: $$v \in V(\varLambda )$$]:[image: $$\bar{\partial }_\varLambda K_{Q_0}(Q)=\delta _{QQ_0}\frac{\pi }{\text {ar}(F_Q)} \quad \text {and} \quad \bar{\partial }_\Diamond K_{v_0}(v)=\delta _{vv_0}\frac{\pi }{\text {ar}(F_v)}.$$]


For fixed [image: $$Q_0 \in V(\Diamond _0)$$], [image: $$v_0\in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$], functions [image: $$K_{Q_0}:V(\varLambda _0) \rightarrow \mathbb C$$] and [image: $$K_{v_0}:V(\Diamond _0) \rightarrow \mathbb C$$] satisfying the above equations for all faces [image: $$Q \in V(\Diamond _0)$$] and vertices [image: $$v \in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$] are called discrete Cauchy’s kernels on [image: $$V(\varLambda _0)$$] or [image: $$V(\Diamond _0)$$], respectively.

Clearly, the restrictions of discrete Cauchy’s kernels to [image: $$V(\varLambda _0)$$] or [image: $$V(\Diamond _0)$$], respectively, are discrete Cauchy’s kernels on [image: $$V(\varLambda _0)$$] or [image: $$V(\Diamond _0)$$], respectively.
Remark
It is important to note that exactly as discrete Green’s functions, discrete Cauchy’s kernels as we defined them are far from being unique. Again, it might be more appropriate to call these functions functions of discrete Cauchy’s kernel type, but we still call them discrete Cauchy’s kernels.
But if interior angles and side lengths of quadrilaterals are bounded, then it follows from Theorem 2.31 that any discrete Cauchy’s kernel with respect to a vertex of [image: $$\Diamond $$] with asymptotics [image: $$o(v^{-1/2})$$] as [image: $$|v|\rightarrow \infty $$] is necessarily unique, but we cannot prove existence so far. In Sect. 3.4, explicit formulae for discrete Cauchy’s kernels with asymptotics similar to the smooth setting are given, generalizing Kenyon’s result [16] on rhombic quad-graphs to parallelogram-graphs.

The existence of discrete Cauchy’s kernels follows from the surjectivity of discrete derivatives by Theorem 2.30:
Corollary 2.34
Let [image: $$Q_0 \in V(\Diamond )$$] and [image: $$v_0\in V(\varLambda )$$] be arbitrary. Then, discrete Cauchy’s kernels with respect to [image: $$Q_0$$] and [image: $$v_0$$] exist.

Theorem 2.35
Let f and h be discrete holomorphic functions on [image: $$V(\varLambda _0)$$] and [image: $$V(\Diamond _0)$$], respectively. Furthermore, let [image: $$v_0 \in V(\varLambda _0)\backslash V(\partial \varLambda _0)$$] and [image: $$Q_0 \in V(\Diamond _0)$$] be given, and let [image: $$K_{v_0}:V(\Diamond )\rightarrow \mathbb C$$] and [image: $$K_{Q_0}:V(\varLambda )\rightarrow \mathbb C$$] be discrete Cauchy’s kernels with respect to [image: $$v_0$$] and [image: $$Q_0$$] on [image: $$V(\Diamond _0)$$] and [image: $$V(\varLambda _0)$$], respectively.
Then, for any discrete contours [image: $$C_{v_0}$$] and [image: $$C_{Q_0}$$] on [image: $$X_0$$] surrounding [image: $$v_0$$] and [image: $$Q_0$$], respectively, once in counterclockwise order, discrete Cauchy’s integral formulae hold:[image: $$\begin{aligned} f(v_0)=\frac{1}{2\pi i}\oint \limits _{C_{v_0}}f K_{v_0} dz \quad \text {and}\quad h(Q_0)=\frac{1}{2\pi i}\oint \limits _{C_{Q_0}}h K_{Q_0} dz. \end{aligned}$$]





Proof
Let [image: $$P_v$$] and [image: $$P_Q$$] be discrete elementary cycles, v being an interior vertex and Q an interior face of [image: $$\varLambda _0$$]. By Lemma 2.3 that relates [image: $$\partial _\varLambda ,\bar{\partial }_\varLambda $$] with discrete contour integrals and the definition of [image: $$\bar{\partial }_{\Diamond }$$], we get:[image: $$\begin{aligned} \frac{1}{2\pi i}\oint \limits _{P_v}f K_{v_0}dz&=\frac{1}{\pi }\text {ar}(F_v) f(v)\bar{\partial }_\Diamond K_{v_0}(v)=\delta _{vv_0} f(v),\\ \frac{1}{2\pi i}\oint \limits _{P_Q}f K_{v_0}dz&=\frac{1}{\pi }\text {ar}(F_Q)\bar{\partial }_\varLambda f(Q) K_{v_0}(Q)=0. \end{aligned}$$]


Here, we used that the value of the product on [image: $$[Q',v']\in E(X_0)$$] is [image: $$f(v')K_{v_0}(Q')$$], so in the first integration we could factor out f(v), in the second one [image: $$K_{v_0}(Q)$$].
By definition, the discrete contour [image: $$C_{v_0}$$] is the oriented boundary of a topological disk in [image: $$F(X_0)$$], so we can decompose the integration along [image: $$C_{v_0}$$] into a couple of integrations along discrete elementary cycles [image: $$P_v$$] and [image: $$P_Q$$] as above. Summing up, only the contribution of [image: $$P_{v_0}$$] is nonvanishing, and we get the desired result. The second formula is shown in an analog fashion.

Remark
In the case of rhombic quad-graphs, Mercat formulated a discrete Cauchy’s integral formula for the average of a discrete holomorphic function on [image: $$V(\varLambda )$$] along an edge of [image: $$\varLambda $$]. In [6], Chelkak and Smirnov provided a discrete Cauchy’s integral formula for discrete holomorphic functions on [image: $$V(\Diamond )$$] using an integration along cycles on [image: $$\varGamma $$] and [image: $$\varGamma ^*$$], see Sect. 2.6.1.

Theorem 2.36
Let [image: $$f:V(\varLambda _0)\rightarrow \mathbb C$$] be discrete holomorphic, let [image: $$Q_0 \in V(\Diamond _0)$$], and let [image: $$K_{Q_0}:V(\varLambda _0)\rightarrow \mathbb C$$] be a discrete Cauchy’s kernel with respect to [image: $$Q_0$$] on [image: $$V(\varLambda _0)$$].[image: A371662_1_En_2_Fig5_HTML.gif]
Fig. 5Discrete contour as in Theorem 2.36
                  





Then, for any discrete contour [image: $$C_{Q_0}$$] in [image: $$X_0$$] surrounding [image: $$Q_0$$] once in counterclockwise order that does not contain any edge [image: $$[Q_0,v]$$] of [image: $$X_0$$], [image: $$v\sim Q_0$$] (see Fig. 5), the discrete Cauchy’s integral formula is true:[image: $$\begin{aligned} \partial _\varLambda f(Q_0)=-\frac{1}{2\pi i}\oint \limits _{C_{Q_0}}f\partial _\varLambda K_{Q_0}dz. \end{aligned}$$]





Proof
Let D be the discrete domain in [image: $$F(X_0)$$] bounded by [image: $$C_{Q_0}$$]. Since no edge of [image: $$C_{Q_0}$$] passes through [image: $$Q_0$$], the discrete one-form [image: $$\bar{\partial }_\varLambda K_{Q_0}d\bar{z}$$] vanishes on [image: $$C_{Q_0}$$]. Therefore, [image: $$dK_{Q_0}=\partial _\varLambda K_{Q_0}dz$$] on [image: $$C_{Q_0}$$] and[image: $$\oint \limits _{C_{Q_0}}f\partial _\varLambda K_{Q_0}dz=\oint \limits _{C_{Q_0}}fdK_{Q_0}=\iint \limits _D d(fdK_{Q_0})=\iint \limits _D df\wedge dK_{Q_0}$$]


due to discrete Stokes’ Theorem 2.9 in the second equality and Theorem 2.16 that assures that [image: $$d(fdK_{Q_0})=df\wedge dK_{Q_0}+f ddK_{Q_0}$$] and Proposition 2.10 that assures that [image: $$ddK_{Q_0}=0$$] in the third equality. Now, f is discrete holomorphic, so we obtain [image: $$df\wedge dK_{Q_0}=\partial _\varLambda f \bar{\partial }_\varLambda K_{Q_0} \varOmega _\Diamond $$]. But [image: $$\bar{\partial }_\varLambda K_{Q_0}$$] vanishes on all vertices of [image: $$\Diamond _0$$] but [image: $$Q_0$$]. Finally,[image: $$-\frac{1}{2\pi i}\oint \limits _{C_{Q_0}}f\partial _\varLambda K_{Q_0}dz=-\frac{1}{2\pi i} \iint \limits _{F_{Q_0}}\partial _\varLambda f \bar{\partial }_\varLambda K_{Q_0} \varOmega _\Diamond =\partial _\varLambda f(Q_0).$$]





Remark
In general, there exists no analog of the above Theorem 2.36 for the discrete derivative of a discrete holomorphic function on [image: $$V(\Diamond _0)$$], because the discrete derivative itself does not need to be discrete holomorphic. However, in the special case of integer lattices, any discrete derivative of a discrete holomorphic function is itself discrete holomorphic. In Sect. 3.5, we will obtain discrete analogs of Cauchy’s integral formulae for higher derivatives of discrete holomorphic functions.

2.6.1 A Different Notation
Let W be a cycle on the edges of [image: $$\varGamma ^*$$], having (ordered) white vertices [image: $$w_0,w_1,\ldots , w_m$$], [image: $$w_m=w_0$$]. Then, any edge connecting two consecutive vertices [image: $$w_k,w_{k+1}$$] forms the diagonal of a quadrilateral face [image: $$Q(w_k,w_{k+1})\in V(\Diamond )$$]. We denote the set of such faces together with the induced orientation of their white diagonals by [image: $$W_\Diamond $$]. For [image: $$Q\in W_\Diamond $$], we denote its white vertices by [image: $$w_-(Q),w_+(Q)$$] such that the corresponding oriented diagonal goes from [image: $$w_-(Q)$$] to [image: $$w_+(Q)$$]. Its black vertices are denoted by [image: $$b(Q),b'(Q)$$] in such a way that [image: $$w_-(Q),b(Q),w_+(Q),b'(Q)$$] appear in counterclockwise order. The reason why we do not choose our previous notation of Fig. 1 is that black and white vertices now play a different role that shall be indicated by the notation.
Now, we construct a cycle B on the edges of [image: $$\varGamma $$] having (ordered) black vertices [image: $$b_0,b_1,\ldots ,b_n$$], [image: $$b_n=b_0$$], in the following way. We start with [image: $$b_0:=b\left( Q\left( w_0,w_1\right) \right) $$]. In the star of the vertex [image: $$w_1$$], there are two simple paths on [image: $$\varGamma $$] connecting [image: $$b_0$$] and [image: $$b\left( Q\left( w_1,w_2\right) \right) $$], and we choose the path that does not go through [image: $$Q(w_0,w_1)$$]. Note that it may happen that [image: $$b\left( Q\left( w_1,w_2\right) \right) =b_0$$]; in this case, we do not add any vertices to B. Also, [image: $$w_2=w_0$$] is possible, which causes adding the nondirect path connecting the black vertices [image: $$b_0$$] and [image: $$b\left( Q\left( w_1,w_2\right) \right) =b'\left( Q\left( w_0,w_1\right) \right) $$].[image: A371662_1_En_2_Fig6_HTML.gif]
Fig. 6Cycles W on [image: $$\varGamma ^*$$], B on [image: $$\varGamma $$], and closed path P on X in between





Continuing this procedure till we have connected [image: $$b\left( Q\left( w_{m-1},w_m\right) \right) $$] with [image: $$b_0$$], we end up with a closed path B on [image: $$\varGamma $$]. Without loss of generality, any two consecutive vertices in B are different. As above, any edge connecting two consecutive vertices [image: $$b_k,b_{k+1}$$] forms the diagonal of a face [image: $$Q(b_k,b_{k+1})\in V(\Diamond )$$]. We denote the set of such faces together with the induced orientation of their black diagonals by [image: $$B_\Diamond $$]. For [image: $$Q\in B_\Diamond $$], we denote its black vertices by [image: $$b_-(Q),b_+(Q)$$] such that the corresponding oriented diagonal goes from [image: $$b_-(Q)$$] to [image: $$b_+(Q)$$]. Finally, its white vertices are denoted by [image: $$w(Q),w'(Q)$$] in such a way that [image: $$b_-(Q),w'(Q),b_+(Q),w(Q)$$] appear in counterclockwise order.
Definition
Let W and B be cycles as above and h a function defined on [image: $$W_\Diamond \cup B_\Diamond $$]. We define the discrete integrals along W and B by[image: $$\begin{aligned} \oint _W h(Q)dz&:= \sum \limits _{k=0}^{m-1} h\left( Q\left( w_k,w_{k+1}\right) \right) \left( w_{k+1}-w_k\right) ,\\ \oint _W h(Q)d\bar{z}&:= \sum \limits _{k=0}^{m-1} h\left( Q\left( w_k,w_{k+1}\right) \right) \overline{\left( w_{k+1}-w_k\right) };\\ \oint _B h(Q)dz&:= \sum \limits _{k=0}^{n-1} h\left( Q\left( b_k,b_{k+1}\right) \right) \left( b_{k+1}-b_k\right) ,\\ \oint _B h(Q)d\bar{z}&:= \sum \limits _{k=0}^{n-1} h\left( Q\left( b_k,b_{k+1}\right) \right) \overline{\left( b_{k+1}-b_k\right) }. \end{aligned}$$]





In between the closed paths B and W, there is a cycle P on the medial graph X that comprises exactly all edges [Q, v] with [image: $$Q \in W_\Diamond $$] and [image: $$v \in B$$] incident to Q and all edges [Q, v] with [image: $$Q \in B_\Diamond $$] and [image: $$v \in W$$] incident to Q. The orientation of [Q, v] is induced by the orientation of the corresponding parallel white or black diagonal. Figure 6 gives an example for this construction, where all cycles are oriented counterclockwise.
Remark
Note that an oriented cycle P on X induces a white cycle [image: $$W=W(P)$$] and a black cycle [image: $$B=B(P)$$] in such a way that W, P, and B are related as above.

Lemma 2.37
Let P be an oriented cycle on X and let [image: $$W=W(P)$$] and [image: $$B=B(P)$$] be the white and black cycles it induces. Let f be a function defined on the vertices of W and B and h a function defined on [image: $$W_\Diamond \cup B_\Diamond $$]. Then,[image: $$\oint \limits _W f(b(Q))h(Q)dz+\oint \limits _B f(w(Q)) h(Q)dz=2\oint \limits _P fhdz.$$]





Proof
Any edge [image: $$e=[Q,b(Q)]$$] ([image: $$Q \in W_\Diamond $$]) or [Q, w(Q)] ([image: $$Q \in B_\Diamond $$]) of P is parallel to either an edge [image: $$w_-(Q)w_+(Q)$$] of W or to an edge [image: $$b_-(Q)b_+(Q)$$] of B, respectively, and vice versa. Since the complex number associated to e is just half of the corresponding parallel edge of [image: $$\varGamma $$] or [image: $$\varGamma ^*$$], [image: $$2\int _e fh =f\left( b\left( Q\right) \right) h(Q)(w_+(Q)-w_-(Q))$$] in the first and [image: $$2\int _e fh =f\left( w\left( Q\right) \right) h(Q)(b_+(Q)-b_-(Q))$$] in the second case. Therefore, the discrete integral along P decomposes into one along B and one along W.

Remark
Note that the construction of B and Lemma 2.37 are also valid if W consists of a single point or of only two edges (being the same, but traversed in both directions). In both cases, P will be a discrete contour, as well when W is simple and oriented counterclockwise.

The discrete Cauchy’s integral formula of Chelkak and Smirnov in [6] reads as[image: $$\pi i h(Q_0)= \oint _W h(Q) K_{Q_0}(b(Q))dz+\oint _B h(Q) K_{Q_0}(w(Q))dz$$]


if [image: $$Q_0 \in V(\Diamond )$$] is surrounded once by the simple closed curve W on [image: $$\varGamma ^*$$] in counterclockwise direction, h is discrete holomorphic on [image: $$V(\Diamond )$$], and [image: $$K_{Q_0}:V(\varLambda )\rightarrow \mathbb C$$] is a discrete Cauchy’s kernel with respect to [image: $$Q_0$$]. The above Lemma 2.37 directly relates this formulation to the one of the discrete Cauchy’s integral formula in Theorem 2.35.
Finally, we conclude this section with a proposition relying on the decomposition of a discrete contour into black and white cycles. In Proposition 2.13(i), we have already seen that [image: $$fdg+gdf$$] is closed for functions [image: $$f,g:V(\varLambda )\rightarrow \mathbb C$$]. Actually, a slightly stronger statement is true:
Proposition 2.38
Let W be a closed cycle on [image: $$\varGamma ^*$$] and B be the corresponding closed cycle on [image: $$\varGamma $$] as above, and let [image: $$f,g:V(\varLambda )\rightarrow \mathbb C$$]. Then,[image: $$\oint _W f(b(Q)) \left( \partial _\varLambda g(Q)dz+\bar{\partial }_\varLambda g(Q) d\bar{z}\right) +\oint _B g(w(Q)) \left( \partial _\varLambda f(Q)dz+\bar{\partial }_\varLambda f(Q) d\bar{z}\right) =0.$$]





Proof
We first rewrite the discrete integral along the cycle W. By definition, we have [image: $$dg=\partial _\varLambda g dz+\bar{\partial }_\varLambda g d\bar{z}$$]. By discrete Stokes’ Theorem 2.9, [image: $$\int _e dg=g\left( w_+\right) -g\left( w_-\right) $$] if e is an edge on X parallel to [image: $$w_-w_+$$] and oriented the same, so[image: $$\begin{aligned}\oint _W f(b(Q)) \left( \partial _\varLambda g(Q)dz+\bar{\partial }_\varLambda g(Q) d\bar{z}\right)&=\sum \limits _{Q\in W_\Diamond }f(b(Q)) \left( g\left( w_+\left( Q\right) \right) -g\left( w_-\left( Q\right) \right) \right) \\ {}&=-\sum \limits _{Q\in B_\Diamond }g\left( w\left( Q\right) \right) \left( f\left( b_+\left( Q\right) \right) -f\left( b_-\left( Q\right) \right) \right) ,\end{aligned}$$]


where we changed the summation along the path W into a summation along the path B in the last step. Similar to above, we rewrite the discrete integral along B as[image: $$\oint _B g(w(Q)) \left( \partial _\varLambda f(Q)dz+\bar{\partial }_\varLambda f(Q) d\bar{z}\right) =\sum \limits _{Q\in B_\Diamond }g(w(Q)) \left( f\left( b_+\left( Q\right) \right) -f\left( b_-\left( Q\right) \right) \right) .$$]


In summary,[image: $$\oint _W f(b(Q)) \left( \partial _\varLambda g(Q)dz+\bar{\partial }_\varLambda g(Q) d\bar{z}\right) +\oint _B g(w(Q)) \left( \partial _\varLambda f(Q)dz+\bar{\partial }_\varLambda f(Q) d\bar{z}\right) =0.$$]








3 Discrete Complex Analysis on Planar Parallelogram-Graphs
3.1 Preliminaries
Definition
A planar parallelogram-graph [image: $$\varLambda $$] (without boundary) is a planar quad-graph without boundary such that all its faces are parallelograms. Its dual [image: $$\Diamond $$] is embedded in the complex plane by placing all [image: $$Q\in V(\Diamond )$$] at the center [image: $$\hat{Q}$$] of the corresponding parallelogram Q and connecting adjacent vertices by straight line segments.

Remark
Remembering the duality [image: $$V(\Diamond )\cong F(\varLambda )$$], we will omit the hat above Q in the sequel and identify the vertex [image: $$Q \in V(\Diamond )$$] representing a parallelogram in [image: $$\varLambda $$] with the corresponding point [image: $$\hat{Q}$$] in the complex plane. It will be clear from the context whether Q is meant to be a face of [image: $$\varLambda $$] or a point in the complex plane.

In Sect. 3, discrete complex analysis on planar parallelogram-graphs [image: $$\varLambda $$] is discussed. As in Sect. 2, [image: $$\varLambda $$] is bipartite, the induced graphs on black and white vertices are denoted by [image: $$\varGamma $$] and [image: $$\varGamma ^*$$], respectively, and we assume that the cellular decomposition induced by [image: $$\varLambda $$] is locally finite and strongly regular (which already follows from all faces being parallelograms).
In Propositions 2.1, 2.5, and 2.22, we have already seen that discrete complex analysis on parallelogram-graphs is closer to the classical theory than on general quad-graphs. For example, [image: $$f(v)=v^2$$] is a discrete holomorphic function on [image: $$V(\varLambda )$$] and [image: $$\partial _\varLambda f(Q)=2Q$$]; [image: $$h(Q)=Q$$] is a discrete holomorphic function on [image: $$V(\Diamond )$$] and [image: $$\partial _\Diamond h\equiv 1$$]; and the discrete Laplacian [image: $$\triangle $$] approximates the smooth one correctly up to order two.
In order to concentrate on the calculation of the asymptotics of a certain discrete Green’s function and discrete Cauchy’s kernels, we postpone the discussion of some necessary combinatorial and geometric results on planar parallelogram-graphs to the appendix. Our setup is closely related to the quasicrystallic parallelogram-graphs discussed in [2]. There, the quad-graph was embedded into [image: $$\mathbb {Z}^n$$] and explicit formulae for a discrete exponential function and a discrete logarithm were introduced. These results relied on Kenyon’s formulae for a discrete exponential and a discrete Green’s function in [16].
In the following, the ideas of [2] are adapted to our slightly more general setting in Sect. 3.2. The discrete exponential is the basic building block for the integral formulae of a discrete Green’s function in Sect. 3.3 and discrete Cauchy’s kernels in Sect. 3.4. The corresponding functions can be defined for general planar parallelogram-graphs, but we need more regularity of the graph to calculate their asymptotics. The two conditions we use are that all interior angles of the parallelograms are bounded (the same condition was used by Chelkak and Smirnov in [6]) and that the ratio of side lengths of the parallelograms is bounded as well. For rhombic quad-graphs, the second condition is trivially fulfilled; for quasicrystallic graphs, there are only a finite number of interior angles. Note that instead of using boundedness of the ratio of side lengths of the parallelograms, we can assume that the side lengths themselves are bounded. This seems to be a stronger condition at first, but actually, both conditions are equivalent, see Proposition 4.3 in the appendix.
Remark
To our knowledge, it is an open problem to find an explicit formula for a discrete Green’s function or a discrete Cauchy’s kernel in the case of general quad-graphs as discussed in Sect. 2.

We conclude this section by a discussion of integer lattices in Sect. 3.5. On these graphs, discrete holomorphic functions can be discretely differentiated infinitely many times, and for all higher order discrete derivatives, discrete Cauchy’s integral formulae with the asymptotics one expects from the asymptotics of the discrete Cauchy’s integral formula for a discrete holomorphic function hold true.
Lemma 3.1
Let [image: $$v,v' \in V(\varLambda )$$], let k be an odd integer, let [image: $$e_1,\ldots ,e_n$$] be a sequence of n oriented edges of [image: $$\varLambda $$] forming a directed path from v to [image: $$v'$$] on [image: $$\varLambda $$], and let [image: $$f_1,\ldots ,f_m$$] be another such sequence of m oriented edges. Then,[image: $$\begin{aligned} \sum \limits _{j=1}^{n}e_{j}^{k}=\sum \limits _{j=1}^{m}f_{j}^{k}. \end{aligned}$$]


Here, the calculations are performed directly with edges rather than replacing them with their associated complex numbers (see Sect. 2.1.1).

Proof
Consider a path [image: $$p_1,p_2,p_3,p_4$$] of oriented edges of [image: $$\varLambda $$] going once around a parallelogram. Since [image: $$p_1=-p_3$$] and [image: $$p_2=-p_4$$], we have [image: $$\sum _{j=1}^4 p_j^k=0$$]. Now, any closed cycle on the planar graph [image: $$\varLambda $$] can be decomposed into elementary oriented cycles around faces, where edges [image: $$e,-e$$] with opposite orientation cancel out, and pairs of oppositely oriented edges (that are not necessarily successive). Using that [image: $$e^k+(-e)^k=0$$], the claim now follows from[image: $$\begin{aligned} \sum \limits _{j=1}^{n}e_{j}^{k}+\sum \limits _{j=1}^{m}(-f_{j})^{k}=0 \end{aligned}$$]


for the cycle [image: $$e_1,\ldots ,e_n,-f_1,\ldots ,-f_m$$] of oriented edges starting and ending in v.

In the remainder of the paper, we use the following shorthand notation.
Definition
Let [image: $$v,v' \in V(\varLambda )$$] and [image: $$Q,Q' \in V(\Diamond )$$].

                	(i)Choose any directed path of edges [image: $$e_1,\ldots ,e_n$$] on [image: $$\varLambda $$] going from [image: $$v'$$] to v. Define [image: $$\begin{aligned} J(v,v'):=\sum \limits _{j=1}^{n}e_{j}^{-1}, \end{aligned}$$]


 which does not depend on the choice of path from v to [image: $$v'$$] due to Lemma 3.1.


 

	(ii)Choose any vertex [image: $$v_Q$$] incident to Q and any directed path of edges [image: $$e_1,\ldots ,e_n$$] on [image: $$\varLambda $$] from v to [image: $$v_Q$$]. Moreover, let [image: $$d_1$$], [image: $$d_2$$] be the two oriented edges of Q that emanate in [image: $$v_Q$$]. We now define [image: $$\begin{aligned} -J(v,Q)=J(Q,v):=\sum \limits _{j=1}^{n}e_{j}^{-1}+\frac{1}{2}d_1^{-1}+\frac{1}{2}d_2^{-1}. \end{aligned}$$]


 Note that J(Q, v) does not depend on the choice of path from v to [image: $$v_Q$$] by Lemma 3.1 nor on the choice of [image: $$v_Q$$] by a similar argument as in the proof of the above lemma.
Moreover, let [image: $$\tau (v,Q)=\tau (Q,v):=1/(d_1 d_2)$$] if [image: $$v_Q,v$$] are both in [image: $$V(\varGamma )$$] or both in [image: $$V(\varGamma ^*)$$] and [image: $$\tau (v,Q)=\tau (Q,v):=-1/(d_1 d_2)$$] otherwise. Since Q is a parallelogram, these quantities depend on v and Q only.


 

	(iii)Choose any vertices [image: $$v_{Q'}$$] incident to [image: $$Q'$$] and [image: $$v_Q$$] incident to Q and a directed path of edges [image: $$e_1,\ldots ,e_n$$] on [image: $$\varLambda $$] going from [image: $$v_{Q'}$$] to [image: $$v_Q$$]. Let [image: $$d_1,d_2$$] be the two oriented edges of [image: $$Q'$$] ending in [image: $$v_{Q'}$$] and [image: $$f_1,f_2$$] the two oriented edges of Q emanating from [image: $$v_{Q}$$]. Define [image: $$\begin{aligned} J(Q,Q'):=\frac{1}{2}d_1^{-1}+\frac{1}{2}d_2^{-1}+\sum \limits _{j=1}^{n}e_{j}^{-1}+\frac{1}{2}f_1^{-1}+\frac{1}{2}f_2^{-1}. \end{aligned}$$]



                    [image: $$J(Q,Q')$$] does not depend on the choice of [image: $$v_{Q'}$$] and [image: $$v_Q$$] or the path from [image: $$v_{Q'}$$] to [image: $$v_Q$$].
Furthermore, let [image: $$\tau (Q,Q'):=1/(d_1 d_2 f_1 f_2)$$] if [image: $$v_Q,v_{Q'}$$] are both in [image: $$V(\varGamma )$$] or both in [image: $$V(\varGamma ^*)$$] and [image: $$\tau (Q,Q'):=-1/(d_1 d_2 f_1 f_2)$$] otherwise. [image: $$\tau (Q,Q')$$] depends on Q and [image: $$Q'$$] only, since they are both parallelograms.


 




              

Remark
In the case that all parallelograms are rhombi of side length one, we have [image: $$J(x,x')=\overline{x-x'}$$].

Finally, the notion of the argument of a complex number will become important in the sequel. In our paper, it will be usually an arbitrary real number and not a number modulo [image: $$2\pi $$].
Definition
For a complex number [image: $$\lambda \ne 0$$], a real number [image: $$\phi $$] such that [image: $$\lambda /\exp (i\phi )$$] is a positive real number is called argument of [image: $$\lambda $$]. On the other hand, [image: $$\arg (\lambda )$$] denotes the unique argument [image: $$\phi $$] of [image: $$\lambda $$] that is contained in the interval [image: $$(-\pi ,\pi ]$$].


3.2 Discrete Exponential Function
Definition
Let [image: $$v_0$$] be a vertex of [image: $$\varLambda $$]. Then, the discrete exponentials [image: $$\text {e}(\lambda ,\cdot ;v_0)$$] and [image: $$\exp (\lambda ,\cdot ;v_0)$$] on [image: $$V(\varLambda )$$] are the rational functions in the complex variable [image: $$\lambda $$] that are inductively defined by [image: $$\text {e}(\lambda ,v_0;v_0)=1=\exp (\lambda ,v_0;v_0)$$] and[image: $$\begin{aligned} \frac{\text {e}(\lambda ,v';v_0)}{\text {e}(\lambda ,v;v_0)}= \frac{\lambda +(v'-v)}{\lambda -(v'-v)}\quad \text {and}\quad \frac{\exp (\lambda ,v';v_0)}{\exp (\lambda ,v;v_0)}= \frac{1+\frac{\lambda }{2}(v'-v)}{1-\frac{\lambda }{2}(v'-v)} \end{aligned}$$]


for all vertices [image: $$v,v' \in V(\varLambda )$$] adjacent to each other.

Remark
Note that the quotient of [image: $$\text {e}$$] or [image: $$\exp $$] at the vertices of an oriented edge e is by definition the inverse of the quotient for the edge [image: $$-e$$] oriented in the opposite direction. Since all faces of [image: $$\varLambda $$] are parallelograms, the complex numbers associated to opposite edges oriented the same are equal and therefore are corresponding quotients of the discrete exponentials. Thus, the discrete exponentials are well-defined.

For [image: $$v \in V(\varLambda )$$], [image: $$\exp (\cdot ,v;v_0)$$] is a rational function on [image: $$\mathbb C$$] with poles being the complex numbers associated to the oriented edges of a shortest directed path connecting [image: $$v_0$$] with v. It follows from Lemma 4.2 in the appendix that the arguments of all poles can be chosen to lie in an interval of length less than [image: $$\pi $$]. If in addition the interior angles of parallelograms are bounded from below by [image: $$\alpha _0$$], then the arguments of all poles can be chosen to lie even in an interval of length at most [image: $$\pi -\alpha _0$$].
Remark
Note that [image: $$\exp (\lambda ,\cdot ;v_0)=\text {e}(2/\lambda ,\cdot ;v_0)$$]. Hence, [image: $$\text {e}$$] and [image: $$\exp $$] are equivalent up to reparametrization. On square lattices, the discrete exponential was already considered by Ferrand [12] and Duffin [9]. The discrete exponential [image: $$\text {e}$$] on rhombic lattices was used in the papers [2, 5, 16]. To be comparable to these, we use [image: $$\text {e}$$] and not [image: $$\exp $$] to perform our calculations of the asymptotic behavior. In contrast, Mercat [20], Chelkak and Smirnov [6] preferred the parametrization of [image: $$\exp $$] that is closer to the smooth setting. Indeed, Mercat remarked that the discrete exponential [image: $$\exp $$] in the rhombic setting is a generalization of the formula[image: $$\exp (\lambda x)=\left( \frac{1+\frac{\lambda x}{2n}}{1-\frac{\lambda x}{2n}}\right) ^n+O\left( \frac{\lambda ^3x^3}{n^2}\right) $$]


to the case when the path from the origin to x consists of [image: $$O(|x|/\delta )$$] straight line segments of length [image: $$\delta $$] of any directions [20].

Definition
For a face [image: $$Q \in V(\Diamond )$$] with incident vertices [image: $$v_-,v'_-,v_+,v'_+$$] in counterclockwise order and [image: $$v \in V(\varLambda )$$], we define the discrete exponentials as the following rational functions in the complex variable [image: $$\lambda $$]:[image: $$\begin{aligned} \text {e}(\lambda ,v;Q)&:=\frac{\text {e}(\lambda ,v;v_\pm )}{\left( \lambda -(v_\pm -v'_+)\right) \left( \lambda -(v_\pm -v'_-)\right) },\\ \exp (\lambda ,Q;v)&:=\frac{\exp (\lambda ,v_\pm ;v)}{\left( 1-\frac{\lambda }{2}(v'_+-v_\pm )\right) \left( 1-\frac{\lambda }{2}(v'_--v_\pm )\right) }. \end{aligned}$$]





Remark
For arbitrary [image: $$Q_0 \in V(\Diamond )$$] and [image: $$v_0\in V(\varLambda )$$], the above definition yields well-defined rational functions [image: $$\text {e}(\cdot ,v_0;Q_0)$$] and [image: $$\exp (\cdot ,Q_0;v_0)$$]. As long as [image: $$\lambda $$] is not a pole, [image: $$\text {e}(\lambda ,\cdot ;Q_0)$$] is a function on [image: $$V(\varLambda )$$] and [image: $$\exp (\lambda ,\cdot ;v_0)$$] is a function on [image: $$V(\Diamond )$$].

Proposition 3.2
Let [image: $$v_0 \in V(\varLambda )$$], [image: $$Q \in V(\Diamond )$$]. Then, for any [image: $$\lambda \in \mathbb C$$] that is not a pole of [image: $$\exp (\cdot ,v;v_0)$$] for any vertex [image: $$v\sim Q$$], [image: $$\exp (\lambda ,\cdot ;v_0)$$] is discrete holomorphic at Q and[image: $$\left( \partial _\varLambda \exp \left( \lambda ,\cdot ;v_0\right) \right) \left( Q\right) =\lambda \exp (\lambda ,Q;v_0).$$]





Proof
Let [image: $$v_-,v'_-,v_+,v'_+$$] be the vertices of Q in counterclockwise order. Let us denote [image: $$a:=v'_+-v_-$$] and [image: $$b:=v'_--v_-$$]. Using Lemma 2.3 that describes [image: $$\bar{\partial }_\varLambda $$] as a discrete contour integration, [image: $$v_+-v_-=a+b$$], [image: $$v'_+-v'_-=a-b$$], and the inductive formula for [image: $$\exp $$], we get that [image: $$\left( \bar{\partial }_\varLambda \exp (\lambda ,\cdot ;v_0) \right) (Q)$$] equals[image: $$\begin{aligned}&\frac{\exp (\lambda ,v_-;v_0)}{2i\text {ar}(F_Q)}\oint \limits _{\partial F_Q} \frac{\exp (\lambda ,\cdot ;v_0)}{\exp (\lambda ,v_-;v_0)}dz\\ =&\frac{\exp (\lambda ,v_-;v_0)}{2i\text {ar}(F_Q)} \left( \frac{a+b}{2}\cdot \left( \frac{1+\frac{\lambda }{2}b}{1-\frac{\lambda }{2}b}-\frac{1+\frac{\lambda }{2}a}{1-\frac{\lambda }{2}a}\right) +\frac{a-b}{2}\cdot \left( \frac{1+\frac{\lambda }{2}b}{1-\frac{\lambda }{2}b}\frac{1+\frac{\lambda }{2}a}{1-\frac{\lambda }{2}a}-1\right) \right) \\ =&\frac{\exp (\lambda ,v_-;v_0)}{4i\text {ar}(F_Q)\left( 1-\frac{\lambda }{2}a\right) \left( 1-\frac{\lambda }{2}b\right) }\left( \left( a+b\right) \lambda \left( b-a\right) +\left( a-b\right) \lambda \left( a+b\right) \right) =0. \end{aligned}$$]


Here, [image: $$F_Q$$] is the Varignon parallelogram inside Q, and [image: $$\text {ar}(F_Q)=\text {area}(Q)$$]. Similarly, we obtain that [image: $$\left( \partial _\varLambda \exp (\lambda ,\cdot ;v_0)\right) (Q)$$] equals[image: $$\begin{aligned}&\frac{\exp (\lambda ,v_-;v_0)}{4i\text {ar}(F_Q)\left( 1-\frac{\lambda }{2}a\right) \left( 1-\frac{\lambda }{2}b\right) }\left( -\overline{\left( a+b\right) }\lambda \left( b-a\right) +\overline{\left( b-a\right) }\lambda \left( a+b\right) \right) \\ =&\frac{\lambda \exp (\lambda ,v_-;v_0)}{2i|a||b|\sin (\varphi _Q)\left( 1-\frac{\lambda }{2}a\right) \left( 1-\frac{\lambda }{2}b\right) }2i{{\mathrm{Im}}}(a\bar{b})=\lambda \exp (\lambda ,Q;v_0). \end{aligned}$$]






3.3 Asymptotics of the Discrete Green’s Function
Following the presentation in [2], we first define a discrete logarithmic function on the lift [image: $$\tilde{\varLambda }_{v_0}$$] of the quad-graph [image: $$\varLambda $$] onto the Riemann surface of the logarithmic function [image: $$\log (\cdot -v_0)$$], which can be considered as a branched covering of the quad-graph [image: $$\varLambda $$] seen as a cellular decomposition of the complex plane.
Throughout the following paragraphs, fix [image: $$v_0 \in V(\varLambda )$$], and let [image: $$e_1, e_2, \ldots , e_n$$] be the directed edges starting in [image: $$v_0$$], ordered according to their slopes.
Definition
To each of these edges e we assign the angle [image: $$\theta _e:=\arg (e) \in (-\pi ,\pi ]$$]. We assume that [image: $$\theta _{e_1}<\theta _{e_n}$$]. Now, define [image: $$\theta _{a+bn}:=\theta _a+2\pi b$$], where [image: $$a \in \left\{ 1,\ldots ,n\right\} $$] and [image: $$b\in \mathbb Z$$]. For [image: $$m \in \mathbb Z$$], let [image: $$e_m:=e_{m \text { mod } n}$$], considering the residue classes [image: $$\left\{ 1,2,\ldots ,n\right\} $$].

Definition
Let e be one of the [image: $$e_k$$]. The sector [image: $$U_e \subset \varLambda $$] is the subgraph of [image: $$\varLambda $$] that consists of all vertices and edges of directed paths on [image: $$\varLambda $$] starting in [image: $$v_0$$] whose oriented edges have arguments that can be chosen to lie in [image: $$[\arg (e),\arg (e)+\pi )$$].

Definition
For [image: $$m \in \mathbb Z$$], we define the graph [image: $$\tilde{U}_m$$] to be the sector [image: $$U_{e_m}$$] with the additional data that each vertex v of [image: $$U_{e_m}$$] besides [image: $$v_0$$] is assigned the real number [image: $$\vartheta _m(v)$$] given by [image: $$\vartheta _m(v) \equiv arg (v-v_0) \,mod 2\pi $$] and [image: $$\vartheta _m(v) \in [\theta _m,\theta _m+\pi )$$]. Then,[image: $$\begin{aligned} \tilde{U}:=\bigcup \limits _{m=-\infty }^\infty \tilde{U}_m \end{aligned}$$]


defines a graph [image: $$\tilde{\varLambda }_{v_0}$$] on the Riemann surface of [image: $$\log (\cdot -v_0)$$] that projects to the planar parallelogram graph [image: $$\varLambda $$]. Here, vertices v of [image: $$U_{e_m}$$] and [image: $$v'$$] of [image: $$U_{e_{m'}}$$] are equal as vertices of [image: $$\tilde{U}_m$$] and [image: $$\tilde{U}_{m'}$$] if and only if [image: $$v=v'$$] and either [image: $$v=v'=v_0$$] or [image: $$\vartheta _m(v)=\vartheta _{m'}(v')$$].

Remark
Apart from the additional data of the vertices, [image: $$\tilde{U}_m$$] is composed of all the vertices of edges of directed paths of edges on [image: $$\varLambda $$] starting in [image: $$v_0$$] whose arguments can be chosen to lie in [image: $$[\theta _m,\theta _m+\pi )$$]. It follows that all [image: $$\tilde{U}_{m+bn}$$], [image: $$b\in \mathbb Z$$] and [image: $$1\leqslant m\leqslant n$$], cover the same sector [image: $$U_{e_m}$$], and [image: $$\tilde{U}_{m} \cap \tilde{U}_{m'}$$] contains more than just [image: $$v_0$$] if and only if [image: $$|m-m'|<n$$]. In addition, Lemma 4.2 shows that the union of all [image: $$U_{e_k}$$], [image: $$k=1,\ldots ,n$$], covers the whole quad-graph [image: $$\varLambda $$]. It follows that [image: $$\tilde{\varLambda }_{v_0}$$] is a branched covering of the cellular decomposition [image: $$\varLambda $$], branched over [image: $$v_0$$].

Definition
To each vertex [image: $$\tilde{v} \in V(\tilde{\varLambda }_{v_0})$$] covering a vertex [image: $$v \ne v_0$$] of [image: $$\varLambda $$], let us denote [image: $$\theta _{\tilde{v}}:=\vartheta _m(v)$$] if [image: $$\tilde{v}\in \tilde{U}_{m}$$].

Remark

            [image: $$\theta _{\tilde{v}}$$] increases by [image: $$2 \pi $$] when the vertex winds once around [image: $$v_0$$] in counterclockwise order; and if [image: $$\tilde{v},\tilde{v}' \ne v_0$$] are adjacent vertices of [image: $$\tilde{\varLambda }_{v_0}$$], then [image: $$|\theta _{\tilde{v}}-\theta _{\tilde{v}'}|<\pi $$].

Note that by construction, if we connect [image: $$v_0$$] to some [image: $$\tilde{v} \ne v_0$$] by a shortest directed path of edges of [image: $$\tilde{\varLambda }_{v_0}$$], then the arguments of all oriented edges can be chosen to lie all in [image: $$(\theta _{\tilde{v}}-\pi ,\theta _{\tilde{v}}+\pi )$$].
Definition
Let [image: $$v_0 \in V(\varLambda )$$] and let [image: $$\tilde{\varLambda }_{v_0}$$] be the corresponding branched covering of [image: $$\varLambda $$]. The discrete logarithmic function on [image: $$V(\tilde{\varLambda }_{v_0})$$] is given by [image: $$\log (v_0;v_0):=0$$] and[image: $$\log (\tilde{v};v_0):=\frac{1}{2\pi i}\int \limits _{C_{\tilde{v}}} \frac{\log (\lambda )}{2 \lambda }\text {e}(\lambda ,v;v_0) d\lambda $$]


for [image: $$\tilde{v}\ne v_0$$]. Here, [image: $$C_{\tilde{v}}$$] is a collection of sufficiently small counterclockwise oriented loops going once around each pole of [image: $$\text {e}(\cdot ,v;v_0)$$], [image: $$v \in V(\varLambda )$$] being the projection of [image: $$\tilde{v}\in V(\tilde{\varLambda }_{v_0})$$]. On each loop around a pole e, we take the branch of logarithm that satisfies [image: $${{\mathrm{Im}}}(\log (e)) \in (\theta _{\tilde{v}}-\pi ,\theta _{\tilde{v}}+\pi )$$].

Remark
Let us suppose that [image: $$v_0$$] is a black vertex. In the special case of a rhombic quasicrystallic quad-graph, the notion of the discrete logarithm is motivated as follows [2]: The discrete logarithm is real-valued and does not branch on black vertices; and it is purely imaginary on white points and increases by [image: $$2\pi i$$] if one goes once around [image: $$v_0$$] in counterclockwise order. Therefore, the discrete logarithm models the behavior of the real and the imaginary part of the smooth logarithm if restricted to black and white vertices, respectively. As we will see later in the proof of Proposition 3.4, the values at vertices adjacent to [image: $$v_0$$] coincide with the smooth logarithm.

Lemma 3.3
Let [image: $$\tilde{v},\tilde{v}'\in V(\tilde{\varLambda }_{v_0})$$] be two points that cover the same vertex [image: $$v \in V(\varLambda )$$] such that [image: $$\theta _{\tilde{v}'}-\theta _{\tilde{v}}=2\pi $$]. Then[image: $$\begin{aligned} \log (\tilde{v}';v_0)-\log (\tilde{v};v_0)=0 \end{aligned}$$]


if [image: $$v_0,v$$] are both in [image: $$V(\varGamma )$$] or both in [image: $$V(\varGamma ^*)$$], and otherwise[image: $$\begin{aligned} \log (\tilde{v}';v_0)-\log (\tilde{v};v_0)=2\pi i. \end{aligned}$$]





Proof
By definition,[image: $$\log (\tilde{v}';v_0)-\log (\tilde{v};v_0)=\int \limits _{C_{\tilde{v}}} \frac{1}{2\lambda }\text {e}(\lambda ,v;v_0) d\lambda .$$]


The function that is integrated is meromorphic on [image: $$\mathbb C$$] with poles given by the one of [image: $$\text {e}(\cdot ,v;v_0)$$] and zero. By residue formula, we can replace integration along [image: $$C_{\tilde{v}}$$] by an integration along a circle centered at 0 with large radius R (such that all other poles lie inside the disk) in counterclockwise direction and an integration along a circle centered at 0 with small radius r (such that all poles lie outside the disk) in clockwise direction. Now, [image: $$\text {e}(\infty ,v;v_0)=1$$]. If [image: $$v_0,v$$] are both in [image: $$V(\varGamma )$$] or both in [image: $$V(\varGamma ^*)$$], then [image: $$\text {e}(0,v;v_0)=1$$], otherwise [image: $$\text {e}(0,v;v_0)=-1$$]. Hence, [image: $$\log (\tilde{v}';v_0)-\log (\tilde{v};v_0)=0$$] in the first and [image: $$\log (\tilde{v}';v_0)-\log (\tilde{v};v_0)=2 \pi i$$] in the latter case.

In particular, the real part of the discrete logarithm [image: $$\log (\cdot ;v_0)$$] is a well-defined function on [image: $$V(\varLambda )$$]. Divided by [image: $$2\pi $$], one actually obtains a discrete Green’s function with respect to [image: $$v_0$$]. In the rhombic case, it coincides with Kenyon’s discrete logarithm in [16] as was shown in [2].
Proposition 3.4
Let [image: $$v_0$$] be a vertex of [image: $$V(\varLambda )$$]. The function [image: $$G(\cdot ;v_0):V(\varLambda )\rightarrow \mathbb R$$] defined by [image: $$G(v_0;v_0)=0$$] and[image: $$G(v;v_0)=\frac{1}{2\pi }{{\mathrm{Re}}}\left( \frac{1}{2\pi i}\int \limits _{C_v} \frac{\log (\lambda )}{2 \lambda }\text {e}(\lambda ,v;v_0) d\lambda \right) $$]


for each [image: $$v\ne v_0$$] is a (free) discrete Green’s function with respect to [image: $$v_0$$]. Here, [image: $$C_v$$] is a collection of sufficiently small counterclockwise oriented loops going once around each pole of [image: $$\text {e}(\cdot ,v;v_0)$$], and on each loop around a pole e, we take the branch of [image: $$\log $$] where [image: $${{\mathrm{Im}}}(\log (e))\in (\arg (v-v_0)-\pi ,\arg (v-v_0)+\pi )$$].

Proof
When evaluating the real part of the integral, we can also take the branches of the logarithm that satisfy [image: $${{\mathrm{Im}}}(\log (e))\in (\arg (v-v_0)-\pi ,\arg (v-v_0)+\pi )+2k\pi $$] for all poles e, where [image: $$k \in \mathbb {Z}$$] is fixed. Indeed, Lemma 3.3 asserts that under this change, the discrete logarithm changes by 0 or [image: $$2k\pi i$$], so the real part does not change.
Consider all faces incident to [image: $$v_0$$] in [image: $$\varLambda $$] and its lift to [image: $$\tilde{\varLambda }_{v_0}$$]. For any vertex [image: $$v'_s\in V(\varLambda )$$] adjacent to [image: $$v_0$$], [image: $$\lambda =v'_s-v_0$$] is the only pole of [image: $$\text {e}(\lambda ,v'_s;v_0)$$]. The residue theorem shows that [image: $$\log (\tilde{v}'_s;v_0)$$] and [image: $$\log (v'_s-v_0)$$] coincide up to a multiple of [image: $$2\pi i$$] if [image: $$\tilde{v}_s'$$] covers [image: $$v'_s$$]. By a similar calculation for vertices [image: $$v_s$$] adjacent to [image: $$v_0$$] in [image: $$\varGamma $$] or [image: $$\varGamma ^*$$], we finally get[image: $$\begin{aligned} G(v'_s;v_0)&=\frac{1}{2\pi }{{\mathrm{Re}}}(\log (v'_s-v_0)),\\ G(v_s;v_0)&=\frac{1}{2\pi }{{\mathrm{Re}}}\left( \left( \log \left( v'_s-v_0\right) -\log \left( v'_{s-1}-v_0\right) \right) \frac{v_s-v_0}{v'_s-v'_{s-1}}\right) , \end{aligned}$$]


where [image: $$v_0,v'_{s-1},v_s,v'_s$$] are the vertices of [image: $$Q_s\sim v_0$$] in counterclockwise order.
As in Corollary 2.20, let [image: $$\rho _s:=-i (v'_s-v'_{s-1})/(v_s-v_0)$$]. In addition, we assign angles [image: $$\theta _{v'_s}\equiv \arg \left( v'_s-v_0\right) \text { mod } 2\pi $$] in such a way that [image: $$0<\theta _{v'_s}-\theta _{v'_{s-1}}<\pi $$]. Due to [image: $${{\mathrm{Re}}}\left( -i/\rho _s\right) =-{{\mathrm{Im}}}\left( \rho _s\right) /|\rho _s|^2$$] and [image: $${{\mathrm{Im}}}\left( -i/\rho _s\right) =-{{\mathrm{Re}}}\left( \rho _s\right) /|\rho _s|^2$$],[image: $$\begin{aligned}&\frac{|\rho _s|^2 \left( G(v_s;v_0)-G(v_0;v_0)\right) +{{\mathrm{Im}}}\left( \rho _s\right) \left( G(v'_s;v_0)-G(v'_{s-1};v_0)\right) }{{{\mathrm{Re}}}(\rho _s)}\\ =&\frac{|\rho _s|^2{{\mathrm{Re}}}\left( -i/\rho _s\right) +{{\mathrm{Im}}}\left( \rho _s\right) }{2\pi {{\mathrm{Re}}}\left( \rho _s\right) }\log \left| \frac{v'_s-v_0}{v'_{s-1}-v_0}\right| -\frac{|\rho _s|^2{{\mathrm{Im}}}\left( -i/\rho _s\right) }{2\pi {{\mathrm{Re}}}\left( \rho _s\right) }\left( \theta _{v'_s}-\theta _{v'_{s-1}}\right) \\=&\frac{\theta _{v'_s}-\theta _{v'_{s-1}}}{2\pi }. \end{aligned}$$]


It follows from the explicit formula for the discrete Laplacian in Corollary 2.20 that [image: $$\triangle G(v_0;v_0)=1/(2\text {ar}(F_{v_0}))$$].
Now, we show that [image: $$G(\cdot ;v_0)$$] is discrete harmonic away from [image: $$v_0$$]. For this, we consider the star of some vertex [image: $$v\ne v_0$$], i.e., all faces of [image: $$\varLambda $$] incident to [image: $$v \in V(\varLambda )$$]. Let us assume that we can find one collection C of loops together with appropriate branches of [image: $$\log $$] such that for all vertices [image: $$v'$$] of the star, [image: $$G(v';v_0)$$] can be computed by an integration along C instead of [image: $$C_{v'}$$]. Then, when we compute [image: $$\triangle G(v;v_0)$$], we can exchange the discrete Laplacian not only with the real part, but also with the integration. Since [image: $$\text {e}(\lambda ,\cdot ;v_0)$$] is discrete holomorphic by Proposition 3.2, it is also discrete harmonic by Corollary 2.21. By this, we conclude that [image: $$\triangle G(v;v_0)=0$$].
It remains to show that there exists such a collection C of loops with corresponding branches of [image: $$\log $$]. We will show that a collection of sufficiently small counterclockwise oriented loops going once around each pole of [image: $$\text {e}(\cdot ,v';v_0)$$], [image: $$v'$$] any vertex of the star of v, does the job, where around a pole e of [image: $$\text {e}(\cdot ,v';v_0)$$] that branch of logarithm is taken where [image: $${{\mathrm{Im}}}(\log (e))\in (\arg (v'-v_0)-\pi ,\arg (v'-v_0)+\pi )$$]. For this, we just have to show that the branches of the logarithm are well-defined. This is the case if for two vertices [image: $$v',v''$$] of the star and a common pole e of [image: $$\text {e}(\cdot ,v';v_0)$$] and [image: $$\text {e}(\cdot ,v'';v_0)$$], there is an argument of e contained in both [image: $$(\arg (v'-v_0)-\pi ,\arg (v'-v_0)+\pi )$$] and [image: $$(\arg (v''-v_0)-\pi ,\arg (v''-v_0)+\pi )$$].
It easily follows from [image: $$v \ne v_0$$] that if [image: $$v''$$] is not adjacent to [image: $$v'$$], there is a vertex w adjacent to [image: $$v'$$] such that all common poles of [image: $$\text {e}(\cdot ,v';v_0)$$] and [image: $$\text {e}(\cdot ,v'';v_0)$$] are also common poles of [image: $$\text {e}(\cdot ,v';v_0)$$] and [image: $$\text {e}(\cdot ,w;v_0)$$]. So let us assume without loss of generality that [image: $$v'$$] and [image: $$v''$$] are adjacent. Clearly, we can also assume that both vertices are different from [image: $$v_0$$] since [image: $$\text {e}(\cdot ,v_0;v_0)\equiv 1$$].
Let us suppose the converse from our claim, that means suppose that there is a common pole e of [image: $$\text {e}(\cdot ,v';v_0)$$] and [image: $$\text {e}(\cdot ,v'';v_0)$$] such that no argument of the edge e is contained in both the two intervals [image: $$(\arg (v'-v_0)-\pi ,\arg (v'-v_0)+\pi )$$] and [image: $$(\arg (v''-v_0)-\pi ,\arg (v''-v_0)+\pi )$$]. This can only happen if the edge [image: $$v'v''$$] intersects the ray [image: $$v_0-te$$], [image: $$t\geqslant 0$$]. But since the edge e is a pole of the discrete exponential, there is a strip with common parallel e, i.e., an infinite path in the dual graph [image: $$\Diamond $$] with edges dual to edges of [image: $$\varLambda $$] that are parallel to e, that separates [image: $$v_0$$] from both [image: $$v'$$] and [image: $$v''$$] in such a way that e is pointing toward the region of [image: $$v'$$] and [image: $$v''$$] (see the first part of the appendix for more information on a strip). In particular, the edge [image: $$v'v''$$] is separated from the ray [image: $$v_0-te$$], [image: $$t\geqslant 0$$], and cannot intersect it, contradiction.

Remark
With almost the same arguments as in the proof of Proposition 3.4, we see that the discrete logarithm is a discrete holomorphic function on the vertices of [image: $$\tilde{\varLambda }_{v_0}$$]. In [2], it was shown that the discrete logarithm on rhombic quasicrystallic quad-graphs is even more than discrete holomorphic, namely isomonodromic.

Before we derive the asymptotics of the discrete Green’s function given in Proposition 3.4, we state and prove some necessary estimations in two separate lemmas since we will use them later during the corresponding calculations for the discrete Cauchy’s kernel in Sect. 3.4.
Lemma 3.5
Let [image: $$E_1\geqslant E_0 >0$$] be fixed real constants and consider a complex variable [image: $$\lambda $$]. Then, for any [image: $$e \in \mathbb C\backslash \left\{ 0\right\} $$] satisfying [image: $$E_1\geqslant |e|\geqslant E_0$$], the following holds true, where [image: $$\log $$] denotes the principal branch of the logarithm and constants in O-notation depend on [image: $$E_0$$] and [image: $$E_1$$] only:	(i)As [image: $$\lambda \rightarrow 0$$], [image: $$\begin{aligned}-\frac{\lambda +e}{\lambda -e}&=1+2\frac{\lambda }{e}+2\frac{\lambda ^2}{e^2}+O(\lambda ^3),\\ \log \left( -\frac{\lambda +e}{\lambda -e}\right)&=2\frac{\lambda }{e}+O(\lambda ^3),\quad \text {and}\quad \log \left( -\frac{e}{\lambda -e}\right) =\frac{\lambda }{e}+O(\lambda ^2). \end{aligned}$$]






 

	(ii)As [image: $$|\lambda | \rightarrow \infty $$], [image: $$\begin{aligned}\frac{\lambda +e}{\lambda -e}&=1+2\frac{e}{\lambda }+2\frac{e^2}{\lambda ^2}+O(\lambda ^{-3}),\\ \log \left( \frac{\lambda +e}{\lambda -e}\right)&=2\frac{e}{\lambda }+O(\lambda ^{-3}),\quad \text {and}\quad \log \left( \frac{\lambda }{\lambda -e}\right) =\frac{e}{\lambda }+O(\lambda ^{-2}). \end{aligned}$$]






 






Proof
(i)[image: $$\begin{aligned} -\frac{\lambda +e}{\lambda -e}=\frac{1+\frac{\lambda }{e}}{1-\frac{\lambda }{e}}=\left( 1+\frac{\lambda }{e}\right) \left( 1+\frac{\lambda }{e}+\frac{\lambda ^2}{e^2}+O(\lambda ^3)\right) =1+2\frac{\lambda }{e}+2\frac{\lambda ^2}{e^2}+O(\lambda ^3) \end{aligned}$$]


shows the first equation and implies the second equation noting that[image: $$\begin{aligned} \log (1+x)=x-x^2/2+O(x^3) \, \text {as}\, x \rightarrow 0. \end{aligned}$$]


The series expansion for [image: $$\log $$] also implies the third equation using[image: $$\begin{aligned} \frac{-d}{\lambda -d}=\frac{1}{1-\frac{\lambda }{d}}=1+\frac{\lambda }{d}+O(\lambda ^2). \end{aligned}$$]


(ii) These equations are shown in a completely analogous way to (i), [image: $$e/\lambda $$] taking the place of [image: $$\lambda /e$$].

Lemma 3.6
Assume that there exist real constants [image: $$\alpha _{0}>0$$] and [image: $$E_{1}\geqslant E_{0}>0$$] such that [image: $$\alpha \geqslant \alpha _{0}$$] and [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all interior angles [image: $$\alpha $$] and side lengths e of parallelograms of [image: $$\varLambda $$]. Let [image: $$v_0 \in V(\varLambda )$$] and [image: $$Q_0 \in V(\Diamond )$$] be fixed and consider [image: $$v \in V(\varLambda )$$] and [image: $$Q \in V(\Diamond )$$] in the following.

                	(i)Let k(v) be the combinatorial distance on [image: $$\varLambda $$] between [image: $$v_0$$] and v (or between a vertex incident to [image: $$Q_0$$] and v).
Then, [image: $$k(v)=\varOmega (|v-v_0|)$$] (or [image: $$k(v)=\varOmega (|v-Q_0|)$$]) as [image: $$|v|\rightarrow \infty $$].


 

	(ii)
                    [image: $$J(v,v_0)=\varOmega (v-v_0)$$], [image: $$J(Q,v_0)=\varOmega (Q-v_0)$$] and [image: $$J(Q,Q_0)=\varOmega (Q-Q_0)$$] as [image: $$|v|,|Q| \rightarrow \infty $$].


 

	(iii)
                    [image: $$\tau (v,Q_0)=\varOmega (1)$$] and [image: $$\tau (Q,Q_0)=\varOmega (1)$$] as [image: $$|v|,|Q| \rightarrow \infty $$].


 

	(iv)Furthermore, assume that [image: $$|v-v_0| \geqslant 1$$] and that the arguments of all oriented edges of a shortest directed path on [image: $$\varLambda $$] from [image: $$v_0$$] to v can be chosen to lie in [image: $$[\theta _0,-\theta _0]$$], where [image: $$\theta _0:=-(\pi -\alpha _0)/2$$].
Then, for any [image: $$\lambda \in [-E_1\sqrt{|v-v_0|},-E_1/\sqrt{|v-v_0|}] :$$]
                    [image: $$\left| \text {e}(\lambda ,v;v_0)\right| \leqslant \exp \left( -\frac{\cos (\theta _0)\sqrt{|v-v_0|}}{2E_1}\right) .$$]






 




              
Here, constants in the [image: $$\varOmega $$]-notation depend on [image: $$\alpha _0$$], [image: $$E_0$$], and [image: $$E_1$$] only.

Proof
Let [image: $$e_1,e_2,\ldots ,e_{k(v)}$$] denote the oriented edges of [image: $$\varLambda $$] of a shortest directed path on [image: $$\varLambda $$] from [image: $$v_0$$] (or a vertex incident to [image: $$Q_0$$]) to v. Due to the bound on the interior angles of parallelograms in [image: $$\varLambda $$], there is a real [image: $$\theta _0$$] such that the arguments of [image: $$e_1,e_2,\ldots ,e_{k(v)}$$] can be chosen to lie all in [image: $$[\theta _0,\theta _0+\pi -\alpha _0]$$] by Lemma 4.2. All the claims in the first three parts stay (essentially) the same under rotation of the complex plane, so we may assume that [image: $$\theta _0=-(\pi -\alpha _0)/2$$]. The same assumption is used in the fourth part.
(i) Under the assumptions above, the projections of the [image: $$e_k$$] onto the real axis lie on the positive axis and are at least [image: $$E_0 \cos (\theta _0)$$] long since edge lengths are bounded by [image: $$E_0$$] from below. It follows that [image: $$k(v)\leqslant {{\mathrm{Re}}}(v-v_0)/(E_0\cos (\theta _0))$$]. Using in addition that [image: $$k(v)\geqslant |v-v_0|/E_1$$], we get [image: $$k(v)=\varOmega (|v-v_0|)$$].
(ii) Using [image: $$1/|E_0| \geqslant 1/|e_j| \geqslant 1/ |E_1|$$] for all j, we get[image: $$\begin{aligned}\left| J(v,v_0)\right|&=\left| \sum \limits _{j=1}^{k(v)} e_j^{-1}\right| \leqslant \frac{k(v)}{E_0}= O(|v-v_0|),\\ {{\mathrm{Re}}}(J(v,v_0))&={{\mathrm{Re}}}\left( \sum \limits _{j=1}^{k(v)} \frac{\bar{e}_j}{|e_j|^2}\right) \geqslant \frac{1}{E_1^2}{{\mathrm{Re}}}\left( \sum \limits _{j=1}^{k(v)} e_j\right) =\frac{\cos (\theta _0)|v-v_0|}{E_1^2}.\end{aligned}$$]


Hence, [image: $$J(v,v_0)=\varOmega (|v-v_0|).$$] This also implies that [image: $$J(Q,v_0)=\varOmega (Q-v_0)$$] since [image: $$\left| J(v,v_0)-J(Q,v_0)\right| \leqslant 1/|E_0|$$] for any v incident to Q, which follows easily from the definition and the lower bound for edge lengths. Similarly, [image: $$J(Q,Q_0)=\varOmega (Q-Q_0)$$] follows from the previous statements if we take [image: $$v_0$$] incident to [image: $$Q_0$$].
(iii) [image: $$E_0^{-2}\geqslant |\tau (Q,Q_0)|\geqslant E_1^{-2}$$] and [image: $$E_0^{-4}\geqslant |\tau (Q,Q_0)|\geqslant E_1^{-4}$$] follow immediately from the definitions and the boundedness of edge lengths.
(iv) Using that [image: $$\lambda < 0$$] and [image: $${{\mathrm{Re}}}(e)>0$$], we get[image: $$\frac{|\lambda +e|^2}{|\lambda -e|^2}=1+\frac{4\lambda {{\mathrm{Re}}}(e)}{\lambda ^2-2\lambda {{\mathrm{Re}}}(e)+|e|^2}\leqslant 1+\frac{4\lambda {{\mathrm{Re}}}(e)}{(\lambda -|e|)^2}\leqslant \exp \left( \frac{4\lambda {{\mathrm{Re}}}(e)}{(\lambda -E_1)^2}\right) .$$]


Taking the product of such inequalities,[image: $$|\text {e}(\lambda ,v;v_0)|\leqslant \exp \left( \frac{2\lambda {{\mathrm{Re}}}(v-v_0)}{(\lambda -E_1)^2}\right) \leqslant \exp \left( \frac{2\lambda \cos (\theta _0)|v-v_0|}{(\lambda -E_1)^2}\right) .$$]


Now, we observe that [image: $$\lambda /(\lambda -E_1)^2$$] attains its maximum on the boundary. Together with [image: $$|v-v_0|\geqslant 1$$],[image: $$\begin{aligned} \frac{\lambda }{(\lambda -E_1)^2}\leqslant \frac{-\sqrt{|v-v_0|}}{E_1\left( 1+\sqrt{|v-v_0|}\right) ^2}\leqslant \frac{-1}{4E_1\sqrt{|v-v_0|}}. \end{aligned}$$]


Plugging this into the estimation before gives the desired result.

Theorem 3.7
Assume that there exist real constants [image: $$\alpha _{0}>0$$] and [image: $$E_{1}\geqslant E_{0}>0$$] such that [image: $$\alpha \geqslant \alpha _{0}$$] and [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all interior angles [image: $$\alpha $$] and side lengths e of parallelograms of [image: $$\varLambda $$]. Let [image: $$v_0 \in V(\varLambda )$$] be fixed. Then, the following is true:	(i)The discrete Green’s function [image: $$G(\cdot ;v_0)$$] given in Proposition 3.4 has the following asymptotic behavior as [image: $$|v|\rightarrow \infty $$]: [image: $$\begin{aligned} G(v;v_0)&=\frac{1}{4\pi }\log \left| \frac{v-v_0}{J(v,v_0)}\right| +O\left( |v-v_0|^{-2}\right) \text { if } v \text { and } v_0 \text { are of different color},\\ G(v;v_0)&=\frac{\gamma _{\text {Euler}}+\log (2)}{2\pi }+\frac{1}{4\pi }\log \left| (v-v_0) J(v,v_0)\right| +O\left( |v-v_0|^{-2}\right) \text { otherwise.} \end{aligned}$$]






 

	(ii)There is exactly one discrete Green’s function [image: $$G:V(\varLambda )\rightarrow \mathbb R$$] for [image: $$v_0$$] that behaves for [image: $$|v|\rightarrow \infty $$] as [image: $$\begin{aligned} G(v)&=\frac{1}{4\pi }\log \left| \frac{v-v_0}{J(v,v_0)}\right| +o\left( |v-v_0|^{-1/2}\right) \text { if } v \text { and } v_0 \text { are of different color},\\ G(v)&=\frac{\gamma _{\text {Euler}}+\log (2)}{2\pi }+\frac{1}{4\pi }\log \left| (v-v_0) J(v,v_0)\right| +o\left( |v-v_0|^{-1/2}\right) \text { otherwise.} \end{aligned}$$]






 





Here, constants in the O-notation depend on [image: $$\alpha _0$$], [image: $$E_0$$], and [image: $$E_1$$] only, and [image: $$\gamma _{\text {Euler}}$$] denotes the Euler-Mascheroni constant.

Remark
Note that due to Lemma 3.6(ii), [image: $$J(v,v_0)=\varOmega (v-v_0)$$] as [image: $$|v|\rightarrow \infty $$].
By Proposition 4.3, we may replace the existence of constants [image: $$E_1\geqslant E_0>0$$] such that [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all side lengths e of parallelograms by the existence of [image: $$q_0$$] such that [image: $$e/e'\geqslant q_0$$] for the two side lengths [image: $$e,e'$$] of any parallelogram of [image: $$\varLambda $$] since the latter implies the first assumption. Then, the constants in the O-notation depend instead of [image: $$E_0$$] and [image: $$E_1$$] on [image: $$q_0$$], [image: $$e_0$$], and [image: $$e_1$$], where [image: $$e_0$$] and [image: $$e_1$$] are the side lengths of an arbitrary but fixed parallelogram of [image: $$\varLambda $$].

The proof of the first part follows the ideas of Kenyon [16] and Bücking [5]. Both considered just quasicrystallic rhombic quad-graphs. But the main difference to [16] is that we deform the path of integration into an equivalent one different from Kenyon’s, since his approach does not generalize to parallelogram-graphs. As Chelkak and Smirnov did for rhombic quad-graphs with bounded interior angles in [6], Kenyon used that two points [image: $$v,v' \in V(\varLambda )$$] can be connected by a directed path of edges such that the angle between each directed edge and [image: $$v'-v$$] is less than [image: $$\pi /2$$] or the angle between the sum of two consecutive edges and [image: $$v'-v$$] is less than [image: $$\pi /2$$]. This is true for rhombic quad-graphs, but not for parallelogram-graphs. Instead, we use essentially the same deformation of the path of integration as Bücking did.
Proof
(i) The poles [image: $$e_1,\ldots ,e_{k(v)}$$] of [image: $$\text {e}(\cdot ,v;v_0)$$] correspond to the directed edges of a path from [image: $$v_0$$] to v of minimal length k(v). By Lemma 4.2, there is a real [image: $$\theta _0$$] such that the arguments of all directed edges above can be chosen to lie in [image: $$[\theta _0,\theta _0+\pi -\alpha _0]$$]. It is easy to check that the claim is invariant under rotation of the complex plane, so we can assume [image: $$\theta _0=-(\pi -\alpha _0)/2$$]. By definition,[image: $$\begin{aligned} G(v;v_0)={{\mathrm{Re}}}\left( \frac{1}{8\pi ^2 i}\int \limits _{C_v} \frac{\log \lambda }{ \lambda }\text {e}(\lambda ,v;v_0) d\lambda \right) , \end{aligned}$$]


where [image: $$C_v$$] is a collection of sufficiently small counterclockwise oriented loops going once around each [image: $$e_1,\ldots ,e_{k(v)}$$] and [image: $$\log $$] is the principal branch of the logarithm since it satisfies [image: $${{\mathrm{Im}}}(\log (e_j)) \in [\theta _0,-\theta _0]$$] for all j.
By residue theorem, we can deform [image: $$C_v$$] into a new path of integration [image: $$C_v'$$] that goes first along a circle centered at 0 with large radius R(v) (such that all poles lie inside this disk) in counterclockwise direction starting and ending in [image: $$-R(v)$$], then goes along the line segment [image: $$[-R(v),-r(v)]$$] followed by the circle centered at 0 with small radius r(v) (such that all poles lie outside this disk) in clockwise direction, and finally goes the line segment [image: $$[-R(v),-r(v)]$$] backwards. Note that the principal branch of [image: $$\log $$] jumps by [image: $$2\pi i$$] at the negative real axis where the integration along the two line segments takes place.
By assumption, [image: $$E_0\leqslant |e_j|\leqslant E_1$$] for all j. Using [image: $$|v-v_0|\geqslant E_0$$], it follows that[image: $$\frac{E_0^5}{2}|v-v_0|^{-4}\leqslant \frac{E_0}{2}<|e_j|<2E_1\leqslant 2\frac{E_1}{E_0^4}|v-v_0|^4.$$]


In particular, we can choose[image: $$R(v):=2\frac{E_1}{E_0^4}|v-v_0|^4 \text { and } r(v)=\frac{E_0^5}{2}|v-v_0|^{-4}$$]


for all [image: $$v \ne v_0$$]. We first look at the contributions of the circles with radii r(v) and R(v) to [image: $$G(v;v_0)$$].
Let [image: $$\lambda $$] be on the small circle with radius r(v). Then, [image: $$\lambda =\varOmega (|v-v_0|^{-4}) \rightarrow 0$$] as [image: $$|v|\rightarrow \infty $$]. In particular, we can apply [image: $$(-\lambda +e)/(\lambda -e)=1+2\lambda /e+O(\lambda ^2)$$] by Lemma 3.5(i) to estimate [image: $$(-1)^{k(v)}\text {e}(\lambda ,v;v_0)$$]. More precisely, the latter is a product of [image: $$k(v)=\varOmega (|v-v_0|)$$] terms (see Lemma 3.6(i)) with [image: $$e=e_j$$]. Multiplying out and using in addition [image: $$E_0 \leqslant |e_j| \leqslant E_1$$] easily gives for [image: $$|v|\rightarrow \infty $$] that[image: $$(-1)^{k(v)} \text {e}(\lambda ,v;v_0)=1+O(|v-v_0|^{-3}).$$]


Thus, we get for the integration along the small circle with radius r(v):[image: $$\begin{aligned}&{{\mathrm{Re}}}\left( \frac{1}{8\pi ^2 i}\int \limits _{\pi }^{-\pi } (-1)^{k(v)} \frac{\log (r(v))+i\theta }{r(v)\exp (i\theta )}\left( 1+O(|v-v_0|^{-3})\right) d\left( r(v)\exp (i\theta )\right) \right) \\=&-{{\mathrm{Re}}}\left( \frac{1}{8\pi ^2}\int \limits _{-\pi }^{\pi } (-1)^{k(v)} \left( \log (r(v))+i\theta \right) \left( 1+O(|v-v_0|^{-3})\right) d\theta \right) \\=&-\frac{(-1)^{k(v)}\log (r(v))}{4\pi }\left( 1+O(|v-v_0|^{-3})\right) .\end{aligned}$$]


Let us now consider [image: $$\lambda $$] to be on the large circle with radius R(v). Then, we have [image: $$|\lambda |=\varOmega (|v-v_0|^4)\rightarrow \infty $$] as [image: $$|v|\rightarrow \infty $$]. Analogously to above, repeated use of the first equation in Lemma 3.5(ii) gives [image: $$\text {e}(\lambda ,v;v_0)=1+O(|v-v_0|^{-3})$$] as [image: $$|v| \rightarrow \infty $$]. Thus, [image: $$\log (R(v))/(4\pi )\cdot \left( 1+O(|v-v_0|^{-3})\right) $$] is the contribution of the circle of radius R(v). In total, the asymptotics for the real part of the integration along the two circles are[image: $$\begin{aligned} \frac{1}{4\pi }\left( \log (R(v))-(-1)^{k(v)}\log (r(v))\right) +O(|v-v_0|^{-2}). \end{aligned}$$]


The two integrations along [image: $$[-R(v),-r(v)]$$] can be combined into the integral[image: $$\begin{aligned} \frac{1}{4\pi }\int \limits _{-R(v)}^{-r(v)}\frac{\text {e}(\lambda ,v;v_0)}{\lambda }d\lambda . \end{aligned}$$]


Since we are interested in the asymptotics for [image: $$|v|\rightarrow \infty $$], we can consider [image: $$|v-v_0|\geqslant 1$$] large enough and split the integration into the three parts along[image: $$[-R(v),-E_1\sqrt{|v-v_0|}], [-E_1\sqrt{|v-v_0|},-\frac{E_1}{\sqrt{|v-v_0|}}], \text { and }[-\frac{E_1}{\sqrt{|v-v_0|}},-r(v)].$$]


We first show that the contribution of [image: $$\lambda \in [-E_1\sqrt{|v-v_0|},-E_1/\sqrt{|v-v_0|}]$$] can be neglected. Indeed, it is a consequence of the estimation in Lemma 3.6(iv) that[image: $$\left| \frac{1}{4\pi }\int \limits _{-E_1\sqrt{|v-v_0|}}^{-E_1/\sqrt{|v-v_0|}}\frac{\text {e}(\lambda ,v;v_0)}{\lambda }d\lambda \right| \leqslant E_1\sqrt{|v-v_0|}\exp \left( - \frac{\cos (\theta _0)\sqrt{|v-v_0|}}{2E_1}\right) .$$]


As [image: $$|v|\rightarrow \infty $$], the latter expression decays faster to zero than any power of [image: $$|v-v_0|$$].
Now, consider [image: $$\lambda \in [-E_1/\sqrt{|v-v_0|},-r(v)]$$]. Then, [image: $$\lambda \rightarrow 0$$] as [image: $$|v| \rightarrow \infty $$], so using the second equation in Lemma 3.5(i) [image: $$k(v)=\varOmega (|v-v_0|)$$] times gives as [image: $$|v| \rightarrow \infty $$]:[image: $$\begin{aligned}(-1)^{k(v)}\text {e}(\lambda ,v;v_0)&=\exp \left( 2\lambda J(v,v_0)+O(k(v)\lambda ^3)\right) \\ {}&=\exp \left( 2\lambda J(v,v_0)\right) \left( 1+O(|v-v_0|\lambda ^3)\right) . \end{aligned}$$]


Thus, the integral near the origin is equal to[image: $$\frac{(-1)^{k(v)}}{4\pi }\int \limits _{-E_1/\sqrt{|v-v_0|}}^{-r(v)}\left( \frac{\exp \left( 2\lambda J(v,v_0)\right) }{\lambda } +\exp \left( 2\lambda J(v,v_0)\right) O(|v-v_0|\lambda ^2)\right) d\lambda .$$]


The expansion of the integral of the second term involves two exponential factors, one for each bound: [image: $$\exp (-2 J(v,v_0) r(v))$$] and [image: $$\exp (-2E_1J(v,v_0)/\sqrt{|v-v_0|})$$]. Now, we will use that [image: $$J(v,v_0)=\varOmega (|v-v_0|)$$] by Lemma 3.6(ii). Since the exponent of the first factor goes to 0 in speed [image: $$|v-v_0|^{-3}$$], the exponential goes exponentially fast to 1 as [image: $$|v| \rightarrow \infty $$]. For the second factor, we use our assumption that the arguments of all the poles can be chosen to lie in [image: $$[-(\pi -\alpha _0)/2,(\pi -\alpha _0)/2]$$]. It follows that [image: $${{\mathrm{Re}}}(J(v,v_0))$$] is positive and goes to infinity like [image: $$\varOmega (|v-v_0|)$$] as [image: $$|v|\rightarrow \infty $$], such that the second exponential factor goes to zero exponentially fast. Now, it is not hard to see that the integral of [image: $$\exp \left( 2\lambda J(v,v_0)\right) O(|v-v_0|\lambda ^3)$$] gives [image: $$O(|v-v_0|^{-2})$$]. For the first term, we get[image: $$\begin{aligned}&\frac{(-1)^{k(v)}}{4\pi }\left( \int \limits _{-2E_1 J(v,v_0)/\sqrt{|v-v_0|}}^{-1}\frac{\exp (s)}{s}ds+\int \limits _{-1}^{-2r(v) J(v,v_0)}\frac{\exp (s)-1}{s}ds\right) \\+&\frac{(-1)^{k(v)}}{4\pi }\int \limits _{-1}^{-2r(v) J(v,v_0)}\frac{1}{s}ds\\ =&\frac{(-1)^{k(v)}}{4\pi }\left( \int \limits _{-\infty }^{-1}\frac{\exp (s)}{s}ds+\int \limits _{-1}^{0}\frac{\exp (s)-1}{s}ds\right) +\frac{(-1)^{k(v)}}{4\pi }\log (2r(v) J(v,v_0))\\ -&\frac{(-1)^{k(v)}}{4\pi }\left( \int \limits _{-\infty }^{-2E_1 J(v,v_0)/\sqrt{|v-v_0|}}\frac{\exp (s)}{s}ds+\int \limits _{-2r(v) J(v,v_0)}^{0}\frac{\exp (s)-1}{s}ds\right) \\ =&\frac{(-1)^{k(v)}}{4\pi }\left( \gamma _{\text {Euler}}+\varOmega (|v-v_0|^{-3})+ \log (2r(v) J(v,v_0))\right) . \end{aligned}$$]


To get to the last line, we used that [image: $${{\mathrm{Re}}}(J(v,v_0))=\varOmega (|v-v_0|)$$] as [image: $$|v|\rightarrow \infty $$] stays positive. Indeed, as [image: $$|v|\rightarrow \infty $$], the first integral in the second to last line goes to zero exponentially fast (to see this, just write the integrand as [image: $$s\exp (s)/s^2$$] and bound the absolute value of the integral from above by [image: $$s_0\exp (s_0)$$] where [image: $$s_0$$] denotes the term [image: $$-2E_1J(v,v_0)/\sqrt{|v-v_0|}$$]) and the second integral is of order [image: $$\varOmega (|v-v_0|^{-3})$$] as [image: $$|v|\rightarrow \infty $$] as a Taylor expansion of the exponential shows.
Finally, let [image: $$\lambda \in [-R(v),-E_1\sqrt{|v-v_0|}]$$]. Then, [image: $$\lambda \rightarrow -\infty $$] as [image: $$|v|\rightarrow \infty $$], and repeated use of the second equation in Lemma 3.5(ii) gives[image: $$\begin{aligned} \text {e}(\lambda ,v;v_0)=\exp \left( \frac{2(v-v_0)}{\lambda }\right) \left( 1+O(|v-v_0|\lambda ^{-3})\right) \end{aligned}$$]


as [image: $$|v|\rightarrow \infty $$], so the corresponding contribution of the integral to [image: $$4\pi G(v;v_0)$$] is[image: $$\begin{aligned}&\int \limits _{-R(v)}^{-E_1\sqrt{|v-v_0|}}\frac{\exp (\lambda ,v;v_0)}{\lambda }d\lambda =\int \limits _{-R(v)}^{-E_1\sqrt{|v-v_0|}}\frac{\exp \left( \frac{2(v-v_0)}{\lambda }\right) }{\lambda }d\lambda +O(|v-v_0|^{-2})\\ {}&=\int \limits _{-R(v)/(2(v-v_0))}^{-1}\frac{\exp \left( \frac{1}{s}\right) -1}{s}ds+\int \limits _{-1}^{-E_1\sqrt{|v-v_0|}/(2(v-v_0))}\frac{\exp \left( \frac{1}{s}\right) }{s}ds\\ {}&+\int \limits _{-R(v)/(2(v-v_0))}^{-1}\frac{1}{s}ds+O(|v-v_0|^{-2})\\&=\gamma _{\text {Euler}}-\log \left( \frac{R(v)}{2(v-v_0)}\right) +O(|v-v_0|^{-2}) \end{aligned}$$]


by a similar reasoning as above. Summing up the integrals over all four parts of the contour and taking the real part, we finally get that [image: $$4\pi G(v;v_0)$$] equals[image: $$\begin{aligned} \left( 1+(-1)^{k(v)}\right) \left( \gamma _{\text {Euler}}+\log (2)\right) +\log |v-v_0|+(-1)^{k(v)}\log \left| J(v,v_0)\right| +O(|v-v_0|^{-2}). \end{aligned}$$]


(ii) We know from Theorem 2.31 that discrete harmonic functions of asymptotics [image: $$o(|v-v_0|^{-1/2})$$] as [image: $$|v|\rightarrow \infty $$] are zero. We can apply this result to the discrete harmonic function [image: $$G-G(\cdot ;v_0)$$], where [image: $$G(\cdot ;v_0)$$] from the first part has the desired asymptotics.

Remark
Let us compare this result to the case of rhombi of side length one. Assume that [image: $$v_0\in V(\varGamma )$$]. Then, the discrete logarithm is purely real and nonbranched on [image: $$V(\varGamma )$$] and purely imaginary and branched on [image: $$V(\varGamma ^*)$$]. It follows that [image: $$G(v;v_0)=0$$] if [image: $$v \in V(\varGamma ^*)$$], well fitting to the fact that [image: $$\triangle $$] splits into two discrete Laplacians on [image: $$\varGamma $$] and [image: $$\varGamma ^*$$]. Using [image: $$J(v,v_0)=\overline{v-v_0}$$],[image: $$\begin{aligned} G(v;v_0)=\frac{1}{2\pi }\left( \gamma _{\text {Euler}}+\log (2)+\log |v-v_0|\right) +O(|v-v_0|^{-2}) \end{aligned}$$]


as [image: $$|v|\rightarrow \infty $$] for [image: $$v\in V(\varGamma )$$], exactly as in the work of Bücking [5], who slightly strengthened the error term in Kenyon’s work [16]. In this paper, Kenyon showed that there is no further discrete Green’s function with asymptotics [image: $$o(|v-v_0|)$$].


3.4 Asymptotics of Discrete Cauchy’s Kernels
Let [image: $$v_0 \in V(\varLambda )$$] and [image: $$Q_0 \in V(\Diamond )$$] be given. We first give a formula for a discrete Cauchy’s kernel [image: $$K_{v_0}$$] with respect to [image: $$v_0$$] on [image: $$V(\Diamond )$$] that has asymptotics [image: $$\varOmega (|Q-v_0|^{-1})$$] as [image: $$|Q|\rightarrow \infty $$]. Remember that the vertex [image: $$Q\in V(\Diamond )\cong F(\varLambda )$$] is placed on the center of the corresponding parallelogram. Then, we provide a discrete Cauchy’s kernel [image: $$K_{Q_0}$$] with respect to [image: $$Q_0$$] on [image: $$V(\varLambda )$$] with asymptotics [image: $$\varOmega (|v-Q_0|^{-1})$$] as [image: $$v\rightarrow \infty $$]. In both cases, there are no further discrete Cauchy’s kernels with asymptotics [image: $$o(|Q-v_0|^{-1/2})$$] or [image: $$o(|v-Q_0|^{-1/2})$$] as [image: $$|Q|,|v| \rightarrow \infty $$]. In the end of this section, the asymptotics of [image: $$\partial _\varLambda K_{Q_0}$$] are determined.
Theorem 3.8
Let [image: $$G(\cdot ;v_0)$$] be a discrete Green’s function on [image: $$V(\Diamond )$$] for [image: $$v_0 \in V(\varLambda )$$].

                	(i)
                    [image: $$K_{v_0}:=8\pi \partial _{\varLambda } G(\cdot ;v_0)$$] is a discrete Cauchy’s kernel with respect to [image: $$v_0$$].


 

	(ii)Assume additionally that there exist real constants [image: $$\alpha _{0}>0$$] and [image: $$E_{1}\geqslant E_{0}>0$$] such that [image: $$\alpha \geqslant \alpha _{0}$$] and [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all interior angles [image: $$\alpha $$] and side lengths e of parallelograms of [image: $$\varLambda $$]. Suppose that [image: $$G(\cdot ;v_0)$$] is the discrete Green’s function given in Proposition 3.4 and [image: $$K_{v_0}$$] the discrete Cauchy’s kernel given in (i). Then, [image: $$\begin{aligned} K_{v_0}(Q)=\frac{1}{Q-v_0}+\frac{\tau (Q,v_0)}{J(Q,v_0)}+O(|Q-v_0|^{-2}) \end{aligned}$$]


 as [image: $$|Q|\rightarrow \infty $$]. Here, constants in the O-notation depend on [image: $$\alpha _0$$], [image: $$E_0$$], and [image: $$E_1$$] only.


 

	(iii)Under the conditions of (ii), there is exactly one discrete Cauchy’s kernel with respect to [image: $$v_0$$] with asymptotics [image: $$o(|Q-v_0|^{-1/2})$$] as [image: $$|Q|\rightarrow \infty $$].


 




              

Remark
Note that due to Lemma 3.6(ii) and (iii),[image: $$\begin{aligned} \frac{\tau (Q,v_0)}{J(Q,v_0)}=\varOmega \left( \left( Q-v_0\right) ^{-1}\right) \end{aligned}$$]


as [image: $$|Q|\rightarrow \infty $$]. As in Theorem 3.7, we may replace the existence of [image: $$E_1\geqslant E_0>0$$] such that [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all side lengths e of parallelograms by the existence of [image: $$q_0$$] such that [image: $$e/e'\geqslant q_0$$] for the two side lengths [image: $$e,e'$$] of any parallelogram of [image: $$\varLambda $$] since the latter implies the first assumption by Proposition 4.3. Then, the constants in the O-notation depend instead of [image: $$E_0$$] and [image: $$E_1$$] on [image: $$q_0$$], [image: $$e_0$$], and [image: $$e_1$$], where [image: $$e_0$$] and [image: $$e_1$$] are the side lengths of an arbitrary but fixed parallelogram of [image: $$\varLambda $$].

Proof
(i) By Corollary 2.20 about the factorization of the discrete Laplacian,[image: $$\bar{\partial }_{\Diamond }K_{v_0}(v)=8\pi \left( \bar{\partial }_{\Diamond }\partial _{\varLambda } G(\cdot ;v_0)\right) (v)=2\pi \triangle G(v;v_0)=\delta _{vv_0}\frac{\pi }{\text {ar}(F_{v_0})}.$$]


(ii) For the ease of notation, we assume that [image: $$v_0\in V(\varGamma )$$], but note that the other case of a white vertex [image: $$v_0$$] can be handled in the same manner. Let [image: $$b_-,w_-,b_+,w_+$$] denote the vertices of the parallelogram Q in counterclockwise order, starting with a black vertex. Using the asymptotics of Theorem 3.7, as [image: $$|Q|\rightarrow \infty $$]:[image: $$\begin{aligned} 4\pi G(b_+;v_0)-4\pi G(b_-;v_0)&=\log \left( \frac{|J(b_+,v_0)||b_+-v_0|}{|J(b_-,v_0)||b_--v_0|}\right) +O(|Q-v_0|^{-2}),\\ 4\pi G(w_+;v_0)-4\pi G(w_-;v_0)&=\log \left( \frac{|J(w_-,v_0)||w_+-v_0|}{|J(w_+,v_0)||w_--v_0|}\right) +O(|Q-v_0|^{-2}). \end{aligned}$$]


Let [image: $$a:=w_+-b_-$$] and [image: $$b:=w_--b_-$$]. Using [image: $$\log |1+x|=(x+\bar{x})/2+O(x^2)$$] as [image: $$x\rightarrow 0$$] and [image: $$J(Q,v_0)=\varOmega (|Q-v_0|)$$] as [image: $$|Q|\rightarrow \infty $$] given by Lemma 3.6(ii), we get as [image: $$|Q|\rightarrow \infty $$]:[image: $$\begin{aligned} \log |b_\pm - v_0|&=\log \left| (Q-v_0) \left( 1\pm \frac{a+b}{2(Q-v_0)}\right) \right| \\ {}&=\log |Q-v_0|\pm {{\mathrm{Re}}}\left( \frac{a+b}{2(Q-v_0)}\right) +O(|Q-v_0|^{-2}),\\ \log |w_\pm - v_0|&=\log |Q-v_0|\pm {{\mathrm{Re}}}\left( \frac{a-b}{2(Q-v_0)}\right) +O(|Q-v_0|^{-2}),\\ \log |J(b_\pm ,v_0)|&=\log \left| J(Q,v_0) \left( 1\pm \frac{a^{-1}+b^{-1}}{2J(Q,v_0)}\right) \right| \\ {}&=\log |J(Q,v_0)|\pm {{\mathrm{Re}}}\left( \frac{a^{-1}+b^{-1}}{2J(Q,v_0)}\right) +O(|Q-v_0|^{-2}),\\ \log |J(w_\pm ,v_0)|&=\log |J(Q,v_0)|\pm {{\mathrm{Re}}}\left( \frac{a^{-1}-b^{-1}}{2J(Q,v_0)}\right) +O(|Q-v_0|^{-2}). \end{aligned}$$]


Therefore, we get for the discrete derivative of [image: $$8\pi G(\cdot ;v_0)$$] at the face Q:[image: $$\begin{aligned} K_{v_0}(Q)&=\lambda _Q \frac{{{\mathrm{Re}}}\left( \frac{a+b}{Q-v_0}\right) +{{\mathrm{Re}}}\left( \frac{a^{-1}+b^{-1}}{J(Q,v_0)}\right) }{a+b}+\bar{\lambda }_Q\frac{{{\mathrm{Re}}}\left( \frac{a-b}{Q-v_0}\right) -{{\mathrm{Re}}}\left( \frac{a^{-1}-b^{-1}}{J(Q,v_0)}\right) }{a-b}\\ {}&+O(|Q-v_0|^{-2})\\&=\frac{1}{Q-v_0}+\frac{1}{abJ(Q,v_0)}+O(|Q-v_0|^{-2})\\ {}&+\frac{1}{2}\left( \lambda _Q\frac{\overline{a+b}}{a+b}+\bar{\lambda }_Q\frac{\overline{a-b}}{a-b}\right) \left( \frac{1}{\overline{Q-v_0}}+\frac{1}{\overline{abJ(Q,v_0)}}\right) \\&=\frac{1}{Q-v_0}+\frac{\tau (Q,v_0)}{J(Q,v_0)}+O(|Q-v_0|^{-2}) \end{aligned}$$]


as [image: $$|Q| \rightarrow \infty $$]. Here, [image: $$\lambda _Q=\exp \left( -i(\varphi _Q-\pi /2)\right) $$], and we have used the identity[image: $$-\frac{\lambda _Q}{\bar{\lambda }_Q}=\exp \left( -2i\varphi _Q\right) =\frac{a+b}{a-b}\cdot \frac{\overline{a-b}}{\overline{a+b}} \Leftrightarrow \lambda _Q\frac{\overline{a+b}}{a+b}+\bar{\lambda }_Q\frac{\overline{a-b}}{a-b}=0.$$]


(iii) Let h be the difference of two discrete Cauchy’s kernels with respect to [image: $$v_0$$] with asymptotics [image: $$o(|Q-v_0|^{-1/2})$$] as [image: $$|Q|\rightarrow \infty $$]. [image: $$K_{v_0}$$] in the second part is such a discrete Cauchy’s kernel. Then, h is discrete holomorphic, and by Proposition 2.8, a discrete primitive f on [image: $$V(\varLambda )$$] exists. By construction,[image: $$\frac{f(b_+)-f(b_-)}{b_+-b_-}=\frac{f(w_+)-f(w_-)}{w_+-w_-}=\partial _\varLambda f (Q)=h(Q)=o(|Q-v_0|^{-1/2}).$$]


Since angles and edge lengths of parallelograms are bounded, the conditions of Theorem 2.31 are fulfilled, implying that f is biconstant, so h vanishes identically.

Since we do not have discrete Green’s functions on [image: $$V(\Diamond )$$], we have to derive a discrete Cauchy’s kernels on [image: $$V(\varLambda )$$] differently. To do so, we follow the original approach of Kenyon using the discrete exponential [16] that was reintroduced by Chelkak and Smirnov in [6].
Proposition 3.9
Let [image: $$Q_0 \in V(\Diamond )$$]. The function defined by[image: $$K_{Q_0}(v):=\frac{1}{\pi i}\int \limits _{C_v} \log (\lambda ) \text {e}(\lambda ,v;Q_0) d\lambda =2\int \limits _{-(v-Q_0)\infty }^0 \text {e}(\lambda ,v;Q_0)d\lambda $$]


is a discrete Cauchy’s kernel with respect to [image: $$Q_0$$]. Here, [image: $$C_v$$] is a collection of sufficiently small counterclockwise oriented loops going once around each pole of [image: $$\text {e}(\cdot ,v;Q_0)$$]. On each loop around a pole e of [image: $$\text {e}(\cdot ,v;Q_0)$$], we take the branch of logarithm that satisfies [image: $${{\mathrm{Im}}}(\log (e)) \in (\theta _v-\pi ,\theta _v+\pi )$$], where [image: $$\theta _v:=\arg (v-Q_0)$$]. The second integration goes along the straight ray that ends in the origin in direction [image: $$(v-Q_0)$$].

Proof
Lemma 4.2 assures that the arguments of all poles can be indeed chosen in such a way that they lie in [image: $$(\theta _v-\pi ,\theta _v+\pi )$$].
By residue theorem, we can replace integration along [image: $$C_v$$] by an integration along a circle centered at 0 with large radius R (such that all poles lie inside the disk) in counterclockwise direction, an integration along a circle centered at 0 with small radius r (such that all poles lie outside the disk) in clockwise direction, and integrations along the two directions of the line segment [image: $$[-R,-r]$$]. Using that[image: $$\begin{aligned} \lim \limits _{|\lambda |\rightarrow \infty }\lambda \text {e}(\lambda ,v;Q_0)\log (\lambda )=0 \end{aligned}$$]


and taking r arbitrarily small, there is a homotopy between the new integration path and the path from complex infinity to 0 and back along the ray spanned by [image: $$-(v-Q_0)$$] that does not change the value of the integral. The branch of [image: $$\log $$] we consider jumps by [image: $$2\pi i$$] on the two sides of the ray, which shows[image: $$\frac{1}{\pi i}\int \limits _{C_v} \log (\lambda ) \text {e}(\lambda ,v;Q_0) d\lambda =2\int \limits _{-(v-Q_0)\infty }^0 \text {e}(\lambda ,v;Q_0)d\lambda .$$]


In particular, [image: $$\theta _v$$] can be replaced by any [image: $$\theta _v+2k\pi $$], [image: $$k\in \mathbb Z$$], in the first integration.
Let us consider the parallelogram [image: $$Q_0$$] with vertices [image: $$b_-,w_-,b_+,w_+$$] in counterclockwise direction, starting with a black vertex, and let us denote [image: $$a:=w_+-b_-$$], [image: $$b:=w_--b_-$$]. Without loss of generality, we rotate the complex plane in such a way that [image: $$\arg (b_+-Q_0)=0$$]. Then, [image: $$\arg (a)$$] and [image: $$\arg (b)$$] lie between 0 and [image: $$\pm \pi $$], and using residue theorem,[image: $$\begin{aligned} K_{Q_0}(b_-)&=2\frac{(\log |a|+i\arg (a)+i\pi )-(\log |b|+i\arg (b)+i\pi )}{b-a},\\ K_{Q_0}(b_+)&=2\frac{(\log |b|+i\arg (b))-(\log |a|+i\arg (a))}{b-a},\\ K_{Q_0}(w_-)&=2\frac{(\log |b|+i\arg (b)+2i\pi )-(\log |a|+i\arg (a)+i\pi )}{a+b},\\ K_{Q_0}(w_+)&=2\frac{(\log |a|+i\arg (a))-(\log |b|+i\arg (b)+i\pi )}{a+b}. \end{aligned}$$]


Finally, we get by Lemma 2.3 giving an integration formula for [image: $$\bar{\partial }_\varLambda $$]:[image: $$\begin{aligned}\bar{\partial }_\varLambda K_{Q_0}(Q_0)&=\frac{(a-b) \left( K_{Q_0}(b_+)-K_{Q_0}(b_+)\right) +(a+b)\left( K_{Q_0}(w_-)-K_{Q_0}(w_+)\right) }{4i\text {ar}(F_{Q_0})}\\ {}&=\frac{\pi }{\text {ar}(F_{Q_0})}.\end{aligned}$$]


By a similar argument as in the proof of Proposition 3.4, we can choose the same contours of integration for all incident vertices v of a face [image: $$Q\ne Q_0$$]. Then, the discrete derivative [image: $$\bar{\partial }_\varLambda $$] commutes with the integration, and [image: $$\bar{\partial }_\varLambda K_{Q_0}(Q)=0$$] because [image: $$\text {e}(\lambda ,\cdot ;Q_0)$$] is discrete holomorphic by Proposition 3.2.

Theorem 3.10
Assume that there are [image: $$\alpha _{0}>0$$] and [image: $$E_{1}\geqslant E_{0}>0$$] such that [image: $$\alpha \geqslant \alpha _{0}$$] and [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all interior angles [image: $$\alpha $$] and side lengths e of parallelograms of [image: $$\varLambda $$]. Let [image: $$Q_0 \in V(\Diamond )$$] be fixed.

                	(i)The discrete Cauchy’s kernel [image: $$K_{Q_0}$$] given in Proposition 3.9 has the following asymptotics as [image: $$|v|\rightarrow \infty $$]: [image: $$\begin{aligned} K_{Q_0}(v)=\frac{1}{v-Q_0}+\frac{\tau (v,Q_0)}{J(v,Q_0)}+O\left( |v-Q_0|^{-3}\right) . \end{aligned}$$]






 

	(ii)There is no further discrete Cauchy’s kernel with respect to [image: $$Q_0$$] that has asymptotics [image: $$o(|v-Q_0|^{-1/2})$$] as [image: $$|v|\rightarrow \infty $$].


 

	(iii)For the discrete Cauchy’s kernel [image: $$K_{Q_0}$$] given in Proposition 3.9, [image: $$\partial _\varLambda K_{Q_0}$$] has the following asymptotics as [image: $$|v|\rightarrow \infty $$]: [image: $$\begin{aligned} \partial _\varLambda K_{Q_0}(Q)=-\frac{1}{(Q-Q_0)^2}-\frac{\tau (Q,Q_0)}{J(Q,Q_0)^2}+O\left( |Q-Q_0|^{-3}\right) . \end{aligned}$$]






 

	(iv)Up to two additive complex constants on [image: $$\varGamma $$] and [image: $$\varGamma ^*$$], there is no further discrete Cauchy’s kernel with respect to [image: $$Q_0$$] such that its discrete derivative has asymptotics [image: $$o(|Q-Q_0|^{-1/2})$$] as [image: $$|Q|\rightarrow \infty $$].


 




              
Here, constants in the O-notation depend on [image: $$\alpha _0$$], [image: $$E_0$$], and [image: $$E_1$$] only.

Remark
By Lemma 3.6(ii) and (iii),[image: $$\frac{\tau (v,Q_0)}{J(v,Q_0)}=\varOmega \left( \left( v-Q_0\right) ^{-1}\right) \quad \text {and} \quad \frac{\tau (Q,Q_0)}{J(Q,Q_0)^2}=\varOmega \left( \left( Q-Q_0\right) ^{-2}\right) $$]


as [image: $$|v|,|Q|\rightarrow \infty $$]. As in the previous Theorem 3.8, we may replace the existence of constants [image: $$E_1 \geqslant E_0>0$$] such that [image: $$E_{1}\geqslant e \geqslant E_{0}$$] for all side lengths e of parallelograms by the existence of [image: $$q_0$$] such that [image: $$e/e'\geqslant q_0$$] for the two side lengths [image: $$e,e'$$] of any parallelogram of [image: $$\varLambda $$] since the latter implies the first assumption by Proposition 4.3. Then, the constants in the O-notation depend instead of [image: $$E_0$$] and [image: $$E_1$$] on [image: $$q_0$$], [image: $$e_0$$], and [image: $$e_1$$], where [image: $$e_0$$] and [image: $$e_1$$] are the side lengths of an arbitrary but fixed parallelogram of [image: $$\varLambda $$].

The proof of the first part follows the ideas of Kenyon [16]. Similar to the proof of Theorem 3.7, the path of integration is deformed into a path different from the one Kenyon used, [image: $$(-(v-Q_0)\infty ,0]$$]. For the same reasons as before, his approach does not generalize to parallelogram-graphs. The second and the fourth part of the theorem are immediate consequences of Theorem 2.31; the third part is shown by a direct computation.
Proof
(i) Among all the vertices incident to [image: $$Q_0$$], let [image: $$v_0$$] be the one that is combinatorially closest to v on [image: $$\varLambda $$]. Then, the poles [image: $$d_1,d_2,e_1,\ldots ,e_{k(v)}$$] of [image: $$\text {e}(\cdot ,v;Q_0)$$] correspond to the directed edges of a shortest path from [image: $$v_0$$] to v of length k(v) and the two directed edges of [image: $$Q_0$$] that point toward [image: $$v_0$$]. It is easy to deduce from Lemma 4.2 that the arguments of all poles can be chosen to lie in [image: $$[\theta _0,\theta _0+\pi -\alpha _0]$$]. For more details, we refer to the appendix in [13]. The claim is invariant under multiplication of the complex plane, so we can assume that [image: $$\theta _0=-(\pi -\alpha _0)/2$$]. Then, there are no poles in the left half-plane, such that we can reduce the calculation to an integration over [image: $$\mathbb R$$]:[image: $$\begin{aligned} K_{Q_0}(v)=2\int \limits _{-(v-Q_0)\infty }^0 \text {e}(\lambda ,v;Q_0)d\lambda =2\int \limits _{-\infty }^0 \text {e}(\lambda ,v;Q_0)d\lambda . \end{aligned}$$]


Since we are interested in the limit [image: $$|v|\rightarrow \infty $$], we take [image: $$|v-Q_0|\geqslant 1$$] large enough and split the integration into the three parts along the intervals [image: $$(-\infty ,-E_1\sqrt{|v-Q_0|}]$$], [image: $$[-E_1\sqrt{|v-Q_0|},-E_1/\sqrt{|v-Q_0|}]$$], [image: $$[-E_1/\sqrt{|v-Q_0|},0]$$]. Lemma 3.6(iv) shows that the contribution of the range [image: $$\lambda \in [-E_1\sqrt{|v-Q_0|},-E_1/\sqrt{|v-Q_0|}]$$] decays faster to zero than any power of [image: $$v-Q_0$$] as [image: $$|v| \rightarrow \infty $$]. By Lemma 3.6(i) and (ii) we know that [image: $$k(v)=\varOmega (v-Q_0)$$] and [image: $$J(v,Q_0)=\varOmega (v-Q_0)$$] as [image: $$|v| \rightarrow \infty $$]. Since the arguments of all the poles can be chosen to lie in [image: $$[-(\pi -\alpha _0)/2,(\pi -\alpha _0)/2]$$], it follows even that [image: $${{\mathrm{Re}}}(J(v,Q_0))=\varOmega (|v-Q_0|)$$] as [image: $$|v|\rightarrow \infty $$] stays positive.
Let [image: $$\lambda \in [-E_1/\sqrt{|v-Q_0|},0]$$]. Then, [image: $$\lambda \rightarrow 0$$] as [image: $$|v|\rightarrow \infty $$]. Repeated use of the second and the third equation in Lemma 3.5(i) yields[image: $$\text {e}(\lambda ,v;Q_0)=\tau (v,Q_0) \exp \left( 2\lambda J(v,Q_0)\right) \left( 1+O(\lambda ^2)+O(|v-Q_0|\lambda ^3)\right) $$]


as [image: $$|v| \rightarrow \infty $$]. Thus, the integral near the origin behaves for [image: $$|v| \rightarrow \infty $$] as[image: $$\begin{aligned} 2\int \limits _{-E_1/\sqrt{|v-Q_0|}}^{0}\text {e}(\lambda ,v;Q_0)d\lambda =\frac{\tau (v,Q_0)}{J(v,Q_0)}+O(|v-Q_0|^{-3}). \end{aligned}$$]


For this, we used that [image: $$\exp (-2 E_1 J(v,Q_0)/\sqrt{|v-Q_0|})$$] goes to zero exponentially fast as [image: $$|v| \rightarrow \infty $$].
Now, let [image: $$\lambda \in (-\infty ,-E_1\sqrt{|v-Q_0|}]$$]. Then, [image: $$\lambda \rightarrow -\infty $$] as [image: $$|v|\rightarrow \infty $$]. Repeated use of the second and the third equation in Lemma 3.5(ii) shows that[image: $$\begin{aligned} \text {e}(\lambda ,v;Q_0)=\lambda ^{-2}\exp \left( 2(v-Q_0)/\lambda \right) \left( 1+O(\lambda ^{-2})+O(|v-Q_0|\lambda ^{-3})\right) \end{aligned}$$]


as [image: $$|v|\rightarrow \infty $$]. Using the result of above, we get for the integral near minus infinity:[image: $$\begin{aligned}&2\int \limits _{-\infty }^{-E_1\sqrt{|v-Q_0|}}\text {e}(\lambda ,v;Q_0)d\lambda \\=&2\int \limits _{-\infty }^{-E_1\sqrt{|v-Q_0|}}\lambda ^{-2}\exp \left( 2(v-Q_0)/\lambda \right) \left( 1+O(\lambda ^{-2})+O(|v-Q_0|\lambda ^{-3})\right) d\lambda \\ =&2\int \limits _{-1/(E_1\sqrt{|v-Q_0|})}^{0}\exp \left( 2\lambda (v-Q_0)\right) \left( 1+O(\lambda ^2)+O(|v-Q_0|\lambda ^3)\right) d\lambda \\ =&\frac{1}{v-Q_0}+O(|v-Q_0|^{-3}). \end{aligned}$$]


Summing the contributions of the three ranges up gives the desired result and also shows the asymptotic behavior required in (ii).
(ii) The difference f of two discrete Cauchy’s kernels with respect to [image: $$Q_0$$] of asymptotics [image: $$o(|v-Q_0|^{-1/2})$$] is discrete holomorphic and fulfills the conditions of Theorem 2.31. Hence, f is biconstant, so [image: $$f\equiv 0$$].
(iii) Let [image: $$b_-,w_-,b_+,w_+$$] denote the vertices of the parallelogram [image: $$Q\in V(\Diamond )$$] in counterclockwise order, starting with a black vertex. Let us introduce [image: $$a:=w_+-b_-$$] and [image: $$b:=w_--b_-$$]. Using the expansion [image: $$1/(1+x)=1-x+O(x^2)$$] as [image: $$x \rightarrow 0$$] and the asymptotics of the first part, we get that [image: $$K_{Q_0}(b_\pm )$$] and [image: $$K_{Q_0}(w_\pm )$$] equal[image: $$\begin{aligned}&\frac{1}{Q-Q_0}\mp \frac{a+b}{2(Q-Q_0)^2}+\frac{\tau (b_-,Q_0)}{J(Q,Q_0)}\mp \tau (b_-,Q_0)\frac{a^{-1}+b^{-1}}{2J(Q,Q_0)^2}+O(|Q-Q_0|^{-3}),\\&\frac{1}{Q-Q_0}\mp \frac{a-b}{2(Q-Q_0)^2}+\frac{\tau (w_-,Q_0)}{J(Q,Q_0)}\mp \tau (w_-,Q_0)\frac{a^{-1}-b^{-1}}{2J(Q,Q_0)^2}+O(|Q-Q_0|^{-3}), \end{aligned}$$]


respectively. By definition, [image: $$\tau (b_-,Q_0)=-\tau (w_-,Q_0)$$]. Therefore,[image: $$\begin{aligned} \partial _\varLambda K_{Q_0}(Q)=&-\lambda _Q\frac{\frac{a+b}{(Q-Q_0)^2}-\tau (b_-,Q_0)\frac{a^{-1}+b^{-1}}{J(Q,Q_0)^2}}{a+b}\\ {}&+\bar{\lambda }_Q\frac{\frac{a-b}{(Q-Q_0)^2}-\tau (b_-,Q_0)\frac{a^{-1}-b^{-1}}{J(Q,Q_0)^2}}{a-b}+O(|Q-Q_0|^{-3})\\ =&-\frac{1}{(Q-Q_0)^2}-\frac{\tau (b_-,Q_0)}{a bJ(Q,Q_0)^2}+O(|Q-Q_0|^{-3})\\ =&-\frac{1}{(Q-Q_0)^2}-\frac{\tau (Q,Q_0)}{J(Q,Q_0)^2}+O(|Q-Q_0|^{-3}). \end{aligned}$$]


(iv) Let f be the difference of two discrete Cauchy’s kernels with respect to [image: $$Q_0$$] whose discrete derivatives have asymptotics [image: $$o(|Q-v_0|^{-1/2})$$]. Then, f is discrete holomorphic and[image: $$\frac{f(b_+)-f(b_-)}{b_+-b_-}=\frac{f(w_+)-f(w_-)}{w_+-w_-}=\partial _\varLambda f (Q)=o(|Q-v_0|^{-1/2}).$$]


Since angles and edge lengths are bounded, the conditions of Theorem 2.31 are fulfilled. Hence, f is biconstant.

Remark
Note that Kenyon [16] and Chelkak and Smirnov [6] proved in the rhombic setting the stronger result that there is a unique discrete Cauchy’s kernel on [image: $$V(\varLambda )$$] with respect to [image: $$Q_0$$] with asymptotics o(1) as [image: $$|v|\rightarrow \infty $$].


3.5 Integer Lattice
Let us consider a planar parallelogram-graph [image: $$\varLambda $$] such that each vertex has degree four. With the embedding of [image: $$\Diamond $$] described in Sect. 3.1, this happens if and only if [image: $$\Diamond $$] is a planar quad-graph or, equivalently, if [image: $$\varLambda $$] has the combinatorics of the integer lattice [image: $$\mathbb Z^2$$]. The vertices of [image: $$\Diamond $$] lie at the midpoints of edges of [image: $$\varGamma $$] or [image: $$\varGamma ^*$$]. Since any vertex of [image: $$\varGamma $$] or [image: $$\varGamma ^*$$] is enclosed by a quadrilateral of [image: $$\varGamma ^*$$] or [image: $$\varGamma $$], respectively, the faces of [image: $$\Diamond $$] are parallelograms by Varignon’s theorem. Thus, [image: $$\Diamond $$] becomes a planar parallelogram-graph as well.
Of particular interest is the case that the two notions of discrete holomorphicity on [image: $$\Diamond $$], the one coming from [image: $$\Diamond $$] being the dual of [image: $$\varLambda $$] and the other coming from the quad-graph [image: $$\Diamond $$] itself, coincide. It is not hard to show that this happens only for the integer lattice of a skew coordinate system, onto which we restrict ourselves in the following. For more details, see [13]. If [image: $$e_1$$], [image: $$e_2$$] denote two spanning vectors, then [image: $$\Diamond $$] is a parallel shift of [image: $$\varLambda $$] by [image: $$e_1/2+e_2/2$$]. Furthermore, the discrete derivatives on [image: $$\Diamond $$] seen as the dual of [image: $$\varLambda $$] coincide with the discrete derivatives on [image: $$\Diamond $$] seen as a parallelogram-graph.
Since corresponding notions coincide and [image: $$\Diamond $$] and [image: $$\varLambda $$] are congruent, we can skip all subscripts [image: $$\varLambda $$] and [image: $$\Diamond $$] in the definitions of discrete derivatives. Moreover, the discrete Laplacian [image: $$\triangle $$] is now defined for functions on [image: $$V(\varLambda )$$] and functions on [image: $$V(\Diamond )$$] in the same way. Due to Corollary 2.20, [image: $$4\partial \bar{\partial }=\triangle =4\bar{\partial }\partial $$] is now true on both graphs. It follows that all discrete derivatives [image: $$\partial ^n f$$] of a discrete holomorphic function f are discrete holomorphic themselves. Conversely, a discrete primitive exists for any discrete holomorphic function on a simply-connected domain by Proposition 2.8.
Our main interests lie in giving discrete Cauchy’s integral formulae for higher order derivatives of a discrete holomorphic function and determining the asymptotics of higher order discrete derivatives of the discrete Cauchy’s kernel given in Sect. 3.4. Note that due to the uniqueness statements in Theorems 3.8 and 3.10, both formulae yield the same discrete Cauchy’s kernel.
Without loss of generality, we restrict our attention to functions on [image: $$V(\varLambda )$$]. For the ease of notation, we introduce the discrete distance [image: $$D(\cdot ,\cdot )$$] on [image: $$V(\varLambda ) \cup V(\Diamond )$$] that is induced by the [image: $$|\cdot |_{\infty }$$]-distance on the integer lattice spanned by [image: $$e_1/2,e_2/2$$].
Theorem 3.11
Let [image: $$\varLambda $$] be the integer lattice spanned by the pair [image: $$e_1,e_2$$] of linearly independent complex vectors. Let [image: $$v_0\in V(\varLambda )$$], [image: $$Q_0:=v_0+e_1/2+e_2/2 \in V(\Diamond )$$], let f be a discrete holomorphic function on [image: $$V(\varLambda )$$], and let [image: $$K_{v_0}$$] and [image: $$K_{Q_0}$$] be discrete Cauchy’s kernels with respect to [image: $$v_0$$] and [image: $$Q_0$$], respectively. Let n be a nonnegative integer and define [image: $$x_0:=v_0$$] if n is even and [image: $$x_0:=Q_0$$] if n is odd. Similarly, let [image: $$x \in V(\varLambda )$$] if n is even and [image: $$x \in V(\Diamond )$$] if n is odd.

                	(i)For any counterclockwise oriented discrete contour [image: $$C_{x_0}$$] in the medial graph X enclosing all points [image: $$x' \in V(\varLambda ) \cup V(\Diamond )$$] with [image: $$D(x',x_0)\leqslant n/2$$], [image: $$\begin{aligned} \partial ^n f(x_0)=\frac{(-1)^n}{2\pi i}\oint \limits _{C_{x_0}}f\partial ^n K_{x_0} dz. \end{aligned}$$]






 

	(ii)If [image: $$K_{Q_0}$$] is the discrete Cauchy’s kernel given in Proposition 3.9, then [image: $$\frac{(-1)^n}{n!} \partial ^n K_{Q_0}(x)=\frac{1}{(x-Q_0)^{n+1}}+\frac{\tau '(x,Q_0)}{(J(x,Q_0)e_1e_2)^{n+1}}+O(|x-Q_0|^{-n-3}) $$]


 as [image: $$|x|\rightarrow \infty $$], where [image: $$\tau '(x,Q_0)=1$$] if x and [image: $$Q_0$$] or [image: $$(x+e_1/2+e_2/2)$$] and [image: $$Q_0$$] can be connected by a path on [image: $$V(\Diamond )$$] of even length and [image: $$\tau '(x,Q_0)=-1$$] otherwise. Constants in the O-notation depend on the spanning vectors [image: $$e_0,e_1$$] only.


 




              

Remark
By Lemma 3.6(ii) and (iii), we have for [image: $$|x|\rightarrow \infty $$]:[image: $$\begin{aligned} \frac{\tau '(x,Q_0)}{(J(x,Q_0)e_1e_2)^{n+1}}=\varOmega \left( \left( x-Q_0\right) ^{-(n+1)}\right) . \end{aligned}$$]





Proof
(i) Let D be the discrete domain in F(X) bounded by [image: $$C_{x_0}$$]. By the assumptions on [image: $$C_{x_0}$$], the discrete one-form [image: $$\bar{\partial } \partial ^{n-1} K_{x_0} d\bar{z}$$] vanishes on [image: $$C_{x_0}$$]. Thus,[image: $$\oint \limits _{C_{x_0}}f\partial ^n K_{x_0}dz=\oint \limits _{C_{x_0}}fd\left( \partial ^{n-1} K_{x_0}\right) =\iint \limits _D d(fd(\partial ^{n-1} K_{x_0}))=\iint \limits _D df\wedge d\left( \partial ^{n-1}K_{x_0}\right) $$]


by discrete Stokes’ Theorem 2.9 in the second equation and Theorem 2.16 and Proposition 2.10 stating that d is a derivation for the discrete wedge product and [image: $$ddf=0$$] in the third equation. Now, f is discrete holomorphic, meaning that [image: $$\bar{\partial } f\equiv 0$$], so [image: $$df\wedge d\left( \partial ^{n-1}K_{x_0}\right) =\partial f \bar{\partial }\partial ^{n-1}K_{x_0} \varOmega _\Diamond $$]. But since the discrete derivatives commute according to Corollary 2.11, [image: $$\bar{\partial }\partial ^{n-1}K_{x_0}=\partial ^{n-1}\bar{\partial }K_{x_0}$$] vanishes outside [image: $$C_{x_0}$$], so by repeated use of Proposition 2.7 stating that [image: $$\partial $$] is the formal adjoint of [image: $$-\bar{\partial }$$],[image: $$\oint \limits _{C_{x_0}}f\partial ^n K_{x_0}dz=-2i\langle \partial f, \bar{\partial }^{n-1}\partial \bar{K}_{x_0} \rangle = 2i(-1)^n\langle \partial ^n f,\partial \bar{K}_{x_0} \rangle =2\pi i(-1)^n \partial ^n f(x_0).$$]


(ii) Let us define the discrete exponential [image: $$\text {e}(\lambda ,Q;Q_0)$$] for [image: $$Q\in V(\Diamond )$$] in the same way as a rational function in the complex variable [image: $$\lambda $$] as we defined [image: $$\text {e}(\lambda ,v;v_0)$$]. By inductive use of the formula for the discrete derivative of [image: $$\text {exp}$$] in Proposition 3.2 and [image: $$\exp (\lambda ,\cdot ;Q_0)=\text {e}(2/\lambda ,\cdot ;Q_0)$$], we get for the discrete exponential [image: $$\text {e}(\lambda ,\cdot ;Q_0)$$] that is defined on [image: $$V(\varLambda )$$]:[image: $$\begin{aligned} (\partial ^n \text {e}(\lambda ,\cdot ;Q_0))(x)&=\frac{(2\lambda )^n}{\left( (\lambda -e_1)(\lambda -e_2)(\lambda +e_1)(\lambda +e_2)\right) ^{\lceil n/2\rceil }}\text {e}(\lambda ,x;Q_0). \end{aligned}$$]


To compute [image: $$\partial ^n K_{Q_0}(x)$$], we need the values of [image: $$K_{Q_0}$$] only at vertices [image: $$v\in V(\varLambda )$$] with [image: $$D(v,x)\leqslant n/2$$]. For these points,[image: $$K_{Q_0}(v)=2\int _{-(v-Q_0)\infty }^0 \text {e}(\lambda ,v;Q_0)d\lambda $$]


by the formula in Proposition 3.9. If [image: $$D(x,Q_0)$$] is sufficiently large, then we can choose [image: $$e \in \left\{ e_1,e_2,-e_1,-e_2\right\} $$] such that [image: $$D(ke,x)>n/2$$] for all positive integers k. So if [image: $$D(v,x)\leqslant n/2$$] and [image: $$D(x,Q_0)$$] is sufficiently large, then [image: $$\text {e}(\cdot ,v;Q_0)$$] does not have the pole e. Since [image: $$\pm e_1, \pm e_2$$] are the only possible poles, it follows that there are no poles in the convex hull of all the rays [image: $$(-(v-Q_0)\infty ,0]$$] for the vertices v with [image: $$D(v,x)\leqslant n/2$$]. By residue theorem, we can use the same path of integration for all relevant values of [image: $$K_{Q_0}$$] and get[image: $$\partial ^n K_{Q_0}(x)=2\int \limits _{-(x-Q_0)\infty }^0 (\partial ^n \text {e}(\lambda ,\cdot ;Q_0))(x) d\lambda .$$]


Now, we follow the proof of Theorem 3.10(i). Again, the claim is invariant under rotation of the complex plane, so we may assume [image: $$(x-Q_0)>0$$].
Let [image: $$E_1:=\max \left\{ |e_1|,|e_2|\right\} $$] and [image: $$E_0:=\min \left\{ |e_1|,|e_2|\right\} $$]. For [image: $$|x-Q_0|\geqslant 1$$] large enough, we split the integration into the three parts along [image: $$(-\infty ,-E_1\sqrt{|x-Q_0|}]$$], [image: $$[-E_1\sqrt{|x-Q_0|},-E_1/\sqrt{|x-Q_0|}]$$], and [image: $$[-E_1/\sqrt{|x-Q_0|},0]$$].
By Lemma 3.6(iv), the contribution of [image: $$\lambda \in [-E_1\sqrt{|x-Q_0|},-E_1/\sqrt{|x-Q_0|}]$$] decays faster to zero than any power of [image: $$x-Q_0$$] as [image: $$|x|\rightarrow \infty $$]. By Lemma 3.6(i) and (ii), we know that [image: $$D(x,Q_0)=\varOmega (x-Q_0)\text { and }J(x,Q_0)=\varOmega (x-Q_0).$$] Furthermore, the choice of [image: $$(x-Q_0)>0$$] implies that [image: $${{\mathrm{Re}}}(J(x,Q_0))=\varOmega (x-Q_0)$$] stays positive as [image: $$|x| \rightarrow \infty $$].
Let [image: $$\lambda \in [-E_1/\sqrt{|x-Q_0|},0]$$]. Then, [image: $$\lambda \rightarrow 0$$] as [image: $$|x|\rightarrow \infty $$], and repeated use of the second and third equation in Lemma 3.5(i) gives that [image: $$(\partial ^n \text {e}(\lambda ,\cdot ;Q_0))(x)$$] equals[image: $$\frac{\tau '(x,Q_0)}{(e_1e_2)^{n+1}} (2\lambda )^n\exp \left( 2\lambda J(x,Q_0)\right) \left( 1+O(\lambda ^2)+O(|x-Q_0|\lambda ^3)\right) .$$]


With a similar argument as in the proof of Theorem 3.10(i), the integral near the origin behaves for [image: $$|x|\rightarrow \infty $$] as[image: $$\frac{(-1)^n n!\tau '(x,Q_0)}{(e_1e_2 J(x,Q_0))^{n+1}}+O(|x-Q_0|^{-n-3}).$$]


Now, let [image: $$\lambda \in (-\infty ,-E_1\sqrt{|x-Q_0|}]$$]. For [image: $$|x|\rightarrow \infty $$], [image: $$\lambda \rightarrow -\infty $$], and repeated use of the second and third equation in Lemma 3.5(ii) implies that [image: $$(\partial ^n \text {e}(\lambda ,\cdot ;Q_0))(x)$$] equals[image: $$\begin{aligned} (2\lambda )^n\lambda ^{-2n-2}\exp \left( \frac{2(x-Q_0)}{\lambda }\right) \left( 1+O(\lambda ^{-2})+O(|x-Q_0|\lambda ^{-3})\right) . \end{aligned}$$]


Using the result of above, we get for the integral near minus infinity for [image: $$|x| \rightarrow \infty $$]:[image: $$\begin{aligned}&\int \limits _{-\infty }^{-E_1\sqrt{|x-Q_0|}}(\partial ^n \text {e}(\lambda ,\cdot ;Q_0))(x)d\lambda \\=&\, 2\int \limits _{-\infty }^{-E_1\sqrt{|x-Q_0|}}\left( \frac{2}{\lambda }\right) ^n\lambda ^{-2}\exp \left( \frac{2(x-Q_0)}{\lambda }\right) \left( 1+O(\lambda ^{-2})+O(|x-Q_0|\lambda ^{-3})\right) d\lambda \\ =&\, 2\int \limits _{-1/(E_1\sqrt{|x-Q_0|})}^{0}(2\lambda )^n\exp \left( 2\lambda (x-Q_0)\right) \left( 1+O(\lambda ^2)+O(|x-Q_0|\lambda ^3)\right) d\lambda \\ =&\, \frac{(-1)^n n!}{(x-Q_0)^{n+1}}+O(|x-Q_0|^{-n-3}). \end{aligned}$$]


Summing up the contributions of the three ranges gives[image: $$\frac{(-1)^n}{n!} \partial ^n K_{Q_0}(x)=\frac{1}{(x-Q_0)^{n+1}}+\frac{\tau '(x,Q_0)}{(J(x,Q_0)e_1e_2)^{n+1}}+O(|x-Q_0|^{-n-3}).$$]
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Appendix: Planar Parallelogram-Graphs
The aim of this appendix is to discuss some combinatorial and geometric properties of parallelogram-graphs that were used in Sect. 3. The following notion of a strip is standard, see for example the book [3].
Definition
A strip in a planar quad-graph [image: $$\varLambda $$] is a path on its dual [image: $$\Diamond $$] such that two successive faces share an edge and the strip leaves a face in the opposite edge where it enters it. Moreover, strips are assumed to have maximal length, i.e., there are no strips containing it apart from itself.

Note that a strip is uniquely determined by the edges it passes through, meaning the edges two successive faces share.
Definition
For a strip S of a parallelogram-graph [image: $$\varLambda $$], there exists a complex vector [image: $$a_S$$] such that any (nonoriented) edge through which S passes is [image: $$\pm a_S$$]. We call [image: $$a_S$$] a common parallel.


          [image: $$a_S$$] is unique up to sign; the choice of the sign induces an orientation on all edges. The parallel edges of the strip can be rescaled to length [image: $$|a_S|=1$$], without changing the combinatorics. Hence, rhombic planar quad-graphs and planar parallelogram-graphs are combinatorially equivalent. Rhombic planar quad-graphs are characterized by the following proposition of Kenyon and Schlenker [17]:
Proposition 4.1
A planar quad-graph [image: $$\varLambda $$] admits a combinatorially equivalent embedding in [image: $$\mathbb C$$] with all rhombic faces if and only if the following two conditions are satisfied:	No strip crosses itself or is periodic.

	Two distinct strips cross each other at most once.






Remark
Let us prove the simpler claim that planar parallelogram-graphs fulfill these two conditions as was already noted by Kenyon in [16]. The underlying reason is that any strip S is monotone with respect to the direction [image: $$ia_S$$]: The coordinates of the endpoints of the edges parallel to [image: $$a_S$$] are strictly increasing or strictly decreasing if they are projected to [image: $$ia_S$$]. Whether the projections are decreasing or increasing depends on the direction in which the faces of S are passed through. Without loss of generality, we assume that the faces of S are passed through in such a way that the projections of the corresponding coordinates are strictly increasing. For [image: $$Q \in S$$], let [image: $$S^Q$$] denote the semi-infinite part of S starting in the quadrilateral Q that passes through the faces of S in the same order.
As a consequence, no strip crosses itself or is periodic. Furthermore, S divides the complex plane into two unbounded regions, to one is [image: $$a_S$$] pointing and to the other [image: $$-a_S$$]. When a distinct strip [image: $$S'$$] crosses S, it enters a different region determined by S, say it goes to the one to which [image: $$a_S$$] is pointing. Due to monotonicity, the angle between [image: $$ia_{S'}$$] and [image: $$a_S$$] is less than [image: $$\pi /2$$]. It follows that [image: $$S'$$] cannot cross S another time, since it would then go to the region [image: $$-a_S$$] is pointing to, contradicting that the angle between [image: $$ia_{S'}$$] and [image: $$-a_S$$] is greater and not less than [image: $$\pi /2$$].

In order to give explicit formulae for the discrete Green’s function and the discrete Cauchy’s kernels in Sects. 3.3 and 3.4, we chose a particular directed path connecting two vertices (or a face and a vertex) by edges of the parallelogram-graph [image: $$\varLambda $$]. This path was monotone in one direction. The existence of such a path follows from the following lemma, generalizing a result of [2] to general parallelogram-graphs. The proof bases on the same ideas.
Lemma 4.2
Let [image: $$\varLambda $$] be a parallelogram-graph and let [image: $$v_0 \in V(\varLambda )$$] be fixed. For a directed edge e of [image: $$\varLambda $$] starting in [image: $$v_0$$], consider the subgraph [image: $$U_e \subset \varLambda $$] that consists of all vertices and edges of directed paths on [image: $$\varLambda $$] starting in [image: $$v_0$$] whose oriented edges have arguments that can be chosen to lie in [image: $$[\arg (e),\arg (e)+\pi )$$].
Then, the union of all [image: $$U_e$$], e a directed edge starting in [image: $$v_0$$], covers the whole quad-graph. If there is a constant [image: $$\alpha _0>0$$] such that [image: $$\alpha \geqslant \alpha _0$$] for all interior angles [image: $$\alpha $$] of faces of [image: $$\varLambda $$], then the same statement holds true if [image: $$[\arg (e),\arg (e)+\pi )$$] is replaced by [image: $$[\arg (e),\arg (e)+\pi -\alpha _0]$$].

Proof
Let us rescale the edges such that all of them have length one. By this, we change neither the combinatorics of [image: $$\varLambda $$] nor the size of interior angles.
For a directed edge e starting in [image: $$v_0$$], let [image: $$U_e^-$$] and [image: $$U_e^+$$] denote the (directed) paths on [image: $$\varLambda $$] starting in [image: $$v_0$$], obtained by choosing the directed edge with the least or largest argument in [image: $$[\arg (e),\arg (e)+\pi )$$] (or [image: $$[\arg (e),\arg (e)+\pi -\alpha _0]$$]) at a vertex, respectively. We first show that all vertices in between [image: $$U_e^-$$] and [image: $$U_e^+$$] are contained in [image: $$V(U_e)$$]. Then, it follows that [image: $$U_e$$] is the conical sector with boundary [image: $$U_e^-$$] and [image: $$U_e^+$$].
Suppose the contrary, i.e., suppose that there is a vertex v between [image: $$U_e^-$$] and [image: $$U_e^+$$] to which [image: $$v_0$$] cannot be connected by a directed path of edges whose arguments lie all in the interval [image: $$[\arg (e),\arg (e)+\pi )$$] (or [image: $$[\arg (e),\arg (e)+\pi -\alpha _0]$$]). Let the combinatorial distance between [image: $$v_0$$] and v be minimal among all such vertices.
In the case that interior angles of rhombi are bounded by [image: $$\alpha _0$$] from below, they are bounded from above by [image: $$\pi -\alpha _0$$]. Hence, there is a vertex [image: $$v'$$] adjacent to v such that the argument of the directed edge [image: $$v'v$$] lies in [image: $$[\arg (e),\arg (e)+\pi -\alpha _0]$$]. Even if interior angles are not uniformly bounded, [image: $$v'$$] can be chosen in such a way that the argument of [image: $$v'v$$] lies in [image: $$[\arg (e),\arg (e)+\pi )$$]. By construction, [image: $$v'$$] is not in [image: $$V(U_e)$$], but still between [image: $$U_e^-$$] and [image: $$U_e^+$$]. Let us look at the strip S passing through [image: $$v'v$$]. Suppose that the common parallel [image: $$a_S$$] points from [image: $$v'$$] to v.
If S intersects [image: $$U_e^-$$] or [image: $$U_e^+$$], then an edge parallel to [image: $$a_S$$] is contained in [image: $$U_e^-$$] or [image: $$U_e^+$$], respectively. By construction, [image: $$v_0$$] and [image: $$v'$$] then lie on the same side of the strip S.
If S does neither intersect [image: $$U_e^-$$] nor [image: $$U_e^+$$], then it is completely contained in the left half space determined by the oriented line [image: $$v_0+te$$], [image: $$t \in \mathbb R$$], as [image: $$U_e^-$$] and [image: $$U_e^+$$] are. Suppose S intersects the ray [image: $$v_0+ta_S$$], [image: $$t\geqslant 0$$]. Again, it follows that [image: $$v_0$$] and [image: $$v'$$] lie on the same side of S.
It remains the case that S neither intersects [image: $$U_e^-$$], [image: $$U_e^+$$], nor the ray [image: $$v_0+ta_S$$], [image: $$t\geqslant 0$$]. Consider the quadrilateral area R in between the parallels [image: $$v_0+ta_S$$], [image: $$v'+ta_S$$] and [image: $$v_0+te$$], [image: $$v'+te$$], [image: $$t\in \mathbb R$$]. By assumption, the semi-infinite part of S that starts with the edge [image: $$v'v$$] and then goes into R does not intersect an edge of R incident to [image: $$v_0$$], and by monotonicity, it does not intersect [image: $$v'+ta_S$$] again. Now, [image: $$\varLambda $$] is locally finite, such that only finitely many quadrilaterals of S are inside P. Thus, S leaves P on the edge [image: $$v'+te$$], [image: $$t\in \mathbb R$$], and it follows that S separates [image: $$v_0$$] and v.
So in any case, S separates [image: $$v_0$$] from v. Any shortest path P connecting both points has to pass through S. Let w be the first point of P that lies on the same side of S as v does. Any strip passing through an edge on the shortest path connecting w and v on S has to intersect P as well. It follows that replacing all edges of P on the same side of S as v by the path from w to v does not change its length. But then, [image: $$v'$$] is combinatorially nearer to [image: $$v_0$$] than v, contradiction.
Finally, we can cyclically order the directed edges starting in [image: $$v_0$$] according to their slopes. Then, the sectors [image: $$U_e$$] are interlaced, i.e., [image: $$U_e$$] contains both [image: $$U_{e_-}^+$$] and [image: $$U_{e_+}^-$$], where [image: $$e_-,e,e_+$$] are consecutive according to the cyclic order. As a consequence, the union of all these [image: $$U_e$$] covers the whole [image: $$\varLambda $$].

To perform our computations in Sects. 3.3 and 3.4, we needed not only that the interior angles were bounded, but also that the side lengths were bounded. We can relax the latter condition to boundedness of the ratio of side lengths.
Proposition 4.3
Let [image: $$\varLambda $$] be a parallelogram-graph and assume that there are constants [image: $$\alpha _0,q_0>0$$] such that [image: $$\alpha \geqslant \alpha _0$$] and [image: $$e/e'\geqslant q_0$$] for all interior angles [image: $$\alpha $$] and two side lengths [image: $$e,e'$$] of any parallelogram of [image: $$\varLambda $$]. Then, [image: $$E_1\geqslant e \geqslant E_0$$] for all edge lengths e, where [image: $$E_0:=e_0 q_0^N$$] and [image: $$E_1:=e_1 q_0^{-N}$$] with [image: $$N:= \lceil \lfloor 2\pi /\alpha _0 \rfloor /2\rceil $$] and [image: $$e_1\geqslant e_0$$] being the side lengths of an arbitrary parallelogram of [image: $$\varLambda $$].

Proof
Let [image: $$Q' \in V(\Diamond )$$] be fixed with edge lengths [image: $$e_1\geqslant e_0$$] and let [image: $$Q \in V(\Diamond )$$] be another parallelogram with center x. In the following, we construct a sequence of n strips such that any two consecutive strips are crossing each other, the first one contains [image: $$Q'$$], the last one contains Q, and [image: $$n \leqslant N$$]. Then, it follows that the side lengths of Q are bounded by [image: $$E_0$$] and [image: $$E_1$$].
Let [image: $$S_0$$] be a strip containing [image: $$Q'$$]. If [image: $$Q \in S_0$$], we are done. Otherwise, we choose the common parallel [image: $$a_{S_0}$$] in such a way that x lies in the region [image: $$-a_{S_0}$$] is pointing to. Let [image: $$\beta _0:=\arg (a_{S_0})$$]. Since [image: $$S_0$$] is monotone in the direction [image: $$ia_{S_0}$$] and interior angles are uniformly bounded, the ray [image: $$x+ta_{S_0}$$], [image: $$t>0$$], intersects S in exactly one line segment. Let [image: $$y_0$$] be the first intersection point and [image: $$Q_0$$] a quadrilateral of S containing [image: $$y_0$$].
Because [image: $$\varLambda $$] is locally finite, the line segment connecting x and [image: $$y_0$$] intersects only finitely many parallelograms. Through any such parallelogram at most two strips are passing. Thus, only a finite number of strips intersect this line segment. Therefore, we can choose a strip [image: $$S_1$$] intersecting [image: $$S_0^{Q_0}$$] in a parallelogram [image: $$Q_{0,1}$$] such that [image: $$S_1$$] does not contain Q and does not intersect the line segment connecting x and [image: $$y_0$$]. Moreover, we require that [image: $$Q' \notin S_0^{Q_{0,1}}$$]. Now, choose the common parallel [image: $$a_{S_1}$$] of [image: $$S_1$$] in such a way that there is an argument [image: $$\beta _1$$] of [image: $$a_{S_1}$$] that satisfies [image: $$\pi +\beta _0>\beta _1>\beta _0$$]. By construction, x lies in the region [image: $$-a_{S_1}$$] is pointing to. Note that [image: $$S_1^{Q_{0,1}}$$] cannot cross [image: $$S_0$$] a second time.
Suppose we have already constructed the strip [image: $$S_k$$] with common parallel [image: $$a_{S_k}$$] and argument [image: $$\beta _k$$], [image: $$k>0$$], and x lies in the region [image: $$-a_{S_k}$$] is pointing to. [image: $$S_k$$] shall not intersect the line segments connecting x and [image: $$y_0$$] or connecting x and [image: $$y_{k-1}$$]. Moreover, assume that the semi-infinite part [image: $$S_k^{Q_{k-1,k}}$$] starting in the intersection [image: $$Q_{k-1,k}$$] of [image: $$S_k$$] with [image: $$S_{k-1}$$] does not cross [image: $$S_0$$].
Let [image: $$y_k$$] be the first intersection of the ray [image: $$x+ta_{S_k}$$], [image: $$t>0$$], with a quadrilateral [image: $$Q_k$$] of the strip [image: $$S_k$$]. By the same arguments as above, there exists a strip [image: $$S_{k+1}$$] intersecting [image: $$S_k^{Q_{k-1,k}}\cap S_k^{Q_k}$$] that does not contain Q and does not intersect the line segments connecting x and [image: $$y_0$$] or x and [image: $$y_{k}$$]. Choose its common parallel [image: $$a_{S_{k+1}}$$] in such a way that it has an argument [image: $$\beta _{k+1}$$] that satisfies [image: $$\pi +\beta _k>\beta _{k+1}>\beta _k$$]. By construction, x lies in the region [image: $$-a_{S_{k+1}}$$] is pointing to. If the semi-infinite part [image: $$S_{k+1}^{Q_{k,k+1}}$$] starting in the intersection [image: $$Q_{k,k+1}$$] with [image: $$S_{k}$$] does not cross [image: $$S_0$$], then we continue this procedure. For a schematic picture of the proof, see Fig. 7.
After at most [image: $$l:=\lceil 2\pi /\alpha _0 \rceil $$] steps, we end up with a strip [image: $$S_l$$] such that [image: $$S_l^{Q_{l-1,l}}$$] intersects [image: $$S_0$$]. Indeed, let us suppose the contrary, that is, let us suppose that all [image: $$S_2^{Q_{1,2}},\ldots ,S_l^{Q_{l-1,l}}$$] do not cross [image: $$S_0$$].
By assumption, [image: $$\beta _k+\pi -\alpha _0\geqslant \beta _{k+1}\geqslant \beta _k+\alpha _0$$]. It follows that the first j such that [image: $$\beta _j$$] is greater or equal than [image: $$\beta _0+2\pi $$] satisfies [image: $$j\leqslant \lceil 2\pi /\alpha _0 \rceil $$]. In addition, we have [image: $$\beta _j<\beta _0+3\pi -\alpha _0$$].[image: A371662_1_En_2_Fig7_HTML.gif]
Fig. 7Schematic picture of the proof of Proposition 4.3
                  





By construction, [image: $$S_j$$] does not intersect the line segment connecting x and [image: $$y_{j-1}$$]. Moreover, [image: $$S_j^{Q_{j-1,j}}$$] cannot cross [image: $$S_{j-1}$$] a second time. It follows that [image: $$S_j^{Q_{j-1,j}}$$] cannot intersect the ray [image: $$x+ta_{S_{j-1}}$$], [image: $$t>0$$].
Also, [image: $$S_j^{Q_{j-1,j}}$$] does neither cross [image: $$S_0$$] nor does it intersect the line segment connecting x and [image: $$y_{0}$$], so it does not intersect the ray [image: $$x+ta_{S_0}$$], [image: $$t>0$$]. Thus, [image: $$S_j^{Q_{j-1,j}}$$] is contained in the cone with tip x spanned by [image: $$a_{S_{j-1}}$$] and [image: $$a_{S_0}$$] (with angle less than [image: $$\pi $$]). This contradicts the monotonicity of [image: $$S_j^{Q_{j-1,j}}$$] into the direction [image: $$ia_{S_j}$$], because the ray [image: $$x+ta_{S_j}$$], [image: $$t>0$$], is not contained in the interior of the cone above.
In summary, we found a cycle of m strips [image: $$S_0,S_1,\ldots ,S_{m-1}$$] surrounding x, where [image: $$m\leqslant \lfloor 2\pi /\alpha _0 \rfloor +1$$]. Actually, [image: $$m\leqslant \lfloor 2\pi /\alpha _0 \rfloor $$], because the [image: $$a_{S_k}$$] are cyclically ordered. Since only finitely many strips intersect the strip [image: $$S_0$$] in between [image: $$Q'$$] and [image: $$Q_{0,1}$$], we can assume that [image: $$Q'$$] is contained in [image: $$S_0^{Q_{m-1,0}}$$].
These m strips determine a bounded region x is contained in. If [image: $$Q'\ne Q_{m-1,0}$$], then we look at the semi-infinite part of the strip [image: $$\tilde{S}_0$$] different from [image: $$S_0$$] that passes through [image: $$Q'$$] and goes into the interior of the bounded region above. It has to intersect one of the strips [image: $$S_1,\ldots ,S_{m-1}$$], say [image: $$S_k$$]. Then, [image: $$S_0,\ldots ,S_k,\tilde{S}_0$$] or [image: $$\tilde{S}_0,S_k,\ldots ,S_{m-1},S_0$$] determine a bounded region x is contained in (Q may be an element of [image: $$\tilde{S}_0$$]). Clearly, they are at most [image: $$\lfloor 2\pi /\alpha _0 \rfloor $$] such strips, and [image: $$Q'$$] lies on an intersection.
If [image: $$Q \notin \tilde{S}_0$$], then a strip [image: $$S_Q$$] containing Q has to cross two different strips of the cycle due to local finiteness. In the same way as above, we can find a cycle of at most [image: $$m'\leqslant \lfloor 2\pi /\alpha _0 \rfloor $$] strips [image: $$S'_0,S'_1,\ldots ,S'_{m'-1}$$] such that Q lies on one of the strips, say [image: $$S'_k$$], and the intersection of [image: $$S'_0$$] and [image: $$S'_{m'-1}$$] is [image: $$Q'$$]. If [image: $$k \leqslant \lceil m'/2\rceil $$], then we choose the sequence of strips [image: $$S'_0,S'_1,\ldots ,S'_k$$]; otherwise, we take [image: $$S'_{m'-1}, S'_{m'-2},\ldots ,S'_k$$]. Any two consecutive strips are crossing each other, [image: $$Q'$$] is on the first strip, Q on the last one, and there are at most [image: $$\lceil \lfloor 2\pi /\alpha _0 \rfloor /2\rceil $$] of them.

Remark
In general, the bound [image: $$\lceil \lfloor 2\pi /\alpha _0 \rfloor /2\rceil $$] in the proof is optimal. Indeed, consider n rays emanating from 0 such that the angle between any two neighboring rays is [image: $$2\pi /n$$]. In each of the n segments, choose the quad-graph combinatorially equivalent to the positive octant of the integer lattice that is spanned by two consecutive rays. For example, if [image: $$n=4$$], we obtain [image: $$\mathbb Z^2$$]. Then, any strip passes through exactly two adjacent segments, and [image: $$\lceil n/2 \rceil $$] is the optimal bound.
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Abstract
Two triangle meshes are conformally equivalent if their edge lengths are related by scale factors associated to the vertices. Such a pair can be considered as preimage and image of a discrete conformal map. In this article we study the approximation of a given smooth conformal map f by such discrete conformal maps [image: $$f^\varepsilon $$] defined on triangular lattices. In particular, let T be an infinite triangulation of the plane with congruent strictly acute triangles. We scale this triangular lattice by [image: $$\varepsilon >0$$] and approximate a compact subset of the domain of f with a portion of it. For [image: $$\varepsilon $$] small enough we prove that there exists a conformally equivalent triangle mesh whose scale factors are given by [image: $$\log |f'|$$] on the boundary. Furthermore we show that the corresponding discrete conformal (piecewise linear) maps [image: $$f^\varepsilon $$] converge to f uniformly in [image: $$C^1$$] with error of order [image: $$\varepsilon $$].

1 Introduction
Holomorphic functions build the basis
          
         and heart of the rich theory of complex analysis. Holomorphic functions with nowhere vanishing derivative, also called conformal maps, have the property to preserve angles. Thus they may be characterized by the fact that they are infinitesimal scale-rotations.
In the discrete theory, the idea of characterizing conformal maps as local scale-rotations may be translated into different concepts. Here we consider the discretization coming from a metric viewpoint: Infinitesimally, lengths are scaled by a factor, i.e. by [image: $$|f'(z)|$$] for a conformal function f on [image: $$D\subset \mathbb C$$]. More generally, on a smooth manifold two Riemannian metrics g and [image: $$\tilde{g}$$] are conformally equivalent if [image: $$\tilde{g}=\text {e}^{2u}g$$] for some smooth function u.
The smooth complex domain (or manifold) is replaced in this discrete setting by a triangulation of a connected subset of the plane [image: $$\mathbb C$$] (or a triangulated piecewise Euclidean manifold).
1.1 Convergence for Discrete Conformal PL-Maps on Triangular Lattices
In this article we focus on the case where the triangulation is a (part of a) triangular lattice. In particular, let T be a lattice triangulation of the whole complex plane [image: $$\mathbb C$$] with congruent triangles, see Fig. 1a. The sets of vertices and edges of T are denoted by V and E respectively. Edges will often be written as [image: $$e=[v_i,v_j]\in E$$], where [image: $$v_i,v_j\in V$$] are its incident vertices. For triangular faces we use the notation [image: $$\varDelta [v_i,v_j,v_k]$$] enumerating the incident vertices with respect to the orientation (counterclockwise) of [image: $$\mathbb C$$].[image: A371662_1_En_3_Fig1_HTML.gif]
Fig. 1Lattice triangulation of the plane with congruent triangles. a Example of a triangular lattice. b Acute angled triangle.





On a subcomplex of T we now define a discrete conformal mapping. The main idea is to change the lengths of the edges of the triangulation according to scale factors at the vertices. The new triangles are then ‘glued together’ to result in a piecewise linear map, see Fig. 2 for an illustration. More precisely, we have
Definition 1.1
A discrete conformal PL-mapping
            
                  
                  g is a continuous and orientation preserving map of a subcomplex [image: $$T_S$$] of a triangular lattice T to [image: $$\mathbb C$$] which is locally a homeomorphism in a neighborhood of each interior point and whose restriction to every triangle is a linear map onto the corresponding image triangle, that is the mapping is piecewise linear. Furthermore, there exists a function [image: $$u:V_S\rightarrow \mathbb {R}$$] on the vertices, called associated scale factors, such that for all edges [image: $$e=[v,w]\in E_S$$] there holds[image: $$\begin{aligned} |g(v)-g(w)|=|v-w|\text {e}^{(u(v)+u(w))/2}, \end{aligned}$$]

 (1)

where |a| denotes the modulus of [image: $$a\in \mathbb C$$].

Note that Eq. (1) expresses a linear relation for the logarithmic edge lengths, that is[image: $$\begin{aligned} 2\log |g(v)-g(w)| =2\log |v-w| +u(v)+u(w). \end{aligned}$$]



[image: A371662_1_En_3_Fig2_HTML.gif]
Fig. 2Example of a discrete conformal PL-map g
                





In fact, the definition of a discrete conformal PL-map relies on the notion of discrete conformal triangle meshes. These have been studied by Luo, Gu, Sun, Wu, Guo [8, 9, 14], Bobenko, Pinkall, and Springborn [1] and others.
As possible application, discrete conformal PL-maps can be used for discrete uniformization. The simplest case is a discrete Riemann mapping theorem, i.e. the problem of finding a discrete conformal mapping of a simply connected domain onto the unit disc. Similarly, we may consider a related Dirichlet problem. Given some function [image: $$u_\partial $$] on the boundary of a subcomplex [image: $$T_S$$], find a discrete conformal PL-map whose associated scale factors agree on the boundary with [image: $$u_\partial $$]. For such a Dirichlet problem (with assumptions on [image: $$u_\partial $$] and [image: $$T_S$$]) we will prove existence as part of our convergence theorem.
In this article we present a first answer to the following problem: Given a smooth conformal map, find a sequence of discrete conformal PL-maps which approximate the given map. We study this problem on triangular lattices T with acute angles and always assume for simplicity that the origin is a vertex. Denote by [image: $$\varepsilon T$$] the lattice T scaled by [image: $$\varepsilon >0$$]. Using the values of [image: $$\log |f'|$$], we obtain a discrete conformal PL-map [image: $$f^\varepsilon $$] on a subcomplex of [image: $$\varepsilon T$$] from a boundary value problem for the associated scale factors. More precisely, we prove the following approximation result.
Theorem 1.2
Let [image: $$f:D\rightarrow \mathbb C$$] be a conformal map (i.e. holomorphic with [image: $$f'\not =0$$]). Let [image: $$K\subset D$$] be a compact set which is the closure of its simply connected interior int(K) and assume that [image: $$0\in int(K)$$]. Let T be a triangular lattice with strictly acute angles. For each [image: $$\varepsilon >0$$] let [image: $$T^\varepsilon _K$$] be a subcomplex of [image: $$\varepsilon T$$] whose support is contained in K and is homeomorphic to a closed disc. We further assume that 0 is an interior vertex of [image: $$T^\varepsilon _K$$]. Let [image: $$e_0=[0,{\hat{v}}_0]\in E^\varepsilon _K$$] be one of its incident edges.
Then if [image: $$\varepsilon >0$$] is small enough (depending on K, f, and T) there exists a unique discrete conformal PL-map [image: $$f^\varepsilon $$] on [image: $$T^\varepsilon _K$$] which satisfies the following two conditions:	The associated scale factors [image: $$u^\varepsilon :V^\varepsilon _K\rightarrow \mathbb {R}$$] satisfy [image: $$\begin{aligned} u^\varepsilon (v)=\log |f'(v)|\qquad \text {for all boundary vertices } v \text { of } V^\varepsilon _K. \end{aligned}$$]

 (2)




	The discrete conformal PL-map is normalized according to [image: $$f^\varepsilon (0)=f(0)$$] and [image: $$\arg (f^\varepsilon ({\hat{v}}_0)-f^\varepsilon (0))= \arg ({\hat{v}}_0)+ \arg (f'(\frac{{\hat{v}}_0}{2})) \pmod {2\pi }$$].





Furthermore, the following estimates for [image: $$u^\varepsilon $$] and [image: $$f^\varepsilon $$] hold for all vertices [image: $$v\in V^\varepsilon _K$$] and points x in the support of [image: $$T^\varepsilon _K$$] respectively with constants [image: $$C_1,C_2,C_3$$] depending only on K, f, and T, but not on v or x:	(i)The scale factors [image: $$u^\varepsilon $$] approximate [image: $$\log |f'|$$] uniformly with error of order [image: $$\varepsilon ^2$$]: [image: $$\begin{aligned} \left| u^\varepsilon (v)-\log |f'(v)|\right| \leqslant C_1\varepsilon ^2. \end{aligned}$$]

 (3)





 

	(ii)The discrete conformal PL-mappings [image: $$f^\varepsilon $$] converge to f for [image: $$\varepsilon \rightarrow 0$$] uniformly with error of order [image: $$\varepsilon $$]: [image: $$\begin{aligned} \left| f^\varepsilon (x)-f(x)\right| \leqslant C_2\varepsilon . \end{aligned}$$]






 

	(iii)The derivatives of [image: $$f^\varepsilon $$] (in the interior of the triangles) converge to [image: $$f'$$] uniformly for [image: $$\varepsilon \rightarrow 0$$] with error of order [image: $$\varepsilon $$]: [image: $$\begin{aligned} \left| \partial _z f^\varepsilon (x)-f'(x)\right| \leqslant C_3\varepsilon \qquad \text {and} \qquad \left| \partial _{\bar{z}} f^\varepsilon (x)\right| \leqslant C_3\varepsilon \end{aligned}$$]


 for all points x in the interior of a triangle [image: $$\varDelta $$] of [image: $$T^\varepsilon _K$$]. Here [image: $$\partial _z$$] and [image: $$\partial _{\bar{z}}$$] denote the Wirtinger derivatives applied to the linear maps [image: $$f^\varepsilon |_\varDelta $$].


 






Note that the subcomplexes [image: $$T^\varepsilon _K$$] may be chosen such that they approximate the compact set K. Further notice that (3) implies that [image: $$u^\varepsilon $$] converges to [image: $$\log |f'|$$] in [image: $$C^1$$] with error of order [image: $$\varepsilon $$], in the sense that also[image: $$\begin{aligned} \left| \frac{u^\varepsilon (v)-u^\varepsilon (w)}{\varepsilon } - \text {Re}\left( \frac{f''((v+w)/2)}{f'((v+w)/2)}\right) \right| \leqslant {\tilde{C}}\varepsilon \end{aligned}$$]


on edges [v, w] uniformly for some constant [image: $$\tilde{C}$$].
The proof of Theorem 1.2 is given in Sect. 4. The arguments are based on estimates derived in Sect. 3.
The problem of actually computing the scale factors u for given boundary values [image: $$u_\partial $$] such that u gives rise to a discrete conformal PL-map (in case it exists) can be solved using a variational principle, see [1, 20]. Our proof relies on investigations using the corresponding convex functional, see Theorem 2.2 in Sect. 2.
Remark 1.3
The convergence result of Theorem 1.2 also remains true if linear interpolation is replaced with the piecewise projective interpolation schemes described in [1, 3], i.e., circumcircle preserving, angle bisector preserving and, generally, exponent-t-center preserving for all [image: $$t\in \mathbb {R}$$]. The proof is the same with only small adaptations. This is due to the fact that the image of the vertices is the same for all these interpolation schemes and these image points converge uniformly to the corresponding image points under f with error of order [image: $$\varepsilon $$]. The estimates for the derivatives similarly follow from Theorem 1.2(i).


1.2 Other Convergence Results for Discrete Conformal Maps
Smooth conformal maps can be characterized in various ways. This leads to different notions of discrete conformality. Convergence issues have already been studied for some of these discrete analogs. We only give a very short overview and cite some results of a growing literature.
In particular, linear definitions can be derived as discrete versions of the Cauchy-Riemann equations and have a long and still developing history. Connections of such discrete mappings to smooth conformal functions have been studied for example in [2, 6, 7, 13, 16, 19, 22].
The idea of characterizing conformal maps as local scale-rotations has lead to the consideration of circle packings, more precisely to investigations on circle packings with the same (given) combinatorics of the tangency graph. Thurston [21] first conjectured the convergence of circle packings to the Riemann map, which was then proven by [10, 11, 17].
The theory of circle patterns generalizes the case of circle packings. Also, there is a link to integrable structures via isoradial circle patterns. The approximation of conformal maps using circle patterns has been studied in [4, 5, 12, 15, 18].
The approach taken in this article constructs discrete conformal maps from given boundary values. Our approximation results and some ideas of the proof are therefore similar to those in [4, 5, 18] for circle patterns which also rely on boundary value problems.


2 Some Characterizations of Associated Scale Factors of Discrete Conformal PL-Maps
Consider a subcomplex [image: $$T_S$$] of a triangular lattice T and an arbitrary function [image: $$u:V_S\rightarrow \mathbb {R}$$]. Assign new lengths to the edges according to (1) by[image: $$\begin{aligned} \tilde{l}([v,w])=|v-w|\text {e}^{(u(v)+u(w))/2} \end{aligned}$$]

 (4)

In order to obtain new triangles with these lengths (and ultimately a discrete conformal PL-map) the triangle inequalities need to hold for the edge lengths [image: $$\tilde{l}$$] on each triangle. If we assume this, we can embed the new triangles (respecting orientation) and immerse sequences of triangles with edge lengths given by [image: $$\tilde{l}$$] as in (4). In order to obtain a discrete conformal PL-map, in particular a local homeomorphism, the interior angles of the triangles need to sum up to [image: $$2\pi $$] at each interior vertex. The angle at a vertex of a triangle with given side lengths can be calculated. With the notation of Fig. 1b we have the half-angle formula[image: $$\begin{aligned} \tan \left( \frac{\alpha }{2}\right) = \sqrt{\frac{(-b+a+c)(-c+a+b)}{(b+c-a)(a+b+c)}} = \sqrt{\frac{1-(\frac{b}{a}-\frac{c}{a})^2}{(\frac{b}{a}+\frac{c}{a})^2-1}}. \end{aligned}$$]

 (5)

The last expression emphasizes the fact that the angle does not depend on the scaling of the triangle. Careful considerations of this angle function depending on (scaled) side lengths of the triangle form the basis for our proof. In particular, we define the function[image: $$\begin{aligned} \theta (x,y):=2\arctan \sqrt{\frac{1-(\text {e}^{-x/2} -\text {e}^{-y/2})^2}{(\text {e }^{-x/2} +\text {e}^{-y/2})^2-1}}, \end{aligned}$$]

 (6)

so (5) can be written as[image: $$\alpha =\theta (x,y)\qquad \text {with}\quad \frac{b}{a}=\text {e}^{-x/2}\ \text { and }\ \frac{c}{a}=\text {e}^{-y/2}.$$]


Summing up, we have the following characterization of scale factors associated to discrete conformal PL-maps.
Proposition 2.1
Let [image: $$T_S$$] be a subcomplex of a triangular lattice T and [image: $$u:V_S\rightarrow \mathbb {R}$$] a function satisfying the following two conditions.

              	(i)For every triangle [image: $$\varDelta [v_1,v_2,v_3]$$] of [image: $$T_S$$] the triangle inequalities for [image: $$\tilde{l}$$] defined by (4) hold, in particular [image: $$\begin{aligned} |v_i-v_j|\text {e}^{(u(v_i)+u(v_j))/2}< |v_i-v_k|\text {e}^{(u(v_i)+u(v_k))/2} +|v_j-v_k|\text {e}^{(u(v_j)+u(v_k))/2} \end{aligned}$$]

 (7)

 for all permutations (ijk) of (123).


 

	(ii)For every interior vertex [image: $$v_0$$] with neighbors [image: $$v_1,v_2,\dots ,v_k,v_{k+1}=v_1$$] in cyclic order we have [image: $$\begin{aligned} \sum _{j=1}^k \theta (\lambda (v_0,v_j,v_{j+1})+ u(v_{j+1})-u(v_0), \lambda (v_0,v_{j+1},v_j) +u(v_j)-u(v_0))=2\pi , \end{aligned}$$]

 (8)

 where [image: $$\lambda (v_a,v_b,v_c)= 2\log (|v_b-v_c|/|v_a-v_b|)$$] for a triangle [image: $$\varDelta [v_a,v_b,v_c]$$].


 




            
Then there is a discrete conformal PL-map (unique up to post-composition with Euclidean motions) such that its associated scale factors are the given function [image: $$u:V_S\rightarrow \mathbb {R}$$].
Conversely, given a discrete conformal PL-map on a subcomplex [image: $$T_S$$] of a triangular lattice T, its associated scale factors [image: $$u:V_S\rightarrow \mathbb {R}$$] satisfy conditions (i) and (ii).

In order to obtain discrete conformal PL-maps from a given smooth conformal map we will consider a Dirichlet problem for the associated scale factors. Therefore we will apply a theorem from [1] which characterizes the scale factors u for given boundary values using a variational principle for a functional E defined in [1, Sect. 4]. Note that we will not need the exact expression for E but only the formula for its partial derivatives. In fact, the vanishing of these derivatives is equivalent to the necessary condition (8) for the scale factors to correspond to a discrete conformal PL-map.
Theorem 2.2
([1]) Let [image: $$T_S$$] be a subcomplex of a triangular lattice and let [image: $$u_\partial :V_\partial \rightarrow \mathbb {R}$$] be a function on the boundary vertices [image: $$V_\partial $$] of [image: $$T_S$$]. Then the solution [image: $$\tilde{u}$$] (if it exists) of Eq. (8) at all interior vertices with [image: $${\tilde{u}}|_{V_\partial }=u_\partial $$] is the unique argmin of a locally strictly convex functional [image: $$E(u)=E_{T_S}(u)$$] which is defined for functions [image: $$u:V\rightarrow \mathbb {R}$$] satisfying the inequalities (7).
The partial derivative of E with respect to [image: $$u_i=u(v_i)$$] at an interior vertex [image: $$v_i\in V_{int}$$] with k neighbors [image: $$v_{i_1},v_{i_2},\dots ,v_{i_k}v_{i_{k+1}}=v_{i_1}$$] in cyclic order is[image: $$\begin{aligned} \frac{\partial E}{\partial u_i}(u) = 2\pi - \sum _{j=1}^k \theta (2\log \left( \frac{l_{i_{j+1},i_j}}{l_{i,i_{j+1}}}\right) + u_{i_j}- u_i, 2\log \left( \frac{l_{i_{j+1},i_j}}{l_{i,i_{j}}}\right) + u_{i_{j+1}} -u_i), \end{aligned}$$]

 (9)

where [image: $$l_{j,k}=|v_j-v_k|$$].
By Proposition 2.1 such a solution [image: $$\tilde{u}$$] are then scale factors associated to a discrete conformal PL-map.

Remark 2.3
The functional E can be extended to a convex continuously differentiable function on [image: $$\mathbb {R}^V$$], see [1] for details.


3 Taylor Expansions
We now examine the effect when we take [image: $$u=\log |f'|$$] as ‘scale factors’, i.e. for each triangle we multiply the length [image: $$|v-w|$$] of an edge [v, w] by the geometric mean [image: $$\sqrt{|f'(v)f'(w)|}$$] of [image: $$|f'|$$] at the vertices. The proof of Theorem 1.2 is based on the idea that [image: $$u=\log |f'|$$] almost satisfies the conditions for being the associated scale factors of an discrete conformal PL-map, that is conditions (i) and (ii) of Proposition 2.1, and therefore is close to the exact solution [image: $$u^\varepsilon $$].
To be precise, suppose that [image: $$\varepsilon T$$] is the equilateral triangulation of the plane. Assume without loss of generality that the edge lengths equal [image: $$\frac{\sqrt{3}}{2}\varepsilon >0$$] and edges are parallel to [image: $$\text {e}^{ij\pi /3}$$] for [image: $$j=0,1,\dots , 5$$]. Let the conformal function f, the compact set K, and the subcomplexes [image: $$T^\varepsilon _K$$] (with vertices [image: $$V^\varepsilon _K$$] and edges [image: $$E^\varepsilon _K$$]) be given as in Theorem 1.2. Let [image: $$v_0\in V^\varepsilon _{K, \text {int}}$$] be an interior vertex. Here and below [image: $$V^\varepsilon _{K,\text {int}}$$] denotes the set of interior vertices having six neighbors in [image: $$V^\varepsilon _K$$]. Denote the neighbors of [image: $$v_0$$] by [image: $$v_j= v_0+\varepsilon \frac{\sqrt{3}\text {e}^{ij\frac{\pi }{3}}}{2}$$] and consider the triangle [image: $$\varDelta _j= \varDelta [v_0,v_j,v_{j+1}]$$] for some [image: $$j\in \{0,1,\dots , 5\}$$]. Taking [image: $$u=\log |f'|$$], we obtain edge lengths of a new triangle [image: $${{\tilde{\varDelta }}}_j$$], i.e. satisfying (7), if [image: $$\varepsilon $$] is small enough. Then the angle in [image: $${\tilde{\varDelta }}_j$$] at the image vertex of [image: $$v_0$$] is given by[image: $$ \theta (\log |f'(v_0+\varepsilon \frac{\sqrt{3}\text {e}^{ij\frac{\pi }{3}}}{2})| -\log |f'(v_0)|,\, \log |f'(v_0+\varepsilon \frac{\sqrt{3}\text {e}^{i(j+1)\frac{\pi }{3}}}{2})| -\log |f'(v_0)|) $$]


 according to (6). Summing up these angles—that is inserting [image: $$\log |f'|$$] into (8) instead of u at an interior vertex [image: $$v_0\in V^\varepsilon _{K, \text {int}}$$]—we obtain the function[image: $$\begin{aligned}&\mathcal{S}_{v_0}(\varepsilon )= \\&\sum _{j=0}^5 \theta (\log |f'(v_0+\varepsilon \frac{\sqrt{3}\text {e}^{ij\frac{\pi }{3}}}{2})| -\log |f'(v_0)|,\, \log |f'(v_0+\varepsilon \frac{\sqrt{3}\text {e}^{i(j+1)\frac{\pi }{3}}}{2})| -\log |f'(v_0)|) \end{aligned}$$]


 We are interested in the Taylor expansion of [image: $$\mathcal{S}_{v_0}$$] in [image: $$\varepsilon $$]. The symmetry of the lattice T implies that [image: $$\mathcal{S}_{v_0}$$] is an even function, so the expansion contains only even powers of [image: $$\varepsilon ^n$$]. Using a computer algebra program we arrive at[image: $$\begin{aligned} \mathcal{S}_{v_0}(\varepsilon )= 2\pi + C_{v_0}\varepsilon ^4 +\mathscr {O}(\varepsilon ^6). \end{aligned}$$]

 (10)

Here and below, the notation [image: $$h(\varepsilon )=\mathscr {O}(\varepsilon ^n)$$] means that there is a constant [image: $$\mathcal C$$], such that [image: $$|h(\varepsilon )|\leqslant \mathcal{C}\varepsilon ^n$$] holds for all small enough [image: $$\varepsilon >0$$]. The constant of the [image: $$\varepsilon ^4$$]-term is[image: $$C_{v_0}= -\frac{3\sqrt{3}}{32} \text {Re}\left( S(f)(v_0) \overline{\left( { \frac{f''}{f'}}\right) '}(v_0)\right) ,$$]


where [image: $$S(f)=\left( \frac{f''}{f'}\right) ' -\frac{1}{2} \left( \frac{f''}{f'}\right) ^2$$] is the Schwarzian derivative of f. We will not need the exact form of this constant, but only the fact that it is bounded on K.
Analogous results to (10) hold for all triangular lattices [image: $$\varepsilon T$$] with edge lengths [image: $$a^\varepsilon =\varepsilon \sin \alpha $$], [image: $$b^\varepsilon =\varepsilon \sin \beta $$], [image: $$c^\varepsilon =\varepsilon \sin \gamma $$], also if the angles are larger than [image: $$\pi /2$$]. We assume without loss of generality the edge directions being parallel to 1, [image: $$\text {e}^{i\alpha }$$] and [image: $$\text {e}^{i(\alpha +\beta )}$$]. Arguing as above, we consider the function[image: $$\begin{aligned} \mathcal{S}_{v_0}(\varepsilon ) =&\quad \theta ( 2\log \frac{\sin \alpha }{\sin \gamma } +\log |\frac{f'(v_0+\varepsilon \sin \beta )}{f'(v_0)}|,\, 2\log \frac{\sin \alpha }{\sin \beta }+ \log |\frac{f'(v_0+\varepsilon \sin \gamma \text {e}^{i \alpha })}{f'(v_0)}|) \\&+ \theta ( 2\log \frac{\sin \beta }{\sin \alpha }+ \log |\frac{f'(v_0+\varepsilon \sin \gamma \, \text {e}^{i \alpha })}{f'(v_0)}|, \, 2\log \frac{\sin \beta }{\sin \gamma }+ \log |\frac{f'(v_0+\varepsilon \sin \alpha \, \text {e}^{i (\alpha +\beta )})}{f'(v_0)}|) \\&+ \theta ( 2\log \frac{\sin \gamma }{\sin \beta }+ \log |\frac{f'(v_0+\varepsilon \sin \alpha \, \text {e}^{i (\alpha +\beta )})}{f'(v_0)}|,\, 2\log \frac{\sin \gamma }{\sin \alpha }+\log |\frac{f'(v_0-\varepsilon \sin \beta )}{f'(v_0)}|) \\&+ \theta ( 2\log \frac{\sin \alpha }{\sin \gamma }+ \log |\frac{f'(v_0-\varepsilon \sin \beta )}{f'(v_0)}|, \, 2\log \frac{\sin \alpha }{\sin \beta }+ \log |\frac{f'(v_0-\varepsilon \sin \gamma \, \text {e}^{i \alpha })}{f'(v_0)|}) \\&+ \theta ( 2\log \frac{\sin \beta }{\sin \alpha }+ \log |\frac{f'(v_0-\varepsilon \sin \gamma \, \text {e}^{i \alpha })}{f'(v_0)}|,\, 2\log \frac{\sin \beta }{\sin \gamma }+ \log |\frac{f'(v_0-\varepsilon \sin \alpha \, \text {e}^{i (\alpha +\beta )})}{f'(v_0)}|) \\&+ \theta ( 2\log \frac{\sin \gamma }{\sin \beta }+ \log |\frac{f'(v_0-\varepsilon \sin \alpha \, \text {e}^{i (\alpha +\beta )})}{f'(v_0)}|,\, 2\log \frac{\sin \gamma }{\sin \alpha }+ \log |\frac{f'(v_0+\varepsilon \sin \beta )}{f'(v_0)}|). \end{aligned}$$]


Again, [image: $$\mathcal{S}_{v_0}$$] is an even function. Using a computer algebra program we arrive at[image: $$\begin{aligned} \mathcal{S}_{v_0}(\varepsilon )= 2\pi + C_{v_0}\varepsilon ^4 +\mathscr {O}(\varepsilon ^6), \end{aligned}$$]

 (11)

with corresponding constant[image: $$\begin{aligned}&C_{v_0}= -\frac{\sin \alpha \sin \beta \sin \gamma }{4}\; \text {Re}\left( S(f)(v_0) \overline{\left( \frac{f''}{f'}\right) '}(v_0)\right. \\&\qquad \qquad \qquad \qquad \qquad \left. +c(\alpha ,\beta ,\gamma ) \left( \frac{1}{2}\left( \frac{f''}{f'}\right) ^2 \left( \frac{f''}{f'}\right) ' -\frac{1}{3}\left( \frac{f''}{f'}\right) ''' \right) \right) , \end{aligned}$$]


where [image: $$c(\alpha ,\beta ,\gamma )=\cos \beta \sin ^3\beta +\cos \gamma \sin ^3\gamma \text {e}^{2i\alpha } +\cos \alpha \sin ^3\alpha \text {e}^{2i(\alpha +\beta )}$$].
Our key observation is that we can control the sign of the [image: $$\mathscr {O}(\varepsilon ^4)$$]-term in (10) if we replace [image: $$\log |f'(x)|$$] by [image: $$\log |f'(x)|+a\varepsilon ^2|x|^2$$], where [image: $$a\in \mathbb {R}$$] is some suitable constant. In particular, for positive constants [image: $$M^\pm ,C^\pm $$] consider the functions[image: $$\begin{aligned} w^\pm&= \log |f'| +q^\pm&\text { with } q^\pm (v)&={\left\{ \begin{array}{ll}\pm \varepsilon ^2(M^\pm -C^\pm |v|^2) &{} \text {for }v\in V^\varepsilon _{K,\text {int}}, \\ 0 &{} \text {for }v\in \partial V^\varepsilon _K. \end{array}\right. } \end{aligned}$$]


Here and below [image: $$\partial V^\varepsilon _K$$] denotes the set of boundary vertices of [image: $$V^\varepsilon _K$$].
Then we obtain for equilateral triangulations with edge length [image: $$\frac{\sqrt{3}}{2}\varepsilon $$] the following Taylor expansion for all interior vertices [image: $$v_0\in V^\varepsilon _{K,\text {int}}$$] whose neighbors are also in [image: $$V^\varepsilon _{K,\text {int}}$$]:[image: $$\begin{aligned}&\sum _{j=0}^5 \theta (w^\pm (v_0+\varepsilon \frac{\sqrt{3}}{2} \text {e}^{ij\frac{\pi }{3}}) -w^\pm (v_0), w^\pm (v_0+\varepsilon \frac{\sqrt{3}}{2} \text {e}^{i(j+1)\frac{\pi }{3}}) -w^\pm (v_0)) \nonumber \\&\qquad \qquad \qquad \qquad \qquad = 2\pi + (C_{v_0}\mp \frac{3\sqrt{3}}{2}C^\pm )\varepsilon ^4 +\mathscr {O}(\varepsilon ^5). \end{aligned}$$]

 (12)

Again, analogous results hold for all regular triangular lattices, where the corresponding [image: $$\mathscr {O}(\varepsilon ^4)$$]-term then is[image: $$\begin{aligned} C_{v_0}\mp 4 \sin \alpha \sin \beta \sin \gamma \; C^\pm . \end{aligned}$$]


For interior vertices [image: $$v_0\in V^\varepsilon _{K,\text {int}}$$] which are incident to k boundary vertices we obtain instead of the right-hand side of (12):[image: $$ 2\pi \mp k\frac{\sqrt{3}}{4} (M^\pm -C^\pm |v_0|^2)\varepsilon ^2 +\mathscr {O}(\varepsilon ^4). $$]


For general triangular lattices we get for every edge [image: $$e={[}v_0,v_j{]}$$] which is incident to a boundary vertex [image: $$v_j \in \partial V^{{\varepsilon }}_K$$] a term [image: $${\mp } ({M}^{\pm } - {C}^{\pm }{|{v_{0}}|}^2)\cos {\varphi }_{e}\sin \varphi _{e} \varepsilon ^2$$] where [image: $${\varphi }_e$$] is the angle opposite to the edge e, see Fig. 3.[image: A371662_1_En_3_Fig3_HTML.gif]
Fig. 3Two adjacent triangles of the triangular lattice [image: $$\varepsilon T$$] and orthogonal edges [image: $$e\in (\varepsilon E)$$] (solid) and [image: $$e^*\in (\varepsilon E^{*})$$] (dashed)





The following lemma summarizes the main properties of [image: $$w^\pm $$] which follow from the definition of [image: $$w^\pm $$] together with the preceding estimates.
Lemma 3.1

          [image: $$w^\pm $$] satisfies the boundary condition [image: $$w^\pm |_{\partial V^\varepsilon _K} = \log |f'| \big |_{\partial V^\varepsilon _K}$$].
Furthermore, [image: $$C^\pm >0$$] and [image: $$M^\pm >0$$] can be chosen such that for all [image: $$\varepsilon $$] small enough and all [image: $$v_0\in V^\varepsilon _{K, \text {int}}$$]:	(i)
                  [image: $$q^+(v_0)>0$$] and [image: $$q^-(v_0)<0$$]
                


 

	(ii)If [image: $$v_1, v_2,\dots , v_6,v_7=v_1$$] denote the chain of neighboring vertices of [image: $$v_0$$] in cyclic order and [image: $$\lambda (v_a,v_b,v_c)= 2\log (|v_b-v_c|/|v_a-v_b|)$$] for any triangle [image: $$\varDelta [v_a,v_b,v_c]$$], we have


 




[image: $$\begin{aligned} \sum _{j=1}^6 \theta (&\lambda (v_0,v_{j+1},v_j) +w^+(v_{j})- w^+(v_0), \lambda (v_0,v_j,v_{j+1}) +w^+(v_{j+1})-w^+(v_0)) < 2\pi ,\\ \sum _{j=1}^6 \theta (&\lambda (v_0,v_{j+1},v_j) +w^-(v_{j})- w^-(v_0),\lambda (v_0,v_j,v_{j+1}) +w^-(v_{j+1})-w^-(v_0)) > 2\pi \end{aligned}$$]


The choices of [image: $$C^\pm $$] and [image: $$M^\pm $$] only depend on f (and its derivatives), K, and on the angles of the triangular lattice T.

In analogy to the continuous case we interpret Eq. (8) as a non-linear Laplace equation for u. In this spirit [image: $$w^+$$] may be taken as superharmonic function and [image: $$w^-$$] as subharmonic function.

4 Existence of Discrete Conformal PL-Maps and Estimates
The functions [image: $$w^\pm $$] have been introduced in order to ‘catch’ the solution [image: $$u^\varepsilon $$] in the following compact set:[image: $$\begin{aligned}&W^\varepsilon =\{u:V^\varepsilon _K\rightarrow \mathbb {R}\ |\ u(v) = \log |f'(v)| \text { for all } v\in \partial V^\varepsilon _K,\\&\qquad \qquad \qquad \qquad \qquad w^-(v)\leqslant u(v)\leqslant w^+(v) \text { for all } v\in V^\varepsilon _{K, \text {int}} \}. \end{aligned}$$]


Note that [image: $$W^\varepsilon $$] is a n-dimensional interval in [image: $$\mathbb {R}^n$$] for [image: $$n=|V^\varepsilon _K|=$$] number of vertices, if we identify a function [image: $$u:V^\varepsilon _K\rightarrow \mathbb {R}$$] with the vector of its values [image: $$u(v_i)$$]. Also, for neighboring vertices [image: $$v_i\sim v_j$$] and [image: $$u\in W^\varepsilon $$] we have [image: $$u(v_j)-u(v_i)=\mathscr {O}(\varepsilon )$$]. Therefore, [image: $$u\in W^\varepsilon $$] satisfies the triangle inequalities (7) if [image: $$\varepsilon $$] is small enough.
Our aim is to show that for [image: $$\varepsilon $$] small enough there exists a function [image: $$u^\varepsilon $$] satisfying conditions (i) and (ii) of Proposition 2.1 and [image: $$u^\varepsilon (v)=\log |f'(v)|$$] for all boundary vertices [image: $$v\in \partial V^\varepsilon _K$$]. This function then defines a discrete conformal PL-map [image: $$f^\varepsilon $$] (uniquely if we use the normalization of Theorem 1.2).
Theorem 4.1
Assume that all angles of the triangular lattice T are strictly smaller than [image: $$\pi /2$$]. There is an [image: $$\varepsilon _0>0$$] (depending on f, K and the triangulation parameters) such that for all [image: $$0<\varepsilon <\varepsilon _0$$] the minimum of the functional E (see Theorem 2.2) with boundary conditions (2) is attained in [image: $$W^\varepsilon $$].

Corollary 4.2
For all [image: $$0<\varepsilon <\varepsilon _0$$] there exists a discrete conformal PL-map on [image: $$T^\varepsilon _K$$] whose associated scale factors satisfy the boundary conditions (2).

The proof of Theorem 4.1 follows from Lemma 4.4 below. It is based on Theorem 2.2 and on monotonicity estimates of the angle function [image: $$\theta (x,y)$$] defined in (6). It is only here where we need the assumption that all angles of the triangular lattice T are strictly smaller than [image: $$\pi /2$$].
Lemma 4.3
(Monotonicity lemma) Consider the star of a vertex [image: $$v_0$$] of a triangular lattice T and its neighboring vertices [image: $$v_1,\dots , v_6,v_7=v_1$$] in cyclic order. Denote [image: $$\lambda _{0,k}:=2\log (|v_{k+1}-v_{k}|/|v_{0}-v_{k}|)$$]. Assume that all triangles [image: $$\varDelta (v_0,v_k,v_{k+1})$$] are strictly acute angled, i.e. all angles [image: $$<\pi /2$$].
Then there exists [image: $$\eta _0>0$$], depending on the [image: $$\lambda $$]s, such that for all [image: $$0\leqslant \eta _1,\dots ,\eta _6$$], [image: $$\eta _7=\eta _1<\eta _0$$] there holds[image: $$\sum _{k=1}^6 \theta (\lambda _{0,k}+\eta _{k}, \lambda _{0,k+1}+\eta _{k+1})\geqslant \sum _{k=1}^6 \theta (\lambda _{0,k}, \lambda _{0,k+1}),$$]


and for all [image: $$0\geqslant \eta _1,\dots ,\eta _6,\eta _7=\eta _1>-\eta _0$$] we have[image: $$\sum _{k=1}^6 \theta (\lambda _{0,k}+\eta _{k}, \lambda _{0,k+1}+\eta _{k+1})\leqslant \sum _{k=1}^6 \theta (\lambda _{0,k}, \lambda _{0,k+1}).$$]





Proof
First, consider a single acute angled triangle. Observe that with the notation of Fig. 1b:[image: $$\begin{aligned} \frac{\partial \beta }{\partial a} = -\frac{1}{a}\cot \gamma . \end{aligned}$$]


Thus, we easily deduce that[image: $$\left. \frac{\partial }{\partial \varepsilon } \theta (2\log (\frac{a}{c})+\varepsilon ,2\log (\frac{a}{b}))\right| _{\varepsilon =0}= \frac{1}{2} \cot \gamma .$$]


Now the claim follows by Taylor expansion. [image: $$\square $$]
        

Lemma 4.4
There is an [image: $$\varepsilon _0>0$$] such that for all [image: $$0<\varepsilon <\varepsilon _0$$] the negative gradient [image: $$-\text {grad}(E)$$] on the boundary of [image: $$W^\varepsilon $$] points into the interior of [image: $$W^\varepsilon $$].

Proof
For notational simplicity, set [image: $$u_k=u(v_k)$$], [image: $$w_k^\pm =w^\pm (v_k)$$] for vertices [image: $$v_k\in V^\varepsilon _K$$] and [image: $$\lambda _{a,b,c}=2\log (|v_b-v_c|/|v_a-v_b|)$$].
Consider [image: $$\text {grad} (E)$$] on a boundary face [image: $$W_i^+=\{u\in W^\varepsilon : u_i=w_i^+\}$$] of the n-dimensional interval [image: $$W^\varepsilon $$]. Let [image: $$v_1,\dots , v_6,v_7=v_1$$] denote the neighbors of [image: $$v_i$$] in cyclic order. Note that [image: $$w_j^+-w_j^-=\varepsilon ^2(M^++M^--(C^++C^-)|v_j|^2)$$] for all vertices [image: $$v_j$$]. As K is compact we may assume that [image: $$0<\varepsilon _0$$] is such that [image: $$w_j^+-w_j^-\,{\leqslant }\, \varepsilon $$] for [image: $$0<\varepsilon \,{<}\,\varepsilon _0$$]. Then using the properties of [image: $$w^+$$] and u we obtain from Lemmas 4.3 and 3.1
          [image: $$\begin{aligned} \frac{\partial E}{\partial u_i}(u)&= 2\pi - \sum _{j=0}^5 \theta (\lambda _{i,{j+1},j} +\underbrace{u_j- \underbrace{u_i}_{=w_i^+}}_{\leqslant w_j^+-w_i^+} ,\lambda _{i,j,{j+1}} + \underbrace{u_{j+1} -\underbrace{u_i}_{=w_i^+}}_{\leqslant w_{j+1}^+-w_i^+})\\&\geqslant 2\pi - \sum _{j=0}^5 \theta (\lambda _{i,{j+1},j} +w_j^+-w_i^+, \lambda _{i,j,{j+1}} +w_{j+1}^+-w_i^+) \\&> 0. \end{aligned}$$]


An analogous estimate holds for boundary faces [image: $$W_i^-$$]. [image: $$\square $$]
        

We are now ready to deduce our convergence theorem.
Proof
(of Theorem 1.2) The existence part follows from Theorem 4.1. The uniqueness is obvious as the translational and rotational freedom of the image of [image: $$f^\varepsilon $$] is fixed using values of f.
We now deduce the remaining estimates.

          Part (i): Together with the definition of [image: $$w^\pm $$], Theorem 4.1 implies that for [image: $$\varepsilon >0$$] small enough and all vertices [image: $$v\in V^\varepsilon _K$$]
          [image: $$\begin{aligned}&-\varepsilon ^2(M^--C^-|v|^2) \\&\qquad \leqslant w^-(v) -\log |f'(v)| \leqslant u^\varepsilon (v)-\log |f'(v)|\leqslant w^+(v) -\log |f'(v)|\\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \leqslant \varepsilon ^2(M^+-C^+|v|^2). \end{aligned}$$]


As K is compact, this implies estimate (3).

          Part (ii): Given the scale factors [image: $$u^\varepsilon $$] associated to the discrete conformal PL-map [image: $$f^\varepsilon $$] on [image: $$T^\varepsilon _K$$], we can in every image triangle determine the interior angles (using for example (5)). In particular, we begin by deducing from estimate (3) the change of these interior angles of the triangles.
Recall that for acute angled triangles the center of the circumcircle lies in the interior of the triangle. Joining these centers for incident triangles leads to an embedded regular graph [image: $$\varepsilon T^*=(\varepsilon V^*,\varepsilon E^*)$$] which is dual to the given triangular lattice [image: $$\varepsilon T$$]. In particular, the vertices [image: $$\varepsilon V^*$$] are identified with the centers of the circumcircles of the triangles of [image: $$\varepsilon T$$]. Furthermore, each edge [image: $$e^*\in (\varepsilon E^*)$$] intersects exactly one edge [image: $$e\in (\varepsilon E)$$] orthogonally, so e and [image: $$e^*$$] are dual, see Fig. 3. Consider an edge [image: $$e=[v_1,v_2]\in E^\varepsilon _K$$] with dual edge [image: $$e^*=[c_1,c_2]$$]. Their lengths are related by [image: $$|c_2-c_1|= |v_2-v_1|\cot \varphi _e$$], where [image: $$\varphi _e$$] denotes the angle opposite to e in [image: $$\varepsilon T$$]. Furthermore we obtain[image: $$\begin{aligned} \cot \varphi _e(\log |f'(v_2)|-\log |f'(v_1)|)&=\cot \varphi _e\text {Re}((\log f')'(v_1)(v_2-v_1)) +\mathscr {O}(\varepsilon ^2) \nonumber \\&= \cot \varphi _e\text {Im}((\log f')'(v_1)i(v_2-v_1)) +\mathscr {O}(\varepsilon ^2)\nonumber \\&=\text {Im}((\log f')'(v_1)(c_2-c_1)) +\mathscr {O}(\varepsilon ^2) \nonumber \\&=2\text {Im}((\log f')'(v_1)(c_2-v_1)) \nonumber \\&\quad +2\text {Im}((\log f')'(v_1)(v_1-\frac{c_2+c_1}{2})) +\mathscr {O}(\varepsilon ^2) \nonumber \\&= 2\arg f'(c_2)-2\arg f'(\underbrace{\frac{c_2+c_1}{2}}_{=\frac{v_2+v_1}{2}}) +\mathscr {O}(\varepsilon ^2) \end{aligned}$$]

 (13)


[image: $$\begin{aligned}&=2\arg f'(\frac{v_2+v_1}{2}) - 2\arg f'(c_1)+\mathscr {O}(\varepsilon ^2), \end{aligned}$$]

 (14)

where we have chosen the notation such that [image: $$(v_2-v_1)i=(c_2-c_1)\tan \varphi _e$$].
Now we estimate the change of the angles in a triangle of [image: $$T^\varepsilon _K$$] compared with its image triangle under [image: $$f^\varepsilon $$]. Assume given a triangle [image: $$\varDelta [v_0,v_1,v_2]$$] and denote [image: $$e_1=[v_0,v_1]$$] and [image: $$e_2=[v_0,v_2]$$]. Denote the angle at [image: $$v_0$$] by [image: $$\theta _0=\theta (\lambda _1,\lambda _2)$$], where [image: $$l_{e_{j}}=|v_j-v_0|$$] and [image: $$\lambda _j=2\log (|v_1-v_2|/l_{e_{j+1}})$$] for [image: $$j=1,2$$] and [image: $$e_3=e_1$$]. Consider the Taylor expansion[image: $$\theta (\lambda _1 +x_1\varepsilon ,\lambda _2 +x_2\varepsilon )= \theta _0 +\varepsilon ( \frac{\cot \varphi _{e_1}}{2}x_1 +\frac{\cot \varphi _{e_2}}{2}x_2) + \mathscr {O}(\varepsilon ^2).$$]


We apply this estimate for the bounded terms[image: $$x_j= \frac{u^\varepsilon (v_j)-u^\varepsilon (v_0)}{\varepsilon } = \frac{\log |f'(v_j)|-\log |f'(v_0)|}{\varepsilon } +\mathscr {O}(\varepsilon )$$]


for [image: $$j=1,2$$]. Denote by [image: $$\delta +\theta _0\in (0,\pi )$$] the angle at the image point of [image: $$v_0$$] in the image triangle [image: $$f^\varepsilon (\varDelta [v_0,v_1,v_2])$$]. Then by (13) and (14) the change of angle [image: $$\delta $$] is given by[image: $$\begin{aligned} \delta = \arg f'(\frac{v_2+v_0}{2})-\arg f'(\frac{v_0+v_1}{2}) + \mathscr {O}(\varepsilon ^2) \end{aligned}$$]

 (15)

This local change of angles is related to the angle [image: $$\psi ^\varepsilon (e)$$] by which each edge e of [image: $$T^\varepsilon _K$$] has to be rotated to obtain the corresponding image edge [image: $$f^\varepsilon (e)$$] (or, more precisely, a parallel edge). The function [image: $$\psi ^\varepsilon $$] may be defined globally on [image: $$E^\varepsilon _K$$] such that in the above notation the change of the angle at [image: $$v_0$$] is given as [image: $$\delta = \psi ^\varepsilon (e_2)-\psi ^\varepsilon (e_1) \in (-\pi ,\pi )$$]. We fix the value of [image: $$\psi ^\varepsilon $$], that is the rotational freedom of the image of [image: $$T^\varepsilon _K$$] under [image: $$f^\varepsilon $$] at the edge [image: $$e_0$$] according to [image: $$\arg f'$$], see Theorem 1.2. Then we take shortest simple paths and deduce from (15) that each edge [image: $$e=[v_j,v_{j+1}]\in E^\varepsilon _K$$] is rotated counterclockwise by[image: $$\psi ^\varepsilon (e)= \arg f'(\frac{v_j+v_{j+1}}{2}) + \mathscr {O}(\varepsilon ).$$]


This implies together with (3) that for all edges [image: $$e=[v_j,v_{j+1}]\in E^\varepsilon _K$$] we have uniformly[image: $$\begin{aligned} \log f'(\frac{v_j+v_{j+1}}{2}) - \frac{u^\varepsilon (v_j)+u^\varepsilon (v_{j+1})}{2} -i\psi ^\varepsilon (e)=\mathscr {O}(\varepsilon ). \end{aligned}$$]

 (16)

Therefore the difference of the smooth and discrete conformal maps at vertices [image: $$v_0\in V^\varepsilon _K$$] satisfies uniformly[image: $$\begin{aligned} f(v_0)-f^\varepsilon (v_0)= O(\varepsilon ) \end{aligned}$$]


by suitable integration along shortest simple paths from the reference point as above. This estimate then also holds for all points in the support of [image: $$T^\varepsilon _K$$] and [image: $$\varepsilon \rightarrow 0$$].

          Part (iii): As last step we consider the derivatives of [image: $$f^\varepsilon $$] restricted to a triangle.
Assume given a triangle [image: $$\varDelta [v_0,v_1,v_2]$$] in [image: $$T^\varepsilon _K$$]. As [image: $$f^\varepsilon $$] is piecewise linear its restriction to [image: $$\varDelta =\varDelta [v_0,v_1,v_2]$$] is the restriction of an [image: $$\mathbb {R}$$]-linear map [image: $$L_\varDelta $$]. This map can be written for [image: $$z\in \mathbb C$$] as[image: $$\begin{aligned} L_\varDelta (z)= f^\varepsilon (v_0) + a\cdot (z-v_0) +b\cdot \overline{(z-v_0)}, \end{aligned}$$]


where the constants [image: $$a,b\in \mathbb C$$] are determined from the conditions [image: $$L_\varDelta (v_j)= f^\varepsilon (v_j)$$] for [image: $$j=0,1,2$$]. Straightforward calculation gives[image: $$\begin{aligned} \partial _z L_\varDelta&= a= \frac{(f^\varepsilon (v_2)-f^\varepsilon (v_0)) \overline{(v_1-v_0)} -(f^\varepsilon (v_1)-f^\varepsilon (v_0)) \overline{(v_2-v_0)}}{\overline{(v_1-v_0)}(v_2-v_0) -(v_1-v_0)\overline{(v_2-v_0)}} \\ \partial _{\bar{z}} L_\varDelta&= b= \frac{(f^\varepsilon (v_2)-f^\varepsilon (v_0))(v_1-v_0) -(f^\varepsilon (v_1)-f^\varepsilon (v_0))(v_2-v_0)}{\overline{(v_1-v_0)}(v_2-v_0) -(v_1-v_0)\overline{(v_2-v_0)}}. \end{aligned}$$]


Note that by definition of [image: $$f^\varepsilon $$] and [image: $$\psi ^\varepsilon $$] we know that[image: $$f^\varepsilon (v_j)-f^\varepsilon (v_0)= (v_j-v_0)\text {e}^{(u^\varepsilon (v_j)+u^\varepsilon (v_0))/2 +i\psi ^\varepsilon ([v_j,v_0])},$$]


where we use the rotation function [image: $$\psi ^\varepsilon $$] on the edges as defined in the previous part (ii) of the proof. Now (16) together with the above expressions of a and b immediately implies the desired estimates[image: $$ \partial _z f^\varepsilon |_\varDelta (z)=\partial _z L_\varDelta (z) =f'(z)+\mathscr {O}(\varepsilon ) \quad \text {and}\quad \partial _{\bar{z}} f^\varepsilon |_\varDelta (z)= \partial _{\bar{z}} L_\varDelta (z)= \mathscr {O}(\varepsilon ). $$]


uniformly on the triangle [image: $$\varDelta =\varDelta [v_0,v_1,v_2]$$]. Also, the constants in the estimate do not depend on the choice of the triangle. This finishes the proof. [image: $$\square $$]
        

Remark 4.5
Theorem 1.2 focuses on a particular way to approximate a given conformal map f by a sequence of discrete conformal PL-maps. Namely, we consider corresponding smooth and discrete Dirichlet boundary value problems and compare the solutions. There is of course a corresponding problem for Neumann boundary conditions, i.e. prescribing angle sums of the triangles at boundary vertices using [image: $$\arg f'$$]. Also, there is a corresponding variational description for conformally equivalent triangle meshes or discrete conformal PL-maps in terms of angles, see [1]. But unfortunately, the presented methods for a convergence proof seem not to generalize in a straightforward manner to this case, as the order of the corresponding Taylor expansion is lower
            
          .
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Abstract
As a basic example in nonlinear theories of discrete complex analysis, we explore various numerical methods for the accurate evaluation of the discrete map [image: $$Z^a$$] introduced by Agafonov and Bobenko. The methods are based either on a discrete Painlevé equation or on the Riemann–Hilbert method. In the latter case, the underlying structure of a triangular Riemann–Hilbert problem with a non-triangular solution requires special care in the numerical approach. Complexity and numerical stability are discussed, the results are illustrated by numerical examples.

1 Introduction
Following the famous ideas of Thurston’s for a nonlinear theory of discrete complex analysis based on circle packings, Bobenko and Pinkall [5] defined a discrete conformal map as a complex valued function [image: $$f:\mathbb Z^2 \subset \mathbb {C}\rightarrow \mathbb {C}$$] satisfying[image: $$\begin{aligned} \frac{(f_{n,m} - f_{n+1,m})(f_{n+1,m+1} - f_{n,m+1})}{(f_{n+1,m} - f_{n+1,m+1})(f_{n,m+1} - f_{n,m})} = -1. \end{aligned}$$]

 (1)

That is, the cross ratio on each elementary quadrilateral (fundamental cell) of the lattice [image: $$\mathbb Z^2$$] is [image: $$-1$$]; infinitesimally, this property characterizes conformal maps among the smooth ones. A discrete conformal map [image: $$f_{n,m}$$] is called an immersion if the interiors of adjacent elementary quadrilaterals are disjoint.
A central problem in discrete complex analysis is to find discrete conformal analogues of classical holomorphic functions that are immersions; simply evolving just the boundary values of the classical function by (1) would not work [6]. To solve this problem, Bobenko [3] suggested to augment (1) by another equation: using methods from the theory of integrable systems it can be shown that the non-autonomous system of constraints[image: $$\begin{aligned} a f_{n,m} =2n\frac{(f_{n+1,m} - f_{n,m})(f_{n,m} - f_{n-1,m})}{(f_{n+1,m} - f_{n-1,m})} + 2m\frac{(f_{n,m+1} - f_{n,m})(f_{n,m} - f_{n,m-1})}{(f_{n,m+1} - f_{n,m-1})}, \end{aligned}$$]

 (2)

obtained as an integrable discretization of the differential equation[image: $$ a f = x f_x + y f_y = z f_z $$]


that would define [image: $$f(z)=z^a$$] up to scaling, is compatible with (1). Agafonov and Bobenko [1] proved that, for [image: $$0<a<2$$], the system (1) and (2) of recursions, applied to the three initial values[image: $$\begin{aligned} f_{0,0} = 0,\quad f_{1,0} = 1, \quad f_{0,1} = e^{ia\pi /2}, \end{aligned}$$]

 (3)

defines a unique discrete conformal map [image: $$Z^a_{n,m} = f_{n,m}$$] that is an immersion [1, Theorem 1].[image: A371662_1_En_4_Fig1_HTML.gif]
Fig. 1
                Left Red dots are the discrete [image: $$Z^{2/3}$$] for [image: $$0\leqslant n,m \leqslant 19$$]; blue circles are the asymptotics given by (4). Right The Schramm circle pattern of the discrete [image: $$Z^{2/3}$$] [courtesy of J. Richter-Gebert]





Moreover, they showed [1, Sect. 3] that this discrete conformal map [image: $$Z^a$$] determines a circle pattern of Schramm type, i.e., an orthogonal circle pattern with the combinatorics of the square grid, see Fig. 1. They conjectured, recently proved by Bobenko and Its [4] using the Riemann–Hilbert method, that asymptotically[image: $$\begin{aligned} Z^a_{n,m} = c_a\left( \frac{n+im}{2}\right) ^a \left( 1 + O\left( \frac{1}{n^2 + m^2}\right) \right) \qquad (n^2 + m^2 \rightarrow \infty ) \end{aligned}$$]

 (4a)

with the constant[image: $$\begin{aligned} c_a = \frac{\varGamma \left( 1 - \frac{a}{2}\right) }{\varGamma \left( 1 + \frac{a}{2}\right) }. \end{aligned}$$]

 (4b)

For [image: $$0<a\leqslant 1$$], as exemplified in Fig. 1, this asymptotics is already accurate to plotting accuracy for all but the very smallest values of n and m. If [image: $$a\rightarrow 2$$], however, it requires increasingly larger values of n and m to become accurate.[image: A371662_1_En_4_Fig2_HTML.gif]
Fig. 2Numerical discrete [image: $$Z^{2/3}_{n,m}$$] ([image: $$0\leqslant n,m\leqslant 49$$]): recursing from the initial values (3) by a straightforward application of the system (1) and (2) quickly develops numerical instabilities. The color cycles with the coordinate m
              





In this work we study the stable and accurate numerical calculation of [image: $$Z^a$$]; to the best of our knowledge for the first time in the literature. This is an interesting mathematical problem in itself, but the underlying methods should be applicable to a large set of similar discrete integrable systems. Now, the basic difficulty is that the evolution of the discrete dynamical system (1) and (2), starting from the initial values (3), is numerically highly unstable, see Fig. 2.1

The support of the stencils of (1) and (2) has the form of a square and a five-point cross in the lattice [image: $$\mathbb Z^2$$], that is,[image: $$ \begin{matrix} f_{n,m+1} &{} f_{n+1,m+1}\\ f_{n,m} &{} f_{n+1,m} \end{matrix}\qquad \text {and}\qquad \begin{matrix} &{} f_{n,m+1}\\ f_{n-1,m} &{} f_{n,m} &{} f_{n+1,m}\\ &{}f_{n,m-1} \end{matrix}, $$]


with the latter reducing to be dimensional along the boundary of [image: $$\mathbb Z^2_+$$], namely[image: $$ \begin{matrix} f_{0,m+1}\\ f_{0,m}\\ f_{0,m-1} \end{matrix}, \qquad \text {resp.}\qquad \begin{matrix} f_{n-1,0}&f_{n,0}&f_{n+1,0}, \end{matrix} $$]


if [image: $$n=0$$] or [image: $$m=0$$]. Thus, the forward evolution can be organized as follows. If [image: $$f_{n,m}$$] is known for [image: $$0\leqslant n,m \leqslant N$$] the upper index N is increased to [image: $$N+1$$] according to:	(i)use (2) to compute the boundary values [image: $$f_{N+1,0}$$] and [image: $$f_{0,N+1}$$];


 

	(ii)use (1) to compute the row [image: $$f_{N+1,m}$$], [image: $$1\leqslant m \leqslant N$$];


 

	(iii)use (1) to compute the column [image: $$f_{n,N+1}$$], [image: $$1\leqslant n \leqslant N$$];


 

	(iv)use (1) to compute the diagonal value [image: $$f_{N+1,N+1}$$].


 





It is this algorithm that gives the unstable calculation shown in Fig. 2. Alternatively, one could use (2) to calculate the row values [image: $$f_{N+1,m}$$], [image: $$1\leqslant m \leqslant N-1$$], and column values [image: $$f_{n,N+1}$$], [image: $$1\leqslant n \leqslant N-1$$], up to the first sub- and superdiagonal (note that these calculations do not depend on order within the rows and columns). The missing values are then completed by using (1). However, this alternative forward evolution gives a result that is visually indistinguishable from Fig. 2.[image: A371662_1_En_4_Fig3_HTML.gif]
Fig. 3Numerical error of the diagonal values [image: $$f_{n,n}$$] from Fig. 2 (blue), of the [image: $$x_n$$] as in (5) and computed by forward evolution of the discrete Painlevé II equation (red), and of the corresponding invariant [image: $$|x_n|=1$$] (yellow); [image: $$a=2/3$$]. They share the same rate of initial exponential growth





As can be seen from Fig. 2, the numerical instability starts spreading from the diagonal elements [image: $$f_{n,n}$$]. In fact, there is an initial exponential growth of numerical errors to be found in the diagonal entries, see Fig. 3. Such a numerical instability of an evolution is the direct consequence of the instability of the underlying dynamical system, that is, of positive Lyapunov exponents.
As a remedy we suggest two different approaches to calculating [image: $$Z^a_{n,m}$$]. In Sect. 2 we stabilize the calculation of the diagonal values by solving a boundary value problem for an underlying discrete Painlevé II equation and in Sects. 3–8 we explore numerical methods based on the Riemann–Hilbert method. The latter reveals an interesting structure (Sect. 4): the Riemann–Hilbert problem has triangular data but a non-triangular solution; the operator equation can thus be written as a uniquely solvable block triangular system where the infinite-dimensional diagonal operators are not invertible. We discuss two different ways to prevent this particular structure from hurting finite-dimensional numerical schemes: a coefficient-based spectral method with infinite-dimensional linear algebra in Sect. 6 and a modified Nyström method based on least squares in Sect. 8.

2 Discrete Painlevé II Separatrix as a Boundary Value Problem
Since the source of the numerical instability of the direct evolution of the discrete dynamical system (1) and (2) is found in the diagonal elements [image: $$f_{n,n}$$], we first express the [image: $$f_{n,n}$$] directly in terms of a one-dimensional three-term recursion and then study its stable numerical evaluation. To begin with, Agafonov and Bobenko [1, Proposition 3] proved that the geometric quantities[image: $$\begin{aligned} x_n^2 = \frac{f_{n,n+1}-f_{n,n}}{f_{n+1,n}-f_{n,n}},\qquad \arg x_n \in (0,\pi /2), \end{aligned}$$]

 (5)

have invariant magnitude [image: $$|x_n|=1$$] (see the circle packing in Fig. 1) and that they satisfy the following form of the discrete Painlevé II equation[image: $$\begin{aligned} (n+1)(x_n^2-1)\left( \frac{x_{n+1}-ix_n}{i+x_nx_{n+1}}\right) - n(x_n^2+1)\left( \frac{x_{n-1}+ix_n}{i+x_{n-1}x_n}\right) = a x_n, \end{aligned}$$]

 (6)

with initial value [image: $$x_0 = e^{ia \pi /4}$$]. Note that for [image: $$n=0$$] this nonlinear three-term recurrence degenerates and gives the missing second initial value, namely[image: $$\begin{aligned} x_1=\frac{x_0(x_0^2+a -1)}{i((a -1)x_0^2+1)}. \end{aligned}$$]

 (7)

Reversely, given the solution [image: $$x_n$$] of this equation, the diagonal elements [image: $$f_{n,n}$$] can be calculated according to the simple recursion [1, p. 176][image: $$\begin{aligned} u_n = \frac{r_n}{\text {Re} x_n}, \quad r_{n+1}=u_n \cdot \text {Im} x_n, \quad g_{n+1} = g_n + u_n, \quad f_{n+1,n+1} = g_{n+1} e^{ia\pi /4}, \end{aligned}$$]

 (8)

with inital values [image: $$g_0 = 0$$], [image: $$r_0=1$$] (note that [image: $$u_n$$], [image: $$r_n$$], [image: $$g_n$$] are all positive); the sub- and superdiagonal elements [image: $$f_{n+1,n}$$] and [image: $$f_{n,n+1}$$] are obtained from (1) and (5) by [image: $$\begin{aligned} f_{n+1,n}&= \frac{(x_n^2-1)f_{n,n} + (x_n^2+1)f_{n+1,n+1}}{2x_n^2}, \end{aligned}$$]

 (9a)


[image: $$\begin{aligned} f_{n,n+1}&= \frac{(1-x_n^2)f_{n,n} + (1+x_n^2)f_{n+1,n+1}}{2}. \end{aligned}$$]

 (9b)

 However, given that [image: $$x_n$$] is a separatrix solution of the discrete Painlevé II equation [1, p. 167], we expect that a forward evolution of (6), starting with the initial values [image: $$x_0$$] and [image: $$x_1$$], suffers from exactly the same instability as the calculation of the diagonal values [image: $$f_{n,n}$$] by evolving (1) and (2). Figure 3 shows that this is indeed the case, exhibiting the same initial exponential growth rate; it also shows that the deviation of the calculated values of [image: $$|x_n|$$] from its invariant value 1 can serve as an explicitly computable error indicator.
In the continuous case of the Hastings–McLeod solution of Painlevé II, which also constitutes a separatrix, Bornemann [8, Sect. 3.2] suggested to address such problems by solving an asymptotic two-point boundary value problem instead of the originally given evolution problem. To this end, one has to solve the connection problem first, that is, one has to establish the asymptotics of [image: $$x_n$$] as [image: $$n\rightarrow \infty $$]. By inserting the known asymptotics (4) of [image: $$Z_{n,m}^a$$] into the defining Eq. (5), we obtain[image: $$ x_n = e^{i\pi /4}(1+O(n^{-1}))\qquad (n\rightarrow \infty ). $$]


Since in actual numerical calculations we need accurate approximations already for moderately large n, we match the coefficients of an expansion in terms of [image: $$n^{-1}$$] to the discrete Painlevé II equation (6) and get, as [image: $$n\rightarrow \infty $$],[image: $$\begin{aligned}&x_n = e^{\frac{i \pi }{4}} \bigg (1+\frac{i (a -1)}{2 n} + \frac{-a ^2+(2-2 i) a -(1-2 i)}{8 n^2} - \frac{i \left( a ^3-(3-2 i) a ^2-(1+4 i) a +(3+2 i)\right) }{16 n^3}\\&\qquad \quad +\frac{3 a ^4-(12-12 i) a ^3-(2+36 i) a ^2+(28+4 i) a -(17-20 i)}{128 n^4}\\&\qquad +\frac{i \left( 3 a ^5-(15-12 i) a ^4-(30+48 i) a ^3+(150+24 i) a ^2-(5-48 i) a -(103+36 i)\right) }{256 n^5} \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad + O(n^{-6})\bigg ). \end{aligned}$$]


We denote the r.h.s. of this asymptotic formula, without the [image: $$O(n^{-6})$$] term, by [image: $$x_{n,6}$$].[image: A371662_1_En_4_Fig4_HTML.gif]
Fig. 4Numerical discrete [image: $$Z^{2/3}_{n,m}$$] ([image: $$0\leqslant n,m\leqslant 49$$]): evolving from accurate values of [image: $$f_{n,n}$$], [image: $$f_{n+1,n}$$], [image: $$f_{n,n+1}$$] close to the diagonal back to the boundary by using the cross-ratio relations (1) develops numerical instabilities. The color cycles with the coordinate m
              





Next, using Newton’s method, we solve the nonlinear system of [image: $$N+1$$] equations in [image: $$N+1$$] unknowns [image: $$x_0,\ldots ,x_N$$] given by the discrete Painlevé equation (6) for [image: $$1\leqslant n \leqslant N-1$$] and the two boundary conditions[image: $$ x_1=\frac{x_0(x_0^2+a -1)}{i((a -1)x_0^2+1)},\qquad x_N = x_{N,6}. $$]


Note that the value [image: $$x_0 = e^{ia\pi /4}$$] is not explicitly used and must be obtained as output of the Newton solve, that is, it can be used as an measure of success. We choose N large enough that [image: $$|x_{N,6}| \doteq 1 $$] up to machine precision (about [image: $$N\approx 300$$] uniformly in a). Then, using the excellent initial guesses (for the accuracy of the asymptotics cf. the left panel of Fig. 1)[image: $$ x_0^{(0)} = e^{ia\pi /4},\qquad x_n^{(0)} = x_{n,6}\quad (1\leqslant n \leqslant N), $$]


Newton’s method will converge in about just 10 iterations to machine precision yielding a numerical solution that satisfies the invariant [image: $$|x_n|=1$$] also up to machine precision. Since the Jacobian of a nonlinear system stemming from a three-term recurrence is tridiagonal, each Newton step has an operation count of order O(N). Hence, the overall complexity of accurately calculating the values [image: $$x_n$$], [image: $$0\leqslant n \leqslant N$$], is of optimal order O(N).
Finally, having accurate values of [image: $$x_n$$] at hand, and therefore by (8) and (9) also those of [image: $$f_{n,n}$$], [image: $$f_{n+1,n}$$] and [image: $$f_{n,n+1}$$], one can calculate the missing values of [image: $$f_{n,m}$$] row- and column-wise, starting from the second sup- and superdiagonal and evolving to the boundary, either by evolving the cross-ratio relations (1) or by evolving the discrete differential equation (2). It turns out that the first option develops numerical instabilities spreading from the boundary, see Fig. 4, whereas the second option is, for a wide range of the parameter a, numerically observed to be perfectly stable, see Fig. 5. Note that this stable algorithm only differs from the alternative direct evolution discussed in the introduction in how the values close to the diagonal, that is [image: $$f_{n,n}$$], [image: $$f_{n+1,n}$$] and [image: $$f_{n,n+1}$$], are computed.
The total complexity of this stable numerical calculation of the array [image: $$f_{n,m}$$] with [image: $$0\leqslant n,m \leqslant N$$] is of optimal order [image: $$O(N^2)$$].[image: A371662_1_En_4_Fig5_HTML.gif]
Fig. 5Numerical discrete [image: $$Z^{2/3}_{n,m}$$] ([image: $$0\leqslant n,m\leqslant 49$$]): recursing from accurate values of [image: $$f_{n,n}$$], [image: $$f_{n+1,n}$$], [image: $$f_{n,n+1}$$] close to the diagonal back to the boundary by using the discrete differential equation (2) is perfectly stable. The color cycles with the coordinate m
              






3 The Riemann–Hilbert Method
Based on the integrability of the system (1) and (2), by identifying (1) as the compatibility condition of a Lax pair of linear difference equations [5] and by using isomonodromy, Bobenko and Its [4, p. 15] expressed the [image: $$Z^a$$] map in terms of the following Riemann–Hilbert problem (which is a slightly transformed and transposed version of the X-RHP by these authors): Let [image: $$\varGamma _1$$] be the oriented contour built of two non-intersecting circles in the complex plane centered at [image: $$z=\pm 1$$] (see Fig. 6 left), the holomorphic function [image: $$X: \mathbb {C}\setminus \varGamma _1 \rightarrow {{\mathrm{GL}}}(2)$$] satisfies the jump condition[image: $$\begin{aligned} X_+(\zeta ) = G_1(\zeta ) X_-(\zeta )\qquad (\zeta \in \varGamma _1) \end{aligned}$$]

 (10a)


[image: A371662_1_En_4_Fig6_HTML.gif]
Fig. 6Contours for the X-RHP [4, p. 15]. Left Two non-intersecting circles [image: $$\varGamma _1$$] centered at [image: $$\pm 1$$] (black); right additional circle [image: $$\varGamma _2$$] centered at 0 (red) for standard normalization at [image: $$\infty $$]
              





with the jump matrix2
[image: $$\begin{aligned} G_1(\zeta ) = \begin{pmatrix} 1 &{} 0 \\ e^{ia \pi /2} \zeta ^{-a/2} (\zeta -1)^{-m} (\zeta +1)^{-n}\; &{} 1 \end{pmatrix} \end{aligned}$$]

 (10b)

subject to the following normalization[image: $$\begin{aligned} X(z) = \begin{pmatrix} z^{\frac{m+n}{2}} &{} 0 \\ 0 &{} z^{-\frac{m+n}{2}} \end{pmatrix}(I+O(z^{-1}))\qquad (z\rightarrow \infty ). \end{aligned}$$]

 (10c)

Here, we restrict ourselves to values of n and m having the same parity such that [image: $$(m+n)/2$$] is an integer. The discrete [image: $$Z^a$$] map is now given by the values [image: $$f_{n,m}$$] extracted from an LU-decomposition at [image: $$z=0$$], namely,[image: $$ X(0) = \begin{pmatrix} 1 &{} 0\\ (-1)^{m+1}f_{n,m}\; &{} 1 \end{pmatrix} \left( \begin{array}{cc} \bullet \; &{} \;\bullet \;\\ 0 &{} \;\bullet \; \end{array}\right) , $$]


that is,[image: $$ f_{n,m} = (-1)^{m+1} \frac{X_{21}(0)}{X_{11}(0)}. $$]


Subsequently, using the Deift–Zhou nonlinear steepest decent method, Bobenko and Its [4] transform this X-RHP to a series of Riemann–Hilbert problems that are more suitable for asymptotic analysis. The last one of this series before introducing a global parametrix,3 the S-RHP [4, pp. 24–27], is based on the contour shown in the left part of Fig. 7. This rather elaborate S-RHP is, after normalizing at [image: $$z=0$$] and [image: $$z\rightarrow \infty $$] appropriately, amenable to the spectral collocation method of Olver [18]; we skip the details which can be found in the thesis of the fourth author G.W. [24, Sect. 5.4] that extends previous work on automatic contour deformation by Bornemann and Wechslberger [10, 25]. Here, the relative size of the inner and outer circles shaping the contour system shown in the right part of Fig. 7 have to be carefully adjusted to the parameters n and m to keep the condition number at a reasonable size. The complexity of computing [image: $$f_{n,m}$$] for fixed n and m is then basically independent of m and n.[image: A371662_1_En_4_Fig7_HTML.gif]
Fig. 7
                Left Contour of the S-RHP [4, pp.24–27] centered at [image: $$z=0$$]. Right Modified contour after normalizing the RHP at [image: $$z=0$$] and [image: $$z\rightarrow \infty $$] (analogously to Fig. 6); the relative size of the inner and outer circles is chosen depending on n and m and has a major influence on the condition number of the spectral collocation method. Proper choices steer the condition number into a regime, which corresponds to a loss of about three to eight digits, see [24, Sect. 5.4]





In the rest of this work we explore to what extent the analytic transformation from the X-RHP to the S-RHP is a necessary preparatory step also numerically, or whether one can use the originally given X-RHP as the basis for numerical calculations. To this end, we replace the normalization (10c) by the standard one, that is,[image: $$\begin{aligned} X(z) = I + O(z^{-1})\qquad (z\rightarrow \infty ), \end{aligned}$$]

 (10d)

and introduce a further circle [image: $$\varGamma _2$$] as shown in the right part of Fig. 6 with the jump condition[image: $$\begin{aligned} X_+(\zeta ) = G_2(\zeta ) X_-(\zeta )\quad (\zeta \in \varGamma _2),\qquad G_2(\zeta ) = \begin{pmatrix} \zeta ^{\frac{m+n}{2}} &{} 0 \\ 0 &{} \zeta ^{-\frac{m+n}{2}} \end{pmatrix}. \end{aligned}$$]

 (10e)

We define [image: $$\varGamma = \varGamma _1 \cup \varGamma _2$$] and put [image: $$G(\zeta ) = G_j(\zeta )$$] for [image: $$\zeta \in \varGamma _j$$] ([image: $$j=1,2$$]). That way, the Riemann-Hilbert problem is given in the standard form[image: $$\begin{aligned} X_+(\zeta ) = G(\zeta ) X_-(\zeta ) \quad (\zeta \in \varGamma ),\qquad X(z) = I + O(z^{-1})\quad (z\rightarrow \infty ). \end{aligned}$$]

 (11)

Because of [image: $$\det G = 1$$], the solution [image: $$X \in C^\omega (\mathbb {C}\setminus \varGamma , {{\mathrm{GL}}}(2))$$] is unique, see [12, p. 104].

4 Lower Triangular Jump Matrices and Indices
We note that the jump matrix G defined in (10b) and (10e) is lower triangular. However, even though the non-singular lower triangular matrices form a multiplicative group and the normalization at [image: $$z\rightarrow \infty $$] is also lower triangular, the solution X turns out to not be lower triangular. Arguably the most natural source of RHPs exhibiting this structure are connected to orthogonal polynomials. By renormalizing at [image: $$z\rightarrow \infty $$] the standard RHP for the system of orthogonal polynomials on the unit circle with complex weight [image: $$e^z$$], we are led to consider the following model problem ([image: $$m\in \mathbb N$$])4:[image: $$\begin{aligned} Y_+(\zeta ) = \begin{pmatrix} \zeta ^m &{} 0\\ e^\zeta &{} \zeta ^{-m} \end{pmatrix} Y_-(\zeta )\quad (|\zeta |=1),\qquad Y(z) = I + O(z^{-1}) \quad (z\rightarrow \infty ). \end{aligned}$$]

 (12)

Though one could perform a set of transformations to this problem that are standard in the RHP approach to the asymptotics of orthogonal polynomials on the circle, basically resulting in an analogue of the S-RHP of [4], our point here is to understand the issues of a direct numerical approach to the X-RHP (11) in a simple model case. It is straightforward to check that the unique solution of (12) is given explicitly by[image: $$ Y(z) = {\left\{ \begin{array}{ll} \begin{pmatrix} 1 \;\;&{} -z^{-m} e_{m}(-z) \\ 0 &{} 1 \end{pmatrix} &{}\quad (|z|>1),\\ \\ \begin{pmatrix} z^{m} &{} -e_{m}(-z) \\ e^z\;\; &{} z^{-m}(1-e^z e_{m}(-z)) \end{pmatrix}&\quad (|z|<1), \end{array}\right. } $$]


with[image: $$\begin{aligned} e_k(z) = 1 + z + \frac{z^2}{2!} + \cdots + \frac{z^{k-1}}{(k-1)!} = e^z\frac{\varGamma (k,z)}{\varGamma (k)}, \end{aligned}$$]

 (13)

where [image: $$\varGamma (z)$$] and [image: $$\varGamma (k,z)$$] denote the Gamma function and the incomplete Gamma function. In particular, we observe that [image: $$Y_{12}(0)=-1 \ne 0$$].
The nontrivial 12-component v of a Riemann–Hilbert problem with lower triangular jump matrices, such as (11) or (12), can be expressed independently of the other components, it satisfies a homogeneous scalar Riemann–Hilbert problem of its own. Namely, denoting the 11-component of G by g, we get[image: $$\begin{aligned} v_+(\zeta ) = g(\zeta ) v_-(\zeta ) \quad (\zeta \in \varGamma ),\qquad v(z) = O(z^{-1}) \quad (z\rightarrow \infty ). \end{aligned}$$]

 (14)

If the contour is a cycle as in (11), or as in the model problem above, the general theory [17, Sect. 127] of Riemann–Hilbert problems with Hölder continuous boundary regularity states that the Noether index5 [image: $$\kappa $$] of (14) is given by the winding number[image: $$ \kappa = {{\mathrm{ind}}}_\varGamma g. $$]


More precisely, the nullity is the sum of the positive partial indices and the deficiency is the sum of the magnitudes of the negative partial indices, see [17, Eq. (127.30)]. Since there is just one partial index in the scalar case, the nullity of (14) is [image: $$\kappa $$] if [image: $$\kappa >0$$], and the deficiency is [image: $$-\kappa $$] if [image: $$\kappa <0$$].
Thus, in the case of the RHP (11), the nullity of the scalar sub-RHP for the 12-component is[image: $$ {{\mathrm{ind}}}_\varGamma g = {{\mathrm{ind}}}_{\varGamma _1} 1 + {{\mathrm{ind}}}_{\varGamma _2} \zeta ^{(n+m)/2} = \frac{n+m}{2}, $$]


in the case of the model RHP (12) the corresponding nullity is m. In both cases, the unique non-zero solution of (14) that is induced by the solution of the defining [image: $$2\times 2$$] RHP is precisely selected by the compatibility conditions set up by the remaining linear relations of that RHP: the homogeneous part of these relations must then have Noether index [image: $$-\kappa $$].

            Impact on Numerical Methods
          
This particular substructure of a Riemann–Hilbert problem with lower triangular jump matrices G is a major challenge for numerical methods. If a discretization of the [image: $$2\times 2$$] RHP induces a discretization of the scalar subproblem (14) that results in a homogeneous linear system with a square matrix [image: $$S_N$$] (that is, the same number of equations and unknowns), there are just two (non exclusive) options:	
              [image: $$S_N$$] is non-singular, which results in a 12-component [image: $$v_N = 0$$] that does not converge;

	the full system is singular and therefore numerically of not much use (ill-conditioning and convergence issues will abound).





Such methods compute fake lower triangular solutions, are ill-conditioned, or both.
To understand this claim, let us denote the 12-component of the [image: $$2\times 2$$] discrete solution matrix by [image: $$v_N$$] and the vector of the three other components by [image: $$w_N$$]. By inheriting the subproblem structure such as (14) for the 12-component, the discretization results then in a linear system of the block matrix form[image: $$ \underbrace{\begin{pmatrix} S_N &{} \;0\\ \bullet &{} T_N \end{pmatrix}} _{=A_N} \begin{pmatrix} v_N\\ w_N \end{pmatrix} = \begin{pmatrix} 0\\ \bullet \end{pmatrix} $$]


Because of [image: $$\det (A_N) = \det (S_N)\det (T_N)$$] a non-singular discretization matrix [image: $$A_N$$] implies a non-singular [image: $$S_N$$] and, thus, a non-convergent trivial component [image: $$v_N=0$$]. Such a non-convergent zero 12-component is what one gets, for example, if one applies the spectral collocation method of [18] (with square contours replacing the circles) to the Riemann–Hilbert problems (11) or to the model problem (14). As a hint of failure, the resulting discrete system is ill-conditioned; details which can be found in the thesis of the fourth author G.W. [24, Sect. 5.4].
The deeper structural reason for this problem can be seen in the fact that the Noether index of finite-dimensional square matrices is always zero, whereas the index of the infinite-dimensional subproblem (14) is strictly positive.
We suggest two approaches to deal with this problem: first, an infinite-dimensional discretization using sequence spaces, that is, without truncation, and using infinite-dimensional numerical linear algebra, and second, using underdetermined discretizations with rectangular linear systems that are complemented by a set of explicit compatibility conditions.

5 RHPs as Integral Equations with Singular Kernels
In this section, we recall a way to express the RHP (11), with standard normalization at infinity, as a particular system of singular integral equations, cf. [11, 16, 18]. We introduce the Cauchy transform[image: $$ C f(z) = \frac{1}{2\pi i}\int _\varGamma \frac{f(\zeta )}{\zeta -z}\,d\zeta \qquad (z\not \in \varGamma ) $$]


and their directional limits [image: $$C_\pm $$] when approaching the left or right of the oriented contour [image: $$\varGamma $$], defined by[image: $$ C_\pm f(\eta ) = \lim _{z \rightarrow \eta _\pm } \frac{1}{2\pi i}\int _\varGamma \frac{f(\zeta )}{\zeta -z}\,d\zeta \qquad (\eta \in \varGamma ). $$]


Note that [image: $$C_\pm $$] can be extended as bounded linear operators mapping [image: $$L^2(\varGamma )$$] (or spaces of Hölder continuous functions) into itself, and C (suitably extended) maps such functions into functions that are holomorphic on [image: $$\mathbb {C}\setminus \varGamma $$], see [12, p. 100]. By using the decomposition [image: $$C_+ - C_- = {{\mathrm{id}}}$$], the ansatz (by letting C act component-wise on the matrix-valued function u)[image: $$\begin{aligned} X(z) = I + C u(z),\qquad u \in L^2(\varGamma ,\mathbb {C}^{2\times 2}), \end{aligned}$$]

 (15a)

establishes the equivalence of a RHP of the form (11) and the system of singular integral equations[image: $$\begin{aligned} ({{\mathrm{id}}} - (G-I) C_-) u = G-I \end{aligned}$$]

 (15b)

 As the following theorem shows, singular integral operators of the form[image: $$ T_G = {{\mathrm{id}}} - (G-I) C_- : L^2(\varGamma ,\mathbb {C}^{2\times 2}) \rightarrow L^2(\varGamma ,\mathbb {C}^{2\times 2}) $$]


can be preconditioned by operators of exactly the same form.
Theorem 1
Let [image: $$\varGamma $$] be a smooth, bounded, and non-self intersecting6 contour system and [image: $$G:\varGamma \rightarrow {{\mathrm{GL}}}(2)$$] a system of jump matrices which continues analytically to a vicinity of [image: $$\varGamma $$]. Then, [image: $$T_{G^{-1}}$$] is a Fredholm regulator of [image: $$T_G$$], that is, [image: $$T_{G^{-1}} T_G = {{\mathrm{id}}} + K$$] with a compact operator [image: $$K : L^2(\varGamma ,\mathbb {C}^{2\times 2}) \rightarrow L^2(\varGamma ,\mathbb {C}^{2\times 2})$$] that can be represented as a regular integral operator.

Proof
The Sokhotski–Plemelj formula [17, Eq. (17.2)] gives that [image: $$2C_- = -{{\mathrm{id}}} + H$$], where H denotes a variant of the Hilbert transform (normalized as in [17]),[image: $$ H f(\zeta ) = \frac{1}{\pi i} \int _\varGamma \frac{f(\eta )}{\eta - \zeta }\,d\eta \qquad (\zeta \in \varGamma ), $$]


with the integral understood in the sense of principle values. This way, we have[image: $$\begin{aligned} T_G&= A_1 {{\mathrm{id}}} + B_1 H,\qquad A_1 = \frac{1}{2} (I+G),\quad B_1 = \frac{1}{2} (I-G),\\ T_{G^{-1}}&= A_2 {{\mathrm{id}}} + B_2 H,\qquad A_2= \frac{1}{2} (I+G^{-1}),\quad B_2 = \frac{1}{2} (I-G^{-1}). \end{aligned}$$]


By a product formula of Muskhelishvili [17, Eq. (130.15)], which directly follows from the Poincaré–Betrand formula [17, Eq. (23.8)], one has[image: $$ T_{G^{-1}} T_G = A {{\mathrm{id}}} + B\,H + K, $$]


where K represents a regular integral operator and the coefficient matrices A and B are given by the expressions[image: $$ A = A_2 A_1 + B_2 B_1,\qquad B = A_2 B_1 + B_2 A_1. $$]


Here, we thus obtain [image: $$A=I$$] and [image: $$B=0$$], which finally proves the assertion. [image: $$\square $$]
        

This theorem implies that the operator [image: $$T_{G}$$] is Fredholm, that is, its nullity and deficiency are finite. In fact, since in our examples [image: $$\det G \equiv 1$$], we have that the Noether index of [image: $$T_G$$] is zero. The possibility to use the Fredholm theory is extremely important in studying RHPs: it allows one to use, when proving the solvability of Riemann-Hilbert problems, the “vanishing lemma” [26], see also [12, Chap. 5]. For the use of Fredholm regulators in iterative methods applied to solving singular integral equations, see [23].

6 A Well-Conditioned Spectral Method for Closed Contours
We follow the ideas of Olver and Townsend [20] on spectral methods for differential equations, recently extended by Olver and Slevinsky [19] to singular integral equations. First, the solution u and the data [image: $$G-I$$] of the singular integral equation (15b) are expanded7 in the Laurent bases of the circles that built up the cycle [image: $$\varGamma $$]. Next, the resulting linear system is solved using the framework of infinite-dimensional linear algebra [14, 21], built out of the adaptive QR factorization introduced in [20].
To be specific, we describe the details for the model RHP (12), where the cycle [image: $$\varGamma $$] is just the unit circle. Here, we have the expansions[image: $$ u(\zeta ) = \sum _{k=-\infty }^\infty U_k \zeta ^k,\qquad G(\zeta )-I = \sum _{k=-\infty }^\infty A_k \zeta ^k\qquad (\zeta \in \varGamma ), $$]


both rapidly decaying with [image: $$2\times 2$$] coefficient matrices [image: $$U_k$$] and [image: $$A_k$$]. In the Laurent basis, the operator [image: $$C_-$$] acts diagonally in the simple form[image: $$ C_- \zeta ^k ={\left\{ \begin{array}{ll} 0 &{} \quad k \geqslant 0,\\ - \zeta ^k &{} \quad k < 0. \end{array}\right. } $$]


which gives[image: $$ C_- u(\zeta ) = - \sum _{k=1}^\infty U_{-k} \zeta ^{-k}\qquad (\zeta \in \varGamma ). $$]


Note that [image: $$-C_-$$] acts as a projection to the subspace spanned by the basis elements with negative index. This way, the system (15b) of singular integral equations is transformed to8
[image: $$\begin{aligned} U_k + \sum _{j=-\infty }^{\infty } [k-j<0]\, A_{j} U_{k-j}= A_k \qquad (k\in \mathbb Z). \end{aligned}$$]

 (16)

Up to a given accuracy, we may assume that the data is given as a finite sum,[image: $$ G(\zeta )-I \approx \sum _{k=-n_1}^{n_1} A_k \zeta ^k, $$]


likewise for [image: $$G^{-1}(\zeta ) - I$$] with a truncation at [image: $$n_2$$]. Thus, writing the discrete system (16) in matrix-vector form, the corresponding double-infinite matrix has a bandwidth of order [image: $$O(n_1)$$]. Preconditioning this system, following Theorem 1, by the multiplication with the double-infinite matrix belonging to [image: $$G^{-1}$$] instead of G, results in a double-infinite matrix that has a bandwidth of order [image: $$O(n_1+n_2)$$]. Since the right hand side of (16) is truncated at indices of magnitude [image: $$O(n_1)$$], application of the adaptive QR factorization [20], after re-ordering the double-infinite coefficients as [image: $$U_0,U_{-1},U_1,\ldots $$] in order to be singly infinite, will result in an algorithm that has a complexity of order [image: $$O((n_1+n_2)^2 n_3)$$], where [image: $$n_3$$] is the number of coefficients needed to resolve u, dictated by a specified tolerance.
Remark 1
The extension to systems [image: $$\varGamma $$] of closed contours built from several circles is straightforward. The jump data and the solution, restricted to a circle centered at a are expanded in the Laurent basis [image: $$(z-a)^k$$], [image: $$k\in \mathbb Z$$]. When instead evaluated at a circle centered at b, a change of basis is straightforwardly computed using[image: $$ (z-a)^j = \sum _{k=0}^\infty \left( {\begin{array}{c}j\\ k\end{array}}\right) (b-a)^{j-k}(z-b)^k\qquad (j\in \mathbb Z), $$]


valid for [image: $$|z-b| < |b-a|$$]. Because of a geometric decay, one can truncate those series at [image: $$k = O(1)$$] as long as [image: $$|z-b| < \theta |b-a|$$] with [image: $$0<\theta < 1$$] small enough. The adaptive QR factorization can then be applied by interlacing the Laurent coefficients on each circle to obtain a singly infinite unknown vector of coefficients.


            Numerical Example 1: Model problem
          
Because of the entries [image: $$\zeta ^m$$] and [image: $$\zeta ^{-m}$$] in the jump matrix of the model problem (12), we have that [image: $$n_1, n_2, n_3 = O(m)$$] in order to resolve the data and the solution; hence the computational complexity of the method scales as [image: $$O(m^3)$$]. Using the Julia software package SingularIntegralEquations.jl
        9 (v0.0.1) the problem is numerically solved by the following short code showing that the user has to do little more than just providing the data and entering the singular integral equation (15b) as a mathematical expression:[image: A371662_1_En_4_Figa_HTML.gif]



The run time10 is 2.8 seconds, the error of Y(0) is [image: $$4.22\cdot 10^{-15}$$] (spectral norm), which corresponds to a loss of one digit in absolute error.

            Numerical Example 2: Riemann–Hilbert Problem for the Discrete
            [image: $$\mathbf Z ^{2/3}$$]
          
Now, we apply the method to the Riemann–Hilbert problem (11) encoding the discrete [image: $$Z^a$$] map. Here, because of the exponents [image: $$-m$$], [image: $$-n$$] and [image: $$\pm (n+m)/2$$] in (10), we have [image: $$n_1, n_2, n_3 = O(n+m)$$] in order to resolve the data and the solution, see Fig. 8; hence the computational complexity scales as [image: $$O((n+m)^3)$$]. Note that this is far from optimal, using the stabilized recursion of Sect. 2 to compute a table including [image: $$Z_{n,m}^a$$] would give a complexity of order [image: $$O((n+m)^2)$$]. Once more, however, the code requires little more than typing the mathematical equations of the RHP.[image: A371662_1_En_4_Figb_HTML.gif]



The run time is 2.7 s, the absolute error of [image: $$Z^{2/3}_{6,8}$$] is [image: $$3.38\cdot 10^{-8}$$], which corresponds to a loss of about 7 digits. This loss of accuracy can be explained by comparing the magnitude of the 21-component of u as shown in Fig. 8, along the two black circles of Fig. 6, with that of the corresponding component of the solution matrix at [image: $$z=0$$], namely,[image: $$ X(0) \approx \begin{pmatrix} -3.38121 &{} -12.2073+8.68324i \\ 12.2073+8.68324i &{} 66.0758 \end{pmatrix}. $$]


We observe that during the evaluation of the Cauchy transform (15a), which maps [image: $$u\mapsto X(0)$$] by means of an integral, at least 5 digits must have been lost by cancellation—a loss, which structurally cannot be avoided for oscillatory integrands with large amplitudes. (Note that this is not an issue of frequency: just one oscillation with a large amplitude suffices to get such a severe cancellation.)[image: A371662_1_En_4_Fig8_HTML.gif]
Fig. 8
                Left [image: $$u_{21}(\zeta )$$] on the circle [image: $$\zeta = -1 + 0.3 e^{2\pi i t}$$]; right [image: $$u_{21}(\zeta )$$] on [image: $$\zeta = +1 + 0.3 e^{2\pi i t}$$]. The real parts are shown in blue, the imaginary part in yellow. Note that there are [image: $$m=6$$] oscillations on the left and [image: $$n=8$$] oscillations on the right; the maximum amplitude is about [image: $$1.1\cdot 10^4$$] on the left and [image: $$7.5\cdot 10^5$$] on the right
              





Since the amplitudes of [image: $$u_{21}$$] grow exponentially with n and m, the algorithm for computing [image: $$Z^a_{n,m}$$] based on the numerical evaluation of (15) applied to the RHP (11) is numerically unstable. Even though the initial step, the spectral method in coefficient space applied to (15b) is perfectly stable, stability is destructed by the bad conditioning of the post-processing step, that is, the evaluation of the integral in (15a). We refer to [7] for an analysis that algorithms with a badly conditioned post processing of intermediate solutions are generally prone to numerical instability.

7 RHPs as Integral Equations with Nonsingular Kernels
By reversing the orientation of the two small circles in the RHP (11), and by simultaneously replacing the jump matrix [image: $$G_1$$] by [image: $$\tilde{G}_1 = G_1^{-1}$$], the RHP is transformed to an equivalent one with a contour system [image: $$\Sigma $$] that satisfies the following properties, see Fig. 9: it is a union of non-self intersecting smooth curves, that bound a domain [image: $$\Omega _+$$] to its left. By [image: $$\Omega _-$$] we will denote the (generally not connected) region which is the complement of [image: $$\Omega _+ \cup \varGamma $$]. Note that the model problem (12) falls into that class of contours without any further transformation.[image: A371662_1_En_4_Fig9_HTML.gif]
Fig. 9A modified, but equivalent, contour system [image: $$\Sigma $$] for the for the RHP (11) obtained by reversing the orientation and by simultaneously replacing the jump matrix [image: $$G_1$$] by [image: $$G_1^{-1}$$]. Now, there is a bounded domain [image: $$\Omega _+$$] (marked in green) to the left of [image: $$\Sigma $$], cf. the original system shown in Fig. 6
              





We drop the tilde from the jump matrices and consider RHPs of the form[image: $$\begin{aligned} \varPhi _+(\zeta ) = G(\zeta ) \varPhi _-(\zeta ) \quad (\zeta \in \Sigma ),\qquad \varPhi (z) = I + O(z^{-1})\quad (z\rightarrow \infty ), \end{aligned}$$]

 (17)

on such contours systems [image: $$\Sigma $$]. It will either represent the aforementioned transformation of (11) or the model problem (12). In particular, G is lower triangular and can be analytically continued to a vicinity of [image: $$\Sigma $$].
The classical theory developed by Plemelj (see [17, Sect. 126]) for such problems teaches the following: the directed boundary values [image: $$\varPhi _-$$] of the unique analytic solution [image: $$\varPhi : \mathbb {C}\setminus \Sigma \rightarrow {{\mathrm{GL}}}(2)$$] of the RHP (17) satisfy a Fredholm integral equation [17, Eq. (126.5)] of the second kind on [image: $$\Sigma $$], namely[image: $$\begin{aligned} \varPhi _-(\zeta ) - \frac{1}{2\pi i}\int _\Sigma \frac{G^{-1}(\zeta ) G(\eta ) - I}{\eta - \zeta } \varPhi _-(\eta )\,d\eta = I\qquad (\zeta \in \Sigma ), \end{aligned}$$]

 (18)

understood here as an integral equation in [image: $$L^2(\Sigma ,\mathbb {C}^{2\times 2})$$]. The matrix kernel of this equation, that is,[image: $$ K(\zeta ,\eta ) = \frac{G^{-1}(\zeta ) G(\eta ) - I}{\eta - \zeta } = G^{-1}(\zeta )\frac{ G(\eta ) - G(\zeta )}{\eta - \zeta }, $$]


is smooth on [image: $$\Sigma \times \Sigma $$], since it extends as an analytic function and since the singularity at [image: $$\zeta =\eta $$] is removable. Integral equations of the form (18) with a smooth kernel are, in principle, amenable to fast quadrature based methods, see the next section.
We note that, given the boundary values [image: $$\varPhi _-(\zeta )$$] for [image: $$\zeta \in \Sigma $$], the solution of the RHP (17) can be reconstructed by[image: $$\begin{aligned} \varPhi (z) = {\left\{ \begin{array}{ll} I - \dfrac{1}{2\pi i} \displaystyle \int _\Sigma \dfrac{\varPhi _-(\zeta )}{\zeta -z}\,d\zeta &{}\qquad z \in \Omega _-,\\ \\ \dfrac{1}{2\pi i} \displaystyle \int _\Sigma \dfrac{G(\zeta )\varPhi _-(\zeta )}{\zeta -z}\,d\zeta &{}\qquad z \in \Omega _+. \end{array}\right. } \end{aligned}$$]

 (19)

In general, however, the Fredholm equation (18) is not equivalent to the RHP, see [17, p. 387]: the Fredholm equation has but a kernel of the same dimension as the kernel of the associated homogeneous RHP, defined as[image: $$\begin{aligned} \varPsi _+(\zeta ) = G^{-1}(\zeta ) \varPsi _-(\zeta )\quad (\zeta \in \Sigma ),\qquad \varPsi (z) = O(z^{-1})\quad (z\rightarrow \infty ). \end{aligned}$$]

 (20)

As we will show now, the kernel of the associated RHP is nontrivial in the examples studied in this work.
First, we observe, by the lower triangular form of G, that the 11- and the 12-components of [image: $$\varPsi $$] both satisfy a scalar RHP of the form (14) with a jump function g that has a winding number which is[image: $$ {{\mathrm{ind}}}_\Sigma g = - \frac{n+m}{2} $$]


for the discrete map [image: $$Z^a$$], and which is [image: $${{\mathrm{ind}}}_\Sigma g = -m$$] for the model problem (12). Note that this winding number has the sign opposite to the results of Sect. 4 since the underlying [image: $$2\times 2$$] RHP is based on [image: $$G^{-1}$$] instead of G. Hence, the nullity of the scalar RHPs for the 11- and the 12-components of [image: $$\varPsi $$] is zero and the deficiency is [image: $$(n+m)/2$$] (m in case of the model problem). As a consequence, the 11- and the 12-components of [image: $$\varPsi $$] must both be identically zero.
Next, since we now know that [image: $$\varPsi $$] has a zero first row, also the 21- and 22-components of [image: $$\varPsi $$] satisfy a scalar RHP of the form (14) each, but with a jump function g that has the positive winding number[image: $$ {{\mathrm{ind}}}_\Sigma g = \frac{n+m}{2} $$]


for the discrete map [image: $$Z^a$$], and [image: $${{\mathrm{ind}}}_\Sigma g = m$$] for the model problem (12), just as discussed in Sect. 4. Hence, the deficiency of the scalar RHPs for the 21- and the 22-components of [image: $$\varPsi $$] is zero and the nullity is [image: $$(n+m)/2$$] (m in case of the model problem). Since both components are linearly independent from of each other, we have thus proven the following lemma.
Lemma 1
The nullity of the associated homogeneous RHP (20), and hence, that of the Fredholm integral equation (18) is [image: $$n+m$$] in the case of the discrete map [image: $$Z^a$$] and 2m in the case of the model problem (12).

Example 1
For the model RHP (12) the smooth kernel of the Fredholm integral equation (18) can be constructed explicitly. Here we have[image: $$ K(\zeta ,\eta ) = \frac{G^{-1}(\zeta ) G(\eta ) - I}{\eta - \zeta } = \begin{pmatrix} \frac{(\eta /\zeta )^m-1}{\eta -\zeta } &{} \;0 \\ \frac{e^\eta \zeta ^m - e^\zeta \eta ^m}{\eta -\zeta } &{} \;\frac{(\zeta /\eta )^m-1}{\eta -\zeta } \end{pmatrix}. $$]


A column of a matrix belonging to the kernel of (18) satisfies the equation[image: $$\begin{aligned} \begin{pmatrix} u_-(\zeta ) \\ w_-(\zeta ) \end{pmatrix} = \frac{1}{2\pi i} \int _\Sigma K(\zeta ,\eta ) \begin{pmatrix} u_-(\eta ) \\ w_-(\eta ) \end{pmatrix}\,d\eta \qquad (\zeta \in \Sigma ), \end{aligned}$$]

 (21)

where [image: $$\Sigma $$] is the positively oriented unit circle. We will construct solutions that extend analytically as [image: $$u_-(z)$$] and [image: $$w_-(z)$$] for [image: $$z\ne 0$$], such that[image: $$ \begin{pmatrix} u_-(z) \\ w_-(z) \end{pmatrix} = {{\mathrm{res}}}_{\eta = 0 } K(z,\eta ) \begin{pmatrix} u_-(\eta ) \\ w_-(\eta ) \end{pmatrix}\qquad (z \ne 0). $$]





By recalling the notation introduced in (13) we observe, for [image: $$k=0,\ldots ,m-1$$], that[image: $$\begin{aligned} {{\mathrm{res}}}_{\eta =0}K_{11}(z,\eta ) \eta ^{k-m}&= z^{k-m}, \\ {{\mathrm{res}}}_{\eta =0}K_{21}(z,\eta ) \eta ^{k-m}&= -z^k e_{m-k}(z),\\ {{\mathrm{res}}}_{\eta =0}K_{22}(z,\eta ) \eta ^k&= -z^k. \end{aligned}$$]


Using the coefficients [image: $$a_{jk}^{(m)}$$] that induce a change of polynomial basis by[image: $$ z^k = \sum _{k=0}^{m-1} a_{kj}^{(m)} z^j e_{m-j}(z)\qquad (k=0,\ldots ,m-1), $$]


we define the polynomials[image: $$ p_k^{(m)}(z) = \sum _{j=0}^{m-1} a_{kj}^{(m)} z^j \qquad (k=0,\ldots ,m-1), $$]


each of which has degree at most [image: $$m-1$$]. Then, the m linear independent vectors[image: $$\begin{aligned} \begin{pmatrix} u_-(\zeta ) \\ w_-(\zeta ) \end{pmatrix} = \begin{pmatrix} -2 \zeta ^{-m} p_k^{(m)}(\zeta ) \\ \zeta ^k \end{pmatrix}\qquad (k=0,\ldots ,m-1) \end{aligned}$$]

 (22)

are solutions of (21) each. Thus, since its dimension is 2m by Lemma 1, the kernel of the integral equation (18) is spanned by the [image: $$2\times 2$$] matrices whose columns are linear combinations of these vectors. [image: $$\square $$]
      
The unique solution [image: $$\varPhi _-$$] of the RHP (17) can be picked among the solutions of (18) by imposing additional linear conditions, namely [image: $$n+m$$] independent such conditions in the case of the discrete map [image: $$Z^a$$] and 2m in the case of the model problem. Specifically, for the model problem (12), we obtain such conditions as follows. First, since [image: $$\varPhi _-(z)$$] continues analytically to [image: $$|z|>1$$] and since [image: $$\varPhi _-(z) = I + O(z^{-1})$$] as [image: $$z\rightarrow \infty $$], we get by Cauchy’s formula for the Laurent coefficients at [image: $$z=\infty $$] that[image: $$ \frac{1}{2\pi i} \int _\Sigma \varPhi _-(\zeta )\frac{d\zeta }{\zeta ^k} = [k=1]\cdot I\qquad (k=1,2,\ldots ). $$]


Second, by restricting this relation to the second row of the matrix [image: $$\varPhi _-$$] for [image: $$k=1,\ldots ,m$$], we get the conditions[image: $$\begin{aligned} \frac{1}{2\pi i} \int _\Sigma \begin{pmatrix} 0&\;\; 1 \end{pmatrix} \cdot \varPhi _{-}(\zeta )\,\frac{d\zeta }{\zeta ^k} = \begin{pmatrix} 0\;\;&[k=1] \end{pmatrix}\qquad (k=1,\ldots ,m). \end{aligned}$$]

 (23)

In fact, these conditions force all the components of the columns (22) that would span an offset from the kernel of (18) to be zero.
For the [image: $$Z^a$$]-RHP, similar arguments prove that the kernel of (17) is spanned by matrices whose second row extends to polynomials of degree smaller than [image: $$(n+m)/2$$] to the outside of the outer circle in Fig. 9. Thus, the same form of conditions as in (23) can be applied for picking the proper solution [image: $$\varPhi _-(\zeta )$$], except that one would have to replace [image: $$\Sigma $$] by that outer circle and the upper index m by [image: $$(n+m)/2$$].

8 A Modified Nyström Method
Fredholm integral equations of the second kind with smooth kernels defined on a system of circular contours are best discretized by the classical Nyström method [15, Sect. 12.2]. Here, one uses the composite trapezoidal rule as the underlying quadrature formula, that is,[image: $$ \frac{1}{2\pi i}\int _{\partial B_r(z_0)} f(z)\,dz \approx \frac{r}{N} \sum _{j=0}^{N-1} f\left( z_0 + r e^{2\pi i j/N}\right) e^{2\pi i j/N}. $$]


For integrands that extend analytically to a vicinity of the contour, this quadrature formula is spectrally accurate, see, e.g., [9, [image: $$\S $$]2] or [22, [image: $$\S $$]2].
Since the Fredholm integral equation (18) has a positive nullity, applying the Nyström method to it will yield, for N large enough, a numerically singular linear system. However, the theory of the last section suggests a simple modification of the Nyström method: we use the conditions (23) (after approximating them by the same quadrature formula as for the Nyström method) as additional equations and solve the resulting overdetermined linear system by the least squares method.

            Numerical Example 1: Model problem
          
We apply the modified Nyström method to the Fredholm integral equation representing the model problem (12). By the sampling condition, see, e.g., [9, [image: $$\S $$]2], the number N of quadrature points will scale as [image: $$N = O(m)$$], hence the computational complexity scales as [image: $$O(m^3)$$]. To check the accuracy we compare with[image: $$ Y(0) = \dfrac{1}{2\pi i} \displaystyle \int _\varGamma G(\zeta )\varPhi _-(\zeta )\dfrac{d\zeta }{\zeta }, \qquad I = \dfrac{1}{2\pi i} \displaystyle \int _\varGamma \varPhi _-(\zeta )\dfrac{d\zeta }{\zeta }, $$]


evaluated by the same quadrature formula as for the Nyström method. For the particular parameters [image: $$m=100$$] and [image: $$N=140$$] we get, within a run-time of 0.49 s for a straightforward Matlab implementation, a maximum error of these two quantities, measured in 2-norm, of [image: $$1.33\cdot 10^{-14}$$]. The condition number of the least squares matrix grows just moderately with m: it is about 23 for [image: $$m=1$$] and about 650 for [image: $$m=1000$$].

            Numerical Example 2: Discrete
            [image: $$Z^{2/3}$$]
          
Now, we apply the modified Nyström method to the Fredholm integral equation representing the RHP (11) subject to a transformation to the form (17). Here, the sampling condition requires [image: $$N = O(n+m)$$], hence the computational complexity scales as [image: $$O((n+m)^3)$$]. For [image: $$Z_{6,8}^{2/3}$$], the modified Nyström method yields the convergence plot shown in Fig. 10: it exhibits exponential (i.e., spectral) convergence until a noise level of about [image: $$10^{-9}$$] is reached, which corresponds to a loss of about 6 digits. The reason for this loss is that this method for approximating the discrete [image: $$Z^a$$] suffers the same issue with a bad conditioning of the post-processing step, that is, of[image: $$ \varPhi _-(\cdot ) \mapsto X(0) = \dfrac{1}{2\pi i} \displaystyle \int _\varGamma G(\zeta )\varPhi _-(\zeta )\dfrac{d\zeta }{\zeta }, $$]


as the spectral method for the singular integral equation discussed in Sect. 6. Here, the amplitude of the real and imaginary part of [image: $$\varPhi _-(\zeta )$$] along the two inner circles is of the order [image: $$10^4$$] which causes a cancellation of at least 4 significant digits.[image: A371662_1_En_4_Fig10_HTML.gif]
Fig. 10Absolute error of the approximation of [image: $$Z^{2/3}_{6,8}$$] by the modified Nyström method vs. the number of quadrature points [image: $$N_0$$] on each of the three circles in Fig. 9 (the radii are 1 / 2 for the inner circles, 3 for the outer one); the total number of quadrature points is then [image: $$N=3\times N_0$$]. One observes, after a threshold caused by a sampling condition, exponential (i.e., spectral) convergence that saturates at a level of numerical noise at an error of about [image: $$10^{-9}$$]. Run time of a Mathematica implementation with [image: $$N_0=42$$] is about 0.15 s






9 Conclusion
To summarize, there are two fundamental options for the stable numerical evaluation of the discrete map [image: $$Z^a_{n,m}$$].
 	Computing all the values of the array [image: $$1\leqslant n,m\leqslant N$$] at once by, first, computing the diagonal using a boundary value solve for the discrete Painlevé II equation (5) and, then, by recursing from the diagonal to the boundary using the discrete differential equation (2). This approach has optimal complexity [image: $$O(N^2)$$].

	Computing just a single value for a given index pair (n, m) by using the RHP (11) and one of the methods discussed in Sect. 6 or 8. Since both methods suffer from an instability caused by a post-processing quadrature for larger values of n and m, one would rather mix this approach with the asymptotics (4). For instance, using the numerical schemes for [image: $$n,m \leqslant 10$$], and the asymptotics otherwise, gives a uniform precision of about 5 digits for [image: $$a=2/3$$]. Higher accuracy would require the calculation of the next order terms of the asymptotics as in Sect. 2. This mixed numerical-asymptotic method has optimal complexity O(1).
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Footnotes
1All numerical calculations are done in hardware arithmetic using double precision.

 

2To make [image: $$G_1$$] holomorphic in the vicinity of [image: $$\varGamma _1$$] we place the branch-cut of [image: $$\zeta ^{-a/2}$$] at the negative imaginary axis, that is, we take, using the principal branch [image: $${{\mathrm{Log}}}$$] of the logarithm,[image: $$ e^{ia \pi /2} \zeta ^{-a/2} = e^{ia \pi /4} e^{-\frac{a}{2} {{\mathrm{Log}}}(\zeta /i)}. $$]


.

 

3Though the parametrix leads to a near-identity RHP, the actually computation of the parametrix would require solving a problem that is, numerically, of similar difficulty as the S-RHP itself.

 

4The standard form, see [2, p. 1124], of that orthogonal polynomial RHP would be[image: $$ X_+(\zeta ) = \begin{pmatrix} 1 &{} 0\\ e^\zeta \zeta ^{-m} &{} 1 \end{pmatrix} X_-(\zeta )\quad (|\zeta |=1),\qquad X(z) = \begin{pmatrix} z^m &{} 0 \\ 0 &{} z^{-m} \end{pmatrix}(I+O(z^{-1}))\qquad (z\rightarrow \infty ). $$]


The model problem (12) is obtained by putting the diagonal scaling at [image: $$z\rightarrow \infty $$] into the jump matrix.

 

5Here, we identify a RHP with an equivalent linear operator equation [image: $$Tu = \cdots $$], see, e.g., (15) in the next section. We recall that [image: $$\lambda = \dim \ker T$$] is called the nullity, [image: $$\mu = \dim {{\mathrm{coker}}}T$$] the deficiency and [image: $$\kappa = \lambda - \mu $$] the Noether index of a linear operator T with closed range.

 

6Points of self intersection are allowed if certain cyclic conditions are satisfied [13]: at such a point the product of the corresponding parts of the jump matrix should be the identity matrix. These conditions guarantee smoothness in the sense of [26], where the analog of Theorem 1 is proved for the general smooth Riemann–Hilbert data.

 

7It is actually implemented this way in SingularIntegralEquations.jl, a Julia software package described in [19].

 

8We use the Iverson bracket of a condition: [image: $$[{\mathscr {P}}] = 1$$] if the predicate [image: $${\mathscr {P}}$$] is true, [image: $$[{\mathscr {P}}] = 0$$] otherwise.

 

9
            https://github.com/ApproxFun/SingularIntegralEquations.jl, cf. [19].

 

10Using a MacBook Pro with a 3.0 GHz Intel Core i7-4578U processor and 16 GB of RAM.
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Abstract
We provide a new proof of the elementary geometric theorem on the existence and uniqueness of cyclic polygons with prescribed side lengths. The proof is based on a variational principle involving the central angles of the polygon as variables. The uniqueness follows from the concavity of the target function. The existence proof relies on a fundamental inequality of information theory. We also provide proofs for the corresponding theorems of spherical and hyperbolic geometry (and, as a byproduct, in [image: $$1+1$$] spacetime). The spherical theorem is reduced to the Euclidean one. The proof of the hyperbolic theorem treats three cases separately: Only the case of polygons inscribed in compact circles can be reduced to the Euclidean theorem. For the other two cases, polygons inscribed in horocycles and hypercycles, we provide separate arguments. The hypercycle case also proves the theorem for “cyclic” polygons in [image: $$1+1$$] spacetime.

1 Introduction
This article is concerned with cyclic polygons, i.e., convex polygons inscribed in a circle. We will provide a new proof of the following elementary theorem in Sect. 2.
Theorem 1.1
There exists a Euclidean cyclic polygon with [image: $$n\ge 3$$] sides of lengths [image: $$\ell _{1},\ldots ,\ell _n\in \mathbb R_{>0}$$] if and only if they satisfy the polygon inequalities[image: $$\begin{aligned} \ell _{k}<\sum _{\begin{array}{c} i=1\\ i\not =k \end{array}}^{n}\ell _{i}, \end{aligned}$$]

 (1)

and this cyclic polygon is unique.

Our proof involves a variational principle with the central angles as variables. The variational principle has a geometric interpretation in terms of volume in 3-dimensional hyperbolic space (see Remark 2.6). Another striking feature of our proof is the use of a fundamental inequality of information theory:
Theorem
(Information Inequality) Let [image: $$p=(p_1, \ldots , p_m)$$] and [image: $$q=(q_1, \ldots , q_m)$$] be discrete probability distributions, then[image: $$\begin{aligned} \sum _{k=1}^{m} p_k\log \frac{p_k}{q_k} \ge 0, \end{aligned}$$]

 (2)

and equality holds if and only if [image: $$p=q$$].

The left hand side of inequality (2) is called the Kullback–Leibler divergence or information gain of q from p, also the relative entropy of p with respect to q. The inequality follows from the strict concavity of the logarithm function (see, e.g., Cover and Thomas [3]).
In Sects. 3 and 4 we provide proofs for non-Euclidean versions of Theorem 1.1. The spherical version requires an extra inequality:
Theorem 1.2
There exists a spherical cyclic polygon with [image: $$n\ge 3$$] sides of lengths [image: $$\ell _{1},\ldots ,\ell _n\in \mathbb R_{>0}$$] if and only if they satisfy the polygon inequalities (1) and[image: $$\begin{aligned} \sum _{i=1}^{n}\ell _{i} < 2\pi , \end{aligned}$$]

 (3)

and this cyclic spherical polygon is unique.

Inequality (3) is necessary because the perimeter of a circle in the unit sphere cannot be greater than [image: $$2\pi $$], and the perimeter of the inscribed polygon is a lower bound. We require strict inequality to exclude polygons that degenerate to great circles (with all interior angles equal to [image: $$\pi $$]).
In Sect. 3, we prove Theorem 1.2 by a straightforward reduction to Theorem 1.1: connecting the vertices of a spherical cyclic polygon by straight line segments in the ambient Euclidean [image: $$\mathbb R^{3}$$], one obtains a Euclidean cyclic polygon.
In the case of hyperbolic geometry, the notion of “cyclic polygon” requires additional explanation. We call a convex hyperbolic polygon cyclic if its vertices lie on a curve of constant non-zero curvature. Such a curve is either	a hyperbolic circle if the curvature is greater than 1,

	a horocycle if the curvature is equal to 1,

	a hypercycle, i.e., a curve at constant distance from a geodesic if the curvature is strictly between 0 and 1.





Theorem 1.3
There exists a hyperbolic cyclic polygon with [image: $$n\ge 3$$] sides of lengths [image: $$\ell _{1},\ldots ,\ell _n\in \mathbb R$$] if and only if they satisfy the polygon inequalities (1), and this cyclic hyperbolic polygon is unique.

We prove this theorem in Sect. 4. The case of hyperbolic polygons inscribed in circles can be reduced to Theorem 1.1 by considering the hyperboloid model of the hyperbolic plane: Connecting the vertices of a hyperbolic polygon inscribed in a circle by straight line segments in the ambient [image: $$\mathbb R^{2,1}$$], one obtains a Euclidean cyclic polygon.
The cases of polygons inscribed in horocycles and hypercycles cannot be reduced to the Euclidean case because the intrinsic geometry of the affine plane of the polygon is not Euclidean: In the horocycle case, the scalar product is degenerate with a 1-dimensional kernel. Hence, this case reduces to the case of degenerate polygons inscribed in a straight line. It is easy to deal with. In the hypercycle case, the scalar product is indefinite. This case reduces to polygons inscribed in hyperbolas in flat [image: $$1+1$$] spacetime. The variational principle of Sect. 2 can be adapted for this case (see Sect. 5), but the corresponding target function fails to be concave or convex. It may be possible to base a proof of existence and uniqueness on this variational principle, perhaps using a [image: $$\min $$]-[image: $$\max $$]-argument, but we do not pursue this route in this article. Instead, we deal with polygons inscribed in hypercycles using a straightforward analytic argument.

        Some history, from ancient to recent. Theorems 1.1–1.3 belong to the circle of results connected with the classical isoperimetric problem. As the subject is ancient and the body of literature is vast, we can only attempt to provide a rough historical perspective and ask for leniency regarding any essential work that we fail to mention.
The early history of the relevant results about polygons is briefly discussed by Steinitz [13, Sect. 16]. Steinitz goes on to discuss analogous results for polyhedra, a topic into which we will not go. A more recent and comprehensive survey of proofs of the isoperimetric property of the circle was given by Blåsjö [2].
It was known to Pappus that the regular n-gon had the largest area among n-gons with the same perimeter, and that the area grew with the number of sides. This was used to argue for the isoperimetric property of the circle:
Theorem 1.4
(Isoperimetric Theorem) Among all closed planar curves with given length, only the circle encloses the largest area.

It is not clear who first stated the following theorem about polygons:
Theorem 1.5
(Secant Polygon) Among all n-gons with given side lengths, only the one inscribed in a circle has the largest area.

This was proved by Moula [8], by L’Huilier [5] (who cites Moula), and by Steiner [12] (who cites L’Huilier). L’Huilier also proved the following theorem:
Theorem 1.6
(Tangent Polygon) Among all convex n-gons with given angles, only the one circumscribed to a circle has the largest area when the perimeter is fixed and and smallest perimeter when the area is fixed.

Steiner also proves versions of Theorems 1.5 and 1.6 for spherical polygons. None of these authors deemed it necessary to prove the existence of a maximizer, an issue that became generally recognized only after Weierstrass [14]. For polygons, the existence of a maximizer follows by a standard compactness argument.
Blaschke [1, Sect. 12], notes that the quadrilateral case ([image: $$n=4$$]) of Theorem 1.5 can easily be deduced from the Isoperimetric Theorem 1.4 using Steiner’s four-hinge method. Conversely, one can similarly deduce Theorem 1.4 and the general Theorem 1.5 from the quadrilateral case of Theorem 1.5. He remarks that the quadrilateral case of Theorem 1.5 can be proved directly by deriving the following equation for the area A of a quadrilateral with sides [image: $$\ell _{k}$$]:[image: $$\begin{aligned} A^{2} = (s-\ell _{1})(s-\ell _{2})(s-\ell _{3})(s-\ell _{4}) - \ell _{1}\ell _{2}\ell _{3}\ell _{4}\cos ^{2}\theta , \end{aligned}$$]

 (4)

where [image: $$s=(\ell _{1}+\ell _{2}+\ell _{3}+\ell _{4})/2$$] is half the perimeter, and [image: $$\theta $$] is the arithmetic mean of two opposite angles.
Neither Blaschke, nor Steiner, L’Huilier, or Moula provide an argument for the uniqueness of the maximizer in Theorem 1.5 or 1.6. It seems that even after Weierstrass, the fact that the sides determine a cyclic polygon uniquely was considered too obvious to deserve a proof.
Penner [9, Theorem 6.2] gives a complete proof of Theorem 1.1. He proceeds by showing that there is one and only one circumcircle radius that allows the construction of a Euclidean cyclic polygon with given sides (provided they satisfy the polygon inequalities).
Schlenker [11] proves Theorems 1.2 and 1.3, and also the isoperimetric property of non-Euclidean cyclic polygons, i.e., the spherical and hyperbolic versions of Theorem 1.5. His proofs of the isoperimetric property are based on the remarkable equation[image: $$\begin{aligned} \sum \dot{\alpha }_{i}v_{i}=0 \end{aligned}$$]

 (5)

characterizing the change of angles [image: $$\alpha _{i}$$] of a spherical or hyperbolic polygon under infinitesimal deformations with fixed side lengths. Here, [image: $$v_{i}\in \mathbb R^{3}$$] are the position vectors of the polygon’s vertices in the sphere or in the hyperboloid, respectively. To prove the uniqueness of spherical and hyperbolic cyclic polygons with given sides he uses separate arguments similar to Penner’s.

2 Euclidean Polygons. Proof of Theorem 1.1
      
To construct an inscribed polygon with given side lengths [image: $$\ell =(\ell _{1},\ldots ,\ell _n)\in \mathbb R_{>0}^n$$] (see Fig. 1) is equivalent to finding a point [image: $$(\alpha _1,\ldots \alpha _{n})$$] in the set[image: $$\begin{aligned} D_n=\left\{ \alpha \in \mathbb R_{>0}^n \;\big |\;\sum _{k=1}^n \alpha _k = 2\pi \right\} \subset \mathbb R^{n} \end{aligned}$$]

 (6)

satisfying, for some [image: $$R\in \mathbb R$$] and for all [image: $$k\in \{1,\ldots ,n\}$$],[image: $$\begin{aligned} \frac{\ell _k}{2}=R\sin \frac{\alpha _k}{2}. \end{aligned}$$]

 (7)


[image: A371662_1_En_5_Fig1_HTML.gif]
Fig. 1Euclidean polygon inscribed in a circle





This problem admits the following variational formulation. Define the function [image: $$f_\ell :\mathbb R^n \rightarrow \mathbb R$$] by[image: $$\begin{aligned} f_\ell (\alpha ) = \sum _{k=1}^n\big ( \text {Cl}_2(\alpha _k) + \log (\ell _k)\,\alpha _k\big ) \end{aligned}$$]

 (8)

where [image: $$\text {Cl}_2$$] denotes Clausen’s integral [4]:[image: $$\begin{aligned} \text {Cl}_2(x)= -\int _0^x \log \Big |2\sin \frac{t}{2}\Big |\,dt. \end{aligned}$$]

 (9)

Clausen’s integral is closely related to Milnor’s Lobachevsky function [6]:[image: A371662_1_En_5_Equ70_HTML.gif]


The function [image: $$\text {Cl}_2:\mathbb R\rightarrow \mathbb R$$] is continuous, [image: $$2\pi $$]-periodic, and odd. It is differentiable except at integer multiples of [image: $$2\pi $$] where the graph has vertical tangents (see Fig. 2).[image: A371662_1_En_5_Fig2_HTML.gif]
Fig. 2Graph of Clausen’s integral [image: $$\text {Cl}_2(x)$$]
              





Proposition 2.1
(Variational Principle) A point [image: $$\alpha \in D_n$$] is a critical point of [image: $$f_\ell $$] restricted to [image: $$D_{n}$$] if and only if there exists an [image: $$R\in \mathbb R$$] satisfying equations (7).

Proof
A point [image: $$\alpha \in D_n$$] is a critical point of [image: $$f_\ell $$] restricted to [image: $$D_n$$] if and only if there exists a Lagrange multiplier [image: $$\log R$$] such that [image: $$\nabla f_\ell (\alpha )=(\log R)\nabla g(\alpha )$$] for the constraint function [image: $$g(\alpha )=\sum \alpha _k$$], i.e.,[image: $$\begin{aligned} \begin{pmatrix} -\log \left| 2\sin \frac{\alpha _1}{2}\right| + \log \ell _1\\ \vdots \\ -\log \left| 2\sin \frac{\alpha _n}{2}\right| + \log \ell _n \end{pmatrix} = \log R \begin{bmatrix} 1\\ \vdots \\ 1 \end{bmatrix}{.} \end{aligned}$$]


Since [image: $$0<\alpha _k<2\pi $$] we may omit the absolute value signs, obtaining equations (7). [image: $$\square $$]
        

Thus, to prove Theorem 1.1, we need to show that [image: $$f_\ell $$] has a critical point in [image: $$D_n$$] if and only if the polygon inequalities (1) are satisfied, and that this critical point is then unique. The following proposition and corollary deal with the uniqueness claim.
Proposition 2.2
The function [image: $$f_\ell $$] is strictly concave on [image: $$D_n$$].

Corollary 2.3
If [image: $$f_\ell $$] has a critical point in [image: $$D_n$$], it is the unique maximizer of [image: $$f_{\ell }$$] in the closure [image: $$ \bar{D}_n=\{\alpha \in \mathbb R_{\ge 0}^n \;|\;\sum \alpha _k = 2\pi \}. $$]
        

This proves the uniqueness claim of Theorem 1.1.
Proof
(of Proposition 2.2) We will show that[image: $$\begin{aligned} V_n(\alpha )=\sum _{k=1}^n \text {Cl}_2(\alpha _k) \end{aligned}$$]

 (10)

is strictly concave on [image: $$D_{n}$$]. Since [image: $$V_{n}$$] differs from [image: $$f_\ell $$] by a linear function, this is equivalent to the claim.
Rivin [10, Theorem 2.1] showed that [image: $$V_{3}$$] is strictly concave on [image: $$D_{3}$$]. For [image: $$n>3$$] we proceed by induction on n by “cutting off a triangle”: first, note the obvious identity[image: $$\begin{aligned} V_n(\alpha _1,\dots , \alpha _n)= V_{n-1}(\alpha _1,\dots , \alpha _{n-1}+\alpha _n) -\text {Cl}_2(\alpha _{n-1}&+\alpha _n)\\&+\text {Cl}_2(\alpha _{n-1})+\text {Cl}_2(\alpha _n). \end{aligned}$$]


Since Clausen’s integral is [image: $$2\pi $$]-periodic and odd,[image: $$\begin{aligned} -\text {Cl}_2(\alpha _{n-1}+\alpha _n)=\text {Cl}_2(2\pi -\alpha _{n-1}-\alpha _n)=\text {Cl}_2\left( \sum _{k=1}^{n-2}\alpha _k\right) , \end{aligned}$$]


so[image: $$\begin{aligned} V_n(\alpha _1,\dots , \alpha _n)=V_{n-1}(\alpha _1,\dots , \alpha _{n-1}+\alpha _n)+V_3\left( \sum _{k=1}^{n-2}\alpha _k,\alpha _{n-1},\alpha _n \right) . \end{aligned}$$]


Hence, if [image: $$V_{n-1}$$] and [image: $$V_3$$] are strictly concave on [image: $$D_{n-1}$$] and [image: $$D_3$$], respectively, the claim for [image: $$V_n$$] follows. [image: $$\square $$]
        

Since [image: $$f_{\ell }$$] attains its maximum on the compact set [image: $$\bar{D}_{n}$$], it remains to show that the maximum is attained in [image: $$D_{n}$$] if and only if the polygon inequalities (1) are satisfied. This is achieved by the following Propositions 2.4 and 2.5.
Note that [image: $$\bar{D}_{n}$$] is an [image: $$(n-1)$$]-dimensional simplex in [image: $$\mathbb R^{n}$$]. Its vertices are the points [image: $$2\pi e_{1},\ldots ,2\pi e_{n}$$], where [image: $$e_{k}$$] are the canonical basis vectors of [image: $$\mathbb R^{n}$$]. The relative boundary of the simplex [image: $$\bar{D}_n$$] is[image: $$\begin{aligned} \partial \bar{D}_{n}=\{\alpha \in \bar{D}_{n}\;|\;\alpha _{k}=0 \text { for at least one } k\}. \end{aligned}$$]

 (11)



Proposition 2.4
If the function [image: $$f_\ell $$] attains its maximum on the simplex [image: $$\bar{D}_{n}$$] at a boundary point [image: $$\alpha \in \partial \bar{D}_{n}$$], then [image: $$\alpha $$] is a vertex.

Proof
Suppose [image: $$\alpha \in \partial \bar{D}_{n}$$] is not a vertex. We need to show that [image: $$f_{\ell }$$] does not attain its maximum at [image: $$\alpha $$]. This follows from the fact that the derivative of [image: $$f_{\ell }$$] in a direction pointing towards [image: $$D_{n}$$] is [image: $$+\infty $$].
Indeed, suppose [image: $$v\in \mathbb R_{\ge 0}^{n}$$], [image: $$\sum _{k}v_{k}=0$$] and [image: $$v_{k}>0$$] if [image: $$\alpha _{k}=0$$]. Then [image: $$\alpha +tv\in D_{n}$$] for small enough [image: $$t>0$$], and because [image: $$\lim _{x\rightarrow 0}\text {Cl}_2'(x)=+\infty $$],[image: $$\begin{aligned} \lim _{t\rightarrow 0}\;\frac{d}{dt}\,f_{\ell }(\alpha +tv)=+\infty . \end{aligned}$$]

 (12)

Hence [image: $$f_{\ell }(\alpha +tv)>f_{\ell }(\alpha )$$] for small enough [image: $$t>0$$]. [image: $$\square $$]
        

Proposition 2.5
The function [image: $$f_\ell $$] attains its maximum on [image: $$\bar{D}_{n}$$] at a vertex [image: $$2\pi e_{k}$$] if and only if[image: $$\begin{aligned} \ell _{k}\ge \sum _{\begin{array}{c} i=1\\ i\not =k \end{array}}^{n}\ell _{i}. \end{aligned}$$]

 (13)




Proof
By symmetry, it is enough to consider the case [image: $$k=n$$], i.e., to show that the function [image: $$f_\ell $$] attains its maximum on [image: $$\bar{D}_{n}$$] at the vertex [image: $$(0,\ldots ,0,2\pi )$$] if and only if [image: $$\ell _{n}\ge \sum _{k=1}^{n-1}\ell _{k}$$]. To this end, we will calculate the directional derivative of [image: $$f_{\ell }$$] in directions [image: $$v\in \mathbb R^{n}$$] pointing inside [image: $$D_{n}$$], i.e., satisfying[image: $$\begin{aligned} v_k \ge 0\quad \text {for}\quad k\in \{1,\dots ,n-1\}, \quad v_{n}=-\sum _{k=1}^{n-1}v_{k}<0. \end{aligned}$$]


Since we are only interested in the sign, we may assume v to be scaled so that[image: $$\begin{aligned} \sum _{k=1}^{n-1}v_{k}=1, \qquad v_{n}=-1. \end{aligned}$$]


Clausen’s integral has the asymptotic behavior[image: $$\begin{aligned} \text {Cl}_2(x)= -x \log |x|+x+o(x)\quad \text {as}\quad x\rightarrow 0. \end{aligned}$$]

 (14)

This can be seen by considering[image: $$\begin{aligned}\textstyle \text {Cl}_2(x)=-\int _0^x \log \left| (2\sin \frac{t}{2})/t\right| \,dt -\int _0^x \log |t|\,dt. \end{aligned}$$]


Using (14) and the [image: $$2\pi $$]-periodicity of Clausen’s integral, one obtains[image: $$\begin{aligned} \begin{aligned} f_{\ell }(2\pi e_{n}+tv)-f_{\ell }(2\pi e_{n})&= \sum _{k=1}^{n}\big (-tv_{k}\log |v_{k}|+tv_{k}\log \ell _{k}\big ) + o(t)\\&= -\sum _{k=1}^{n-1}tv_{k}\log \frac{v_{k}}{\ell _{n}}-t\log \ell _{n}+o(t), \end{aligned} \end{aligned}$$]


and hence[image: $$\begin{aligned} \frac{d}{dt}\Big |_{t=0}f(2\pi e_{n}+tv)= -\sum _{k=1}^{n-1}v_{k}\log \frac{v_{k}}{\ell _{k}}-\log \ell _{n}. \end{aligned}$$]


Now we invoke the information inequality (2) for the discrete probability distributions [image: $$(v_1,\dots ,v_{n-1})$$] and [image: $$(\ell _1,\dots ,\ell _{n-1})/\sum _{k=1}^{n-1} \ell _k$$]. Thus,[image: $$\begin{aligned} \frac{d}{dt}\Big |_{t=0}f(2\pi e_{n}+tv) = \underbrace{-\sum _{k=1}^{n-1} v_k \log \left( \frac{v_k}{\ell _n/\sum _{m=1}^{n-1} \ell _m}\right) }_{\le 0} +\log \left( \frac{\sum _{k=1}^{n-1} \ell _k}{\ell _n}\right) . \end{aligned}$$]


If [image: $$\ell _n \ge \sum _{k=1}^{n-1} \ell _k$$], then[image: $$\begin{aligned} \frac{d}{dt}\Big |_{t=0}f(2\pi e_{n}+tv)\le 0. \end{aligned}$$]


With the concavity of [image: $$f_{\ell }$$] (Proposition 2.2), this implies that [image: $$f_\ell $$] attains its maximum on [image: $$\bar{D}_{n}$$] at [image: $$(0, \ldots , 0, 2\pi )$$].
If, on the other hand, [image: $$\ell _n < \sum _{k=1}^{n-1} \ell _k$$], then we obtain, for [image: $$v_k=\ell _k/\sum _{m=1}^{n-1} \ell _m$$],[image: $$\begin{aligned} \frac{d}{dt}\Big |_{t=0}f(2\pi e_{n}+tv) > 0. \end{aligned}$$]


This implies that [image: $$f_\ell $$] does not attain its maximum at [image: $$(0, \ldots , 0, 2\pi )$$]. [image: $$\square $$]
        

This completes the proof of Theorem 1.1.
Remark 2.6
The function [image: $$V_{n}$$] has the following interpretation in terms of hyperbolic volume [6]. Consider a Euclidean cyclic n-gon with central angles [image: $$\alpha _{1},\ldots ,\alpha _{n}$$]. Imagine the Euclidean plane of the polygon to be the ideal boundary of hyperbolic 3-space in the Poincaré upper half-space model. Then the vertical planes through the edges of the polygon and the hemisphere above its circumcircle bound a hyperbolic pyramid with vertices at infinity. Its volume is [image: $$\frac{1}{2}V_{n}(\alpha _{1},\ldots ,\alpha _{n})$$]. Together with Schläfli’s differential volume equation (rather, Milnor’s generalization that allows for ideal vertices [7]), this provides another way to prove Proposition 2.1.


3 Spherical Polygons. Proof of Theorem 1.2
      
The polygon inequalities (1) are clearly necessary for the existence of a spherical cyclic polygon because every side is a shortest geodesic. That inequality (3) is also necessary was already noted in the introduction. It remains to show that these inequalities are also sufficient, and that the polygon is unique.[image: A371662_1_En_5_Fig3_HTML.gif]
Fig. 3Spherical and Euclidean polygons





We reduce the spherical case to the Euclidean one as shown in Fig. 3. Connecting the vertices of a spherical cyclic polygon with line segments in the ambient Euclidean space, one obtains a Euclidean cyclic polygon whose circumradius is smaller than 1. Conversely, every Euclidean polygon inscribed in a circle of radius less than 1 corresponds to a unique spherical cyclic polygon. The spherical side lengths [image: $$\ell $$] are related to the Euclidean lengths [image: $$\bar{\ell }$$] by[image: $$\begin{aligned} {\bar{\ell }} = 2 \sin \frac{\ell }{2}. \end{aligned}$$]

 (15)

It remains to show the following two propositions:
Proposition 3.1
If the spherical lengths [image: $$\ell \in \mathbb R_{>0}^{n}$$] satisfy the inequalities (1) and (3), then the Euclidean lengths [image: $$\bar{\ell }$$] defined by (15) satisfy the inequalities (1) as well. By Theorem 1.1 there is then a unique Euclidean cyclic polygon [image: $$P_{\bar{\ell }}$$] with side lengths [image: $$\bar{\ell }$$].

Proposition 3.2
The circumradius [image: $$\bar{R}$$] of the polygon [image: $$P_{\bar{\ell }}$$] of Proposition 3.1 is strictly less than 1.

We will use the following estimate in the proof of Proposition 3.1:
Lemma 3.3
(Sum of Sines Estimate) If [image: $$\beta _1, \ldots , \beta _n\in \mathbb R_{\ge 0}$$] satisfy [image: $$\sum _{k=1}^n \beta _k \le \pi $$], then[image: $$\begin{aligned} \sin \Bigg (\sum _{k=1}^n \beta _k\Bigg ) \le \sum _{k=1}^n \sin \beta _k. \end{aligned}$$]

 (16)




Proof
(of Lemma 3.3) By induction on n, the base case [image: $$n=1$$] being trivial. For the inductive step, use the addition theorem,[image: $$\begin{aligned} \sin \Bigg (\sum _{k=1}^{n+1} \beta _k\Bigg )= \sin \Bigg (\sum _{k=1}^n \beta _k\Bigg )\cos \beta _{n+1} +\cos \Bigg (\sum _{k=1}^n \beta _k\Bigg )\sin \beta _{n+1}, \end{aligned}$$]


and note that the cosines are [image: $$\le 1$$]. [image: $$\square $$]
        

Remark 3.4
The statement of Lemma 3.3 can be strengthened. Equality holds in (16) if and only if at most one [image: $$\beta _{k}$$] is greater than zero. This is easy to see, but we do not need this stronger statement in the following proof.

Proof
(of Proposition 3.1) Suppose [image: $$\ell _1, \ldots , \ell _n\in \mathbb R_{>0}$$] satisfy the polygon inequalities (1) and (3). We need to show that [image: $$\bar{\ell }_1, \ldots , \bar{\ell }_n$$] defined by (15) satisfy[image: $$\begin{aligned} \bar{\ell }_{k}<\sum _{i\not =k}\bar{\ell }_{i}. \end{aligned}$$]

 (17)

To this end, we will show that[image: $$\begin{aligned} \sin \frac{\ell _k}{2} < \sin \Bigg (\sum _{i\not =k} \frac{\ell _i}{2}\Bigg ), \end{aligned}$$]

 (18)

from which inequality (17) follows by Lemma 3.3. To prove inequality (18), we consider two cases separately.

              	
                [image: $$\sum _{i\not =k}\ell _i \le \pi $$]. Inequality (18) simply follows from the polygon inequality [image: $$\ell _{k}<\sum _{i\not =k}\ell _{i}$$] and the monotonicity of the sine function on the closed interval [image: $$[0,\frac{\pi }{2}]$$].

	
                [image: $$\sum _{i\not =k}\ell _i \ge \pi $$]. Note that [image: $$2\pi >\sum _i\ell _i$$] implies [image: $$2\pi -\ell _{k}>\sum _{i\not =k}\ell _i$$], and hence [image: $$\begin{aligned} 2\pi>2\pi -\ell _{k}>\sum _{i\not =k}\ell _{i}\ge \pi . \end{aligned}$$]

 (19)

 Inequality (18) follows from [image: $$\sin \frac{\ell _k}{2}=\sin (\pi -\frac{\ell _k}{2})$$] and the monotonicity of the sine function on the closed interval [image: $$[\frac{\pi }{2},\pi ]$$].




            
This completes the proof of (18) and hence the proof of Proposition 3.1. [image: $$\square $$]
        

Proof
(of Proposition 3.2) Let [image: $$\alpha _{k}$$] be the central angles of the Euclidean cyclic polygon [image: $$P_{\bar{\ell }}$$]. Then[image: $$\begin{aligned} \sin \frac{\ell _k}{2} = \frac{\bar{\ell }_k}{2} = \bar{R} \sin \frac{\alpha _k}{2}, \end{aligned}$$]

 (20)

by (7) and (15). Note that [image: $$\alpha _{k}$$] are the central angles of both the Euclidean and the spherical polygon (provided it exists). We consider two cases separately.
First, suppose that [image: $$\alpha _k \le \pi $$] for all k. Since [image: $$ \sum _k \ell _k < 2 \pi = \sum _k \alpha _k$$], there is some k such that [image: $$\ell _k < \alpha _k$$]. Then [image: $$\sin \frac{\ell _k}{2} < \sin \frac{\alpha _k}{2}$$], and equation (20) implies that [image: $$\bar{R} < 1$$].
Otherwise, since [image: $$\sum _k\alpha _k = 2\pi $$], there is exactly one i such that [image: $$\alpha _i > \pi $$], and [image: $$\alpha _k < \pi $$] for all [image: $$k\ne i$$]. By symmetry, it is enough to consider the case[image: $$\begin{aligned} \alpha _1 > \pi ,\quad \alpha _k < \pi \quad \text {for}\quad k\in \{2,\ldots ,n\}. \end{aligned}$$]


For future reference, we note that [image: $$\alpha _1 > \pi $$] implies that [image: $$\bar{\ell }_{1}$$] is the longest side of [image: $$P_{\bar{\ell }}$$]. (Use (20) and the monotonicity of the sine function.)
We will show [image: $$\bar{R}<1$$] by induction on n. First, assume [image: $$n=3$$]. Then (18) says[image: $$\begin{aligned} \sin \frac{\ell _1}{2}<\sin \frac{\ell _2+\ell _3}{2}. \end{aligned}$$]


By (20) and using [image: $$2\pi -\alpha _{1}=\alpha _{2}+\alpha _{3}$$], we have[image: $$\begin{aligned} \sin \frac{\ell _1}{2} = \bar{R}\sin \frac{\alpha _2}{2}\cos \frac{\alpha _3}{2} + \bar{R} \cos \frac{\alpha _2}{2}\sin \frac{\alpha _3}{2}, \end{aligned}$$]

 (21)

and[image: $$\begin{aligned} {\begin{matrix} \sin \frac{\ell _2+\ell _3}{2} &{}=\sin \frac{\ell _2}{2}\cos \frac{\ell _3}{2} + \cos \frac{\ell _2}{2}\sin \frac{\ell _3}{2}\\ &{}= \bar{R}\sin \frac{\alpha _2}{2}\cos \frac{\ell _3}{2} + \bar{R}\cos \frac{\ell _2}{2}\sin \frac{\alpha _3}{2}\;. \end{matrix}} \end{aligned}$$]

 (22)

For at least one [image: $$k \in \{2,3\}$$], [image: $$\cos \frac{\alpha _k}{2} < \cos \frac{\ell _k}{2}$$] and hence [image: $$\sin \frac{\alpha _{k}}{2} > \sin \frac{\ell _{k }}{2}$$]. Equation (20) implies [image: $$\bar{R}<1$$].
Now assume that [image: $$\bar{R}<1$$] has already been shown if [image: $$P_{\bar{\ell }}$$] has at most n sides. Suppose [image: $$P_{\bar{\ell }}$$] has [image: $$n+1$$] sides. The idea of the following argument is to cut off a triangle with sides [image: $$\bar{\ell }_{n}$$], [image: $$\bar{\ell }_{n+1}$$], and [image: $$\bar{\lambda } = 2\bar{R}\sin \frac{\alpha _n + \alpha _{n+1}}{2}$$]. Since [image: $$\bar{\lambda }\le \bar{\ell }_{1}$$] (the longest side), and [image: $$\bar{\ell }_{1}\le 2$$] by (15), we may define [image: $$\lambda = 2 \arcsin \frac{ \bar{\lambda }}{2}$$]. Now assume [image: $$\bar{R} \ge 1$$]. Then, by the inductive hypothesis, the polygon inequalities (1) or (3) are violated for the cut-off triangle and the remaining n-gon. Inequality (3) cannot be violated because it was assumed to hold for [image: $$\ell _{1},\ldots ,\ell _{n+1}$$]. Hence,[image: $$\begin{aligned} \ell _1 \ge \ell _2 + \dots + \ell _{n-1} + \lambda \quad \text {and}\quad \lambda \ge \ell _n + \ell _{n+1}. \end{aligned}$$]


This implies [image: $$\ell _1 \ge \ell _2 + \dots + \ell _{n+1}$$]. Conversely, if (1) and (3) hold, then [image: $$\bar{R} < 1$$]. This completes the proof of Proposition 3.2. [image: $$\square $$]
        


4 Hyperbolic Polygons. Proof of Theorem 1.3
      
The polygon inequalities (1) are clearly necessary for the existence of a hyperbolic cyclic polygon, because every side is a shortest geodesic. It remains to show that they are also sufficient, and that the polygon is unique, i.e., Proposition 4.2. First, we review some basic facts from hyperbolic geometry.
As in the spherical case (Sect. 3), we will connect vertices by straight line segments in the ambient vector space. But instead of the sphere, we consider the hyperbolic plane in the hyperboloid model,[image: $$\begin{aligned} \mathbb H^2=\{x\in \mathbb R^{2,1} \,|\, \langle x,x\rangle =-1,\, x_3>0\}, \end{aligned}$$]


where [image: $$\mathbb R^{2,1}$$] denotes the vector space [image: $$\mathbb R^{3}$$] equipped with the scalar product[image: $$\begin{aligned} \langle x,y\rangle =x_1y_1+x_2y_2-x_3y_3, \end{aligned}$$]


and lengths and angles in [image: $$\mathbb H^{2}$$] are measured using the Riemannian metric induced by this scalar product.
Straight lines (i.e., geodesics) in [image: $$\mathbb H^{2}$$] are the intersections of [image: $$\mathbb H^{2}$$] with 2-dimensional subspaces of [image: $$\mathbb R^3$$]. The length [image: $$\ell $$] of the geodesic segment connecting points [image: $$p,q\in \mathbb H^{2}$$] is determined by[image: $$\begin{aligned} \cosh \ell = -\langle p,q\rangle . \end{aligned}$$]


The length of the straight line segment connecting points [image: $$p,q\in \mathbb H^2$$] in the ambient [image: $$\mathbb R^{2,1}$$] is[image: $$\begin{aligned} \bar{\ell }=\sqrt{\langle p-q,p-q\rangle }. \end{aligned}$$]


This chordal length [image: $$\bar{\ell }$$] and the hyperbolic distance [image: $$\ell $$] are related by[image: $$\begin{aligned} \frac{\bar{\ell }}{2}=\sinh \frac{\ell }{2}. \end{aligned}$$]

 (23)

An affine plane in [image: $$\mathbb R^{2,1}$$] is called spacelike, lightlike, or timelike, if the restriction of the scalar product [image: $$\langle \cdot ,\cdot \rangle $$] to (the tangent space of) the affine plane is positive definite, positive semidefinite, or indefinite, respectively. In terms of the standard Euclidean metric on [image: $$\mathbb R^{3}$$], a plane is spacelike, lightlike, or timelike if its slope is less than, equal to, or greater than [image: $$45^{\circ }$$].
A curve of intersection of [image: $$\mathbb H^{2}$$] with an affine plane in [image: $$\mathbb R^{2,1}$$] that does not contain 0 is a hyperbolic circle, a horocycle, or a hypercycle, depending on whether the plane is spacelike, lightlike, or timelike.
Thus, connecting the vertices of a hyperbolic cyclic polygon by straight line segments in the ambient [image: $$\mathbb R^{2,1}$$], one obtains a planar polygon in [image: $$\mathbb R^{2,1}$$], but the intrinsic geometry of the plane will only be Euclidean if the hyperbolic polygon is inscribed in a circle (see Fig. 4). If the polygon is inscribed in a horocycle or hypercycle, then the geometry of the plane will be degenerate with signature [image: $$(+,0)$$] or a [image: $$1+1$$]-spacetime with signature [image: $$(+,-)$$], respectively.[image: A371662_1_En_5_Fig4_HTML.gif]
Fig. 4Hyperbolic polygon inscribed in a circle, shown in the hyperboloid model





Proposition 4.1
Let [image: $$P_{\ell }$$] be a hyperbolic cyclic polygon with side lengths [image: $$\ell _{1},\ldots ,\ell _n\in \mathbb R_{>0}$$], and let [image: $$\bar{\ell }_{k}$$] be the chordal lengths (23). If [image: $$P_{\ell }$$] is inscribed in	(i)a circle then [image: $$\begin{aligned} \bar{\ell }_{k}<\sum _{\begin{array}{c} i=1\\ i\not =k \end{array}}^{n}\bar{\ell }_{i} \quad \textit{for} \, \textit{all} \, k. \end{aligned}$$]

 (24)





 

	(ii)a horocycle then [image: $$\begin{aligned} \bar{\ell }_{k}=\sum _{\begin{array}{c} i=1\\ i\not =k \end{array}}^{n}\bar{\ell }_{i} \quad \textit{for} \, \textit{one} \, k. \end{aligned}$$]

 (25)





 

	(iii)a hypercycle then [image: $$\begin{aligned} \bar{\ell }_{k}>\sum _{\begin{array}{c} i=1\\ i\not =k \end{array}}^{n}\bar{\ell }_{i} \quad \textit{for}\, \textit{one} \, k. \end{aligned}$$]

 (26)





 






Proof
(i) If [image: $$P_{\ell }$$] is inscribed in a circle, then the chordal polygon obtained by connecting the vertices of [image: $$P_{\ell }$$] by straight line segments in [image: $$\mathbb R^{2,1}$$] is a Euclidean polygon. Hence, its side lengths [image: $$\bar{\ell }$$] satisfy (24).
(ii) If [image: $$P_{\ell }$$] is inscribed in a horocycle, then the chordal length [image: $$\bar{\ell }_{k}$$] of a side is equal to the length of the arc of the horocycle between its vertices (see Fig. 5). Since one horocycle arc comprises all others, this implies (25).[image: A371662_1_En_5_Fig5_HTML.gif]
Fig. 5Polygon inscribed in a horocycle, shown in the Poincaré half-plane model. Here, [image: $$\bar{\ell }_{n}=\sum _{i\not =n}\bar{\ell }_{i}$$] is the largest chordal length. Since all horocycles are congruent, we may without loss of generality assume that the polygon is inscribed in the horocycle [image: $$y=1$$]
                





(iii) If [image: $$P_{\ell }$$] is inscribed in a hypercycle at distance R from a geodesic g, then the chordal lengths [image: $$\bar{\ell }_k$$], the hypercycle “radius” R, and the distances [image: $$a_{k}$$] between the foot points of the perpendiculars from the vertices to g (see Fig. 6) are related by[image: $$\begin{aligned} \frac{\bar{\ell }_k}{2}= {\cosh (R)}\sinh \frac{a_k}{2}. \end{aligned}$$]

 (27)


[image: A371662_1_En_5_Fig6_HTML.gif]
Fig. 6Polygon inscribed in a hypercycle, shown in the Poincaré disk model. Here, [image: $$\ell _{n}$$] and [image: $$\bar{\ell }_{n}$$] are the largest side length and chordal length, respectively





Since one of the segments of g comprises all others,[image: $$\begin{aligned} a_{k}=\sum _{i\not =k}a_{i}\quad \text {for one } k. \end{aligned}$$]


With (27) this implies (26):[image: $$\begin{aligned} \frac{\bar{\ell }_{k}}{2} = \cosh (R)\sinh \Big (\sum _{i\not =k}\frac{a_i}{2}\Big ) > \sum _{i\not =k}\cosh (R)\sinh \frac{a_i}{2}=\sum _{i\not =k} \frac{\bar{\ell }_i}{2}\,, \end{aligned}$$]


where we have used the inequality [image: $$\sinh (x+y)>\sinh (x)+\sinh (y)$$], which holds for positive x, y. This follows immediately from the addition theorem for the hyperbolic sine function.
This completes the proof of Proposition 4.1. [image: $$\square $$]
        

Proposition 4.2
If [image: $$\ell \in \mathbb R^n_{>0}$$] satisfies the polygon inequalities (1), then there exists a unique hyperbolic cyclic polygon with these side lengths.

Proof
Suppose [image: $$\ell \in \mathbb R^n_{>0}$$] satisfies the polygon inequalities (1). Let [image: $$\bar{\ell }$$] be the corresponding chordal lengths (23). We will treat each case of Proposition 4.1 separately. In each case, we will tacitly use Proposition 4.1 and its proof. Our treatment of case (iii) is analogous to Penner’s proof [9] of Theorem 1.1 (his Theorem 6.2).
(i) If the chordal lengths [image: $$\bar{\ell }$$] satisfy condition (24), then the existence and uniqueness of a hyperbolic cyclic polygon with side lengths [image: $$\ell $$] follows from the existence and uniqueness of a Euclidean cyclic polygon with side lengths [image: $$\bar{\ell }$$], i.e., from Theorem 1.1 (see Fig. 4).
(ii) If the chordal lengths [image: $$\bar{\ell }$$] satisfy condition (25), then the corresponding hyperbolic cyclic polygon can be constructed by marking off the lengths [image: $$\bar{\ell }_{i}$$] for [image: $$i\not =k$$] along a horocycle (see Fig. 5). To see the uniqueness claim, note that all horocycles are congruent.
(iii) It remains to consider the case that the chordal lengths [image: $$\bar{\ell }$$] satisfy condition (26). For simplicity, we will assume that [image: $$\ell _{n}$$] is the largest side length. Then [image: $$\bar{\ell }_{n}$$] is the largest chordal length and condition (26) says[image: $$\begin{aligned} \bar{\ell }_{n}>\sum _{k=1}^{n-1}\bar{\ell }_{k}. \end{aligned}$$]

 (28)

Now suppose [image: $$P_{\ell }$$] is a hyperbolic polygon with side lengths [image: $$\ell $$] that is inscribed in a hypercycle at distance R from its geodesic g, and let[image: $$\begin{aligned} \bar{R}=\cosh R. \end{aligned}$$]

 (29)

Then the distances [image: $$a_{k}$$] between the foot points (see Fig. 6) satisfy[image: $$\begin{aligned} a_{n}=\sum _{k=1}^{n-1}a_{k}, \end{aligned}$$]


Using (27), one obtains[image: $$\begin{aligned} \text {arsinh}\Big (\frac{\bar{\ell }_{n}}{2\bar{R}}\Big )= \sum _{k=1}^{n-1}\text {arsinh}\Big (\frac{\bar{\ell }_{k}}{2\bar{R}}\Big ). \end{aligned}$$]

 (30)

Conversely, if, for given [image: $$\ell $$], a number [image: $$\bar{R}>1$$] satisfies (30) then R defined by (29) is the correct hypercycle distance. More precisely, one can then construct a hyperbolic cyclic polygon with side lengths [image: $$\ell $$] by marking off the distances [image: $$a_{1},\ldots ,a_{n-1}$$] determined by (27) along a geodesic and intersect the perpendiculars in the marked points with a hypercycle at distance R (see Fig. 6).
It remains to show that there is exactly one [image: $$\bar{R}>1$$] satisfying (30). To this end, consider the function[image: $$\begin{aligned} \varPhi (x)=\text {arsinh}\Big (\frac{\bar{\ell }_{n}}{2x}\Big ) -\sum _{k=1}^{n-1}\text {arsinh}\Big (\frac{\bar{\ell }_{k}}{2x}\Big ). \end{aligned}$$]

 (31)

We need to show that [image: $$\varPhi $$] has exactly one zero in the interval [image: $$(1,\infty )$$]. Using (23), we see[image: $$\begin{aligned} \varPhi (1) = \frac{1}{2}\Big (\ell _{n}-\sum _{k=1}^{n-1}\ell _{k}\Big )<0. \end{aligned}$$]

 (32)

For [image: $$x\rightarrow \infty $$],[image: $$\begin{aligned} \varPhi (x)=\frac{1}{2x}\Big (\bar{\ell }_{n}-\sum _{k=1}^{n-1}\bar{\ell }_{k}\Big ) + o\Big (\frac{1}{x}\Big ), \end{aligned}$$]

 (33)

so[image: $$\begin{aligned} \varPhi (x)>0\quad \text {for large }x. \end{aligned}$$]


By continuity, [image: $$\varPhi $$] has at least one zero in the interval [image: $$(1,\infty )$$].
Finally, we will show that the derivative[image: $$\begin{aligned} \varPhi '(x)= \frac{1}{x}\Bigg ( -\frac{\frac{\bar{\ell }_{n}}{2x}}{\sqrt{1+\big (\frac{\bar{\ell }_{n}}{2x}\big )^{2}}} + \sum _{k=1}^{n-1} \frac{\frac{\bar{\ell }_{k}}{2x}}{\sqrt{1+\big (\frac{\bar{\ell }_{k}}{2x}\big )^{2}}} \Bigg ), \end{aligned}$$]

 (34)

is positive at the positive zeroes of [image: $$\varPhi $$]. This implies that [image: $$\varPhi $$] has at most one zero in [image: $$\mathbb R_{>0}$$]. Let us define[image: $$\begin{aligned} a_{k}(x)=\text {arsinh}\Big (\frac{\bar{\ell }_{k}}{2x}\Big ), \end{aligned}$$]


so[image: $$\begin{aligned} \varPhi (x)=a_{n}(x)-\sum _{k=1}^{n-1}a_{k}(x), \end{aligned}$$]


and[image: $$\begin{aligned} \varPhi '(x)=\frac{1}{x}\Big ( -\tanh a_{n}(x)+\sum _{k=1}^{n-1}\tanh a_{k}(x) \Big ). \end{aligned}$$]


The claim follows from the inequality[image: $$\begin{aligned} \tanh \sum _{j=1}^{m}a_{j}<\sum _{j=1}^{m}\tanh a_{j}, \end{aligned}$$]


which holds for [image: $$m\ge 2$$] and positive numbers [image: $$a_{j}$$]. (Use induction on m and the addition theorem for [image: $$\tanh $$] for the base case [image: $$m=2$$].)
This concludes the proof of Proposition 4.2. [image: $$\square $$]
        


5 Concluding Remarks on 1 + 1 Spacetime
The scalar product of [image: $$\mathbb R^{1,1}$$] is[image: $$\begin{aligned} \langle x,y\rangle _{1,1}=x_{1}y_{1}-x_{2}y_{2}, \end{aligned}$$]


and the length of a spacelike vector x is [image: $$\ell =\sqrt{\langle x,x\rangle _{1,1}}$$]. The proof of Theorem 1.3 for polygons inscribed in hypercycles (Sect. 4) also proves the following theorem about “cyclic” polygons in [image: $$1+1$$] spacetime.
Theorem 5.1
There exists a polygon in [image: $$\mathbb R^{1,1}$$] with [image: $$n\ge 3$$] spacelike sides with lengths [image: $$\ell _{1},\ldots ,\ell _n>0$$] that is inscribed in one branch of a hyperbola [image: $$\langle x,x\rangle _{1,1}=-R^{2}$$] if and only if[image: $$\begin{aligned} \ell _{k}>\sum _{\begin{array}{c} i=1\\ i\not =k \end{array}}^{n}\ell _{i}\quad \textit{for} \, \textit{one} \, k, \end{aligned}$$]

 (35)

and this polygon is unique.

Without loss of generality, we will assume that the nth side is the longest, i.e., [image: $$k=n$$] in (35). Like in the Euclidean case (Sect. 2), the construction of such an inscribed polygon in [image: $$\mathbb R^{1,1}$$] is equivalent to the following analytic problem: Find a point [image: $$a\in \mathbb R_{>0}^{n}$$] satisfying[image: $$\begin{aligned} a_{n}=\sum _{i=1}^{n-1}a_{i} \end{aligned}$$]

 (36)

and[image: $$\begin{aligned} \frac{\ell _{k}}{2}=R\sinh \frac{a_{k}}{2} \end{aligned}$$]

 (37)

for some [image: $$R\in \mathbb R$$] and all [image: $$k\in \{1,\ldots , n\}$$].
This problem admits the following variational formulation. Define the function [image: $$\varphi _{\ell }:\mathbb R^{n}\rightarrow \mathbb R$$] by[image: $$\begin{aligned} \varphi _{\ell }(a)=\sum _{k=1}^{n-1}\big ( \text {Clh}_2(a_k) + \log (\ell _k)\,a_k\big ) -\big (\text {Clh}_2(a_n) + \log (\ell _n)\,a_n\big ), \end{aligned}$$]


where [image: $$\text {Clh}_2$$] denotes the “hyperbolic version” of Clausen’s integral,[image: $$\begin{aligned} \text {Clh}_2(x)= -\int _0^x \log \Big |2\sinh \frac{t}{2}\Big |\,dt. \end{aligned}$$]


(This notation is not standard.) The function [image: $$\text {Clh}_2(x)$$] can be expressed in terms of the real part of the dilogarithm function:[image: $$\begin{aligned} \text {Clh}_2(x)={\text {Re}}{\text {Li}}_{2}(e^{x})+\frac{x^{2}}{4}-\frac{\pi ^{2}}{6}. \end{aligned}$$]


Like in the Euclidean case, one sees that [image: $$a\in \mathbb R_{>0}^{n}$$] is a critical point of [image: $$\varphi _{\ell }$$] under the constraint (36) if and only if there is an R satisfying equations (37). However, the function [image: $$\varphi _{\ell }$$] is neither concave nor convex on the subspace (36), so any proof of Theorem 5.1 (or the hypercycle case of Theorem 1.3) based on this variational principle would have to be more involved.
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Abstract
Discrete vector bundles are important in Physics and recently found remarkable applications in Computer Graphics. This article approaches discrete bundles from the viewpoint of Discrete Differential Geometry, including a complete classification of discrete vector bundles over finite simplicial complexes. In particular, we obtain a discrete analogue of a theorem of André Weil on the classification of hermitian line bundles. Moreover, we associate to each discrete hermitian line bundle with curvature a unique piecewise-smooth hermitian line bundle of piecewise-constant curvature. This is then used to define a discrete Dirichlet energy which generalizes the well-known cotangent Laplace operator to discrete hermitian line bundles over Euclidean simplicial manifolds of arbitrary dimension.

1 Introduction
Vector bundles are fundamental objects in Differential Geometry and play an important role in Physics [2]. The Physics literature is also the main place where discrete versions of vector bundles were studied: First, there is a whole field called Lattice Gauge Theory where numerical experiments concerning connections in bundles over discrete spaces (lattices or simplicial complexes) are the main focus. Some of the work that has been done in this context is quite close to the kind of problems we are going to investigate here [3, 4, 6].
Vector bundles make their most fundamental appearance in Physics in the form of the complex line bundle whose sections are the wave functions of a charged particle in a magnetic field. Here the bundle comes with a connection whose curvature is given by the magnetic field [2]. There are situations where the problem itself suggests a natural discretization: The charged particle (electron) may be bound to a certain arrangement of atoms. Modelling this situation in such a way that the electron can only occupy a discrete set of locations then leads to the “tight binding approximation” [1, 12, 15].
Recently vector bundles over discrete spaces also have found striking applications in Geometry Processing and Computer Graphics. We will describe these in detail in Sect. 2.
In order to motivate the basic definitions concerning vector bundles over simplicial complexes let us consider a smooth manifold [image: $${\tilde{{\mathrm M}}}$$] that comes with smooth triangulation (Fig. 1).[image: A371662_1_En_6_Fig1_HTML.gif]
Fig. 1A smooth triangulation of a manifold





Let [image: $${\tilde{{\mathrm E}}}$$] be a smooth vector bundle over [image: $${\tilde{{\mathrm M}}}$$] of rank [image: $$\mathfrak {K}$$]. Then we can define a discrete version [image: $$\mathrm E$$] of [image: $${\tilde{{\mathrm E}}}$$] by restricting [image: $${\tilde{{\mathrm E}}}$$] to the vertex set [image: $$\mathcal {V}$$] of the triangulation. Thus [image: $$\mathrm E$$] assigns to each vertex [image: $$i\in \mathcal {V}$$] the [image: $$\mathfrak {K}$$]-dimensional real vector space [image: $$\mathrm E_i:={\tilde{{\mathrm E}}}_i$$]. This is the way vector bundles over simplicial complexes are defined in general: Such a bundle [image: $$\mathrm E$$] assigns to each vertex [image: $$i$$] a [image: $$\mathfrak {K}$$]-dimensional real vector space [image: $$\mathrm E_i$$] in such a way that [image: $$\mathrm E_i\mathop {\cap }\mathrm E_j = \emptyset $$] for [image: $$i\ne j$$].
So far the notion of a discrete vector bundle is completely uninteresting mathematically: The obvious definition of an isomorphism between two such bundles [image: $$\mathrm E$$] and [image: $$\hat{\mathrm E}$$] just would require a vector space isomorphism [image: $$f_i:\mathrm E_i\rightarrow \hat{\mathrm E}_i$$] for each vertex [image: $$i$$]. Thus, unless we put more structure on our bundles, any two vector bundles of the same rank over a simplicial complex are isomorphic.
Suppose now that [image: $${\tilde{{\mathrm E}}}$$] comes with a connection [image: $$\nabla $$]. Then we can use the parallel transport along edges [image: $${ij}$$] of the triangulation to define vector space isomorphisms[image: $$ \eta _{{ij}}:{\tilde{{\mathrm E}}}_i\rightarrow {\tilde{{\mathrm E}}}_j $$]


This leads to the standard definition of a connection on a vector bundle over a simplicial complex: Such a connection is given by a collection of isomorphisms [image: $$\eta _{{ij}}:\mathrm E_i\rightarrow \mathrm E_j$$] defined for each edge [image: $${ij}$$] such that[image: $$ \eta _{ji}=\eta _{{ij}}^{-1}. $$]


Now the classification problem becomes non-trivial because for an isomorphism [image: $$f$$] between two bundles [image: $$\mathrm E$$] and [image: $$\hat{\mathrm E}$$] with connection we have to require compatibility with the transport maps [image: $$\eta _{{ij}}$$]:[image: $$ f_j\circ \eta _{{ij}}=\hat{\eta }_{{ij}}\circ f_i. $$]


Given a connection [image: $$\eta $$] and a closed edge path [image: $$\gamma =e_\ell \cdots e_1$$] (compare Sect. 4) of the simplicial complex we can define the monodromy [image: $$P_\gamma \in \mathrm {Aut}(\mathrm E_i)$$] around [image: $$\gamma $$] as[image: $$ P_\gamma = \eta _{e_\ell }\circ \ldots \circ \eta _{e_1}. $$]


In particular the monodromies around triangular faces of the simplicial complex provide an analog for the smooth curvature in the discrete setting. In Sect. 4 we will classify vector bundles with connection in terms of their monodromies.
Let us look at the special case of a rank [image: $$2$$] bundle [image: $$\mathrm E$$] that is oriented and comes with a Euclidean scalar product. Then the [image: $$90^{\circ }$$]-rotation in each fiber makes it into [image: $$1$$]-dimensional complex vector space, so we effectively are dealing with a hermitian complex line bundle. If [image: $${i\!jk}$$] is an oriented face of our simplicial complex, the monodromy [image: $$P_{\partial \,{i\!jk}}:\mathrm E_i\rightarrow \mathrm E_i$$] around the triangle [image: $${i\!jk}$$] is multiplication by a complex number [image: $$h_{{i\!jk}}$$] of norm one. Writing [image: $$h_{{i\!jk}}=e^{\imath \alpha _{{i\!jk}}}$$] with [image: $$-\pi <\alpha _{{i\!jk}}\le \pi $$] we see that this monodromy can also be interpreted as a real curvature [image: $$\alpha _{{i\!jk}}\in (-\pi ,\pi ]$$]. It thus becomes apparent that the information provided by the connection [image: $$\eta $$] cannot encode any curvature that integrated over a single face is larger than [image: $$\pm \pi $$]. This can be a serious restriction for applications: We effectively see a cutoff for the curvature that can be contained in a single face.
Remember however our starting point: We asked for structure that can be naturally transferred from the smooth setting to the discrete one. If we think again about a triangulated smooth manifold it is clear that we can associate to each two-dimensional face [image: $${i\!jk}$$] the integral [image: $$\varOmega _{{i\!jk}}$$] of the curvature [image: $$2$$]-form over this face. This is just a discrete [image: $$2$$]-form in the sense of discrete exterior calculus [5]. Including this discrete curvature [image: $$2$$]-form with the parallel transport [image: $$\eta $$] brings discrete complex line bundles much closer to their smooth counterparts:
Definition

          A hermitian line bundle with curvature over a simplicial complex [image: $$\mathcal {X}$$] is a triple [image: $$(\mathrm E,\eta ,\varOmega )$$]. Here [image: $$\mathrm E$$] is complex hermitian line bundle over [image: $$\mathcal {X}$$], for each edge [image: $${ij}$$] the maps [image: $$\eta _{{ij}}:\mathrm E_i\rightarrow \mathrm E_j$$] are unitary and the closed real-valued [image: $$2$$]
          -form [image: $$\varOmega $$] on each face [image: $${i\!jk}$$] satisfies
          [image: $$ \eta _{ki}\circ \eta _{jk}\circ \eta _{{ij}}= e^{\imath \varOmega _{{i\!jk}}}\,\text {id}_{\mathrm E_i}. $$]


In Sect. 7 we will prove for hermitian line bundles with curvature the discrete analog of a well-known theorem by André Weil on the classification of hermitian line bundles.
In Sect. 8 we will define for hermitian line bundles with curvature a degree (which can be an arbitrary integer) and we will prove a discrete version of the Poincaré-Hopf index theorem concerning the number of zeros of a section (counted with sign and multiplicity).
Finally we will construct in Sect. 10 for each hermitian line bundle with curvature a piecewise-smooth bundle with a curvature [image: $$2$$]-form that is constant on each face. Sections of the discrete bundle can be canonically extended to sections of the piecewise-smooth bundle. This construction will provide us with finite elements for bundle sections and thus will allow us to compute the Dirichlet energy on the space of sections.


2 Applications of Vector Bundles in Geometry Processing
Several important tasks in Geometry Processing (see the examples below) lead to the problem of coming up with an optimal normalized section [image: $$\phi $$] of some Euclidean vector bundle [image: $$\mathrm E$$] over a compact manifold with boundary [image: $$\mathrm M$$]. Here “normalized section” means that [image: $$\phi $$] is defined away from a certain singular set and where defined it satisfies [image: $$|\phi |=1$$].
In all the mentioned situations [image: $$\mathrm E$$] comes with a natural metric connection [image: $$\nabla $$] and it turns out that the following method for finding [image: $$\phi $$] yields surprisingly good results:

        Among all sections [image: $$\psi $$] of [image: $$\mathrm E$$] find one which minimizes [image: $$\int _{\mathrm M} |\nabla \psi |^2$$] under the constraint [image: $$\int _{\mathrm M} |\psi |^2=1$$]. Then away from the zero set of [image: $$\psi $$] use [image: $$\phi =\psi /|\psi |$$].
The term “optimal” suggests that there is a variational functional which is minimized by [image: $$\phi $$] and this is in fact the case. Moreover, in each of the applications there are heuristic arguments indicating that [image: $$\phi $$] is indeed a good choice for the problem at hand. For the details we refer to the original papers. Here we are only concerned with the Discrete Differential Geometry involved in the discretization of the above variational problem.
2.1 Direction Fields on Surfaces
Here [image: $$\mathrm M$$] is a surface with a Riemannian metric, [image: $$\mathrm E=\mathrm {TM}$$] is the tangent bundle and [image: $$\nabla $$] is the Levi-Civita connection. Figure 2 shows the resulting unit vector field [image: $$\phi $$]. If we consider [image: $$\mathrm {TM}$$] as a complex line bundle, normalized sections of the tensor square [image: $$\mathrm L=\mathrm {TM} \otimes \mathrm {TM}$$] describe unoriented direction fields on [image: $$\mathrm M$$]. Similarly, “higher order direction fields” like cross fields are related to higher tensor powers of [image: $$\mathrm {TM}$$]. Higher order direction fields also have important applications in Computer Graphics.[image: A371662_1_En_6_Fig2_HTML.gif]
Fig. 2An optimal direction field on a surface






2.2 Stripe Patterns on Surfaces
A stripe pattern on a surface [image: $$\mathrm M$$] is a map which away from a certain singular set assigns to each point [image: $$p\in \mathrm M$$] an element [image: $$\phi (p)\in \mathbb S=\{z\in \mathbb C||z|=1\}$$]. Such a map [image: $$\phi $$] can be used to color [image: $$\mathrm M$$] in a periodic fashion according to a color map that assigns a color to each point on the unit circle [image: $$\mathbb S$$]. Suppose we are given a [image: $$1$$]-form [image: $$\omega $$] on [image: $$\mathrm M$$] that specifies a desired direction and spacing of the stripes, which means that ideally we would wish for something like [image: $$\phi =e^{i\alpha }$$] with [image: $$d\alpha =\omega $$]. Then the algorithm in [9] says that we should use a [image: $$\phi $$] that comes from taking [image: $$\mathrm E$$] as the trivial bundle [image: $$\mathrm E=\mathrm M\times \mathbb C$$] and [image: $$\nabla \psi =d\psi -i\omega \psi $$]. Sometimes the original data come from an unoriented direction field and (in order to obtain the [image: $$1$$]-form [image: $$\omega $$]) we first have to move from [image: $$\mathrm M$$] to a double branched cover [image: $${\tilde{{\mathrm M}}}$$] of [image: $$\mathrm M$$]. This is for example the case in Fig. 3.[image: A371662_1_En_6_Fig3_HTML.gif]
Fig. 3An optimal stripe pattern aligned to an unoriented direction field






2.3 Decomposing Velocity Fields into Fields Generated by Vortex Filaments
The velocity fields that arise in fluid simulations quite often can be understood as a superposition of interacting vortex rings. It is therefore desirable to have an algorithm that reconstructs the underlying vortex filaments from a given velocity field. Let the velocity field [image: $${\mathbf v}$$] on a domain [image: $$\mathrm M\subset \mathbb R^3$$] be given as a [image: $$1$$]-form [image: $$\omega =\langle {\mathbf v},\cdot \rangle $$]. Then the algorithm proposed in [19] uses the function [image: $$\phi :\mathrm M\rightarrow \mathbb C$$] that results from taking the trivial bundle [image: $$\mathrm E=\mathrm M\times \mathbb C$$] endowed with the connection [image: $$\nabla \psi =d\psi -i\omega \psi $$]. Note that so far this is just a three-dimensional version of the situation in Sect. 2.2. This time however we even forget [image: $$\phi $$] in the end and only retain the zero set of [image: $$\psi $$] as the filament configuration we are looking for (Fig. 4).[image: A371662_1_En_6_Fig4_HTML.gif]
Fig. 4A knotted vortex filament defined as the zero set of a complex valued function [image: $$\psi $$]. It is shown as the intersection of the zero set of [image: $$\mathrm{{Re}}\,\psi $$] with the zero set of [image: $$\mathfrak {I}\,\psi $$]
                






2.4 Close-To-Conformal Deformations of Volumes
Here the data are a domain [image: $$\mathrm M\subset \mathbb R^3$$] and a function [image: $$u:\mathrm M\rightarrow \mathbb R$$]. The task is to find a map [image: $$f:\mathrm M\rightarrow \mathbb R^3$$] which is approximately conformal with conformal factor [image: $$e^u$$], i.e. for all tangent vectors [image: $$X\in \mathrm {TM}$$] we want[image: $$ |df(X)|\approx e^u|X|. $$]


The only exact solutions of this equations are the Möbius transformations. For these we find[image: $$ df(X)=e^u \overline{\psi }X\psi $$]


for some map [image: $$\psi :\mathrm M\rightarrow \mathbb H$$] with [image: $$|\psi |=1$$] which in addition satisfies[image: $$ d\psi (X) = -\tfrac{1}{2}(\mathrm {grad}\,u \times X)\,\psi . $$]


Note that here we have identified [image: $$\mathbb R^3$$] with the space of purely imaginary quaternions. Let us define a connection [image: $$\nabla $$] on the trivial rank [image: $$4$$] vector bundle [image: $$\mathrm M\times \mathbb H$$] by[image: $$ \nabla _X \psi :=d\psi (X)+\tfrac{1}{2}(\mathrm {grad}\,u \times X)\psi . $$]


Then we can apply the usual method and find a section [image: $$\phi :\mathrm M\rightarrow \mathbb H$$] with [image: $$|\phi |=1$$]. In general there will not be any [image: $$f:\mathrm M\rightarrow \mathbb R^3$$] that satisfies[image: $$\begin{aligned} df(X)=e^u \overline{\phi }X\phi \end{aligned}$$]

 (1)

exactly but we can always look for an [image: $$f$$] that satisfies (1) in the least squares sense. See Fig. 5 for an example.[image: A371662_1_En_6_Fig5_HTML.jpg]
Fig. 5Close-to-conformal deformation of a sphere based on a desired conformal factor specified as the potential of a collection of point charges







3 Discrete Vector Bundles with Connection
An (abstract) simplicial complex is a collection [image: $$\mathcal {X}$$] of finite non-empty sets such that if [image: $$\sigma $$] is an element of [image: $$\mathcal {X}$$] so is every non-empty subset of [image: $$\sigma $$] [14].
An element of a simplicial complex [image: $$\mathcal {X}$$] is called a simplex and each non-empty subset of a simplex [image: $$\sigma $$] is called a face of [image: $$\sigma $$]. The elements of a simplex are called vertices and the union of all vertices [image: $$\mathcal {V} = \mathop {\cup }_{\sigma \in \mathcal {X}} \sigma $$] is called the vertex set of [image: $$\mathcal {X}$$]. The dimension of a simplex is defined to be one less than the number of its vertices: [image: $$\dim \sigma := |\sigma |-1$$]. A simplex of dimension [image: $$k$$] is also called a [image: $$k$$]-simplex. The dimension of a simplicial complex is defined as the maximal dimension of its simplices.
To avoid technical difficulties, we will restrict our attention to finite simplicial complexes only. The main concepts are already present in the finite case. Though, the definitions carry over verbatim to infinite simplicial complexes.
Definition 3.1
Let [image: $$\mathbb F$$] be a field and let [image: $$\mathcal {X}$$] be a simplicial complex with vertex set [image: $$\mathcal {V}$$]. A discrete [image: $$\mathbb F$$]
          -vector bundle of rank [image: $$\mathfrak {K}\in \mathbb N$$] over [image: $$\mathcal {X}$$] is a map [image: $$\pi :\mathrm E \rightarrow \mathcal {V}$$] such that for each vertex [image: $$i\in \mathcal {V}$$] the fiber over [image: $$i$$]
          [image: $$ \mathrm E_i := \pi ^{-1}(\{i\}) $$]


has the structure of a [image: $$\mathfrak {K}$$]-dimensional [image: $$\mathbb F$$]-vector space.

Most of the time, we slightly abuse notation and denote a discrete vector bundle over a simplicial complex schematically by [image: $$\mathrm E \rightarrow \mathcal {X}$$].
The usual vector space constructions carry fiberwise over to discrete vector bundles. So we can speak of tensor products or dual bundles. Moreover, the fibers can be equipped with additional structures. In particular, a real vector bundle whose fibers are Euclidean vector spaces is called a discrete Euclidean vector bundle. Similarly, a complex vector bundle whose fibers are hermitian vector spaces is called a discrete hermitian vector bundle.
So far discrete vector bundles are completely uninteresting from the mathematical viewpoint—the obvious definition of an isomorphism [image: $$f$$] between two discrete vector bundles [image: $$\mathrm E$$] and [image: $${\tilde{{\mathrm E}}}$$] just requires isomorphisms between the fibers [image: $$f_i:\mathrm E_i \rightarrow {\tilde{{\mathrm E}}}_i$$]. Thus any two bundles of rank [image: $$\mathfrak {K}$$] are isomorphic. This changes if we connect the fibers along the edges by isomorphisms.
Let [image: $$\sigma =\{i_0,\ldots ,i_k\}$$] be a [image: $$k$$]-simplex. We define two orderings of its vertices to be equivalent if they differ by an even permutation. Such an equivalence class is then called an orientation of [image: $$\sigma $$] and a simplex together with an orientation is called an oriented simplex. We will denote the oriented [image: $$k$$]-simplex just by the word [image: $$i_0\cdots i_k$$]. Further, an oriented [image: $$1$$]-simplex is called an edge.
Definition 3.2
Let [image: $$\mathrm E \rightarrow \mathcal {X}$$] be a discrete vector bundle over a simplicial complex. A discrete connection on [image: $$\mathrm E$$] is a map [image: $$\eta $$] which assigns to each edge [image: $${ij}$$] an isomorphism [image: $$\eta _{{ij}}:\mathrm E_i \rightarrow \mathrm E_j$$] of vector spaces such that[image: $$ \eta _{ji}= \eta _{{ij}}^{-1}. $$]





Remark 3.3
Here and in the following a morphism of vector spaces is a linear map that also preserves all additional structures—if any present. E.g., if we are dealing with hermitian vector spaces, then a morphism is a complex-linear map that preserves the hermitian metric, i.e. it is a complex linear isometric immersion.

Definition 3.4
A morphism of discrete vector bundles with connection is a map [image: $$f:\mathrm E\rightarrow \mathrm F$$] between discrete vector bundles [image: $$\mathrm E\rightarrow \mathcal {X}$$] and [image: $$\mathrm F\rightarrow \mathcal {X}$$] with connections [image: $$\eta $$] and [image: $$\theta $$] (resp.) such that	(i)for each vertex [image: $$i$$] we have that [image: $$f(\mathrm E_i)\subset \mathrm F_i$$] and the map [image: $$f_i=\left. f\right| _{\mathrm E_i}:\mathrm E_i \rightarrow \mathrm F_i$$] is a morphism of vector spaces,


 

	(ii)for each edge [image: $${ij}$$] the following diagram commutes:

                      [image: A371662_1_En_6_Figa_HTML.gif]


                    
i.e. [image: $$\theta _{{ij}}\circ f_i= f_j\circ \eta _{{ij}}$$].


 






An isomorphism is a morphism which has an inverse map, which is also a morphism. Two discrete vector bundles with connection are called isomorphic, if there exists an isomorphism between them.
Again let [image: $$\mathcal {V}$$] denote the vertex set of [image: $$\mathcal {X}$$]. A discrete vector bundle [image: $$\mathrm E \rightarrow \mathcal {X}$$] with connection [image: $$\eta $$] is called trivial, if it is isomorphic to the product bundle
        [image: $$ \underline{\mathbb F^\mathfrak {K}}:=\mathcal {V}\times \mathbb F^\mathfrak {K}$$]


over [image: $$\mathcal {X}$$] equipped with the connection which assigns to each edge the identity [image: $$\text {id}_{\mathbb F^\mathfrak {K}}$$].
It is a natural question to ask how many non-isomorphic discrete vector bundles with connection exist on a given simplicial complex [image: $$\mathcal {X}$$].
Remark 3.5
For [image: $$k\in \mathbb N$$], the [image: $$k$$]-skeleton [image: $$\mathcal {X}^k$$] of a simplicial complex [image: $$\mathcal {X}$$] is the subcomplex that consists of all simplices [image: $$\sigma \in \mathcal {X}$$] of dimension [image: $$\le k$$],[image: $$ \mathcal {X}^k := \bigl \{\sigma \in \mathcal {X} \mid \dim \sigma \le k\bigr \}. $$]


The classification of vector bundles over [image: $$\mathcal {X}$$] only involves its [image: $$1$$]-skeleton [image: $$\mathcal {X}^1$$] and could be equally done just for discrete vector bundles over [image: $$1$$]-dimensional simplicial complexes, i.e. graphs. Later on, when we consider discrete hermitian line bundles with curvature in Sect. 7, the [image: $$2$$]- and [image: $$3$$]-skeleton come into play and finally, in Sect. 11, we will use the whole simplicial complex.


4 Monodromy—A Discrete Analogue of Kobayashi’s Theorem
Let [image: $$\mathcal {X}$$] be a simplicial complex. Each edge [image: $${ij}$$] of [image: $$\mathcal {X}$$] has a start vertex [image: $$s({ij}):=i$$] and a target vertex [image: $$t({ij}):=j$$]. A edge path [image: $$\gamma $$] is a sequence of successive edges [image: $$(e_1, \ldots , e_\ell )$$], i.e. [image: $$s(e_{k+1})=t(e_k)$$] for all [image: $$k=1,\ldots ,\ell -1$$], and will be denoted by the word:[image: $$ \gamma = e_\ell \cdots e_1. $$]


If [image: $$i=s(e_1)$$], we say that [image: $$\gamma $$] starts at [image: $$i$$], and if [image: $$j=t(e_\ell )$$] that [image: $$\gamma $$] ends at [image: $$j$$]. The complex [image: $$\mathcal {X}$$] is called connected, if any two of its vertices can be joined by an edge path. From now on we will only consider connected simplicial complexes.
Now, let [image: $$\mathrm E \rightarrow \mathcal {X}$$] be a discrete vector bundle with connection [image: $$\eta $$]. To each edge path [image: $$\gamma =e_\ell \cdots e_1$$] from [image: $$i$$] to [image: $$j$$], we define the parallel transport [image: $$P_\gamma :\mathrm E_i \rightarrow \mathrm E_j$$] along [image: $$\gamma $$] by[image: $$ P_\gamma := \eta _{e_\ell }\circ \cdots \circ \eta _{e_1}. $$]


To each edge path [image: $$\gamma =e_\ell \cdots e_1$$] we can assign an inverse path [image: $$\gamma ^{-1}$$]. If [image: $${\tilde{\gamma }} = e_m\cdots e_{\ell +1}$$] starts where [image: $$\gamma $$] ends, we can build the concatenation [image: $${\tilde{\gamma }}\gamma $$]: With the notation [image: $${ij}^{-1} := ji$$], we have[image: $$ \gamma ^{-1}:=e_1^{-1}\cdots e_\ell ^{-1},\quad {\tilde{\gamma }}\gamma := e_m\cdots e_{\ell +1}e_\ell \cdots e_1. $$]


Whenever [image: $${\tilde{\gamma }}\gamma $$] is defined,[image: $$\begin{aligned} P_{{\tilde{\gamma }}\gamma } = P_{{\tilde{\gamma }}}\circ P_\gamma , \quad P_{\gamma ^{-1}}= P_{\gamma }^{-1}. \end{aligned}$$]

 (2)

The elements of the fundamental group are identified with equivalence classes of edge loops, i.e. edge paths starting and ending a given base vertex [image: $$i$$] of [image: $$\mathcal {X}$$], where two such loops are identified if they differ by a sequence of elementary moves [16]:[image: $$ e_\ell \cdots e_{k+1} e^{-1} e\, e_k\cdots e_1 \longleftrightarrow e_\ell \cdots e_{k+1} e_k\cdots e_1. $$]


Now, by Eq. (2), we see that the parallel transport descends to a representation of the fundamental group [image: $$\pi _1(\mathcal {X}^1,i)$$]. We encapsulate this in the following
Proposition 4.1
Let [image: $$\mathrm E\rightarrow \mathcal {X}$$] be a discrete vector bundle with connection over a connected simplicial complex. The parallel transport descends to a representation of the fundamental group [image: $$\pi _1(\mathcal {X}^1, i)$$]:[image: $$ \mathfrak {M}:\pi _1(\mathcal {X}^1, i) \rightarrow \mathrm {Aut}(\mathrm E_i),\quad [\gamma ]\mapsto P_\gamma . $$]


The representation [image: $$\mathfrak {M}$$] will be called the monodromy of the discrete vector bundle [image: $$\mathrm E$$].

If we change the base vertex this leads to an isomorphic representation—an isomorphism is just given by the parallel transport [image: $$P_\gamma $$] along an edge path joining the two base vertices. Moreover, if [image: $$f:\mathrm E\rightarrow {\tilde{{\mathrm E}}}$$] is an isomorphism of discrete vector bundles with connection over the simplicial complex [image: $$\mathcal {X}$$], for any edge path [image: $$\gamma = e_\ell \cdots e_1$$] from a vertex [image: $$i$$] to a vertex [image: $$j$$] the following equality holds:[image: $$ \tilde{P}_\gamma = f_j \circ P_\gamma \circ f_i^{-1}. $$]


Here [image: $$P$$] and [image: $$\tilde{P}$$] denote the parallel transports of [image: $$\mathrm E$$] and [image: $${\tilde{{\mathrm E}}}$$]. Thus we obtain:
Proposition 4.2
Isomorphic discrete vector bundles with connection have isomorphic monodromies.

In fact, the monodromy completely determines a discrete vector bundle with connection up to isomorphism, which provides a complete classification of discrete vector bundles with connection: Let [image: $$\mathcal {X}$$] be a connected simplicial complex. Let [image: $$\mathrm E\rightarrow \mathcal {X}$$] be a discrete [image: $$\mathbb F$$]-vector bundle of rank [image: $$\mathfrak {K}$$] with connection and let [image: $$\mathfrak {M}:\pi _1(\mathcal {X}^1, i)\rightarrow \mathrm {Aut}(\mathrm E_i)$$] denote its monodromy. Any choice of a basis of the fiber [image: $$\mathrm E_i$$] determines a group homomorphism [image: $$\rho \in \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1,i),\text {GL}(\mathfrak {K}, \mathbb F)\bigr )$$]. Any other choice of basis determines a group homomorphism [image: $${\tilde{{\rho }}}$$] which is related to [image: $$\rho $$] by conjugation, i.e. there is [image: $$S\in \text {GL}(\mathfrak {K}, \mathbb F)$$] such that[image: $$ {\tilde{\rho }}([\gamma ]) = S\cdot \rho ([\gamma ]) \cdot S^{-1} \textit{ for all } [\gamma ]\in \pi _1(\mathcal {X}^1,i). $$]


Hence the monodromy [image: $$\mathfrak {M}$$] determines a well-defined conjugacy class of group homomorphisms from [image: $$\pi _1(\mathcal {X}^1,i)$$] to [image: $$\text {GL}(\mathfrak {K}, \mathbb F)$$], which we will denote by [image: $$[\mathfrak {M}]$$]. The group [image: $$\text {GL}(\mathfrak {K}, \mathbb F)$$] will be referred to as the structure group of [image: $$\mathrm E$$].
Let [image: $$\mathfrak V_\mathbb F^\mathfrak {K}(\mathcal {X})$$] denote the set of isomorphism classes of [image: $$\mathbb F$$]
        -vector bundles of rank [image: $$\mathfrak {K}$$] with connection over [image: $$\mathcal {X}$$] and let [image: $$\mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1,i),\text {GL}(\mathfrak {K},\mathbb F)\bigr )/_\sim $$] denote the set of conjugacy classes of group homomorphisms from the fundamental group [image: $$\pi _1(\mathcal {X}^1,i)$$] into the structure group [image: $$\text {GL}(\mathfrak {K}, \mathbb F)$$].
Theorem 4.3

          [image: $$F:\mathfrak V_\mathbb F^\mathfrak {K}(\mathcal {X}) \rightarrow \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1,i),\text {GL}(\mathfrak {K},\mathbb F)\bigr )/_\sim $$], [image: $$[\mathrm E]\mapsto [\mathfrak {M}]$$] is bijective.

Proof
By Proposition 4.2, [image: $$F$$] is well-defined. First we show injectivity. Consider two discrete vector bundles [image: $$\mathrm E$$], [image: $${\tilde{{\mathrm E}}}$$] over [image: $$\mathcal {X}$$] with connections [image: $$\eta $$], [image: $${\tilde{\eta }}$$] and let [image: $$\mathfrak {M}$$], [image: $${\tilde{{\mathfrak {M}}}}$$] denote their monodromies. Suppose that [image: $$[\mathfrak {M}]= [{\tilde{{\mathfrak {M}}}}]$$]. If we choose bases [image: $$\{X^1_i,\ldots ,X^\mathfrak {K}_i\}$$] of [image: $$\mathrm E_i$$] and [image: $$\{\tilde{X}^1_i,\ldots ,\tilde{X}^\mathfrak {K}_i\}$$] of [image: $$\tilde{\mathrm E}_i$$], then [image: $$\mathfrak {M}$$] and [image: $$\tilde{\mathfrak {M}}$$] are represented by group homomorphisms [image: $$\rho ,\tilde{\rho }\in \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i), \text {GL}(\mathfrak {K},\mathbb F)\bigr )$$] which are related by conjugation. Without loss of generality, we can assume that [image: $$\rho =\tilde{\rho }$$]. Now, let [image: $$\mathcal {T}$$] be a spanning tree of [image: $$\mathcal {X}$$] with root [image: $$i$$]. Then for each vertex [image: $$j$$] of [image: $$\mathcal {X}$$] there is an edge path [image: $$\gamma _{\,i,j}$$] from the root [image: $$i$$] to the vertex [image: $$j$$] entirely contained in [image: $$\mathcal {T}$$]. Since [image: $$\mathcal {T}$$] contains no loops, the path [image: $$\gamma _{\,i,j}$$] is essentially unique, i.e. any two such paths differ by a sequence of elementary moves. Thus we can use the parallel transport to obtain bases [image: $$\{X^1_j,\ldots ,X^\mathfrak {K}_j\}\subset \mathrm E_j$$] and [image: $$\{\tilde{X}^1_j,\ldots ,\tilde{X}^\mathfrak {K}_j\}\subset \tilde{\mathrm E}_j$$] at every vertex [image: $$j$$] of [image: $$\mathcal {X}$$]. With respect to these bases the connections [image: $$\eta $$] and [image: $$\tilde{\eta }$$] are represented by elements of [image: $$\text {GL}(\mathfrak {K},\mathbb F)$$]. By construction, for each edge [image: $$e$$] in [image: $$\mathcal {T}$$] the connection is represented by the identity matrix. Moreover, to each edge [image: $$e=jk$$] not contained in [image: $$\mathcal {T}$$] there corresponds a unique [image: $$[\gamma _e]\in \pi _1(\mathcal {X}^1, i)$$]. With the notation above, it is given by [image: $$\gamma _e = \gamma ^{-1}_{i,k}e\, \gamma _{\,i,j}$$]. In particular, on the edge [image: $$e$$] both connections are represented by the same matrix [image: $$\rho ([\gamma _{e}])=\tilde{\rho }([\gamma _e])$$]. Thus, if we define [image: $$f:\mathrm E \rightarrow \tilde{\mathrm E}$$] by [image: $$f(X^m_j):=\tilde{X}^m_j$$] for [image: $$m=1,\ldots ,\mathfrak {K}$$], we obtain an isomorphism, i.e. [image: $$\mathrm E\cong \tilde{\mathrm E}$$]. Hence [image: $$F$$] is injective.
To see that [image: $$F$$] is surjective we use [image: $$\mathcal {T}$$] to equip the product bundle [image: $$\mathrm E:= \mathcal {V}\times \mathbb F^\mathfrak {K}$$] with a particular connection [image: $$\eta $$]. Let [image: $$\rho \in \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i),\text {GL}(\mathfrak {K},\mathbb F)\bigr )$$]. If [image: $$e$$] lies in [image: $$\mathcal {T}$$] we set [image: $$\eta _e = \text {id}$$] else we set [image: $$\eta _e:= \rho ([\gamma _e])$$]. By construction, [image: $$F([\mathrm E])=[\rho ]$$]. Thus [image: $$F$$] is surjective. [image: $$\square $$]
        

Remark 4.4
Note that Theorem 4.3 can be regarded as a discrete analogue of a theorem of S. Kobayashi [10, 13], which states that the equivalence classes of connections on principal [image: $$G$$]-bundles over a manifold [image: $$M$$] are in one-to-one correspondence with the conjugacy classes of continuous homomorphisms from the path group [image: $$\Phi (\mathrm M)$$] to the structure group [image: $$G$$]. In fact, the fundamental group of the [image: $$1$$]-skeleton is a discrete analogue of [image: $$\Phi (\mathrm M)$$].


5 Discrete Line Bundles—The Abelian Case
In this section we want to focus on discrete line bundles, i.e. discrete vector bundle of rank [image: $$1$$]. Here the monodromy descends to a group homomorphism from the closed [image: $$1$$]-chains to the multiplicative group [image: $$\mathbb F_*:= \mathbb F\setminus \{0\}$$] of the underlying field. This leads to a description by discrete differential forms (Sect. 6).
Let [image: $$\mathrm L\rightarrow \mathcal {X}$$] be discrete [image: $$\mathbb F$$]-line bundle over a connected simplicial complex. In this case the structure group is just [image: $$\mathbb F_*$$], which is abelian. Thus we obtain[image: $$ \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1,i),\mathbb F_*)\bigr )/_\sim = \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i), \mathbb F_*\bigr ). $$]



        [image: $$\mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i), \mathbb F_*\bigr )$$] carries a natural group structure. Moreover, the isomorphism classes of discrete line bundles over [image: $$\mathcal {X}$$] form an abelian group. The group structure is given by the tensor product: For [image: $$[\mathrm L], [\tilde{\mathrm L}]\in \mathfrak {V}_\mathbb F^{1}(\mathcal {X})$$], we have[image: $$ [\mathrm L][\tilde{\mathrm L}] = [\mathrm L\otimes \tilde{\mathrm L}],\quad [\mathrm L]^{-1} = [\mathrm L^*]. $$]


The identity element is given by the trivial bundle. In the following we will denote the group of isomorphism classes of [image: $$\mathbb F$$]
        -line bundles over [image: $$\mathcal {X}$$] by [image: $$\mathcal {L}_{\mathcal {X}}^\mathbb F$$].
The map [image: $$F:\mathcal {L}_{\mathcal {X}}^\mathbb F\rightarrow \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i), \mathbb F_*\bigr )$$], [image: $$[\mathrm L]\mapsto [\mathfrak {M}]$$] is a group homomorphism. By Theorem 4.3, [image: $$F$$] is then an isomorphism.
Now, since [image: $$\mathbb F_*$$] is abelian, each homomorphism [image: $$\rho \in \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i), \mathbb F_*\bigr )$$] factors through the abelianization
        [image: $$ \pi _1(\mathcal {X}^1, i)_{ab}= \pi _1(\mathcal {X}^1, i)/[\pi _1(\mathcal {X}^1, i),\pi _1(\mathcal {X}^1, i)], $$]


i.e. for each [image: $$\rho \in \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i), \mathbb F_*\bigr )$$] there is a unique [image: $$\rho _{ab}\in \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i)_{ab}, \mathbb F_*\bigr )$$] such that[image: $$ \rho = \rho _{ab}\circ \pi _{ab}. $$]


Here [image: $$\pi _{ab} :\pi _1(\mathcal {X}^1, i) \rightarrow \pi _1(\mathcal {X}^1, i)_{ab}$$] denotes the canonical projection. This yields an isomorphism between [image: $$\mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i), \mathbb F_*\bigr )$$] and [image: $$\mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i)_{ab}, \mathbb F_*\bigr )$$]. In particular,[image: $$ \mathcal {L}_{\mathcal {X}}^\mathbb F\cong \mathrm {Hom}\bigl (\pi _1(\mathcal {X}^1, i)_{ab}, \mathbb F_*\bigr ). $$]


As we will see below, the abelianization [image: $$\pi _1(\mathcal {X}^1, i)_{ab}$$] is naturally isomorphic to the group of closed [image: $$1$$]-chains.
The group of [image: $$k$$]
        -chains [image: $$\mathrm {C}_k(\mathcal {X}, \mathbb Z)$$] is defined as the free abelian group which is generated by the [image: $$k$$]-simplices of [image: $$\mathcal {X}$$]. More precisely, let [image: $$\mathcal {X}^{or}_k$$] denote the set of oriented [image: $$k$$]
        -simplices of [image: $$\mathcal {X}$$]. Clearly, for [image: $$k>0$$], each [image: $$k$$]-simplex has two orientations. Interchanging these orientations yields a fixed-point-free involution [image: $$\rho _k :\mathcal {X}_k^{or} \rightarrow \mathcal {X}_k^{or}$$]. The group of [image: $$k$$]-chains is then explicitly given as follows:[image: $$ \mathrm {C}_k(\mathcal {X}, \mathbb Z) := \bigl \{c :\mathcal {X}_k^{or} \rightarrow \mathbb Z\mid c\circ \rho _k = -c \bigr \}. $$]


Since simplices of dimension zero have only one orientation, [image: $$\mathcal {X}_0^{or}=\mathcal {X}_0$$]. Thus,[image: $$ \mathrm {C}_0(\mathcal {X}, \mathbb Z) := \bigl \{c :\mathcal {X}_k^{or} \rightarrow \mathbb Z\bigr \}. $$]


It is common to identify an oriented [image: $$k$$]-simplex [image: $$\sigma $$] with its elementary [image: $$k$$]
        -chain, i.e. the chain which is [image: $$1$$] for [image: $$\sigma $$], [image: $$-1$$] for the oppositely oriented simplex and zero else. With this identification a [image: $$k$$]-chain [image: $$c$$] can be written as a formal sum of oriented [image: $$k$$]-simplices with integer coefficients:[image: $$ c = \sum _{i=1}^m n_i \sigma _i,\quad n_i\in \mathbb Z, \, \sigma _i \in \mathcal {X}_k^{or}. $$]


The boundary operator [image: $$\partial _k:\mathrm {C}_k(\mathcal {X},\mathbb Z) \rightarrow \mathrm {C}_{k-1}(\mathcal {X},\mathbb Z)$$] is then the homomorphism which is uniquely determined by[image: $$ \partial _k \,i_0\cdots i_k= \sum _{j=0}^k (-1)^j\, i_0\cdots \widehat{i_j}\cdots i_k. $$]


It well-known that [image: $$\partial _{k}\circ \partial _{k+1}\equiv 0$$]. Thus we get a chain complex[image: $$ 0 \xleftarrow {\partial _{0}}\mathrm {C}_{0}(\mathcal {X},\mathbb Z)\xleftarrow {\partial _{1}}\mathrm {C}_{1}(\mathcal {X},\mathbb Z)\xleftarrow {\partial _{2}}\cdots \xleftarrow {\partial _{k}}\mathrm {C}_{k}(\mathcal {X},\mathbb Z)\xleftarrow {\partial _{k+1}}\cdots . $$]


The simplicial Homology groups [image: $$\mathrm {H}_k (\mathcal {X},\mathbb Z)$$] may be regarded as a measure for the deviation of exactness:[image: $$ \mathrm {H}_k (\mathcal {X},\mathbb Z) : = \mathrm {ker}\,\partial _k/\mathrm {im}\,\partial _{k+1}. $$]


The elements of [image: $$\mathrm {ker}\,\partial _k$$] are called [image: $$k$$]
        -cycles, those of [image: $$\mathrm {im}\,\partial _{k+1}$$] are called [image: $$k$$]
        -boundaries.
It is a well-known fact that the abelianization of the first fundamental group is the first homology group (see e.g. [7]). Now, since the first homology of the [image: $$1$$]-skeleton consists exactly of all closed chains of [image: $$\mathcal {X}$$], we obtain[image: $$ \pi _1(\mathcal {X}^1, i)_{ab} \cong \ker \partial _1. $$]


The isomorphism is induced by the map [image: $$\pi _1(\mathcal {X}^1, i) \rightarrow \ker \partial _1$$] given by [image: $$[\gamma ]\mapsto \sum _j e_j$$], where [image: $$\gamma =e_\ell \cdots e_1$$]. We summarize the above discussion in the following theorem.
Theorem 5.1
The group of isomorphism classes of line bundles [image: $$\mathcal {L}_{\mathcal {X}}^\mathbb F$$] is naturally isomorphic to the group [image: $$\mathrm {Hom}(\ker \partial _1, \mathbb F_*)$$]:[image: $$ \mathcal {L}_{\mathcal {X}}^\mathbb F\cong \mathrm {Hom}(\ker \partial _1, \mathbb F_*). $$]





The isomorphism of Theorem 5.1 can be made explicit using discrete [image: $$\mathbb F_*$$]-valued [image: $$1$$]-forms associated to the connection of a discrete line bundle.

6 Discrete Connection Forms
Throughout this section [image: $$\mathcal {X}$$] denotes a connected simplicial complex.
Definition 6.1
Let [image: $$\mathfrak G$$] be an abelian group. The group of [image: $$\mathfrak G$$]
          -valued discrete [image: $$k$$]
          -forms is defined as follows:[image: $$ \varOmega ^k(\mathcal {X},\mathfrak G):=\bigl \{\omega :\mathrm {C}_k(\mathcal {X}) \rightarrow \mathfrak G\mid \omega \text { group homomorphism}\bigr \}. $$]


The discrete exterior derivative [image: $$d_k$$] is then defined to be the adjoint of [image: $$\partial _{k+1}$$], i.e.[image: $$ d_k :\varOmega ^k(\mathcal {X},\mathfrak G) \rightarrow \varOmega ^{k+1}(\mathcal {X},\mathfrak G), \quad d_k\omega := \omega \circ \partial _{k+1}. $$]





By construction, we immediately get that [image: $$d_{k+1}\circ d_k\equiv 0$$]. The corresponding cochain complex is called the discrete de Rahm complex with coefficients in [image: $$\mathfrak G$$]:[image: $$ 0 \rightarrow \varOmega ^0(\mathcal {X},\mathfrak G)\xrightarrow {d_0}\varOmega ^1(\mathcal {X},\mathfrak G)\xrightarrow {d_{1}}\cdots \xrightarrow {d_{k-1}}\varOmega ^k(\mathcal {X},\mathfrak G)\xrightarrow {d_{k}}\cdots . $$]


In analogy to the construction of the homology groups, the [image: $$k$$]-th de Rahm Cohomology group [image: $$\mathrm {H}^k (\mathcal {X},\mathfrak G)$$] with coefficients in [image: $$\mathfrak G$$] is defined as the quotient group[image: $$ \mathrm {H}^k (\mathcal {X},\mathfrak G) : = \mathrm {ker}\,d_k/\mathrm {im}\,d_{k-1}. $$]


The discrete [image: $$k$$]-forms in [image: $$\mathrm {ker}\,d_k$$] are called closed, those in [image: $$\mathrm {im}\,d_{k-1}$$] are called exact.
Now, let [image: $$\mathfrak {C}_{\mathrm L}$$] denote the space of connections on the discrete [image: $$\mathbb F$$]-line bundle [image: $$\mathrm L \rightarrow \mathcal {X}$$]:[image: $$ \mathfrak {C}_{\mathrm L} : = \bigl \{\eta \mid \eta \textit{ connection on }\mathrm L\bigr \}. $$]


Any two connections [image: $$\eta ,\theta \in \mathfrak {C}_{\mathrm L}$$] differ by a unique discrete [image: $$1$$]-form [image: $$\omega \in \varOmega ^1(\mathcal {X},\mathbb F_*)$$]:[image: $$ \theta = \omega \eta . $$]


Hence the group [image: $$\varOmega ^1(\mathcal {X}, \mathbb F_*)$$] acts simply transitively on the space of connections [image: $$\mathfrak C_{\mathrm L}$$]. In particular, each choice of a base connection [image: $$\beta \in \mathfrak C_{\mathrm L}$$] establishes an identification[image: $$ \mathfrak C_{\mathrm L} \ni \eta =\omega \beta \longleftrightarrow \omega \in \varOmega ^1(\mathcal {X}, \mathbb F_*). $$]




Remark 6.2
Note that each discrete vector bundle admits a trivial connection. To see this choose for each vertex a basis of the corresponding fiber. The corresponding coordinates establish an identification with the product bundle. Then there is a unique connection that makes the diagrams over all edges commute.

Definition 6.3
Let [image: $$\eta \in \mathfrak {C}_{\mathrm L}$$]. A connection form representing the connection [image: $$\eta $$] is a [image: $$1$$]-form [image: $$\omega \in \varOmega ^1(\mathcal {X}, \mathbb F_*)$$] such that [image: $$\eta = \omega \beta $$] for some trivial base connection [image: $$\beta $$].

Clearly, there are many connection forms representing a connection. We want to see how two such forms are related.
More generally, two connections [image: $$\eta $$] and [image: $$\theta $$] in [image: $$\mathfrak {C}_{\mathrm L} $$] lead to isomorphic discrete line bundles if and only if for each fiber there is a vector space isomorphism [image: $$f_i:\mathrm L_i \rightarrow \mathrm L_i$$], such that for each edge [image: $${ij}$$]:[image: $$ \theta _{{ij}}\circ f_{i} = f_{j} \circ \eta _{{ij}}. $$]


Since [image: $$\eta _e$$] and [image: $$\theta _e$$] are linear, this boils down to discrete [image: $$\mathbb F_*$$]-valued functions and the relation characterizing an isomorphism becomes[image: $$ \theta _{{ij}} = \bigl (g_jg_i^{-1}\bigr ) \eta _{{ij}} = (dg)_{{ij}} \eta _{{ij}}, $$]


i.e. [image: $$\eta $$] and [image: $$\theta $$] differ by an exact discrete [image: $$\mathbb F_*$$]-valued [image: $$1$$]-form. In particular, the difference of two connection forms representing the same connection [image: $$\eta $$] is exact.
Thus we obtain a well-defined map sending a discrete line bundle [image: $$\mathrm L$$] with connection to the corresponding equivalence class of connection forms[image: $$ [\omega ]\in \varOmega ^1(\mathcal {X}, \mathbb F_*)/d\varOmega ^0(\mathcal {X}, \mathbb F_*). $$]




Theorem 6.4
The map [image: $$F:\mathcal {L}_{\mathcal {X}}^\mathbb F\rightarrow \varOmega ^1(\mathcal {X}, \mathbb F_*)/d\varOmega ^0(\mathcal {X}, \mathbb F_*)$$], [image: $$[\mathrm L]\mapsto [\omega ]$$], where [image: $$\omega $$] is a connection form of [image: $$\mathrm L$$], is an isomorphism of groups.

Proof
Clearly, [image: $$F$$] is well-defined. Let [image: $$\mathrm L$$] and [image: $$\tilde{\mathrm L}$$] be two discrete complex line bundle with connections [image: $$\eta $$] and [image: $$\theta $$], respectively. If [image: $$\beta \in \mathfrak {C}_{\mathrm L}$$] and [image: $$\tilde{\beta }\in \mathfrak {C}_{\tilde{\mathrm L}}$$] are trivial, so is [image: $$\beta \otimes \tilde{\beta }\in \mathfrak {C}_{\mathrm L\otimes \tilde{\mathrm L}}$$]. Hence, with [image: $$\eta = \omega \beta $$] and [image: $$\tilde{\eta }= {\tilde{\omega }}\tilde{\beta }$$], we get[image: $$ F([\mathrm L\otimes \tilde{\mathrm L}]) = [\omega {\tilde{\omega }}]= [\omega ][{\tilde{\omega }}]= F([\mathrm L])F([\tilde{\mathrm L}]). $$]


By the preceding discussion, [image: $$F$$] is injective. Surjectivity is also easily checked. [image: $$\square $$]
        

Next we want to prove that the map given by[image: $$ \varOmega ^1(\mathcal {X}, \mathbb F_*)/d\varOmega ^0(\mathcal {X}, \mathbb F_*)\ni [\omega ] \mapsto \left. \omega \right| _{\ker \partial _1}\in \mathrm {Hom}(\ker \partial _1,\mathbb F_*) $$]


is a group isomorphism. Clearly, it is a well-defined group homomorphism. We show its bijectivity in two steps. First, the surjectivity is provided by the following
Lemma 6.5
Let [image: $$\mathcal {X}$$] be a simplicial complex and [image: $$\mathfrak G$$] be an abelian group. Then the restriction map [image: $$\Phi :\varOmega ^k(\mathcal {X}, \mathfrak G) \rightarrow \mathrm {Hom}(\mathrm {ker}\,\partial _k, \mathfrak G),\,\omega \mapsto \left. \omega \right| _{\mathrm {ker}\,\partial _k}$$] is surjective.

Proof
If we choose an orientation for each simplex in [image: $$\mathcal {X}$$], then [image: $$\partial _k$$] is given by an integer matrix. Now, there is a unimodular matrix [image: $$U$$] such that [image: $$\partial _k U = (0| H)$$] has Hermite normal form. Write [image: $$U = (A| B)$$], where [image: $$\partial _k A =0$$] and [image: $$\partial _k B =H$$] and let [image: $$a_i$$] denote the columns of [image: $$A$$], i.e. [image: $$A=(a_1,\ldots ,a_\ell )$$]. Clearly, [image: $$a_i\in \mathrm {ker}\,\partial _k$$]. Moreover, if [image: $$c\in \mathrm {ker}\,\partial _k$$], then [image: $$0= \partial _k c= (0|H) U^{-1}c$$]. Hence [image: $$U^{-1}c= (q,0)^\top $$], [image: $$q\in \mathbb Z^\ell $$], and thus [image: $$c = Aq$$]. Therefore [image: $$\{a_i\mid i=1,\ldots ,\ell \}$$] is a basis of [image: $$\mathrm {ker}\,\partial _k$$]. Now, let [image: $$\mu \in \mathrm {Hom}(\mathrm {ker}\,\partial _k, \mathbb Z)$$]. A homomorphism is completely determined by its values on a basis. We define [image: $$\omega = (\mu (a_1),\ldots ,\mu (a_\ell ),0\ldots ,0)U^{-1}$$]. Then [image: $$\omega \in \varOmega ^k(\mathcal {X} , \mathbb Z)$$] and [image: $$\omega A = (\mu (a_1),\ldots ,\mu (a_\ell ))$$]. Hence [image: $$\Phi (\omega )= \mu $$] and [image: $$\Phi $$] is surjective for forms with coefficients in [image: $$\mathbb Z$$]. Now, let [image: $$\mathfrak G$$] be an arbitrary abelian group. And [image: $$\mu \in \mathrm {Hom}(\mathrm {ker}\,\partial _k, \mathfrak G)$$]. Now, if [image: $$a_1,..,a_\ell $$] is an arbitrary basis of [image: $$\mathrm {ker}\,\partial _k$$], then there are forms [image: $$\omega _1,\ldots ,\omega _\ell \in \varOmega ^k(\mathcal {X}, \mathbb Z)$$] such that [image: $$\omega _i(a_j)=\delta _{{ij}}$$]. Since [image: $$\mathbb Z$$] acts on [image: $$\mathfrak G$$], we can multiply [image: $$\omega _i$$] with elements [image: $$g\in \mathfrak G$$] to obtain forms with coefficients in [image: $$\mathfrak G$$]. Now, set [image: $$\omega = \sum _{i=1}^\ell \omega _i\cdot \mu (a_i)$$]. Then [image: $$\omega \in \varOmega ^k(\mathcal {X}, \mathfrak G)$$] and [image: $$\omega (a_i)= \mu (a_i)$$] for [image: $$i=1,\ldots ,\ell $$]. Thus [image: $$\Phi (\omega )= \mu $$]. Hence [image: $$\Phi $$] is surjective for forms with coefficients in arbitrary abelian groups. [image: $$\square $$]
        

The injectivity is actually easy to see: If [image: $$\left. \omega \right| _{\ker \partial _1}=0$$], we define an [image: $$\mathbb F_*$$]-valued function [image: $$f$$] by integration along paths: Fix some vertex [image: $$i$$]. Then[image: $$ f(j):= \int _{\gamma } \omega := \sum _{e\in \gamma }\omega (e), $$]


where [image: $$\gamma $$] is some path joining [image: $$i$$] to [image: $$j$$]. Since [image: $$\left. \omega \right| _{\ker \partial _1}=0$$], the value [image: $$f(j)$$] does not depend on the choice of the path [image: $$\gamma $$]. Moreover, [image: $$df= \omega $$]. Together with Lemma 6.5, this yields the following theorem.
Theorem 6.6
The map [image: $$F:\varOmega ^1(\mathcal {X}, \mathbb F_*)/d\varOmega ^0(\mathcal {X}, \mathbb F_*)\rightarrow \mathrm {Hom}(\ker \partial _1 , \mathbb F_*)$$] given by [image: $$[\omega ]\mapsto \left. \omega \right| _{\ker \partial _1}$$] is an isomorphism of groups.

Now, let us relate this to Theorem 5.1. Let [image: $$\mathrm L\rightarrow \mathcal {X}$$] be a line bundle with connection [image: $$\eta $$] and [image: $$\omega $$] be a connection form representing [image: $$\eta $$], i.e. [image: $$\eta = \omega \beta $$] for some trivial base connection [image: $$\beta $$]. Let [image: $$[\gamma ]\in \pi _1(\mathcal {X}^1, i)$$], where [image: $$\gamma =e_\ell \cdots e_1$$]. By linearity and since trivial connections have vanishing monodromy, we obtain[image: $$ \mathfrak {M}([\gamma ])=\eta _{e_\ell }\circ \cdots \circ \eta _{e_1} = \omega _{e_\ell }\cdots \omega _{e_1}\cdot \beta _{e_\ell }\circ \cdots \circ \beta _{e_1}= \omega (\pi _{ab}([\gamma ])) \cdot \left. \text {id}\right| _{\mathrm L_i}{.} $$]


Hence, by the uniqueness of [image: $$[\mathfrak {M}]_{ab}$$], we obtain the following theorem that brings everything nicely together.
Theorem 6.7
Let [image: $$\mathrm L \rightarrow \mathcal {X}$$] be a line bundle with connection [image: $$\eta $$]. Let [image: $$\mathfrak {M}$$] denote its monodromy and let [image: $$\omega $$] be some connection form representing [image: $$\eta $$]. Then, with the identifications above,[image: $$ [\mathfrak {M}]_{ab} = [\omega ]. $$]






7 Curvature—A Discrete Analogue of Weil’s Theorem
In this section we describe complex and hermitian line bundles by their curvature. For the first time we use more than the [image: $$1$$]-skeleton.
Let [image: $$\mathcal {X}$$] be a connected simplicial complex and [image: $$\mathfrak G$$] an abelian group. Since [image: $$d^2=0$$], the exterior derivative descends to a well-defined map on [image: $$\varOmega ^k(\mathcal {X}, \mathfrak G)/d\varOmega ^{k-1}(\mathcal {X}, \mathfrak G)$$], which again will be denoted by [image: $$d$$]. Explicitly,[image: $$ d:\varOmega ^k(\mathcal {X}, \mathfrak G)/d\varOmega ^{k-1}(\mathcal {X}, \mathfrak G)\rightarrow \varOmega ^{k+1}(\mathcal {X}, \mathfrak G), \quad [\omega ] \mapsto d\omega . $$]




Definition 7.1
The [image: $$\mathbb F_*$$]
          -curvature of a discrete [image: $$\mathbb F$$]-line bundle [image: $$\mathrm L \rightarrow \mathcal {X}$$] is the discrete [image: $$2$$]-form [image: $$\varOmega \in \varOmega ^2(\mathcal {X}, \mathbb F_*)$$] given by[image: $$ \varOmega = d[\omega ], $$]


where [image: $$[\omega ]\in \varOmega ^1(\mathcal {X}, \mathbb F_*)/d\varOmega ^0(\mathcal {X}, \mathbb F_*)$$] represents the isomorphism class [image: $$[\mathrm L]$$].

Remark 7.2
Note that [image: $$\varOmega $$] just encodes the parallel transport along the boundary of the oriented [image: $$2$$]-simplices of [image: $$\mathcal {X}$$]—the “local monodromy”.

From the definition it is obvious that the [image: $$\mathbb F_*$$]-curvature is invariant under isomorphisms. Thus, given a prescribed [image: $$2$$]-form [image: $$\varOmega \in \varOmega ^2(\mathcal {X}, \mathbb F_*)$$], it is a natural question to ask how many non-isomorphic line bundles have curvature [image: $$\varOmega $$].
Actually, this question is answered easily: If [image: $$d[\omega ]=\varOmega =d[{\tilde{\omega }}]$$], then the difference of [image: $$\omega $$] and [image: $${\tilde{\omega }}$$] is closed. Factoring out the exact [image: $$1$$]-forms we see that the space of non-isomorphic line bundles with curvature [image: $$\varOmega $$] can be parameterized by the first cohomology group [image: $$\mathrm {H}^1(\mathcal {X}, \mathbb F_*)$$]. Furthermore, the existence of a line bundle with curvature [image: $$\varOmega \in \varOmega ^2(\mathcal {X}, \mathbb F_*)$$] is equivalent to the exactness of [image: $$\varOmega $$].
But when is a [image: $$k$$]-form [image: $$\varOmega $$] exact? Certainly it must be closed. Even more, it must vanish on every closed [image: $$k$$]-chain: If [image: $$\varOmega = \mathrm {im}\,\, d$$] and [image: $$S$$] is a closed [image: $$k$$]-chain, then[image: $$ \varOmega (S) = d\omega (S)= \omega (\partial S)= 0. $$]


For [image: $$k=1$$], as we have seen, this criterion is sufficient for exactness. For [image: $$k>1$$] this is not true with coefficients in arbitrary groups.
Example 7.3
Consider a triangulation [image: $$\mathcal {X}$$] of the real projective plane [image: $$\mathbb R\mathrm {P}^2$$]. The zero-chain is the only closed [image: $$2$$]-chain and hence each [image: $$\mathbb Z_2$$]-valued [image: $$2$$]-form vanishes on every closed [image: $$2$$]-chain. But [image: $$\mathrm {H}^2(\mathcal {X}, \mathbb Z_2)= \mathbb Z_2$$] and hence there exists a non-exact [image: $$2$$]-form.

In the following we will see that this cannot happen for fields of characteristic zero or, more generally, for groups that arise as the image of such fields.
Clearly, there is a natural pairing of [image: $$\mathbb Z$$]-modules between [image: $$\varOmega ^k(\mathcal {X},\mathfrak G)$$] and [image: $$\mathrm {C}_k(\mathcal {X},\mathbb Z)$$]:[image: $$ \langle .,.\rangle :\varOmega ^k(\mathcal {X},\mathfrak G)\times \mathrm {C}_k(\mathcal {X},\mathbb Z) \rightarrow \mathfrak G, \quad (\omega ,c)\mapsto \omega (c). $$]


This pairing is degenerate if and only if all elements of [image: $$\mathfrak G$$] have bounded order. In particular, if [image: $$\mathfrak G$$] is a field [image: $$\mathbb F$$] of characteristic zero, [image: $$\langle .,.\rangle $$] yields a group homomorphism[image: $$ F_k:\mathrm {C}_k(\mathcal {X}, \mathbb Z) \rightarrow \mathrm {Hom}_{\mathbb F}(\varOmega ^k(\mathcal {X}, \mathbb F), \mathbb F) = (\varOmega ^k(\mathcal {X}, \mathbb F))^*. $$]


A basis of [image: $$\mathrm {C}_k(\mathcal {X}, \mathbb Z)$$] is mapped under [image: $$F_k$$] to a basis of [image: $$(\varOmega ^k(\mathcal {X}, \mathbb F))^*$$] and hence [image: $$\mathrm {C}_k(\mathcal {X}, \mathbb Z)$$] appears as an [image: $$n_k$$]-dimensional lattice in [image: $$(\varOmega ^k(\mathcal {X}, \mathbb F))^*$$].
Let [image: $$d^*_k$$] denote the adjoint of the discrete exterior derivative [image: $$d_k$$] with respect to the natural pairing between [image: $$\varOmega ^k(\mathcal {X},\mathbb F)$$] and [image: $$(\varOmega ^k(\mathcal {X}, \mathbb F))^*$$]. Clearly,[image: $$ d_k^*\circ F_k = F_k\circ \partial _{k+1}. $$]


Now, since the simplicial complex is finite, we can choose bases of [image: $$\mathrm {C}_k(\mathcal {X}, \mathbb Z)$$] for all [image: $$k$$]. This in turn yields bases of [image: $$(\varOmega ^k(\mathcal {X},\mathbb F))^*$$] and hence, by duality, bases of [image: $$\varOmega ^k(\mathcal {X}, \mathbb F)$$]. With respect to these bases we have[image: $$\begin{aligned} \mathrm {C}_k(\mathcal {X}, \mathbb Z) = \mathbb Z^{n_k} \subset \mathbb F^{n_k}= (\varOmega ^k(\mathcal {X},\mathbb F))^*= \varOmega ^k(\mathcal {X},\mathbb F), \end{aligned}$$]

 (3)

where [image: $$n_k$$] denotes the number of [image: $$k$$]-simplices. Moreover, the pairing is represented by the standard product. The operator [image: $$d_{k-1}^*= \partial _k$$] is then just an integer matrix and[image: $$ \partial _k= d_{k-1}^\top . $$]


We have [image: $$\mathrm {im}\,d_{k-1}\perp \mathrm {ker}\,d_{k-1}^*$$]. Moreover, by the rank-nullity theorem,[image: $$ n_k= \mathrm {dim}\,\mathrm {im}\,d_{k-1}^*+ \mathrm {dim}\,\mathrm {ker}\,d_{k-1}^*= \mathrm {dim}\,\mathrm {im}\,d_{k-1} + \mathrm {dim}\,\mathrm {ker}\,d_{k-1}^*. $$]


Hence, under the identifications above, we have that [image: $$\mathbb F^{n_k} = \mathrm {im}\,d_{k-1}\oplus _{\!\!\perp }\mathrm {ker}\,d_{k-1}^*$$] (see Fig. 6). Moreover, [image: $$\ker \partial _k$$] contains a basis of [image: $$\mathrm {ker}\,d_{k-1}^*$$]. From this we conclude immediately the following lemma.[image: A371662_1_En_6_Fig6_HTML.gif]
Fig. 6With the identifications (3), the space of [image: $$k$$]-forms becomes a direct sum of the image of [image: $$d_{k-1}$$] and the kernel of its adjoint [image: $$d_{k-1}^*$$], the latter of which contains the closed [image: $$k$$]-chains as a lattice





Lemma 7.4
Let [image: $$\omega \in \varOmega ^k (\mathcal {X}, \mathbb F)$$], where [image: $$\mathbb F$$] is a field of characteristic zero. Then[image: $$ \omega \in \mathrm {im}\,d_{k-1}\Longleftrightarrow \langle \omega , c\rangle = 0 \textit{ for all } c\in \mathrm {ker}\,\partial _k. $$]





Remark 7.5
Note, that for boundary cycles the condition is nothing but the closedness of the form [image: $$\omega $$]. Thus Lemma 7.4 states that a closed form [image: $$\omega \in \varOmega ^k(\mathcal {X}, \mathbb F)$$] is exact if and only if the integral over all homology classes [image: $$[c]\in \mathrm {H}_k (\mathcal {X}, \mathbb Z)$$] vanishes.

Let [image: $$\mathfrak G$$] be an abelian group. The sequence below will be referred to as the [image: $$k$$]
        -th fundamental sequence of forms with coefficients in [image: $$\mathfrak G$$]:[image: $$ \varOmega ^{k-1}(\mathcal {X}, \mathfrak G)\xrightarrow {d_{k-1}} \varOmega ^k(\mathcal {X}, \mathfrak G) \xrightarrow {\Phi _k} \mathrm {Hom}(\mathrm {ker}\,\partial _k, \mathfrak G) \rightarrow 0, $$]


where [image: $$\Phi _k$$] denotes the restriction to the kernel of [image: $$\partial _k$$], i.e. [image: $$\Phi _k(\omega ):=\left. \omega \right| _{\ker \partial _k}$$].
Combining Lemmas 6.5 and 7.4 we obtain that the fundamental sequence with coefficients in a field [image: $$\mathbb F$$] of characteristic zero is exact for all [image: $$k>1$$]. This serves as an anchor point. The exactness propagates under surjective group homomorphisms.
Lemma 7.6
Let [image: $$\mathfrak A \xrightarrow {f} \mathfrak B \rightarrow 0$$] be a an exact sequence of abelian groups. Then, if the [image: $$k$$]-th fundamental sequence of forms is exact with coefficients in [image: $$\mathfrak A$$], so it is with coefficients in [image: $$\mathfrak B$$].

Proof
By Lemma 6.5 the restriction map [image: $$\Phi _k$$] is surjective for every abelian group. It is left to check that [image: $$\mathrm {ker}\,\Phi _k = \mathrm {im}\,d_{k-1}$$] with coefficients in [image: $$\mathfrak B$$]. Let [image: $$\varOmega \in \varOmega ^k(\mathcal {X}, \mathfrak B)$$] such that [image: $$\Phi _k(\varOmega )=0$$]. Since [image: $$f:\mathfrak A \rightarrow \mathfrak B$$] is surjective, there is a form [image: $$\Xi \in \varOmega ^k(\mathcal {X}, \mathfrak A)$$] such that [image: $$\varOmega = f\circ \Xi $$]. Since [image: $$0=\Phi _k(\varOmega ) = f\circ \Phi _k(\Xi )$$], we obtain that [image: $$\Phi _k(\Xi )$$] takes its values in [image: $$\ker f$$]. Since [image: $$\Phi _k$$] is surjective for arbitrary groups, there is [image: $$\Theta \in \varOmega ^k(\mathcal {X}, \ker f)$$] such that [image: $$\Phi _k(\Xi )= \Phi _k(\Theta )$$]. Hence [image: $$\Phi _k(\Xi -\Theta )=0$$]. Thus there is a form [image: $$\xi \in \varOmega ^{k-1}(\mathcal {X}, \mathfrak A)$$] such that [image: $$d_{k-1}\xi = \Xi - \Theta $$]. Now, let [image: $$\omega := f\circ \xi \in \varOmega ^{k-1}(\mathcal {X}, \mathfrak B)$$]. Then[image: $$ d_{k-1}\omega = d_{k-1} f\circ \xi = f\circ d_{k-1}\xi = f\circ (\Xi - \Theta ) = f\circ \Xi =\varOmega . $$]


Hence [image: $$\mathrm {ker}\,\Phi _k = \mathrm {im}\,d_{k-1}$$] and the sequence (with coefficients in [image: $$\mathfrak B$$]) is exact. [image: $$\square $$]
        

Remark 7.7
The map [image: $$f:\mathbb C\rightarrow \mathbb C,\, z\mapsto \exp (2\pi \imath \, z)$$] provides a surjective group homomorphism from [image: $$\mathbb C$$] onto [image: $$\mathbb C_*$$], and similarly from [image: $$\mathbb R$$] onto [image: $$\mathbb S$$]. Hence the [image: $$k$$]-th fundamental sequence of forms is exact for coefficients in [image: $$\mathbb C_*$$] and in the unit circle [image: $$\mathbb S$$].

Remark 7.8
The [image: $$k$$]-th fundamental sequence with coefficients in an abelian group [image: $$\mathfrak G$$] is exact if and only if [image: $$\varOmega ^k(\mathcal {X}, \mathfrak G)/d\varOmega ^{k-1}(\mathcal {X}, \mathfrak G)\cong \mathrm {Hom}(\ker \partial _k, \mathfrak G)$$]. The isomorphism is induced by the restriction map [image: $$\Phi _k$$].

The following corollary is a consequence of Remark 7.7. It nicely displays the fibration of the complex line bundles by their [image: $$\mathbb C_*$$]-curvature.
Corollary 7.9
For [image: $$\mathfrak G= \mathbb S,\, \mathbb C_*$$] the following sequence is exact:[image: $$ 1\rightarrow \mathrm {H}^1(\mathcal {X}, \mathfrak G)\hookrightarrow \varOmega ^1(\mathcal {X}, \mathfrak G)/d\varOmega ^0(\mathcal {X}, \mathfrak G) \xrightarrow {d} \varOmega ^2(\mathcal {X}, \mathfrak G)\rightarrow \mathrm {Hom}(\mathrm {ker}\,\partial _2,\mathfrak G) \rightarrow 1. $$]





Definition 7.10
Let [image: $$\varOmega ^*\in \varOmega ^k(\mathcal {X}, \mathbb S)$$]. A real-valued form [image: $$\varOmega \in \varOmega ^2(\mathcal {X}, \mathbb R)$$] is called compatible with [image: $$\varOmega ^*$$] if [image: $$\varOmega ^*= \exp \bigl (\imath \varOmega \bigr )$$]. A discrete hermitian line bundle with curvature is a discrete hermitian line bundle [image: $$\mathrm L$$] with connection equipped with a closed [image: $$2$$]-form compatible with the [image: $$\mathbb S$$]-curvature of [image: $$\mathrm L$$].

For real-valued forms it is common to denote the natural pairing with the [image: $$k$$]-chains by an integral sign, i.e. for [image: $$\omega \in \varOmega ^k(\mathcal {X}, \mathbb R)$$] and [image: $$c\in \mathrm {C}_k(\mathcal {X}, \mathbb Z)$$] we write[image: $$ \int _{c} \omega := \langle \omega ,c\rangle = \omega (c). $$]




Theorem 7.11
Let [image: $$\mathrm L$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$]. Then [image: $$\varOmega $$] is integral, i.e.[image: $$ \int _{c} \varOmega \in 2\pi \, \mathbb Z, \quad \textit{ for all } c \in \ker \partial _2. $$]





Proof
By definition the curvature form [image: $$\varOmega $$] satisfies [image: $$\exp \bigl (\imath \varOmega \bigr )= d\omega $$] for some connection form [image: $$\omega \in \varOmega ^1(\mathcal {X}, \mathbb S)$$]. Thus, if [image: $$c\in \ker \partial _2$$],[image: $$\exp \bigl (\imath \!\!\int _{c}\varOmega \bigr ) = \langle \exp (\imath \varOmega ),c\rangle = \langle d\omega ,c\rangle = \langle \omega ,\partial c \rangle = 1. $$]


This proves the claim. [image: $$\square $$]
        

Conversely, Corollary 7.9 yields a discrete version of a theorem of André Weil [11, 18], which states that any closed smooth integral [image: $$2$$]-form on a manifold [image: $$\mathrm M$$] can be realized as the curvature of a hermitian line bundle. This plays a prominent role in the process of prequantization [17].
Theorem 7.12
If [image: $$\varOmega \in \varOmega ^2(\mathcal {X}, \mathbb R)$$] is integral, then there exists a hermitian line bundle with curvature [image: $$\varOmega $$].

Proof
Consider [image: $$\varOmega ^*:= \exp (i\varOmega )$$]. Since [image: $$\varOmega $$] is integral, [image: $$\langle \varOmega ^*,c\rangle = 1$$] for all [image: $$c\in \mathrm {ker}\,\partial _2$$]. By Corollary 7.9, there exists [image: $$r\in \varOmega ^1(\mathcal {X}, \mathbb S)$$] such that [image: $$dr=\varOmega ^*$$]. This in turn defines a hermitian line bundle with curvature [image: $$\varOmega $$]. [image: $$\square $$]
        

Remark 7.13
Moreover, Corollary 7.9 shows that the connections of two such bundles differ by an element of [image: $$\mathrm {H}^1(\mathcal {X}, \mathbb S)$$]. Thus the space of discrete hermitian line bundles with fixed curvature [image: $$\varOmega $$] can be parameterized by [image: $$\mathrm {H}^1(\mathcal {X}, \mathbb S)$$].


8 The Index Formula for Hermitian Line Bundles
Before we define the degree of a discrete hermitian line bundle with curvature or the index form of a section, let us first recall the situation in the smooth setting. Therefore, let [image: $$\mathrm L \rightarrow \mathrm M$$] be a smooth hermitian line bundle with connection. Since the curvature tensor [image: $$R^\nabla $$] of [image: $$\nabla $$] is a [image: $$2$$]-form taking values in the skew-symmetric endomorphisms of [image: $$\mathrm L$$], it is completely described by a closed real-valued [image: $$2$$]-form [image: $$\varOmega \in \varOmega ^2(\mathrm M, \mathbb R)$$],[image: $$ R^\nabla = -\imath \varOmega . $$]


The following theorem shows an interesting relation between the index sum of a section [image: $$\psi \in \varGamma (\mathrm L)$$], the curvature [image: $$2$$]-form [image: $$\varOmega $$], and the rotation form [image: $$\xi ^\psi $$] of [image: $$\psi $$]. This form is defined as follows:[image: $$ \xi ^\psi := \frac{\langle \nabla \psi , \imath \psi \rangle }{\langle \psi , \psi \rangle }. $$]




Theorem 8.1
Let [image: $$\mathrm L \rightarrow \mathrm M$$] be a smooth hermitian line bundle with connection and [image: $$\varOmega $$] its curvature [image: $$2$$]-form. Let [image: $$\psi \in \varGamma (\mathrm L)$$] be a section with a discrete zero set [image: $$Z$$]. Then, if [image: $$C$$] is a finite smooth [image: $$2$$]-chain such that [image: $$\partial C\mathop {\cap }Z = \emptyset $$],[image: $$ 2\pi \sum _{p\in {C\mathop {\cap }Z}} \mathrm {ind}_p^\psi = \int _{\partial C} \xi ^\psi + \int _{C} \varOmega . $$]





Proof
We can assume that [image: $$C$$] is a single smooth triangle. Then we can express [image: $$\psi $$] on [image: $$C$$] in terms of a complex-valued function [image: $$z$$] and a pointwise-normalized local section [image: $$\phi $$], i.e. [image: $$\psi = z\, \phi $$]. Since [image: $$\mathrm {Im}(\tfrac{dz}{z})= d\,\mathrm {arg}(z)$$], we obtain[image: $$ \xi ^\psi = \frac{1}{|z|^2}\langle dz\, \phi + z\, \nabla \phi , \imath z\,\phi \rangle = \langle \frac{dz}{z}\, \phi , \imath \phi \rangle + \langle \nabla \phi , \imath \phi \rangle = d\,\mathrm {arg}(z) + \langle \nabla \phi , \imath \phi \rangle . $$]


Moreover, away from zeros, we have[image: $$ d\langle \nabla \phi , \imath \phi \rangle = \langle R^\nabla \phi ,\imath \phi \rangle + \langle \nabla \phi \wedge \imath \nabla \phi \rangle = \langle R^\nabla \phi ,\imath \phi \rangle = -\varOmega . $$]


Hence we obtain[image: $$ \int _{\partial C} \xi ^\psi = \int _{\partial C} d\, \mathrm {arg}(z) + \int _{\partial C} \langle \nabla \phi , \imath \phi \rangle = 2\pi \sum _{p\in {C\mathop {\cap }Z}} \mathrm {index}_p (\psi ) - \int _{C} \varOmega . $$]


This proves the claim. [image: $$\square $$]
        

In the case that [image: $$\mathrm L$$] is a hermitian line bundle with connection over a closed oriented surface [image: $$\mathrm M$$], Theorem 8.1 tells us that [image: $$\int _{\mathrm M}\varOmega \in 2\pi \mathbb Z$$]. This yields a well-known topological invariant—the degree of [image: $$\mathrm L$$]:[image: $$ \mathrm {deg}\bigl (\mathrm L\bigr ):= \frac{1}{2\pi }\int _{\mathrm M} \varOmega . $$]


From Theorem 8.1 we immediately obtain the famous Poincaré-Hopf index theorem.
Theorem 8.2
Let [image: $$\mathrm L\rightarrow \mathrm M$$] be a smooth hermitian line bundle over a closed oriented surface. Then, if [image: $$\psi \in \varGamma (\mathrm L)$$] is a section with isolated zeros,[image: $$ \mathrm {deg}\bigl (\mathrm L\bigr ) = \sum _{p\in \mathrm M} \mathrm {ind}^\psi _p. $$]





Now, let us consider the discrete case. In general, a section of a discrete vector bundle [image: $$\mathrm E\rightarrow \mathcal {X}$$] with vertex set [image: $$\mathcal {V}$$] is a map [image: $$\psi :\mathcal {V} \rightarrow \mathrm E$$] such that the following diagram commutes

            [image: A371662_1_En_6_Figb_HTML.gif]


          
i.e. [image: $$\pi \circ \psi = id$$]. As in the smooth case, the space of sections of [image: $$\mathrm E$$] is denoted by [image: $$\varGamma (\mathrm E)$$].
Now, let [image: $$\mathrm L\rightarrow \mathcal {X}$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$] and let [image: $$\psi \in \varGamma (\mathrm L)$$] be a nowhere-vanishing section such that[image: $$\begin{aligned} \eta _{{ij}}(\psi _i)\ne -\psi _j \end{aligned}$$]

 (4)

for each edge [image: $${ij}$$] of [image: $$\mathcal {X}$$]. Here [image: $$\eta $$] denotes the connection of [image: $$\mathrm L$$] as usual. The rotation form [image: $$\xi ^\psi $$] of [image: $$\psi $$] is then defined as follows:[image: $$ \xi ^\psi _{{ij}}:= \arg \bigl (\frac{\psi _j}{\eta _{{ij}}(\psi _i)}\bigr ) \in (-\pi ,\pi ). $$]




Remark 8.3
Equation (4) can be interpreted as the condition that no zero lies in the [image: $$1$$]-skeleton of [image: $$\mathcal {X}$$] (compare Sect. 11). Actually, given a consistent choice of the argument on each oriented edge, we could drop this condition. Figuratively speaking, if a section has a zero in the [image: $$1$$]-skeleton, then we decide whether we push it to the left or the right face of the edge.

Now we can define the index form of a discrete section:
Definition 8.4
Let [image: $$\mathrm L \rightarrow \mathcal {X}$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$]. For [image: $$\psi \in \varGamma (\mathrm L)$$], we define the index form of [image: $$\psi $$] by[image: $$ \mathrm {ind}^\psi := \frac{1}{2\pi }\bigl (d\xi ^\psi + \varOmega \bigr ). $$]





Theorem 8.5
The index form of a nowhere-vanishing discrete section is [image: $$\mathbb Z$$]-valued.

Proof
Let [image: $$\mathrm L$$] be a discrete hermitian line bundle with curvature and let [image: $$\eta $$] be its connection. Let [image: $$\psi \in \varGamma (\mathrm L)$$] be a nowhere-vanishing section. Now, choose a connection form [image: $$\omega $$], i.e. [image: $$\eta =\omega \beta $$], where [image: $$\beta $$] is a trivial connection on [image: $$\mathrm L$$]. Then we can write [image: $$\psi $$] with respect to a non-vanishing parallel section [image: $$\phi $$] of [image: $$\beta $$], i.e. there is a [image: $$\mathbb C$$]-valued function [image: $$z$$] such that [image: $$\psi = z\phi $$]. Then [image: $$\xi ^\psi _{{ij}}= \arg \bigl (\frac{z_j}{\omega _{{ij}}z_i}\bigr )$$] and thus[image: $$ \exp \bigl (2\pi \imath \, d\xi ^\psi _{{i\!jk}}\bigr )=\exp \bigl (\imath \,\arg \bigl (\frac{z_i}{\omega _{ki}z_k}\bigr ) + \imath \,\arg \bigl (\frac{z_j}{\omega _{{ij}}z_i}\bigr ) + \imath \,\arg \bigl (\frac{z_k}{\omega _{jk}z_j}\bigr )\bigr ) = \frac{1}{d\omega _{{i\!jk}}}. $$]


Thus[image: $$ \exp \bigl (2\pi \imath \, \mathrm {ind}^\psi _{{i\!jk}}\bigr ) = \frac{\exp \bigl (\imath \varOmega _{{i\!jk}}\bigr )}{d\omega _{{i\!jk}}}= 1. $$]


This proves the claim. [image: $$\square $$]
        

If [image: $$\mathrm L$$] is a discrete hermitian line bundle with curvature [image: $$\varOmega $$] over a closed oriented surface [image: $$\mathcal {X}$$], then we define the degree of [image: $$\mathrm L$$] just as in the smooth case:[image: $$ \mathrm {deg}\bigl (\mathrm L\bigr ) := \frac{1}{2\pi } \int _{\mathcal {X}}\varOmega . $$]


Here we have identified [image: $$\mathcal {X}$$] by the corresponding closed [image: $$2$$]-chain. From Theorem 7.11 we obtain the following corollary.
Corollary 8.6
The degree of a discrete hermitian line bundle with curvature is an integer:[image: $$ \mathrm {deg}\bigl (\mathrm L\bigr ) \in \mathbb Z. $$]





The discrete Poincaré-Hopf index theorem follows easily from the definitions:
Theorem 8.7
Let [image: $$\mathrm L\rightarrow \mathcal {X}$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$] over an oriented simplicial surface. If [image: $$\psi \in \varGamma (\mathrm L)$$] is a non-vanishing discrete section, then[image: $$ \mathrm {deg}\bigl (\mathrm L\bigr ) = \sum _{{i\!jk}\in \mathcal {X}} \mathrm {ind}^\psi _{{i\!jk}}. $$]





Proof
Since the integral of an exact form over a closed oriented surface vanishes,[image: $$ 2\pi \, \mathrm {deg}\bigl (\mathrm L\bigr ) = \int _{\mathcal {X}} \varOmega = \int _{\mathcal {X}} d\xi ^\psi + \varOmega = 2\pi \, \sum _{{i\!jk}\in \mathcal {X}} \mathrm {ind}^\psi _{{i\!jk}}, $$]


as was claimed. [image: $$\square $$]
        


9 Piecewise-Smooth Vector Bundles over Simplicial Complexes
It is well-known that each abstract simplicial complex [image: $$\mathcal {X}$$] has a geometric realization which is unique up to simplicial isomorphism. In particular, each abstract simplex is realized as an affine simplex. Moreover, each face [image: $$\sigma ^\prime $$] of a simplex [image: $$\sigma \in \mathcal {X}$$] comes with an affine embedding[image: $$ \iota _{\sigma ^\prime \!\sigma }:\sigma ^\prime \hookrightarrow \sigma . $$]


In the following, we will not distinguish between the abstract simplicial complex and its geometric realization.
Definition 9.1
A piecewise-smooth vector bundle [image: $$\mathrm E$$] over a simplicial complex [image: $$\mathcal {X}$$] is a topological vector bundle [image: $$\pi :\mathrm E \rightarrow \mathcal {X}$$] such that	(a)for each [image: $$\sigma \in \mathcal {X}$$] the restriction [image: $$\mathrm E_\sigma := \left. \mathrm E\right| _\sigma $$] is a smooth vector bundle over [image: $$\sigma $$],


 

	(b)for each face [image: $$\sigma ^\prime $$] of [image: $$\sigma \in \mathcal {X}$$], the inclusion [image: $$\mathrm E_{\sigma ^\prime } \hookrightarrow \mathrm E_\sigma $$] is a smooth embedding.


 






As a simplicial complex, [image: $$\mathcal {X}$$] has no tangent bundle. Nonetheless, differential forms survive as collections of smooth differential forms defined on the simplices which are compatible in the sense that they agree on common faces:
Definition 9.2
Let [image: $$\mathrm E$$] be a piecewise-smooth vector bundle over [image: $$\mathcal {X}$$]. An [image: $$\mathrm E$$]-valued differential [image: $$k$$]-form is a collection [image: $$\omega = \{\omega _\sigma \in \varOmega ^k(\sigma ,\mathrm E_\sigma )\}_{\sigma \in \mathcal {X}}$$] such that for each face [image: $$\sigma ^\prime $$] of a simplex [image: $$\sigma \in \mathcal {X}$$] the following relation holds:[image: $$ \iota _{\sigma ^\prime \!\sigma }^*\omega _{\sigma } = \omega _{\sigma ^\prime }, $$]


where [image: $$\iota _{\sigma ^\prime \!\sigma }:\sigma ^\prime \hookrightarrow \sigma $$] denotes the inclusion. The space of [image: $$\mathrm E$$]-valued differential [image: $$k$$]-forms is denoted by [image: $$\varOmega _{ps}^k(\mathcal {X}, \mathrm E)$$].

Remark 9.3
Note that a [image: $$0$$]-form defines a continuous map on the simplicial complex. Hence the definition includes functions and, more generally, sections: A piecewise-smooth section of [image: $$\mathrm E$$] is a continuous section [image: $$\psi :\mathcal {X} \rightarrow \mathrm E$$] such that for each simplex [image: $$\sigma \in \mathcal {X}$$] the restriction [image: $$\psi _\sigma := \left. \psi \right| _\sigma :\sigma \rightarrow \mathrm E_\sigma $$] is smooth, i.e.[image: $$ \varGamma _{ps}(\mathrm E):= \bigl \{\psi :\mathcal {X} \rightarrow \mathrm E \mid \psi _\sigma \in \varGamma (\mathrm E_\sigma ) \textit{ for all }\sigma \in \mathcal {X}\bigr \}. $$]





Since the pullback commutes with the wedge-product [image: $$\wedge $$] and the exterior derivative [image: $$d$$] of real-valued forms, we can define the wedge product and the exterior derivative of piecewise-smooth differential forms by applying it componentwise.
Definition 9.4
For [image: $$\omega = \{\omega _\sigma \}_{\sigma \in \mathcal {X}}\in \varOmega _{ps}^k(\mathcal {X}, \mathbb R),\,\eta = \{\eta _\sigma \}_{\sigma \in \mathcal {X}}\in \varOmega _{ps}^\ell (\mathcal {X}, \mathbb R)$$],[image: $$ \omega \wedge \eta := \{\omega _\sigma \wedge \eta _\sigma \}_{\sigma \in \mathcal {X}}, \quad d\omega := \{d\omega _\sigma \}_{\sigma \in \mathcal {X}}. $$]





All the standard properties of [image: $$\wedge $$] and [image: $$d$$] also hold in the piecewise-smooth case.
Definition 9.5
A connection on a piecewise-smooth vector bundle [image: $$\mathrm E$$] over [image: $$\mathcal {X}$$] is a linear map [image: $$\nabla :\varGamma _{ps}(\mathrm E) \rightarrow \varOmega _{ps}^1(\mathcal {X}, \mathrm E)$$] such that[image: $$ \nabla (f\psi ) = df\, \psi + f\,\nabla \psi ,\quad \textit{for all } f\in \varOmega _{ps}^0(\mathcal {X}, \mathbb R),\,\psi \in \varGamma _{ps}(\mathrm E). $$]





Once we have a connection on a smooth vector bundle we obtain a corresponding exterior derivative [image: $$d^\nabla $$] on [image: $$\mathrm E$$]-valued forms.
Theorem 9.6
Let [image: $$\mathrm E$$] be a piecewise-smooth vector bundle over [image: $$\mathcal {X}$$]. Then there is a unique linear map [image: $$d^\nabla :\varOmega _{ps}^k(\mathcal {X}, \mathrm E) \rightarrow \varOmega _{ps}^{k+1}(\mathcal {X}, \mathrm E)$$] such that [image: $$d^\nabla \psi = \nabla \psi $$] for all [image: $$\psi \in \varGamma _{ps}(\mathrm E)$$] and[image: $$ d^\nabla (\omega \wedge \eta ) = d\omega \wedge \eta + (-1)^k\omega \wedge d^\nabla \eta $$]


for all [image: $$\omega \in \varOmega _{ps}^k(\mathcal {X}, \mathbb R)$$] and [image: $$\eta \in \varOmega _{ps}^\ell (\mathcal {X}, \mathrm E)$$].

The curvature tensor survives as a piecewise-smooth [image: $$\mathrm {End}(\mathrm E)$$]-valued [image: $$2$$]-form:
Definition 9.7
Let [image: $$\mathrm E\rightarrow \mathcal {X}$$] be a piecewise-smooth vector bundle. The endomorphism-valued curvature [image: $$2$$]-form of a connection [image: $$\nabla $$] on [image: $$\mathrm E$$] is defined as follows:[image: $$ d^\nabla \circ d^\nabla \in \varOmega _{ps}^2 (\mathcal {X}, \mathrm {End}(\mathrm E)). $$]






10 The Associated Piecewise-Smooth Hermitian Line Bundle
Let [image: $${\tilde{{\mathrm L}}} \rightarrow \mathcal {X}$$] be a piecewise-smooth hermitian line bundle with connection [image: $$\nabla $$] over a simplicial complex. Just as in the smooth case the endomorphism-valued curvature [image: $$2$$]-form takes values in the skew-adjoint endomorphisms and hence is given by a piecewise-smooth real-valued [image: $$2$$]-form [image: $${\tilde{\varOmega }}$$]:[image: $$ d^{\nabla } \circ d^{\nabla } = -\imath {\tilde{\varOmega }}. $$]


Since each simplex of [image: $$\mathcal {X}$$] has an affine structure, we can speak of piecewise-constant forms.
The goal of this section will be to construct for each discrete hermitian line bundle with curvature a piecewise-smooth hermitian line bundle with piecewise-constant curvature which in a certain sense naturally contains the discrete bundle. We first prove two lemmata.
Lemma 10.1
To each closed discrete real-valued [image: $$k$$]-form [image: $$\omega $$] there corresponds a unique piecewise-constant piecewise-smooth [image: $$k$$]-form [image: $${\tilde{\omega }}$$] such that[image: $$ \omega (c)= \int _{c}{\tilde{\omega }}, \quad \textit{ for all } c\in \mathrm {C}_k(\mathcal {X}, \mathbb Z). $$]


The form [image: $${\tilde{\omega }}$$] will be called the piecewise-smooth form associated to [image: $$\omega $$].

Proof
It is enough to consider just a single [image: $$n$$]-simplex [image: $$\sigma $$]. We denote the space of piecewise-constant piecewise-smooth [image: $$k$$]-forms on [image: $$\sigma $$] by [image: $$\varOmega ^k_c$$] and the space of discrete [image: $$k$$]-forms on [image: $$\sigma $$] by [image: $$\varOmega ^k_d$$]. Consider the linear map [image: $$F:\varOmega ^k_c \rightarrow \varOmega ^k_d$$] that assigns to [image: $${\tilde{\omega }}\in \varOmega ^k_c$$] the discrete [image: $$k$$]-form given by[image: $$ F({\tilde{\omega }})_{\sigma ^\prime } := \int _{\sigma ^\prime }{\tilde{\omega }} . $$]


Clearly, [image: $$F$$] is injective. Moreover, since each piecewise-constant piecewise-smooth form is closed, we have [image: $$\mathrm {im}\,\,F\subset \ker d_k$$], where [image: $$d_k$$] denotes the discrete exterior derivative. Hence it is enough to show that the space of closed discrete [image: $$k$$]-forms on [image: $$\sigma $$] is of dimension [image: $$\left( {\begin{array}{c}n\\ k\end{array}}\right) $$]. This we do by induction. Clearly, [image: $$\dim \ker d_0 = 1 = \left( {\begin{array}{c}n\\ 0\end{array}}\right) $$]. Now suppose that [image: $$\dim \ker d_{k-1} = \left( {\begin{array}{c}n\\ k-1\end{array}}\right) $$]. By Lemma 7.4, we have [image: $$\ker d_k = \mathrm {im}\,d_{k-1}$$]. Hence[image: $$ \dim \ker d_k = \dim \mathrm {im}\,d_{k-1} = \dim \varOmega ^k_d - \dim \ker d_{k-1} = \genfrac(){0.0pt}1{n+1}{k} - \genfrac(){0.0pt}1{n}{k-1} = \genfrac(){0.0pt}1{n}{k}. $$]


Therefore, for each closed discrete [image: $$k$$]-form we obtain a unique piecewise-constant piecewise-smooth [image: $$k$$]-form which has the desired integrals on the [image: $$k$$]-simplices. [image: $$\square $$]
        

It is a classical result that on star-shaped domains [image: $$U\subset \mathbb R^N$$] each closed form is exact: If [image: $$\varOmega \in \varOmega ^k(U,\mathbb R)$$] is closed, then there exists a form [image: $$\omega \in \varOmega ^{k-1}(U,\mathbb R)$$] such that [image: $$\varOmega = d\omega $$]. Moreover, the potential can be constructed explicitly by the map [image: $$K:\varOmega ^k(U,\mathbb R)\rightarrow \varOmega ^{k-1}(U,\mathbb R)$$] given by[image: $$\begin{aligned} K(\varOmega ) = \sum _{i_1<\cdots < i_k} \sum _{\alpha =1}^k (-1)^{\alpha -1} \Bigl (\int _0^1 t^{k-1}\varOmega _{i_1\cdots i_k}(tx)dt\Bigr )\, x_{i_\alpha }\, dx_{i_1}\wedge \ldots \wedge \widehat{dx_{i_\alpha }}\wedge \ldots \wedge dx_{i_k}, \end{aligned}$$]


where [image: $$\varOmega = \sum _{i_1<\cdots < i_k} \varOmega _{i_1\cdots i_k}\, dx_{i_1}\wedge \ldots \wedge dx_{i_k}$$]. One directly can check that[image: $$ K(d\varOmega ) + d\, K(\varOmega ) = \varOmega . $$]


Hence, if [image: $$d\varOmega =0$$], we get [image: $$\varOmega = d\, K(\varOmega )$$]. The same construction works for piecewise-smooth forms defined on the star of a simplex. This yields the following piecewise-smooth version of the Poincaré-Lemma.
Lemma 10.2
On the star of a simplex each closed piecewise-smooth form is exact.

Now we are ready to prove the main result of this section.
Theorem 10.3
Let [image: $$\mathrm L \rightarrow \mathcal {X}$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$] over a simplicial complex and let [image: $${\tilde{\varOmega }}$$] be the piecewise-smooth [image: $$2$$]-form associated to [image: $$\varOmega $$]. Then there is a piecewise-smooth hermitian line bundle [image: $$\tilde{\mathrm L}\rightarrow \mathcal {X}$$] with connection [image: $$\tilde{\nabla }$$] of curvature [image: $${\tilde{\varOmega }}$$] such that [image: $$\tilde{\mathrm L}_i = \mathrm L_i$$] for each vertex [image: $$i$$] and the parallel transports coincide along each edge path. The bundle [image: $$\tilde{\mathrm L}$$] is unique up to isomorphism.

Proof
First we construct the piecewise-smooth hermitian line bundle. Let [image: $$\mathrm L\rightarrow \mathcal {X}$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$] and let [image: $$\eta $$] denote its connection. Let [image: $$\mathcal {V}$$] be the vertex set of [image: $$\mathcal {X}$$] and let [image: $$S_i$$] denote the open vertex star of the vertex [image: $$i$$]. Further, since [image: $$\varOmega $$] is closed, by Lemma 10.1, there is a piecewise-constant piecewise-smooth form [image: $${\tilde{ \varOmega }}$$] associated to [image: $$\varOmega $$]. Now, consider the set[image: $$ \hat{\mathrm L} := \mathop {\sqcup }_{i\in \mathcal {V}} S_i\times \mathrm L_i. $$]


Note, that [image: $$S_i\mathop {\cap }S_j \ne \emptyset $$] if and only if [image: $${ij}$$] is an edge of [image: $$\mathcal {X}$$] or [image: $$i=j$$]. Thus, if we set [image: $$\eta _{ii}:= \left. \text {id}\right| _{\mathrm L_i}$$], we can define an equivalence relation on [image: $$\hat{\mathrm L}$$] as follows:[image: $$ (i,p,u) \sim (j,q,v) :\Longleftrightarrow p = q \textit{ and } v= \exp \bigl (-\imath \int _{\Delta _{{ij}}^p}{\tilde{\varOmega }}\bigr )\eta _{{ij}}(u), $$]


where [image: $$\Delta _{{ij}}^p$$] denotes the oriented triangle spanned by the point [image: $$i,j$$] and [image: $$p$$]. Note here that [image: $$\Delta _{{ij}}^p$$] is completely contained in some simplex of [image: $$\mathcal {X}$$]. Let us check shortly that this really defines an equivalence relation. Here the only non-trivial property is transitivity. Therefore, let [image: $$(i,p,u)\sim (j,q,v)$$] and [image: $$(j,q,v)\sim (k,r,w)$$]. Thus we have [image: $$p=q=r$$] and [image: $$p$$] lies in a simplex which contains the oriented triangle [image: $${i\!jk}$$]. Clearly, the [image: $$2$$]-chain [image: $$\Delta _{{ij}}^p+ \Delta _{jk}^p + \Delta _{ki}^p$$] is homologous to [image: $${i\!jk}$$] and since piecewise-constant forms are closed we get[image: $$ \int _{\Delta _{{ij}}^p+\Delta _{jk}^p}{\tilde{\varOmega }} = -\int _{\Delta _{ki}^p}{\tilde{\varOmega }} + \int _{{i\!jk}}{\tilde{\varOmega }} = \int _{\Delta _{ik}^p}{\tilde{\varOmega }} + \varOmega _{{i\!jk}}. $$]


Hence we obtain[image: $$\begin{aligned} w&= \exp \bigl (-\imath \int _{\Delta _{jk}^p}{\tilde{\varOmega }}\bigr )\eta _{jk}\Bigl (\exp \bigl (-\imath \int _{\Delta _{{ij}}^p}{\tilde{\varOmega }}\bigr )\eta _{{ij}}(u)\Bigr )\\&= \exp \bigl (-\imath \int _{\Delta _{{ij}}^p + \Delta _{jk}^p }{\tilde{\varOmega }}\bigr )\eta _{jk}\circ \eta _{{ij}}(u) \\&= \exp \bigl (-\imath \int _{\Delta _{ik}^p}{\tilde{\varOmega }} - \imath \varOmega _{{i\!jk}}\bigr )\eta _{jk}\circ \eta _{{ij}}(u)\\&= \exp \bigl (-\imath \int _{\Delta _{ik}^p}{\tilde{\varOmega }}\bigr )\eta _{ik}(u), \end{aligned}$$]


and thus [image: $$(i,p,u)\sim (k,r,w)$$]. Hence [image: $$\sim $$] defines an equivalence relation. One can check now that the quotient [image: $$\tilde{\mathrm L} := \hat{\mathrm L}/_\sim $$] is a piecewise-smooth line bundle over [image: $$\mathcal {X}$$]. The local trivializations are then basically given by the inclusions [image: $$S_i\times \mathrm L_i \hookrightarrow \tilde{\mathrm L}$$] sending a point to the corresponding equivalence class. Moreover, all transition maps are unitary so that the hermitian metric of [image: $$\mathrm L$$] extends to [image: $$\tilde{\mathrm L}$$] and turns [image: $$\tilde{\mathrm L}$$] into a hermitian line bundle. Clearly, [image: $$\left. \tilde{\mathrm L}\right| _{\mathcal {V}}= \mathrm L$$].
Next, we need to construct the connection. Therefore we will use an explicit system of local sections: Choose for each vertex [image: $$i\in \mathcal {V}$$] a unit vector [image: $$X_i\in \mathrm L_i$$] and define [image: $$\phi _i(p):= [i,p,X_i]$$]. This yields for each vertex [image: $$i$$] a piecewise-smooth section [image: $$\phi _i$$] define on the star [image: $$S_i$$]. For each non-empty intersection [image: $$S_i\mathop {\cap }S_j\not =\emptyset $$] we then obtain a function [image: $$g_{{ij}}:S_i\mathop {\cap }S_j \rightarrow \mathbb S$$]. By the above construction, we find that, if [image: $$\eta _{{ij}}(X_i)= r_{{ij}}X_{j}$$],[image: $$\begin{aligned} g_{{ij}}(p) = r_{{ij}}\exp \bigl (-\imath \int _{\Delta _{{ij}}^p}{\tilde{\varOmega }}\bigr ). \end{aligned}$$]

 (5)

Since [image: $${\tilde{\varOmega }}$$] is closed, Lemma 10.2 tells us that [image: $${\tilde{\varOmega }}|_{S_i}$$] is exact. Hence there is a piecewise-smooth [image: $$1$$]-form [image: $$\omega _i$$] defined on [image: $$S_i$$] such that [image: $$d\omega _i = {\tilde{\varOmega }}|_{S_i}$$]. In general, the form [image: $$\omega _i$$] is only unique up to addition of an exact [image: $$1$$]-form, but among those there is a unique form [image: $$\omega _i$$] which is zero along the radial directions originating from [image: $$i$$]. To see this, just choose some potential [image: $$\tilde{\omega }_i$$] of [image: $$\varOmega |_{S_i}$$] and define a function [image: $$f:S_i\rightarrow \mathbb R$$] as follows:
For [image: $$p\in S_i$$], let [image: $$f(p):= \int _{\gamma _i^{\,p}}\tilde{\omega }_i$$], where [image: $$\gamma _i^{\,p}$$] denote the linear path from the vertex [image: $$i$$] to the point [image: $$p$$]. Then [image: $$\omega _i := {\tilde{\omega }}_i - df $$] is a piecewise-smooth potential of [image: $$\left. \varOmega \right| _{S_i}$$] and vanishes on radial directions. For the uniqueness, let [image: $$\hat{\omega }_i$$] be another such potential. Then, the difference [image: $$\omega _i-\hat{\omega }_i$$] is closed and hence exact on [image: $$S_i$$], i.e. there is [image: $$f:S_i \rightarrow \mathbb R$$] such that [image: $$df= \omega _i-\hat{\omega }_i$$]. Since [image: $$df$$] vanishes on radial directions [image: $$f$$] is constant on radial lines starting at [image: $$i$$] and hence constant on [image: $$S_i$$]. Thus [image: $$\omega _i=\hat{\omega }_i$$].
Suppose that for each edge [image: $${ij}$$] the forms [image: $$\omega _i$$] and [image: $$\omega _j$$] are compatible, i.e., wherever both are defined,[image: $$ \imath \omega _j=\imath \omega _i+d\log g_{{ij}}. $$]


Then we can define a connection [image: $$\nabla $$] as follows: Let [image: $$\psi \in \varGamma \bigl (\tilde{\mathrm L}\bigr )$$] and let [image: $$X\in \mathrm {T}_p\sigma $$] for some simplex [image: $$\sigma $$] of [image: $$\mathcal {X}$$], then there is some [image: $$S_i\ni p$$]. On [image: $$S_i$$] we can express [image: $$\psi $$] with respect to [image: $$\phi _i$$], i.e. [image: $$\psi = z\,\phi _i$$] for some piecewise-smooth function [image: $$z:S_i \rightarrow \mathbb C$$]. Then we define[image: $$\begin{aligned} \nabla _{X} \psi := \bigl (dz(X) - \imath \omega _i(X) z\bigr )\phi _i. \end{aligned}$$]

 (6)

In general there are several stars that contain the point [image: $$p$$]. From compatibility easily follows that the definition does not depend on the choice of the vertex. Hence we have constructed a piecewise smooth connection [image: $$\nabla $$]. One easily checks that [image: $$\nabla $$] is unitary and since [image: $$d\omega _i= {\tilde{\varOmega }}|_{S_i}$$] we get [image: $$d^\nabla \circ d^\nabla = -\imath {\tilde{\varOmega }}$$] as desired.
So it is left to check the compatibility of the forms [image: $$\omega _{{ij}}$$] constructed above. Let [image: $${ij}$$] be some edge and let [image: $$p_0$$] be a point in its interior. Since [image: $$\omega _i - \omega _j$$] is closed, we can define [image: $$\varphi :S_i\mathop {\cap }S_j \rightarrow \mathbb R$$] by [image: $$\varphi (p):= \int _{\gamma _p}\omega _i - \omega _j$$], where [image: $$\gamma _p$$] is some path in [image: $$S_i\mathop {\cap }S_j$$] from the point [image: $$p_0$$] to the point [image: $$p$$]. Then, for [image: $$p\in S_i \mathop {\cap }S_j$$],[image: $$ \int _{\Delta _p}\varOmega = \int _{\partial \Delta _p}\omega _j = \int _{{ij}+\gamma _j^{\,p}-\gamma _i^{\,p}}\omega _j= -\int _{\gamma _i^{\,p}}\omega _j =\int _{\gamma _i^{\,p}}\omega _i-\omega _j= \varphi (p), $$]


where as above [image: $$\gamma _i^{\, p}$$] denotes the linear path from [image: $$i$$] to [image: $$p$$] and, similarly, [image: $$\gamma _j^{\, p}$$] denotes the linear path from [image: $$j$$] to the point [image: $$p$$]. From this we obtain[image: $$ \omega _i - \omega _j = d\varphi = d\int _{\Delta _p}\varOmega $$]


and in particular [image: $$\imath \omega _j=\imath \omega _i+d\log g_{{ij}}$$]. This shows the existence.
Now suppose there are two such piecewise-smooth bundles [image: $$\tilde{\mathrm L}$$] and [image: $$\hat{\mathrm L}$$] with connection [image: $$\tilde{\nabla }$$] and [image: $$\hat{\nabla }$$], respectively. We want to construct an isomorphism between [image: $$\tilde{\mathrm L}$$] and [image: $$\hat{\mathrm L}$$]. Therefore we again use local systems. Explicitly, we choose a discrete direction field [image: $$X \in \mathrm L$$]. This yields for each vertex [image: $$i$$] a vector [image: $$X_i \in \tilde{\mathrm L}_i = \hat{\mathrm L}_i$$] which extends by parallel transport along rays starting at [image: $$i$$] to a local sections [image: $$\tilde{\phi }_i$$] of [image: $$\tilde{\mathrm L}$$] and, similarly, to a local section [image: $$\hat{\phi }_i$$] of [image: $$\hat{\mathrm L}$$] defined on [image: $$S_i$$].
Now we define [image: $$F:\tilde{\mathrm L} \rightarrow \hat{\mathrm L}$$] to be unique map which is linear on the fibers and satisfies [image: $$F(\tilde{\phi }_i)=\hat{\phi }_i$$] on [image: $$S_i$$]. To see that [image: $$F$$] is well-defined, we need to check that it is compatible with the transition maps. But by construction both systems have equal transition maps, namely the the functions [image: $$g_{{ij}}$$] from Eq. (5) with [image: $$r_{{ij}}$$] given by [image: $$\eta _{{ij}}(X_i) = r_{{ij}}X_j$$]. Now, if [image: $$z_i \, \tilde{\phi }_i=z_j \, \tilde{\phi }_j$$], then [image: $$z_i = z_j\, g_{{ij}}$$] and hence[image: $$ F(z_i\tilde{\phi }_i) = z_i\, \hat{\phi }_i = z_i\,g_{{ij}}\hat{\phi }_j = z_j\,\hat{\phi }_j = F(z_j\, \tilde{\phi }_j). $$]


Using Eq. (6) one similarly shows that [image: $$F\circ \tilde{\nabla }= \hat{\nabla }\circ F$$]. Thus [image: $$\tilde{\mathrm L} \cong \hat{\mathrm L}$$]. [image: $$\square $$]
        


11 Finite Elements for Hermitian Line Bundles with Curvature
In this section we want to present a specific finite element space on the associated piecewise-smooth hermitian line bundle of a discrete hermitian line with curvature. They are constructed from the local systems that played such a prominent role in the proof of Theorem 10.3 and the usual piecewise-linear hat function.
Let [image: $$\tilde{\mathrm L}$$] be the associated piecewise-smooth bundle of a discrete hermitian line bundle [image: $$\mathrm L \rightarrow \mathcal {X}$$] and let [image: $$x_i :\mathcal {X} \rightarrow \mathbb R$$] denote the barycentric coordinate of the vertex [image: $$i\in \mathcal {V}$$], i.e. the unique piecewise-linear function such that [image: $$x_i(j)=\delta _{{ij}}$$], where [image: $$\delta $$] is the Kronecker delta. Clearly,[image: $$ \varGamma (\mathrm L) = \mathop {\bigoplus }_{i\in \mathcal {V}} \mathrm L_i. $$]


To each [image: $$X \in \mathrm L_i$$] we now construct a piecewise-smooth section [image: $$\tilde{\psi }$$] as follows: First, we extend [image: $$X$$] to the vertex star [image: $$S_i$$] of the vertex [image: $$i$$] using the parallel transport along rays starting at [image: $$i$$]. To get a global section [image: $$\tilde{\psi }\in \varGamma _{ps}(\mathrm L)$$] we use [image: $$x_i$$] to scale [image: $$\tilde{\phi }$$] down to zero on [image: $$\partial S_i$$] and extend it by zero to [image: $$\mathcal {X}$$], i.e.[image: $$ \tilde{\psi }_p := {\left\{ \begin{array}{ll} x_i(p)\tilde{\phi }_p &{} \textit{ for }p\in S_i,\\ 0 &{} \textit{ else.} \end{array}\right. } $$]


The above construction yields a linear map [image: $$\iota :\varGamma (\mathrm L) \rightarrow \varGamma _{ps}(\tilde{\mathrm L})$$]. Clearly, [image: $$\iota $$] is injective—a left-inverse is just given by the restriction map[image: $$ \varGamma _{ps}(\tilde{\mathrm L})\ni \tilde{\psi }\mapsto \bigl .\tilde{\psi }\bigr |_{\mathcal {V}} \in \varGamma (\mathrm L). $$]




Definition 11.1
The space of piecewise-linear sections is given by [image: $$\varGamma _{pl}(\tilde{\mathrm L}) := \mathrm {im}\,\iota $$].

Thus we identified each section of a discrete hermitian line bundle with curvature with a piecewise-linear section of the associated piecewise-smooth bundle. This allows to define a discrete hermitian inner product and a discrete Dirichlet energy on [image: $$\varGamma (\mathrm L)$$], which is a generalization of the well-known cotangent Laplace operator for discrete functions on triangulated surfaces. Before we come to the Dirichlet energy, we define Euclidean simplicial complexes.
Similarly to piecewise-smooth forms we can define piecewise-smooth (contravariant) [image: $$k$$]-tensors as collections of compatible [image: $$k$$]-tensors: A piecewise-smooth [image: $$k$$]
        -tensor is a collection [image: $$T=\{T_\sigma \}_{\sigma \in \mathcal {X}}$$] of smooth contravariant [image: $$k$$]-tensors [image: $$T_\sigma $$] on [image: $$\sigma $$] such that[image: $$ \iota _{\sigma ^\prime \sigma }^*T_{\sigma } = T_{\sigma ^\prime }, $$]


whenever [image: $$\sigma ^\prime $$] is a face of [image: $$\sigma $$]. A Riemannian simplicial complex is then a simplicial complex [image: $$\mathcal {X}$$] equipped with a piecewise-smooth Riemannian metric, i.e. a piecewise-smooth positive-definite symmetric [image: $$2$$]-tensor [image: $$g$$] on [image: $$\mathcal {X}$$].
The following lemma tells us that the space of constant piecewise-smooth symmetric tensors is isomorphic to functions on [image: $$1$$]-simplices.
Lemma 11.2
Let [image: $$\mathcal {X}$$] be a simplicial complex and let [image: $$\mathcal {E}$$] denote the set of its [image: $$1$$]-simplices. For each function [image: $$f:\mathcal {E} \rightarrow \mathbb R$$] there exists a unique constant piecewise-smooth symmetric [image: $$2$$]-tensor [image: $$S$$] such that for each [image: $$1$$]-simplex [image: $$e=\{i,j\}$$]
          [image: $$ S_{e}(j-i,j-i) = f(e). $$]





Proof
It is enough to consider a single affine [image: $$n$$]-simplex [image: $$\sigma =\{i_0,\ldots ,i_n\}$$] with vector space [image: $$V$$]. Consider the map [image: $$F$$] that sends a symmetric [image: $$2$$]-tensor [image: $$S$$] on [image: $$V$$] to the function given by[image: $$ F(S)(e) := S(i_k-i_j,i_k-i_j), \quad e=\{i_j,i_k\}\subset \sigma . $$]


Clearly, [image: $$F$$] is linear. Moreover, if [image: $$Q$$] denotes the quadratic form corresponding to [image: $$S$$], i.e. [image: $$Q(X):=S(X,X)$$], then[image: $$ S(X,Y) = \tfrac{1}{2}\bigl (Q(X) + Q(Y) - Q(X-Y)\bigr ). $$]


Hence, from [image: $$F(S)=0$$] follows [image: $$S=0$$]. Thus [image: $$F$$] is injective. Clearly, the space of symmetric bilinear forms is of dimension [image: $$n(n+1)/2$$], which equals the number of [image: $$1$$]-simplices. Thus [image: $$F$$] is an isomorphism. This proves the claim. [image: $$\square $$]
        

It is also easy to write down the corresponding symmetric tensor in coordinates: Let [image: $$\sigma = \{i_0,\ldots ,i_n\}$$] be a simplex. The vectors [image: $$e_j:= i_j-i_0$$], [image: $$j=1,\ldots ,n$$], then yield a basis of the corresponding vector space. Let [image: $$f$$] be a function defined on the unoriented edges of [image: $$\sigma $$] and let [image: $$x_{i_j}$$] denote the barycentric coordinates of its vertices [image: $$i_j$$], then the corresponding symmetric bilinear form [image: $$S^f_\sigma $$] is given by[image: $$\begin{aligned} S^f_\sigma = \sum _{1\le j\le n} f_{i_0 i_j}\, dx_{i_j}\otimes dx_{i_j} + \sum _{1\le j,k\le n,\, j\ne k} \tfrac{1}{2}\bigl (f_{i_0i_j} + f_{i_0i_k} - f_{i_ji_k}\bigr )\, dx_{i_j}\otimes dx_{i_k}. \end{aligned}$$]

 (7)

Thus starting with a positive function [image: $$f$$], by Sylvester’s criterion, it has to satisfy on each [image: $$n$$]-simplex [image: $$n-1$$] inequalities to determine a positive-definite form. If the corresponding piecewise-smooth form is positive-definite, we call [image: $$f$$] a discrete metric.
Definition 11.3
A Euclidean simplicial complex is a simplicial complex [image: $$\mathcal {X}$$] equipped with a discrete metric, i.e. a map [image: $$\ell $$] that assigns to each [image: $$1$$]-simplex [image: $$e$$] a length [image: $$\ell _e > 0$$] such that for each simplex [image: $$\sigma $$] the symmetric tensor [image: $$S_{\sigma }^\ell $$] is positive-definite.

Now, let [image: $$\mathcal {X}$$] be a Euclidean simplicial manifold of dimension [image: $$n$$] and denote by [image: $$\mathcal {X}_n$$] the set of its top-dimensional simplices. Since each simplex of [image: $$\mathcal {X}$$] is equipped with a scalar product it comes with a corresponding density and hence we know how to integrate functions over the simplices of [image: $$\mathcal {X}$$]. Now, we define the integral over [image: $$\mathcal {X}$$] as follows:[image: $$ \int _{\mathcal {X}} f := \sum _{\sigma \in \mathcal {X}_n} \int _{\sigma } f_{\sigma },\quad f\in \varOmega ^0_{ps}(\mathcal {X},\mathbb R). $$]


Moreover, given a piecewise-smooth hermitian line bundle [image: $$\tilde{\mathrm L}\rightarrow \mathcal {X}$$] with curvature, then there is a canonical hermitian product [image: $$\langle \!\langle .,.\rangle \!\rangle $$] on [image: $$\varGamma _{ps}(\tilde{\mathrm L})$$]: If [image: $$\tilde{\psi },\tilde{\phi }\in \varGamma _{ps}(\tilde{\mathrm L})$$], then[image: $$ \langle \!\langle \tilde{\psi },\tilde{\phi }\rangle \!\rangle = \int _{\mathcal {X}} \langle \tilde{\psi },\tilde{\phi }\rangle . $$]


In particular, if [image: $$\tilde{\mathrm L}$$] is the associated piecewise-smooth bundle of a discrete hermitian line bundle [image: $$\mathrm L$$] with curvature [image: $$\varOmega $$], then we can use [image: $$\iota $$] to pull [image: $$\langle \!\langle .,.\rangle \!\rangle $$] back to [image: $$\varGamma (\mathrm L)$$]. Since [image: $$\iota $$] is injective this yields a hermitian product on [image: $$\varGamma (\mathrm L)$$].
Now we want to compute this metric explicitly in terms of given discrete data.
Definition 11.4
A piecewise-linear section [image: $$\tilde{\psi }\in \varGamma _{pl}(\tilde{\mathrm L})$$] is called concentrated at a vertex [image: $$i$$], if it is of the form [image: $$\tilde{\psi }= \iota (\psi _i)$$] for some vector [image: $$\psi _i\in \mathrm L_i$$].

It is basically enough to compute the product of two such concentrated sections. Therefore, let [image: $$\psi _i\in \mathrm L_i$$] and [image: $$\psi _j\in \mathrm L_j$$] and let [image: $$\tilde{\psi }^i$$] and [image: $$\tilde{\psi }^j$$] denote the corresponding piecewise-linear concentrated sections.
Now consider their product [image: $$\langle \tilde{\psi }^i, \tilde{\psi }^j \rangle $$]. Clearly, this product has support [image: $$S_i\mathop {\cap }S_j$$]. For simplicity, we extend the discrete connection [image: $$\eta $$] to arbitrary pairs [image: $${ij}$$] in such way that [image: $$\eta _{ii}= \text {id}$$] and [image: $$\eta _{{ij}}:\mathrm L_i \rightarrow \mathrm L_j$$] is zero whenever [image: $$\{i,j\}\not \in \mathcal {X}$$]. With this convention, Eq. (5) yields[image: $$\begin{aligned} \langle \tilde{\psi }^j, \tilde{\psi }^i \rangle = \langle \psi _j, \eta _{{ij}}(\psi _i)\rangle \, x_i x_j\, \exp \bigl (-\imath \int _{\Delta _{{ij}}^p}{\tilde{\varOmega }}\bigr ), \end{aligned}$$]

 (8)

where [image: $${\tilde{\varOmega }}$$] denotes the constant piecewise-smooth curvature form associated to [image: $$\varOmega $$].
Now, let us express the integral over [image: $$\Delta _{{ij}}^p$$] on a given [image: $$n$$]-simplex. Therefore consider an [image: $$n$$]-simplex [image: $$\sigma = \{i_0,\ldots ,i_n\}$$]. The hat functions [image: $$x_{i_1},\ldots ,x_{i_n}$$] yield affine coordinates on [image: $$\sigma $$] and we can express any [image: $$2$$]-form with respect to the basis forms [image: $$dx_{i_j}\wedge dx_{i_k}$$]. One can show that[image: $$ \int _{\sigma ^\prime } dx_{i_j}\wedge dx_{i_k}={\left\{ \begin{array}{ll} \pm \frac{1}{2}&{} \textit{ for }\sigma ^\prime = \pm i_j i_k i_\ell ,\\ 0&{} \textit{ else.} \end{array}\right. } $$]


Thus we obtain[image: $$ {\tilde{\varOmega }} = \sum _{1\le j< k\le n} 2\,\varOmega _{i_0 i_j i_k}\, dx_{i_j}\wedge dx_{i_k}. $$]


Now we want to compute the integral over the triangle [image: $$\Delta _{i_0i_1}^p \subset \sigma $$]. By Stokes theorem,[image: $$ \int _{\Delta _{i_0i_1}^p} dx_{i_j}\wedge dx_{i_k} = \int _{i_0}^{i_1} x_{i_j}\, dx_{i_k} + \int _{i_1}^{p} x_{i_j}\, dx_{i_k} + \int _{p}^{i_0} x_{i_j}\, dx_{i_k}, $$]


where the integrals are computed along straight lines. A small computation shows[image: $$ \int _{\Delta _{i_0i_1}^p} dx_{i_j}\wedge dx_{i_k} = \frac{1}{2}\bigl (\delta _{1\!j}\, x_{i_k}(p) - \delta _{1\!k}\, x_{i_j}(p)\bigr ), $$]


Thus, for [image: $$j < k$$], we get [image: $$\int _{\Delta _{i_0i_1}^p} dx_{i_j}\wedge dx_{i_k} = \frac{1}{2}\delta _{1\!j}\, x_{i_k}(p)$$] and hence[image: $$ \int _{\Delta _{i_0i_1}^p} {\tilde{\varOmega }} = \sum _{1\le j< k\le n} 2\, \varOmega _{i_0 i_j i_k} \int _{\Delta _{i_0i_1}^p} dx_{i_j}\wedge dx_{i_k} = \sum _{j} \varOmega _{i_0 i_1 i_j} x_{i_j}(p), $$]


where we have used the convention that [image: $$\varOmega $$] vanishes on all triples not representing an oriented [image: $$2$$]-simplex of [image: $$\mathcal {X}$$]. With this convention Eq. (8) becomes[image: $$\begin{aligned} \langle \tilde{\psi }^j, \tilde{\psi }^i \rangle = \langle \psi _j, \eta _{{ij}}(\psi _i)\rangle \, x_i x_j\, \exp \bigl (-\imath \sum _{k} \varOmega _{i j k} x_{k}\bigr ). \end{aligned}$$]

 (9)


[image: A371662_1_En_6_Fig7_HTML.gif]
Fig. 7The graph of the norm of a piecewise-linear section of a bundle over a torus consisting of two triangles. Its two smooth parts fit continuously together along the diagonal. In this example the curvature of the bundle over each triangles is equal to [image: $$4\pi $$]. Note that the section has [image: $$4$$] zeros—just as predicted





In particular, using Eq. (9), we can compute the norm of a piecewise-linear section [image: $$\tilde{\psi }$$] on a given triangle [image: $${i\!jk}$$]. Therefore we distinguish one of its vertices, say [image: $$i$$], and write [image: $$\tilde{\psi }$$] with respect to a section which is radially parallel with respect to [image: $$i$$]. Now, one checks that[image: $$ |\tilde{\psi }| = |c_i + x_j(c_je^{i\varOmega _{{i\!jk}}x_k}-c_i)+x_k(c_ke^{-i\varOmega _{{i\!jk}}x_j}-c_i)|, $$]


where [image: $$c_i,c_j,c_k \in \mathbb C$$] are constants depending on the explicit form of [image: $$\tilde{\psi }$$]. An example of the norm of a piecewise-linear section is shown in Fig. 7.
As the next proposition shows, the identification of discrete and piecewise-linear sections perfectly fits together with the definitions in Sect. 8.
Proposition 11.5
Let [image: $$\psi \in \varGamma (\mathrm L)$$] be a discrete section and let [image: $$\tilde{\psi }\in \varGamma _{pl}(\tilde{\mathrm L})$$] be the corresponding piecewise-linear section, i.e. [image: $$\tilde{\psi }= \iota (\psi )$$]. Then, if [image: $$\tilde{\psi }$$] has no zeros on edges, the discrete rotation form [image: $$\xi ^\psi $$] and the piecewise-smooth rotation form [image: $$\xi ^{\tilde{\psi }}$$] are related as follows: For each oriented edge [image: $${ij}$$],[image: $$\begin{aligned} \xi ^\psi _{{ij}} = \int _{{ij}}\xi ^{\tilde{\psi }}. \end{aligned}$$]





Proof
The claim follows easily by expressing [image: $$\tilde{\psi }$$] with respect to some non-vanishing parallel section along the edge [image: $${ij}$$]. [image: $$\square $$]
        

In particular, by Theorem 8.1, the index form of a non-vanishing section of a discrete hermitian line bundle with curvature counts the number of (signed) zeros of the corresponding piecewise-linear section of the associated piecewise-smooth bundle.
Let us continue with the computation of the metric on [image: $$\varGamma (\mathrm L)$$]. To write down the formula we give the following definition.
Definition 11.6
Let [image: $$\mathcal {X}$$] be an [image: $$n$$]-dimensional simplicial manifold and let [image: $$\varOmega \in \varOmega ^2(\mathcal {X}, \mathbb R)$$]. To an [image: $$n$$]-simplex [image: $$\sigma $$] and vertices [image: $$i,j,k,l$$] of [image: $$\mathcal {X}$$] we assign the value[image: $$\begin{aligned} \Theta _{\sigma ,i,j}^\varOmega (k,l) := \frac{1}{\mathrm {vol}\,(\sigma )}\int _\sigma x_k x_l\, \exp \bigl (-\imath \sum _m \varOmega _{{ij}m} x_m\bigr ), \end{aligned}$$]


where we have chosen for integration an arbitrary discrete metric on [image: $$\mathcal {X}$$].

Remark 11.7
Note that the functions [image: $$\Theta _{\sigma ,i,j}^\varOmega $$] are indeed well-defined. On a simplex, any two such measures induced by a discrete metric differ just by a constant.

With Definition 11.6 and Eq. (9) we obtain the following form of the metric:
Theorem 11.8
(Product of Discrete Sections) Let [image: $$\mathrm L$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$] over an [image: $$n$$]-dimensional Euclidean simplicial manifold [image: $$\mathcal {X}$$], then the product on [image: $$\varGamma (\mathrm L)$$] induced by the associated piecewise-smooth hermitian line bundle is given as follows: Given two discrete sections [image: $$\psi =\sum _i \psi _i, \phi = \sum _i \phi _i$$],[image: $$ \langle \!\langle \psi , \phi \rangle \!\rangle = \sum _{i,j} \mu _\varOmega ^{{ij}}\, \langle \psi _j, \eta _{{ij}}(\phi _i)\rangle , \quad \textit{where}\quad \mu _\varOmega ^{{ij}} = \sum _{\{i,j\}\supset \sigma \in {\mathcal {X}}_n} \Theta _{\sigma ,i,j}^\varOmega (i,j)\, \mathrm {vol}\,(\sigma ). $$]





Note that [image: $$\Theta _{\sigma ,i,j}^\varOmega (k,l)$$], and hence [image: $$\mu _\varOmega ^{{ij}}$$], can be computed explicitly using Fubini’s theorem and the following small lemma, which can be shown by induction.
Lemma 11.9
Let [image: $$c\in \mathbb C_*$$], [image: $$n\in \mathbb N$$] and [image: $$[a,b]\subset \mathbb R$$] be an interval. Then[image: $$ \int _a^b x^n \exp (c x) dx = \Bigl .\frac{n!}{c^{n+1}}\Bigl (\sum _{k=0}^n (-1)^k \frac{(c x)^{n-k}}{(n-k)!}\Bigr )\exp \bigl (cx\bigr )\Bigr |_a^b. $$]





Next, we would like to compute the Dirichlet energy of a section [image: $$\tilde{\psi }\in \varGamma _{pl}(\tilde{\mathrm L})$$], i.e.[image: $$ \mathrm {E}_D(\tilde{\psi }) = \int _{\mathcal {X}} \bigl |\nabla \tilde{\psi }\bigr |^2 . $$]


Note, that the Dirichlet energy comes with a corresponding positive-semidefinite hermitian form [image: $$\langle \!\langle .,.\rangle \!\rangle _{\!D}$$]—called the Dirichlet product. Clearly, like the metric, the Dirichlet product is completely determined by the values it takes on concentrated sections.
In general, if [image: $$\tilde{\psi }\ne 0$$] is piecewise-linear section concentrated at [image: $$i$$], it is given on the vertex star [image: $$S_i$$] as a product [image: $$\tilde{\psi }= x_i\,\tilde{\phi }$$], where [image: $$x_i$$] denotes the barycentric coordinate of the vertex [image: $$i$$] and [image: $$\tilde{\phi }$$] is a local section radially parallel with respect to [image: $$i$$]. Clearly,[image: $$ \nabla \tilde{\psi }= dx_i\, \tilde{\phi }+ \imath \,x_i\,\omega _i\, \tilde{\phi }, $$]


where [image: $$\omega _i$$] denotes the rotation form of [image: $$\tilde{\phi }$$], i.e. [image: $$\nabla \tilde{\phi }= \imath \omega _i\, \tilde{\phi }$$]. Note here that [image: $$\omega _i$$] does not depend on the actual value of [image: $$\tilde{\psi }$$] at [image: $$i$$], but is the same for all non-vanishing piecewise-linear sections concentrated at [image: $$i$$].
To compute the rotation form [image: $$\omega _i$$] at a given point [image: $$p_0\in S_i$$], we use a local section [image: $$\zeta $$] which is radially parallel with respect to [image: $$p_0$$] such that [image: $$\zeta _{p_0} = \tilde{\phi }_{p_0}$$]. Then we can express [image: $$\tilde{\phi }$$] in terms of [image: $$\zeta $$], i.e.[image: $$ \tilde{\phi }= z\, \zeta , $$]


for some piecewise-smooth [image: $$\mathbb C_*$$]-valued function [image: $$z$$] defined locally at [image: $$p_0$$]. Clearly, [image: $$|z|$$] is constant, and hence[image: $$\begin{aligned} \left. \imath \omega _i\right| _{p_0}\, \tilde{\phi }_{p_0} = \left. \nabla \tilde{\phi }\right| _{p_0} = \left. dz\right| _{p_0}\, \zeta _{p_0} + z(p_0)\, \left. \nabla \zeta \right| _{p_0} = \left. d\log z \right| _{p_0} \tilde{\phi }_{p_0} = \left. \imath d\arg z\right| _{p_0}\, \tilde{\phi }_{p_0}. \end{aligned}$$]


The clue is that we can now use the relation of parallel transport and curvature to obtain an explicit formula for [image: $$z$$]. If [image: $$p$$] is sufficiently close to [image: $$p_0$$], then the three points [image: $$p$$], [image: $$i$$] and [image: $$p_0$$] determine an oriented triangle [image: $$\Delta ^p$$] which is contained in a simplex of [image: $$\mathcal {X}$$]. Its boundary curve [image: $$\gamma _p$$] consists of three line segments [image: $$\gamma _1,\gamma _2,\gamma _3$$] connecting [image: $$p$$] to [image: $$i$$], [image: $$i$$] to [image: $$p_0$$] and [image: $$p_0$$] back to [image: $$p$$]. Hence on each of these segments either [image: $$\tilde{\phi }$$] of [image: $$\zeta $$] is parallel and[image: $$ \zeta _p = P_{\gamma _p}(\tilde{\phi }_p) = \exp \bigl (\imath \int _{\Delta ^p} {\tilde{\varOmega }}\bigr )\tilde{\phi }_p. $$]


Thus we obtain that [image: $$z(p) = \exp \bigl (-\imath \int _{\Delta ^p} {\tilde{\varOmega }}\bigr )$$] and hence[image: $$ \Bigl .\omega _i\Bigr |_{p_0} = -\Bigl .d\bigl (\int _{\Delta ^p} {\tilde{\varOmega }}\bigr )\Bigr |_{p_0}. $$]


Now, if [image: $$\Delta ^p$$] is contained in a simplex [image: $$\sigma =\{i_0,\ldots ,i_n\}$$], one verifies that[image: $$ \int _{\Delta ^p} dx_{i_j}\wedge dx_{i_k} = \frac{1}{2}\bigl (x_{i_j}(p_0)x_{i_k}(p) - x_{i_k}(p_0)x_{i_j}(p)\bigr ). $$]


Thus,[image: $$\begin{aligned} \Bigl .d\bigl (\int _{\Delta ^p} {\tilde{\varOmega }}\bigr )\Bigr |_{p_0}&= \sum _{1\le j< k\le n} 2\,\varOmega _{i_0 i_j i_k}\, \Bigl .d \bigl (\int _{\Delta ^p} d x_{i_j}\wedge dx_{i_k}\bigr )\Bigr |_{p_0} \\&= \sum _{1\le j< k\le n} \varOmega _{i_0 i_j i_k}\, \Bigl .\bigl (x_{i_j}dx_{i_k} - x_{i_k}dx_{i_j}\bigr )\Bigr |_{p_0},\\&= \sum _{1\le j\le n} \Bigl .\bigl (\sum _{k\ne j}\varOmega _{i_0 i_j i_k}x_{i_k}\bigr )dx_{i_j}\Bigr |_{p_0} \end{aligned}$$]


and, using the convention on [image: $$\varOmega $$] from above, we find the following simple formula:[image: $$\begin{aligned} \omega _i = \Bigl .\sum _{j}\bigl (\sum _{k}\varOmega _{i j k}\, x_k\bigr )\, dx_j \Bigr |_{S_i}, \end{aligned}$$]

 (10)

where we sum over the whole vertex set of [image: $$\mathcal {X}$$].
Now, given this local form expressions, we can finally return to the computation of the products which we are actually interested in. Therefore we consider two piecewise-linear sections concentrated at the vertices [image: $$i$$] and [image: $$j$$]:[image: $$ \tilde{\psi }^i:=\iota (\psi _i),\quad \tilde{\psi }^j:=\iota (\psi _j), $$]


for some [image: $$\psi _i\in \mathrm L_i$$] and [image: $$\psi _j\in \mathrm L_j$$]. On their common support [image: $$S_i\mathop {\cap }S_j$$] both section can be expressed, just as above, as products of a real-valued piecewise-linear hat functions [image: $$x_i$$] and [image: $$x_j$$] and radially parallel local sections [image: $$\tilde{\phi }^i$$] and [image: $$\tilde{\phi }^j$$]:[image: $$\begin{aligned} \tilde{\psi }^i = x_i\, \tilde{\phi }^i, \quad \tilde{\psi }^j = x_j\, \tilde{\phi }^j. \end{aligned}$$]


Clearly,[image: $$\begin{aligned} \langle \!\langle \tilde{\psi }^j, \tilde{\psi }^i \rangle \!\rangle _{\!D} =&\int _{S_i \mathop {\cap }S_j} \langle dx_j \tilde{\phi }^j + \imath x_j\omega _j \, \tilde{\phi }^j, dx_i \tilde{\phi }^i + \imath x_i\omega _i \, \tilde{\phi }^i \rangle \\ =&\int _{S_i \mathop {\cap }S_j} \langle dx_j + \imath x_j\omega _j,dx_i + \imath x_i\omega _i\rangle \,\langle \tilde{\phi }^j,\tilde{\phi }^i\rangle . \end{aligned}$$]


With Eq. (9) we see that[image: $$ \langle \tilde{\phi }^j,\tilde{\phi }^i\rangle = \langle \psi _j, \eta _{{ij}}(\psi _i) \rangle \,\exp \bigl (-\imath \sum _{m} \varOmega _{i j m} x_{m}\bigr ). $$]


Moreover, by Eq. (10),[image: $$\begin{aligned} \langle dx_j + \imath x_j\omega _j,dx_i + \imath x_i\omega _i\rangle =&\Bigl [\langle dx_j,dx_i\rangle + \sum _{k^\prime ,k^{\prime \!\prime },l^\prime ,l^{\prime \!\prime }} \varOmega _{ik^\prime l^\prime }\varOmega _{jk^{\prime \!\prime }l^{\prime \!\prime }}x_j x_i x_{l^\prime }x_{l^{\prime \!\prime }}\langle dx_{k^\prime },dx_{k^{\prime \!\prime }}\rangle \Bigr ]\\&+ \imath \Bigl [\sum _{k^\prime ,l^\prime } (\varOmega _{ik^\prime l^\prime } x_i x_{l^\prime }\langle dx_j,dx_{k^\prime }\rangle - \varOmega _{jk^\prime l^\prime } x_jx_{l^\prime }\langle dx_{k^\prime },dx_i\rangle )\Bigr ]. \end{aligned}$$]


The constants [image: $$\langle dx_{k^\prime }, dx_{l^\prime } \rangle $$] are basically provided by the following lemma.
Lemma 11.10
Let [image: $$\sigma = \{v_0,\ldots ,v_n\}$$] be a Euclidean simplex of dimension [image: $$n>0$$] and let [image: $$x_i$$] denote its barycentric coordinate functions. Then[image: $$ \text {grad}x_i = -\frac{1}{h_i} N_i, $$]


where [image: $$h_i$$] denotes the distance between [image: $$v_i$$] and [image: $$\sigma _i = \sigma \setminus \{v_i\}$$] and [image: $$N_i$$] denotes the outward-pointing unit normal of [image: $$\sigma _i$$].

Proof
This immediately follows from two basic facts: First, [image: $$dx_i (v_j-v_0) = \delta _{{ij}}$$] for [image: $$i,j> 0$$]. Second, [image: $$h_i = \langle v_0-v_i, N_i\rangle $$]. [image: $$\square $$]
        

Lemma 11.10 yields almost immediately a higher dimensional analogue of the well-known cotangent formula for surfaces.
Theorem 11.11
(Cotangent Formula) Let [image: $$\sigma $$] be a simplex of a Euclidean simplicial complex [image: $$\mathcal {X}$$] and let [image: $$\dim \sigma >1$$]. If [image: $$i\ne j$$],[image: $$ c_\sigma ^{{ij}}:= \int _{\sigma } \langle dx_i , dx_j \rangle = {\left\{ \begin{array}{ll}-\frac{1}{n(n-1)} \cot \alpha ^{{ij}}_\sigma \, \mathrm {vol}\,\bigl (\sigma \setminus \{i,j\}\bigr ),&{}\textit{if } \{i,j\} \subset \sigma , \\ 0&{} else.\end{array}\right. } $$]


Here [image: $$\alpha _\sigma ^{{ij}}$$] denotes the angle between the faces [image: $$\sigma \setminus \{i\}$$] and [image: $$\sigma \setminus \{j\}$$]. Moreover,[image: $$ c_\sigma ^{ii}:= \int _{\sigma } |dx_i|^2 = {\left\{ \begin{array}{ll}\frac{1}{n\, h_i}\, \mathrm {vol}\,\bigl (\sigma \setminus \{i\}\bigr ),&{}\textit{if } i \in \sigma , \\ 0&{} else,\end{array}\right. } $$]


where [image: $$h_i$$] denotes the distance between the vertex [image: $$i$$] and the face [image: $$\sigma \setminus \{i\}$$].

Proof
Clearly, if [image: $$\{i,j\}\not \subset \sigma $$], then [image: $$\int _{\sigma } \langle dx_i , dx_j \rangle = 0$$]. Now, let [image: $$\{i,j\}\subset \sigma $$], [image: $$i\ne j$$]. With the notation of Lemma 11.10, we have[image: $$ \int _{\sigma } \langle dx_i , dx_j \rangle = \langle \text {grad}x_i ,\text {grad}x_j\rangle \, \mathrm {vol}\,\sigma = \frac{\langle N_i, N_j \rangle }{h_i h_j}\,\mathrm {vol}\,\sigma . $$]


Furthermore, [image: $$\cos \alpha _\sigma ^{{ij}}{=} -\langle N_i, N_j\rangle $$] and [image: $$n!\, \mathrm {vol}\,\sigma {=} (n-2)!\, h_ih_j \sin \alpha _\sigma ^{{ij}}\, \mathrm {vol}\,\bigl (\sigma \setminus \{i,j\}\bigr )$$]. This yields the first part of the theorem. Similarly, [image: $$n\,\mathrm {vol}\,\sigma = h_i\,\mathrm {vol}\,\bigl (\sigma \setminus \{i\}\bigr )$$]. Setting then [image: $$i=j$$] yields the second part. [image: $$\square $$]
        

Definition 11.12
Let [image: $$\mathcal {X}$$] be an [image: $$n$$]-dimensional simplicial manifold and let [image: $$\varOmega \in \varOmega ^2(\mathcal {X}, \mathbb R)$$]. Let [image: $$\sigma $$] be an [image: $$n$$]-simplex and [image: $$i,j,k,l$$] be vertices of [image: $$\mathcal {X}$$]. Then, let[image: $$\begin{aligned} \varLambda _{\sigma ,i,j}^\varOmega&:= \frac{1}{\mathrm {vol}\,(\sigma )}\int _\sigma \exp \bigl (-\imath \sum _m \varOmega _{{ij}m} x_m\bigr ), \\ \Xi _{\sigma ,i,j}^\varOmega (k,l)&:= \frac{1}{\mathrm {vol}\,(\sigma )}\int _\sigma x_i x_j x_k x_l\, \exp \bigl (-\imath \sum _m \varOmega _{{ij}m} x_m\bigr ), \end{aligned}$$]


where we choose for the integration an arbitrary discrete metric on [image: $$\mathcal {X}$$].

Remark 11.13
Just like the functions [image: $$\Theta _{\sigma ,i,j}^\varOmega $$], the values [image: $$\varLambda _{\sigma ,i,j}^\varOmega $$] and the functions [image: $$\Xi _{\sigma ,i,j}^\varOmega $$] and are well-defined (compare Remark 11.7).

Now, with these definitions, we can summarize the above discussion by the following theorem.
Theorem 11.14
(Discrete Dirichlet Energy) Let [image: $$\mathrm L$$] be a discrete hermitian line bundle with curvature [image: $$\varOmega $$] over an [image: $$n$$]-dimensional Euclidean simplicial manifold [image: $$\mathcal {X}$$], then the Dirichlet product on [image: $$\varGamma (\mathrm L)$$] induced by the associated piecewise-smooth hermitian line bundle is given as follows: If [image: $$\phi =\sum _i \phi _i$$] and [image: $$\psi = \sum _i \psi _i$$] are two discrete sections,[image: $$ \langle \!\langle \phi , \psi \rangle \!\rangle _{\!D} = \sum _{i,j} w_\varOmega ^{{ij}}\, \langle \phi _j, \eta _{{ij}}(\psi _i)\rangle ,\quad w_\varOmega ^{{ij}} = \sum _{\{i,j\}\supset \sigma \in {\mathcal {X}}_n} W_{\sigma ,i,j}^\varOmega , $$]


where[image: $$\begin{aligned} W_{\sigma ,i,j}^\varOmega =&\Bigl [ c^{{ij}}_\sigma \, \varLambda _{\sigma ,i,j}^\varOmega + \sum _{k^\prime ,k^{\prime \!\prime },l^\prime ,l^{\prime \!\prime }} \varOmega _{ik^\prime l^\prime }\varOmega _{jk^{\prime \!\prime }l^{\prime \!\prime }}\,c_\sigma ^{k^\prime k^{\prime \!\prime }}\,\Xi _{\sigma ,i,j}^\varOmega (l^\prime ,l^{\prime \!\prime })\Bigr ] \\&+ \imath \Bigl [ \sum _{k^\prime ,l^\prime } \bigl (\varOmega _{ik^\prime l^\prime }\,c_\sigma ^{j k^\prime }\,\Theta _{\sigma ,i,j}^\varOmega (i,l^\prime ) - \varOmega _{jk^\prime l^\prime }\,c_\sigma ^{i k^\prime }\,\Theta _{\sigma ,i,j}^\varOmega (j,l^\prime ) \bigr )\Bigr ].\nonumber \end{aligned}$$]

 (11)





12 Discrete Energies on Surfaces—An Example
While the computation of the Dirichlet product [image: $$\langle \!\langle .,.\rangle \!\rangle _{\!D}$$] and the metric [image: $$\langle \!\langle .,.\rangle \!\rangle $$] of discrete sections is quite complicated and tedious for higher dimensional simplicial manifolds, it is manageable for the [image: $$2$$]-dimensional case. We are going to compute it explicitly.
Throughout this section let [image: $$\mathrm L$$] denote a discrete hermitian line bundle with curvature [image: $$\varOmega $$] over a Euclidean simplicial surface [image: $$\mathcal {X}$$] and let [image: $$\sigma =\{i,j,k\}$$] be one of its triangles.
The metric [image: $$\langle \!\langle .,.\rangle \!\rangle $$] is easily obtained. We basically just need to compute the values [image: $$\Theta _{\sigma ,i,i}^\varOmega (i,i)$$] and [image: $$\Theta _{\sigma ,i,j}^\varOmega (i,j)$$], which can be done over the standard triangle. We get[image: $$\begin{aligned} \Theta _{\sigma ,i,i}^\varOmega (i,i) = \frac{1}{6},\quad \Theta _{\sigma ,i,j}^\varOmega (i,j) = 2\frac{\exp (-\imath \varOmega _{{i\!jk}}) - 1 + \imath \varOmega _{{i\!jk}} + \tfrac{1}{2}\varOmega _{{i\!jk}}^2 - \imath \tfrac{1}{6}\varOmega _{{i\!jk}}^3}{\varOmega _{{i\!jk}}^4}. \end{aligned}$$]

 (12)

Now, we compute the Dirichlet product [image: $$\langle \!\langle .,.\rangle \!\rangle _{\!D}$$] on [image: $$\mathcal {X}$$]. For [image: $$n=2$$], the expressions [image: $$W_{\sigma ,i,i}^\varOmega $$] and [image: $$W_{\sigma ,i,j}^\varOmega $$] simplify drastically. First, we look at the diagonal terms. We have[image: $$\begin{aligned} \sum _{k^\prime ,k^{\prime \!\prime },l^\prime ,l^{\prime \!\prime }}&c_\sigma ^{k^\prime k^{\prime \!\prime }} \varOmega _{ik^\prime l^\prime }\varOmega _{ik^{\prime \!\prime }l^{\prime \!\prime }}\,\Xi _{\sigma ,i,i}^\varOmega (l^\prime ,l^{\prime \!\prime }) \\&= \Bigl (c_\sigma ^{jj}\Xi _{\sigma ,i,i}^\varOmega (k,k) - 2c^{jk}_\sigma \Xi _{\sigma ,i,i}^\varOmega (j,k) + c_\sigma ^{kk}\Xi _{\sigma ,i,i}^\varOmega (j,j) \Bigr )\varOmega _{{i\!jk}}^2 , \end{aligned}$$]


and with[image: $$ \varLambda _{\sigma ,i,i} = 1, \quad \Xi _{\sigma ,i,i}(j,j) = \frac{1}{90} = \Xi _{\sigma ,i,i}(k,k), \quad \Xi _{\sigma ,i,i}(j,k) = \frac{1}{180} $$]


we get the following formula:[image: $$\begin{aligned} W_{\sigma ,i,i}^\varOmega = c_\sigma ^{ii} + \frac{c_\sigma ^{jj} - c^{jk}_\sigma + c_\sigma ^{kk}}{90}\varOmega _{{i\!jk}}^2. \end{aligned}$$]


Now we would like to obtain a similar formula for the off-diagonal terms. Since [image: $$dx_i+dx_j= -dx_k$$], we have [image: $$c_\sigma ^{jk} + c_\sigma ^{ki}= -c_\sigma ^{kk}$$]. Hence,[image: $$\begin{aligned} \sum _{k^\prime ,k^{\prime \!\prime },l^\prime ,l^{\prime \!\prime }}&c_\sigma ^{k^\prime k^{\prime \!\prime }} \varOmega _{ik^\prime l^\prime }\varOmega _{jk^{\prime \!\prime }l^{\prime \!\prime }}\,\Xi _{\sigma ,i,j}^\varOmega (l^\prime ,l^{\prime \!\prime })\\&= -\Bigl (c_\sigma ^{{ij}}\Xi _{\sigma ,i,j}^\varOmega (k,k) + c_\sigma ^{kk}\bigl (\Xi _{\sigma ,i,j}^\varOmega (i,j) + \Xi _{\sigma ,i,j}^\varOmega (j,k)\bigr )\Bigr )\varOmega _{{i\!jk}}^2. \end{aligned}$$]


This time the expressions become more complicated. We get[image: $$\begin{aligned} {\Xi _{\sigma ,i,j}^\varOmega (k,k) = \frac{2}{\varOmega _{{i\!jk}}^6}\Bigl ( 20 - 12\imath \varOmega _{{i\!jk}} - 3\varOmega _{{i\!jk}}^2 + \tfrac{1}{3}\imath \varOmega _{{i\!jk}}^3 + \bigl (-20 - 8\imath \varOmega _{{i\!jk}}+ \varOmega _{{i\!jk}}^2\bigr )\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr )\Bigr ),} \end{aligned}$$]



[image: $$\begin{aligned} {\Xi _{\sigma ,i,j}^\varOmega (i,j) + \Xi _{\sigma ,i,j}^\varOmega (j,k) = \frac{2}{\varOmega _{{i\!jk}}^6}\Bigl (-6 + 4\imath \varOmega _{{i\!jk}} + \varOmega _{{i\!jk}}^2 + \tfrac{1}{12}\varOmega _{{i\!jk}}^4 - \tfrac{1}{30}\imath \varOmega _{{i\!jk}}^5 + \bigl (6 + 2\imath \varOmega _{{i\!jk}}\bigr )\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr )\Bigr )}. \end{aligned}$$]


Thus,[image: $$\begin{aligned} \sum _{k^\prime ,k^{\prime \!\prime },l^\prime ,l^{\prime \!\prime }}&c_\sigma ^{k^\prime k^{\prime \!\prime }} \varOmega _{ik^\prime l^\prime }\varOmega _{jk^{\prime \!\prime }l^{\prime \!\prime }}\,\Xi _{\sigma ,i,j}^\varOmega (l^\prime ,l^{\prime \!\prime }) = \\ \frac{2}{\varOmega _{{i\!jk}}^4} \Bigl (&\bigl [6 c_\sigma ^{kk} - 20 c_\sigma ^{{ij}}\bigr ] + \bigl [12 c_\sigma ^{{ij}} - 4 c_\sigma ^{kk}\bigr ]\imath \varOmega _{{i\!jk}} + \bigl [3 c_\sigma ^{{ij}} - c_\sigma ^{kk}\bigr ]\varOmega _{{i\!jk}}^2 - \tfrac{c_\sigma ^{{ij}}}{3}\imath \varOmega _{{i\!jk}}^3 - \tfrac{c_\sigma ^{kk}}{12}\varOmega _{{i\!jk}}^4 \\&+ \tfrac{c_\sigma ^{kk}}{30}\imath \varOmega _{{i\!jk}}^5 + \bigl (\bigr [20 c_\sigma ^{{ij}} - 6 c_\sigma ^{kk}\bigl ] + \bigr [8 c_\sigma ^{{ij}} - 2 c_\sigma ^{kk}\bigl ]\imath \varOmega _{{i\!jk}} - c_\sigma ^{{ij}}\varOmega _{{i\!jk}}^2\bigr )\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr ). \Bigr ) \end{aligned}$$]


Now, let us look at the second sum in Eq. (11). We have[image: $$\begin{aligned} \imath \sum _{k^\prime ,l^\prime }&\bigl (\varOmega _{ik^\prime l^\prime }c_\sigma ^{j k^\prime } \Theta _{\sigma ,i,j}^\varOmega (i,l^\prime ) - \varOmega _{jk^\prime l^\prime }c_\sigma ^{i k^\prime }\Theta _{\sigma ,i,j}^\varOmega (j,l^\prime )\bigr )\\&= \Bigl (c_\sigma ^{ii}\Theta _{\sigma ,i,j}^\varOmega (j,k) + c_\sigma ^{jj}\Theta _{\sigma ,i,j}^\varOmega (k,i) + c_\sigma ^{kk}\Theta _{\sigma ,i,j}^\varOmega (i,j)\Bigr )\imath \varOmega _{{i\!jk}}. \end{aligned}$$]


The formula for [image: $$\Theta _{\sigma ,i,j}^\varOmega (i,j)$$] is already given in Eq. (12). Further, we have[image: $$\begin{aligned} \Theta _{\sigma ,i,j}^\varOmega (j,k) = \frac{2}{\varOmega _{{i\!jk}}^4}\Bigl (3 - 2\imath \varOmega _{{i\!jk}} - \tfrac{1}{2}\varOmega _{{i\!jk}}^2 + \bigl (-3 +\imath \varOmega _{{i\!jk}}\bigr )\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr )\Bigr ) = \Theta _{\sigma ,i,j}^\varOmega (k,i). \end{aligned}$$]


Thus we get[image: $$\begin{aligned} \imath \sum _{k^\prime ,l^\prime } \bigl (\varOmega _{ik^\prime l^\prime }c_\sigma ^{j k^\prime } \Theta _{\sigma ,i,j}^\varOmega (i,l^\prime )&- \varOmega _{jk^\prime l^\prime }c_\sigma ^{i k^\prime }\Theta _{\sigma ,i,j}^\varOmega (j,l^\prime )\bigr ) = \\ \frac{2}{\varOmega _{{i\!jk}}^4} \Bigl ( \bigl [ 3(c_\sigma ^{ii} + c_\sigma ^{jj}) - c_\sigma ^{kk}\bigr ]&\imath \varOmega _{{i\!jk}} + \bigl [2(c_\sigma ^{ii} + c_\sigma ^{jj}) - c_\sigma ^{kk} \bigr ]\varOmega _{{i\!jk}}^2 + \tfrac{1}{2}\bigl [c_\sigma ^{kk}- c_\sigma ^{ii} - c_\sigma ^{jj}\bigr ]\imath \varOmega _{{i\!jk}}^3\\ + \tfrac{c_\sigma ^{kk}}{6} \varOmega _{{i\!jk}}^4 + \bigl (&\bigl [c_\sigma ^{kk} - 3(c_\sigma ^{ii} + c_\sigma ^{jj})\bigr ]\imath \varOmega _{{i\!jk}} + \bigr [c_\sigma ^{ii} + c_\sigma ^{jj}\bigl ]\varOmega _{{i\!jk}}^2\bigr )\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr ) \Bigr ). \end{aligned}$$]


Hence, with[image: $$ \varLambda _{ \sigma ,i,j}^\varOmega = \frac{2}{\varOmega _{{i\!jk}}^4}\Bigl (\varOmega _{{i\!jk}}^2 - \imath \varOmega _{{i\!jk}}^3 - \varOmega _{{i\!jk}}^2\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr )\Bigr ), $$]


Equation (11) becomes[image: $$\begin{aligned} W_{\sigma ,i,j}^\varOmega = \frac{2}{\varOmega _{{i\!jk}}^4} \Bigl (&\bigl [ 6\sigma ^{kk}-20 c_\sigma ^{{ij}}\bigr ] + \bigl [12c_\sigma ^{{ij}}+3(c_\sigma ^{ii}+c_\sigma ^{jj})-5c_\sigma ^{kk}\bigr ]\imath \varOmega _{{i\!jk}} + \bigl [4c_\sigma ^{{ij}} + 2(c_\sigma ^{ii} + c_\sigma ^{jj}- c_\sigma ^{kk}) \bigr ]\varOmega _{{i\!jk}}^2\\ + \tfrac{1}{6}&\bigl [3(c_\sigma ^{kk}- c_\sigma ^{ii} - c_\sigma ^{jj}) - 8 c_\sigma ^{{ij}}\bigr ]\imath \varOmega _{{i\!jk}}^3 + \tfrac{1}{12}c_\sigma ^{kk} \varOmega _{{i\!jk}}^4 + \tfrac{1}{30}c_\sigma ^{kk} \varOmega _{{i\!jk}}^4\\ + \bigl (&\bigl [20 c_\sigma ^{{ij}} - 6 c_\sigma ^{kk}\bigr ] + \bigr [8 c_\sigma ^{{ij}} - 3(c_\sigma ^{ii}+c_\sigma ^{jj}) - c_\sigma ^{kk}\bigl ]\imath \varOmega _{{i\!jk}} + \bigl [c_\sigma ^{ii}-2c_\sigma ^{{ij}}+c_\sigma ^{jj}]\bigr ]\varOmega _{{i\!jk}}^2\bigr )\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr ) \Bigr ). \end{aligned}$$]


Since [image: $$n=2$$], the weights [image: $$c_\sigma ^{{ij}}$$] are just given as follows:[image: $$ c_\sigma ^{{ij}} = -\frac{\cot \alpha _\sigma ^{{ij}}}{2},\quad c_\sigma ^{kk}= \frac{\ell _{{ij}}}{2h_k}, $$]


where [image: $$\ell _{{ij}}$$] denotes the edge length. We would like to express them explicitly in terms of the Euclidean metric [image: $$g$$] of [image: $$\sigma $$]. In fact, we can distinguish the vertex [image: $$k$$] as origin and use the hat functions [image: $$x_i$$] and [image: $$x_j$$] as coordinates on [image: $$\sigma $$]. With respect to these coordinates, the metric is given by a matrix:[image: $$ g= \begin{pmatrix}g_{11} &{} g_{12}\\ g_{21} &{} g_{22} \end{pmatrix}{.} $$]


In terms of [image: $$g$$] the cotangent weights are given as follows:[image: $$\begin{aligned} c_\sigma ^{{ij}}&= -\frac{g_{12}}{2\sqrt{\det g}},&c_\sigma ^{jk}&= -\frac{g_{11} - g_{12}}{2\sqrt{\det g}},&c_\sigma ^{ki}&= -\frac{g_{22} - g_{12}}{2\sqrt{\det g}}, \\ c_\sigma ^{kk}&= \frac{g_{11}-2g_{12}+g_{22}}{2\sqrt{\det g}},&c_\sigma ^{ii}&= \frac{g_{22}}{2\sqrt{\det g}},&c_\sigma ^{jj}&= \frac{g_{11}}{2\sqrt{\det g}}, \end{aligned}$$]


and we have rederived the formulas in [8]:[image: $$\begin{aligned} W_{\sigma ,i,j}^\varOmega =&\frac{1}{\mathrm {vol}\,(\sigma )\varOmega _{{i\!jk}}^4} \Bigl ( \bigl [3g_{11} + 4g_{12} + 3g_{22}\bigr ] - \bigl [g_{11}+g_{12}+g_{22}\bigr ]\imath \varOmega _{{i\!jk}} + \tfrac{g_{12}}{6}\imath \varOmega _{{i\!jk}}^3 \\&+ \tfrac{g_{11}-2g_{12}+g_{22}}{24} \varOmega _{{i\!jk}}^4 + \tfrac{g_{11}-2g_{12}+g_{22}}{60}\varOmega _{{i\!jk}}^4 - \bigl (\bigl [3g_{11} + 4g_{12} + 3g_{22}\bigr ] \\&+ \bigr [2g_{11}+3g_{12}+2g_{22}\bigl ]\imath \varOmega _{{i\!jk}} - \tfrac{1}{2}\bigl [g_{11}+2g_{12}+g_{22}\bigr ]\varOmega _{{i\!jk}}^2\bigr )\exp \bigl (-\imath \varOmega _{{i\!jk}}\bigr )\Bigr ). \end{aligned}$$]
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Abstract
Given a triangulated region in the complex plane, a discrete vector field Y assigns a vector [image: $$Y_i\in \mathbb {C}$$] to every vertex. We call such a vector field holomorphic if it defines an infinitesimal deformation of the triangulation that preserves length cross ratios. We show that each holomorphic vector field can be constructed based on a discrete harmonic function in the sense of the cotan Laplacian. Moreover, to each holomorphic vector field we associate in a Möbius invariant fashion a certain holomorphic quadratic differential. Here a quadratic differential is defined as an object that assigns a purely imaginary number to each interior edge. Then we derive a Weierstrass representation formula, which shows how a holomorphic quadratic differential can be used to construct a discrete minimal surface with prescribed Gauß map and prescribed Hopf differential.

1 Introduction
Consider an open subset U in the complex plane [image: $$\mathbb {C}\cong \mathbb {R}^2$$] with coordinates [image: $$z=x+iy$$] together with a holomorphic vector field[image: $$\begin{aligned} Y=f\frac{\partial }{\partial x}. \end{aligned}$$]


Here Y is a real vector field. It assigns to each [image: $$p\in \mathbb {R}^2$$] the vector [image: $$f(p)\in \mathbb {C}\cong \mathbb {R}^2$$]. We do not consider objects like [image: $$\frac{\partial }{\partial z}$$] which are sections of the complexified tangent bundle [image: $$({{\mathrm{T}}}\mathbb {R}^2)^{\mathbb {C}}$$].
Note [image: $$f:U \rightarrow \mathbb {C}$$] is a holomorphic function, i.e.[image: $$\begin{aligned} 0=f_{\bar{z}}=\frac{1}{2}\left( \frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}\right) . \end{aligned}$$]


Let [image: $$t \mapsto g_t$$] denote the local flow of Y (defined for small t on open subsets of U with compact closure in U). Then the euclidean metric pulled back under [image: $$g_t$$] is conformally equivalently to the original metric:[image: $$\begin{aligned} g_t^*\langle \,,\rangle =e^{2u}\langle \,,\rangle \end{aligned}$$]


for some real-valued function u. The infinitesimal change in scale [image: $${\dot{u}}$$] is given by[image: $$\begin{aligned} {\dot{u}}=\frac{1}{2}\text{ div }\,Y = \text{ Re }\left( f_z\right) . \end{aligned}$$]


Note that [image: $${\dot{u}}$$] is a harmonic function:[image: $$\begin{aligned} {\dot{u}}_{z{\bar{z}}}=0. \end{aligned}$$]


On the other hand, differentiating [image: $${\dot{u}}$$] twice with respect to z yields one half the third derivative of f:[image: $$\begin{aligned} {\dot{u}}_{zz}=\frac{1}{2}f_{zzz}. \end{aligned}$$]


It is well-known that the vector field Y corresponds to an infinitesimal Möbius transformation of the extended complex plane [image: $$\overline{\mathbb {C}}$$] if and only if f is a quadratic polynomial. In this sense [image: $$f_{zzz}$$] measures the infinitesimal “change in Möbius structure” under Y (Möbius structures are sometimes also called “complex projective structures” [6]). Moreover, the holomorphic quadratic differential[image: $$\begin{aligned} q:=f_{zzz}\,dz^2 \end{aligned}$$]


is invariant under Möbius transformations [image: $$\varPhi $$]. This is equivalent to saying that q is unchanged under a change of variable [image: $$\varPhi (z)=w=\xi +i\eta $$] whenever [image: $$\varPhi $$] is a Möbius transformation. This is easy to see if [image: $$\varPhi (z)=az+b$$] is an affine transformation. In this case[image: $$\begin{aligned} dw&=a\,dz\\ \frac{d}{dw}&=\frac{1}{a}\frac{d}{dz} \end{aligned}$$]


and therefore[image: $$\begin{aligned} Y=\tilde{f}\frac{\partial }{\partial \xi } \end{aligned}$$]


with[image: $$\begin{aligned} \tilde{f}=a\,f. \end{aligned}$$]


Thus we indeed have[image: $$\begin{aligned} \tilde{f}_{www}\,dw^2=f_{zzz}\,dz^2. \end{aligned}$$]


A similar argument applies to [image: $$\varPhi (z)=\frac{1}{z}$$] and therefore to all Möbius transformations.
For realizations from an open subset U of the Riemann sphere [image: $$\mathbb {C}\text {P}^1$$] the vanishing of the Schwarzian derivative characterizes Möbius transformations. The quadratic differential q plays a similar role for vector fields. We call q the Möbius derivative of Y.
An important geometric context where holomorphic quadratic differentials arise comes from the theory of minimal surfaces: Given a simply connected Riemann surface M together with a holomorphic immersion [image: $$g:M \rightarrow S^2 \subset \mathbb {R}^3$$] and a holomorphic quadratic differential q on M, there is a minimal surface [image: $$F:M\rightarrow \mathbb {R}^3$$] (unique up to translations) whose Gauß map is g and whose second fundamental form is [image: $$\text{ Re }\,q$$].
In this paper we will provide a discrete version for all details of the above story. Instead of smooth surfaces we will work with triangulated surfaces of arbitrary combinatorics. The notion of conformality will be that of conformal equivalence as explained in [3]. Holomorphic vector fields will be defined as infinitesimal conformal deformations.
There is also a completely parallel discrete story where conformal equivalence of planar triangulations is replaced by preserving intersection angles of circumcircles. To some extent we also tell this parallel story that belongs to the world of circle patterns.
The results on planar triangular meshes in this paper are closely related to isothermic triangulated surfaces in Euclidean space [8].

2 Discrete Conformality
In this section, we review two notions of discrete conformality for planar triangular meshes. We first start with some notations of triangular meshes.
Definition 2.1
A triangular mesh M is a simplicial complex whose underlying topological space is a connected 2-manifold (with boundary). The set of vertices (0-cells), edges (1-cells) and triangles (2-cells) are denoted as V, E and F.

We denote [image: $$E_{int}$$] the set of interior edges and [image: $$V_{int}$$] the set of interior vertices. Without further notice we will assume that all triangular meshes under consideration are oriented.
Definition 2.2
A realization [image: $$z:V \rightarrow \mathbb {C}$$] of a triangular mesh M in the extended complex plane assigns to each vertex [image: $$i\in V$$] a point [image: $$z_i \in \overline{\mathbb {C}}$$] in such a way that for each triangle [image: $$\{i\!jk\}\in F$$] the points corresponding to its three vertices are not collinear.

Given two complex numbers [image: $$z_1,z_2 \in \mathbb {C}$$] we write[image: $$ \langle z_1, z_2 \rangle := \text {Re}( {\bar{z}}_1 z_2). $$]


We are looking for suitable definitions of conformal structure of a realization z. In particular, we want z to be conformally equivalent to [image: $$g\circ z$$] whenever [image: $$g: \overline{\mathbb {C}} \rightarrow \overline{\mathbb {C}}$$] is a Möbius transformations. This requirement will certainly be met if we base our definitions on complex cross ratios: Given a triangular mesh [image: $$z:V\rightarrow \mathbb {C}$$], we associate a complex number to each interior edge [image: $$\{i\!j\} \in E_{int}$$], namely the cross ratio of the corresponding four vertices (See Fig. 1)[image: $$ {{\mathrm{cr}}}_{z,i\!j} = \frac{(z_{\!j} - z_k)(z_i - z_l)}{(z_k - z_i)(z_l - z_{\!j})}. $$]


Notice that [image: $${{\mathrm{cr}}}_{z,i\!j}={{\mathrm{cr}}}_{z,ji}$$] and hence [image: $${{\mathrm{cr}}}_z:E_{int} \rightarrow \mathbb {C}$$] is well defined. It is easy to see that two realizations differ only by a Möbius transformation if and only if their corresponding cross ratios are the same. In order to arrive at a more flexible notion of conformality we need to relax the condition that demands the equality of all cross ratios. Two natural ways to do this is to only require equality of either the norm or alternatively the argument of the cross ratios. This leads to two different notions of discrete conformality: conformal equivalence theory [9, 13] and circle pattern theory [11].[image: A371662_1_En_7_Fig1_HTML.gif]
Fig. 1Two neighboring and oriented triangles





Note that for the sake of simplicity of exposition we are ignoring here realizations in [image: $$\overline{\mathbb {C}}$$] where one of the vertices is mapped to infinity.
2.1 Conformal Equivalence
The edge lengths of a triangular mesh realized in the complex plane provide a discrete counterpart for the induced Euclidean metric in the smooth theory. A notion of conformal equivalence based on edge lengths was proposed by Luo [9]. Later Bobenko et al. [3] stated this notion in the following form:
Definition 2.3
Two realizations of a triangular mesh [image: $$z,w:V \rightarrow \mathbb {C}$$] are conformally equivalent if the norm of the corresponding cross ratios are equal:[image: $$\begin{aligned} |{{\mathrm{cr}}}_{z}| \equiv |{{\mathrm{cr}}}_{w}|, \end{aligned}$$]


i.e. for each interior edge [image: $$\{i\!j\}$$]
            [image: $$\begin{aligned} \frac{|(z_{\!j} - z_k)||(z_i - z_l)|}{|(z_k - z_i)||(z_l - z_{\!j})|} = \frac{|(w_{\!j} - w_k)||(w_i - w_l)|}{|(w_k - w_i)||(w_l - w_{\!j})|}. \end{aligned}$$]





This definition can be restated in an equivalent form that closely mirrors the notion of conformal equivalence of Riemannian metrics:
Theorem 2.4
Two realizations of a triangular mesh [image: $$z,w:V \rightarrow \mathbb {C}$$] are conformally equivalent if and only if there exists [image: $$u:V\rightarrow \mathbb {R}$$] such that[image: $$ |w_{\!j} -w_i|=e^{\frac{u_{i}+u_{{\!j}}}{2}}|z_{\!j} -z_i|. $$]





Proof
It is easy to see that the existence of u implies conformal equivalence. Conversely, for two conformally equivalent realizations z, w, we define a function [image: $$\sigma : E \rightarrow \mathbb {R}$$] by[image: $$ |w_{\!j} -w_i|=e^{\sigma _{i\!j}}|z_{\!j} -z_i|. $$]


Since z, w are conformally equivalent [image: $$\sigma $$] satisfies for each interior edge [image: $$\{i\!j\}$$]
            [image: $$ \sigma _{jk}-\sigma _{ki}+\sigma _{il}-\sigma _{l\!j}=0. $$]


For any vertex i and any triangle [image: $$\{i\!jk\}$$] containing it we then define[image: $$ e^{u_i} := e^{\sigma _{ki} + \sigma _{i\!j} - \sigma _{{\!j}k}}. $$]


Note the vertex star of i is a triangulated disk if i is interior, or is a fan if i is a boundary vertex. Hence the value [image: $$u_i$$] defined in this way is independent of the chosen triangle.    [image: $$\square $$]
          


2.2 Circle Patterns
Given a triangular mesh realized in the complex plane we consider the circumscribed circles of its triangles. These circles inherit an orientation from their triangles. The intersection angles of these circles from neighboring triangles (Fig. 2) define a function [image: $$\phi : E_{int} \rightarrow [0, 2\pi )$$] which is related to the argument of the corresponding cross ratio via[image: $$\begin{aligned} \phi _{ij} = {{\mathrm{Arg}}}({{\mathrm{cr}}}_{z,ij}). \end{aligned}$$]

 (1)


[image: A371662_1_En_7_Fig2_HTML.gif]
Fig. 2The intersection angle of two neighboring circumscribed circles





Based on these angles we obtain another notion of discrete conformality which reflects the angle-preserving property that we have in the smooth theory.
Definition 2.5
Two realizations of a triangular mesh [image: $$z,w:V \rightarrow \mathbb {C}$$] have the same pattern structure if the corresponding intersection angles of neighboring circumscribed circles are equal:[image: $$ {{\mathrm{Arg}}}({{\mathrm{cr}}}_{z,i\!j})={{\mathrm{Arg}}}({{\mathrm{cr}}}_{w,i\!j}), $$]


i.e. for each interior edge [image: $$\{i\!j\}$$]
            [image: $$ {{\mathrm{Arg}}}\frac{(z_{\!j} - z_k)(z_i - z_l)}{(z_k - z_i)(z_l - z_{\!j})} = {{\mathrm{Arg}}}\frac{(w_{\!j} - w_k)(w_i - w_l)}{(w_k - w_i)(w_l - w_{\!j})}. $$]





Just as conformal equivalence was related to scale factors u at vertices, having the same pattern structure is related to the existence of certain angular velocities [image: $$\alpha $$] located at vertices:  
Theorem 2.6
Two realizations of a triangular mesh [image: $$z,w:V \rightarrow \mathbb {C}$$] have the same pattern structure if and only if there exists [image: $$\alpha :V \rightarrow [0, 2\pi )$$] such that[image: $$ \frac{w_{\!j} -w_i}{|w_{\!j} -w_i|}=e^{i\frac{\alpha _{i}+\alpha _{\!j}}{2}}\frac{z_{\!j} -z_i}{|z_{\!j} -z_i|}. $$]





Proof
The argument is very similar to the one for Theorem 2.4. In particular, the existence of the function [image: $$\alpha $$] easily implies equality of the pattern structures. Conversely, assuming identical pattern structures we take any [image: $$\omega :E \rightarrow \mathbb {R}$$] that satisfies[image: $$ \frac{w_{\!j} - w_i}{|w_{\!j} - w_i|} = e^{i\omega _{i\!j}} \frac{z_{\!j} - z_i}{|z_{\!j} - z_i|} . $$]


For any vertex i and any triangle [image: $$\{i\!jk\}$$] containing it we define [image: $$\alpha _i \in [0, 2\pi )$$] such that[image: $$ e^{i \alpha _i} = e^{i (\omega _{ki} + \omega _{i\!j} - \omega _{jk})}. $$]


Note the vertex star of i is a triangulated disk if i is interior, or is a fan if i is a boundary vertex. Hence having the same pattern structure implies that the value [image: $$\alpha _i$$] is independent of the chosen triangle.    [image: $$\square $$]
          



3 Infinitesimal Deformations and Linear Conformal Theory
We will linearize both of the above notions of discrete conformality by considering infinitesimal deformations. This will allow us to relate them to linear discrete complex analysis, based on a discrete analogue of the Cauchy Riemann equations [4, 5, 10] (See the survey [12]).
Definition 3.1
An infinitesimal conformal deformation of a realization [image: $$z:V \rightarrow \mathbb {C}$$] of a triangular mesh is a map [image: $${\dot{z}}: V \rightarrow \mathbb {C}$$] such that there exists [image: $$u:V \rightarrow \mathbb {R}$$] satisfying[image: $$ \text {Re}{\frac{{\dot{z}}_{\!j} - {\dot{z}}_i}{z_{\!j}-z_i}} = \frac{\langle {\dot{z}}_{\!j}-{\dot{z}}_i, z_{\!j} - z_i \rangle }{|z_{\!j}-z_i|^2} = \frac{u_i+u_{\!j}}{2}. $$]


We call u the scale change at vertices.

Definition 3.2
An infinitesimal pattern deformation of a realization [image: $$z:V \rightarrow \mathbb {C}$$] of a triangular mesh is a map [image: $${\dot{z}}: V \rightarrow \mathbb {C}$$] such that there exists [image: $$\alpha :V \rightarrow \mathbb {R}$$] satisfying[image: $$ \text {Im}{\frac{{\dot{z}}_{\!j} - {\dot{z}}_i}{z_{\!j}-z_i}} = \frac{\langle {\dot{z}}_{\!j}-{\dot{z}}_i, i(z_{\!j} - z_i) \rangle }{|z_{\!j}-z_i|^2} = \frac{\alpha _i+\alpha _{\!j}}{2}. $$]


We call [image: $$\alpha $$] the angular velocities at vertices.

Example 3.3
The infinitesimal deformations [image: $${\dot{z}}:= a z^2 + bz + c$$], where [image: $$a,b,c \in \mathbb {C}$$] are constants, are both conformal and pattern deformations since[image: $$ \frac{{\dot{z}}_{\!j} - {\dot{z}}_i}{z_{\!j}-z_i} =(az_i + b/2) + (az_{\!j} + b/2). $$]





Infinitesimal conformal deformations and infinitesimal pattern deformations are closely related:
Theorem 3.4
Suppose [image: $$z:V \rightarrow \mathbb {C}$$] is a realization of a triangular mesh. Then an infinitesimal deformation [image: $${\dot{z}}:V \rightarrow \mathbb {C}$$] is conformal if and only if [image: $$i {\dot{z}}$$] is a pattern deformation.

Proof
Notice[image: $$\begin{aligned} \frac{\langle {\dot{z}}_{\!j}-{\dot{z}}_i, z_{\!j} - z_i \rangle }{|z_{\!j}-z_i|^2} = \frac{\langle i{\dot{z}}_{\!j}- i{\dot{z}}_i, i(z_{\!j} - z_i) \rangle }{|z_{\!j}-z_i|^2}. \end{aligned}$$]


and the claim follows from Definition 3.1 and 3.2.    [image: $$\square $$]
        

3.1 Infinitesimal Deformations of a Triangle
Let [image: $$z:V \rightarrow \mathbb {C}$$] be a realization of a triangulated mesh and [image: $${\dot{z}}$$] an infinitesimal deformation. Up to an infinitesimal translation [image: $${\dot{z}}$$] is completely determined by the infinitesimal scalings and rotations that it induces on each edge. These infinitesimal scalings and rotations of edges satisfy certain compatibility conditions on each triangle. These conditions involve the cotangent coefficients well known from the theory of discrete Laplacians. As we will see in Sect. 3.2, for conformal deformations (as well as for pattern deformations) the infinitesimal scalings and rotations of edges are indeed discrete harmonic functions.
Consider three pairwise distinct points [image: $$z_1,z_2,z_3 \in \mathbb {C}$$] that do not lie on a line. In the following i, j, k denotes any cyclic permutation of the indexes 1, 2, 3. The triangle angle at the vertex i is denoted by [image: $$\beta _i$$]. We adopt the convention that all [image: $$\beta _1,\beta _2,\beta _3$$] have positive sign if the triangle [image: $$z_1,z_2,z_3$$] is positively oriented and a negative sign otherwise. Suppose we have an infinitesimal deformation of this triangle. Then there exists [image: $$\sigma _{i\!j},\omega _{i\!j} \in \mathbb {R}$$] such that[image: $$\begin{aligned} {\dot{z}}_{\!j} - {\dot{z}}_i = (\sigma _{i\!j} + i\omega _{i\!j}) (z_{\!j} -z_i). \end{aligned}$$]

 (2)

The scalars [image: $$\sigma _{i\!j}$$] and [image: $$\omega _{i\!j}$$] describe the infinitesimal scalings and rotations of the edges. They satisfy the following compatibility conditions:
Lemma 3.5
Given [image: $$\sigma _{i\!j},\omega _{i\!j} \in \mathbb {R}$$] the following statements are equivalent:
(a) There exist [image: $${\dot{z}}_i$$] such that (2) holds.
(b) We have[image: $$\begin{aligned} 0 = (\sigma _{12} + i\omega _{12})(z_2 - z_1) + (\sigma _{23} + i\omega _{23})(z_3 - z_2) +(\sigma _{31} + i\omega _{31})(z_1 -z_3). \end{aligned}$$]

 (3)

(c) There exists [image: $$\omega \in \mathbb {R}$$] such that[image: $$\begin{aligned} i\omega&= i\omega _{23} + i \cot \beta _1 (\sigma _{31} - \sigma _{12}) \nonumber \\&= i\omega _{31} + i \cot \beta _2 (\sigma _{12} - \sigma _{23}) \\&= i\omega _{12} + i \cot \beta _3 (\sigma _{23} - \sigma _{31}) \nonumber . \end{aligned}$$]


(d) There exist [image: $$\sigma \in \mathbb {R}$$] such that[image: $$\begin{aligned} \sigma&= \sigma _{23} + i \cot \beta _1 (i\omega _{31} - i\omega _{12}) \nonumber \\&= \sigma _{31} + i \cot \beta _2 (i\omega _{12} - i\omega _{23}) \\&= \sigma _{12} + i \cot \beta _3 (i\omega _{23} - i\omega _{31}) \nonumber . \end{aligned}$$]





Proof
The relation between (a) and (b) is obvious. We show the equivalence between (b) and (c). With A denoting the signed triangle area we have the following identities:[image: $$\begin{aligned} 0&=\langle i(z_{\!j}- z_i),z_{\!j}- z_i \rangle ,\\ 2 A&=\langle i(z_{\!j}- z_i),z_k- z_{\!j} \rangle ,\\ \langle i(z_{\!j}- z_i),i(z_{\!j}- z_i) \rangle&= \langle z_{\!j}- z_i,z_{\!j}- z_i \rangle . \end{aligned}$$]


Using these identities and [image: $$z_3 - z_2 \in \text{ span }_\mathbb {R}\{i(z_1 - z_3),i(z_2 -z_1)\}$$] we obtain[image: $$\begin{aligned} z_3 - z_2&= \cot (\beta _3) i(z_2 -z_1)-\cot (\beta _2) i(z_1 - z_3) . \end{aligned}$$]

 (4)

Cyclic permutation yields[image: $$\begin{aligned} z_1 - z_3&= \cot (\beta _1) i(z_3 - z_2) - \cot (\beta _3) i(z_2 - z_1) , \\ z_2 - z_1&= \cot (\beta _2) i(z_1 - z_3) - \cot (\beta _1) i(z_3 - z_2) . \end{aligned}$$]


Substituting these identities into Equation (3) we obtain[image: $$\begin{aligned} 0 =&\; \sigma _1 \big (\cot (\beta _3) i(z_2 - z_1)-\cot (\beta _2) i(z_1 - z_3)\big ) + \omega _{23} i(z_3 - z_2)\\&+ \sigma _2 \big (\cot (\beta _1) i(z_3 - z_2) - \cot (\beta _3) i(z_2 - z_1)\big ) + \omega _{31} i(z_1 - z_3)\\&+ \sigma _3 \big (\cot (\beta _2) i(z_1 - z_3) - \cot (\beta _1) i(z_3 - z_2)\big ) + \omega _{12} i(z_2 - z_1)\\ =&\; \big (\omega _1+\cot \beta _1 (\sigma _2 - \sigma _3)\big ) i(z_3 - z_2)\\&+\big (\omega _2+\cot \beta _2(\sigma _3 - \sigma _1)\big ) i(z_1 - z_3)\\&+\big (\omega _3+\cot \beta _3 (\sigma _1 - \sigma _2)\big ) i(z_2 - z_1). \end{aligned}$$]


Now we use that [image: $$\lambda _1,\lambda _2,\lambda _3 \in \mathbb {C}$$] satisfy[image: $$ \lambda _1 i(z_3 - z_2)+\lambda _2 i(z_1 - z_3)+\lambda _3 i(z_2 - z_1)=0, $$]


if and only if [image: $$\lambda _1=\lambda _2=\lambda _3$$]. This establishes the equivalence of (b) and (c). The equivalence of (b) and (d) is seen in a similar fashion by eliminating [image: $$i(z_{\!j}-z_i)$$] in (3) instead of [image: $$(z_{\!j}-z_i)$$].    [image: $$\square $$]
          

The quantity [image: $$\omega $$] above describes the average rotation speed of the triangle. Similarly, it can be verified that the above [image: $$\sigma $$] satisfies[image: $$ \sigma = \frac{{\dot{R}}}{R} $$]


where R denotes the circumradius of the triangle. Thus [image: $$\sigma $$] signifies an average scaling of the triangle.

3.2 Harmonic Functions with Respect to the Cotangent Laplacian
In smooth complex analysis conformal maps are closely related to harmonic functions. If a conformal map preserves orientation it is holomorphic and satisfies the Cauchy Riemann equations. In particular, its real part and the imaginary part are conjugate harmonic functions. Conversely, given a harmonic function on a simply connected surface then it is the real part of some conformal map.
A similar relationship manifests between discrete harmonic functions (in the sense of the cotangent Laplacian) and infinitesimal deformations of triangular meshes. Discrete harmonic functions can be regarded as the real part of holomorphic functions which satisfies a discrete analogue of the Cauchy Riemann equations. In particular, a relation between discrete harmonic functions and infinitesimal pattern deformations was found by Bobenko, Mercat and Suris [2]. Integrable systems were involved in this context. We extend their result to include the case of infinitesimal conformal deformations.
Theorem 3.6
Let [image: $$z:V \rightarrow \mathbb {C}$$] be a simply connected triangular mesh realized in the complex plane and [image: $$h: V \rightarrow \mathbb {R}$$] be a function. Then the following are equivalent:
(a) h is a harmonic function with respect to the cotangent Laplacian, i.e. using the notation of Fig. 1, for all interior vertices [image: $$i\in V_{int}$$] we have[image: $$\begin{aligned} \sum _j (\cot \beta _{i\!j}^k + \cot \beta _{ji}^l) (h_{\!j} - h_i) =0. \end{aligned}$$]

 (5)

(b) There exists an infinitesimal conformal deformation [image: $${\dot{z}}:V \rightarrow \mathbb {C}$$] with scale factors given by h. It is unique up to infinitesimal rotations and translations.
(c) There exists an infinitesimal pattern deformation [image: $$i{\dot{z}}:V \rightarrow \mathbb {C}$$] with h as angular velocities. It is unique up to infinitesimal scalings and translations.

Proof
We show the equivalence of the first two statements. The equivalence of the first and the third follows similarly.
Suppose h is a harmonic function. Since the triangular mesh is simply connected, equation (5) implies the existence of a function [image: $$\tilde{\omega }: F \rightarrow \mathbb {R}$$] such that for all interior edges [image: $$\{i\!j\}$$] we have[image: $$ i\tilde{\omega }_{i\!jk}- i\tilde{\omega }_{jil} = i(\cot \beta _{i\!j}^k + \cot \beta _{ji}^l) (h_{\!j} - h_i). $$]


Here [image: $$\tilde{\omega }$$] is unique up to an additive constant and called the conjugate harmonic function of h. Using [image: $$\tilde{\omega }$$] we define a function [image: $$\omega :E \rightarrow \mathbb {R}$$] via[image: $$ i\omega _{i\!j} = i\tilde{\omega }_{i\!jk} - i\cot \beta _{i\!j}^k (h_{\!j} - h_i). $$]


Lemma 3.5 now implies that there exists [image: $${\dot{z}}: V \rightarrow \mathbb {C}$$] such that[image: $$ ({\dot{z}}_{\!j} -{\dot{z}}_i) = \left( \frac{h_i + h_{\!j}}{2} + i\omega _{i\!j} \right) (z_{\!j} -z_i). $$]


This gives us the desired infinitesimal conformal deformation of z with h as scale factors.
To show uniqueness, suppose [image: $${\dot{z}}, {\dot{z}}'$$] are infinitesimal conformal deformations with the same scale factors. Then [image: $${\dot{z}} - {\dot{z}}'$$] preserves all the edge lengths of the triangular mesh and hence is induced from an Euclidean transformation.
Conversely, given an infinitesimal conformal deformation [image: $${\dot{z}}$$] with scale factors h. We write[image: $$ {\dot{z}}_{\!j} - {\dot{z}}_i = \left( \frac{h_i + h_{\!j}}{2} + i\omega _{i\!j} \right) (z_{\!j} - z_i) $$]


for some [image: $$\omega :E \rightarrow \mathbb {R}$$]. Lemma 3.5 implies that there is a function [image: $$\tilde{\omega }: F \rightarrow \mathbb {R}$$] such that[image: $$ i\tilde{\omega }_{i\!jk}=i\omega _{i\!j} + i\cot \beta _{i\!j}^k (h_{\!j} - h_i). $$]


We have[image: $$ i\tilde{\omega }_{i\!jk}- i\tilde{\omega }_{jil} =i (\cot \beta _{i\!j}^k + \cot \beta _{ji}^l) (h_{\!j} - h_i) $$]


and[image: $$ \sum _j (\cot \beta _{i\!j}^k + \cot \beta _{ji}^l) (h_{\!j} - h_i) =0. $$]


Therefore h is harmonic.    [image: $$\square $$]
          



4 Holomorphic Quadratic Differentials
In this section, we introduce a discrete analogue of holomorphic quadratic differentials. We illustrate their correspondence to discrete harmonic functions. It reflects the property in the smooth theory that holomorphic quadratic differentials parametrize Möbius structures on Riemann surfaces ([6, Chap. 9]).
To simplify the notation, we make use of discrete differential forms. We denote [image: $$\vec {E}$$] the set of oriented edges and [image: $$\vec {E}_{int}$$] the set of oriented interior edges. Given an oriented triangular mesh M, a complex-valued function [image: $$\eta :\vec {E}\rightarrow \mathbb {C}$$] is called a discrete 1-form if[image: $$ \eta (e_{i\!j}) = -\eta (e_{\!ji}) \quad \forall e_{i\!j} \in \vec {E}. $$]


It is closed if for every face [image: $$\{i\!jk\}$$]
        [image: $$ \eta (e_{i\!j}) + \eta (e_{\!jk}) +\eta (e_{ki}) =0. $$]


It is exact if there exists a function [image: $$f:V \rightarrow \mathbb {C}$$] such that[image: $$ \eta (e_{i\!j}) = df(e_{i\!j}) := f_{\!j} -f_i. $$]


Similarly, we can consider discrete 1-forms on the dual graph [image: $$M^*$$] of M and these are called dual 1-forms. Given an oriented edge e, we denote [image: $$e^*$$] its dual edge oriented from the right face of e to its left face. The set of oriented dual edges is denoted by [image: $$\vec {E}^*$$].
Definition 4.1
Given a triangular mesh [image: $$z:V \rightarrow \mathbb {C}$$] realized on the complex plane, a function [image: $$q:E_{int} \rightarrow i\mathbb {R}$$] defined on interior edges is a discrete holomorphic quadratic differential if it satisfies for every interior vertex [image: $$i \in V_{int}$$]
          [image: $$\begin{aligned}&\sum _{j} q_{i\!j} = 0, \\&\sum _{j} q_{i\!j}/ dz(e_{i\!j}) = 0. \end{aligned}$$]





Theorem 4.2
Let [image: $$q:E_{int} \rightarrow i\mathbb {R}$$] be a holomorphic quadratic differential on a realization [image: $$z:V \rightarrow \mathbb {C}$$] of a triangular mesh. Suppose [image: $$\varPhi :\overline{\mathbb {C}} \rightarrow \overline{\mathbb {C}}$$] is a Möbius transformation which does not map any vertex to infinity. Then q is again a holomorphic quadratic differential on [image: $$w:= \varPhi \circ z$$].

Proof
Since Möbius transformations are generated by Euclidean transformations and inversions, it suffices to consider the inversion in the unit circle at the origin[image: $$ w:=\varPhi (z) = 1/z. $$]


We have[image: $$\begin{aligned} \sum _{j} q_{i\!j}/ dw(e_{i\!j}) = \sum _{j} -z_i z_{\!j} q_{i\!j}/ dz(e_{i\!j}) = -z_i \sum _{j} q_{i\!j} - z_i^2 \sum _{j} q_{i\!j} /dz(e_{i\!j}) =0. \end{aligned}$$]


Hence the claims follow.    [image: $$\square $$]
        

We are going to show that on a simply connected triangular mesh, there is a correspondence between discrete holomorphic quadratic differentials and discrete harmonic functions.
We first show how to construct a discrete holomorphic quadratic differential from a harmonic function. Given a function [image: $$u:V \rightarrow \mathbb {R}$$] on a realization of [image: $$z:V \rightarrow \mathbb {C}$$] of a triangular mesh M. If we interpolate it piecewise-linearly over each triangular face, its gradient is constant on each face and we have [image: $${{\mathrm{grad}}}_z u:F \rightarrow \mathbb {C}$$] given by[image: $$ {{\mathrm{grad}}}_z u_{i\!jk} = i \frac{u_i dz(e_{jk})+ u_{\!j} dz(e_{ki})+u_k dz(e_{i\!j})}{2 A_{i\!jk}}. $$]


Note that we ignore here the non-generic case (which leads to the vanishing of the area) where the triangle degenerates in the sense that its circumcircle passes through the point at infinity. Also note that for a non-degenerate triangle that is mapped by z in [image: $$\mathbb {C}$$] in an orientation reversing fashion the area [image: $$A_{i\!jk}$$] is considered to have a negative sign. Granted this, one can verify that the gradient of u satisfies[image: $$ \langle {{\mathrm{grad}}}_z u_{i\!jk}, dz(e_{i\!j}) \rangle = u_{\!j} - u_i \quad \forall \{i\!j\} \subset \{i\!jk\} \in F. $$]


We define [image: $$u_z : F \rightarrow \mathbb {C}$$] by[image: $$ u_z := \frac{1}{2} \overline{{{\mathrm{grad}}}_z u}. $$]


and the dual 1-form [image: $$du_z: \vec {E}^*_{int} \rightarrow \mathbb {C}$$] on M by[image: $$ du_z(e^*_{i\!j}) := (u_z)_{i\!jk} - (u_z)_{jil} $$]


where [image: $$\{i\!jk\}$$] is the left face and [image: $$\{jil\}$$] is the right face of the oriented edge [image: $$e_{i\!j}$$].
Lemma 4.3
Given a function [image: $$u:V \rightarrow \mathbb {R}$$] on a realization of a triangular mesh [image: $$z:V \rightarrow \mathbb {C}$$], we have[image: $$\begin{aligned}&du_z(e^*_{i\!j}) dz(e_{i\!j}) \\ =&\frac{-i}{2}\big (\cot \beta ^{i}_{jk} (u_k -u_{\!j})+\cot \beta ^{\!j}_{ki} (u_k -u_i)+\cot \beta ^{\!j}_{il} (u_l -u_i)+\cot \beta ^{i}_{lj} (u_l -u_{\!j})\big ) \end{aligned}$$]


which is purely imaginary (Fig. 1).

Proof
Since[image: $$ \langle {{\mathrm{grad}}}_z u_{ijk}, dz(e_{i\!j}) \rangle = u_{j} - u_i = \langle {{\mathrm{grad}}}_z u_{jkl}, dz(e_{ij}) \rangle , $$]


we have[image: $$ \text {Re}(du_z(e^*_{ij}) dz(e_{ij})) =0. $$]


On the other hand, using equation (4) we get[image: $$\begin{aligned}&\text {Re}(du_z(e^*_{i\!j}) idz(e_{i\!j})) \\ =\,&\text {Re}(((u_z)_{i\!jk} - (u_z)_{\!jil}) idz(e_{i\!j})) \\ =\,&(\langle {{\mathrm{grad}}}_z u_{i\!jk}, \cot \beta ^i_{\!jk} dz(e_{\!jk}) - \cot \beta ^{\!j}_{ki} dz(e_{ki}) \rangle \\ {}&+ \langle {{\mathrm{grad}}}_z u_{\!jil}, \cot \beta ^{\!j}_{il} dz(e_{il}) - \cot \beta ^i_{lj} dz(e_{l\!j}) \rangle )/2 \\ =\,&\frac{1}{2}\big (\cot \beta ^{i}_{\!jk} (u_k -u_{\!j})+\cot \beta ^{\!j}_{ki} (u_k -u_i)+\cot \beta ^{\!j}_{il} (u_l -u_i)+\cot \beta ^{i}_{l\!j} (u_l -u_{\!j})\big ). \end{aligned}$$]


Hence the claim follows.    [image: $$\square $$]
        

Lemma 4.4
Given a realization [image: $$z:V \rightarrow \mathbb {C}$$] of a triangular mesh. A function [image: $$u:V \rightarrow \mathbb {R}$$] is harmonic if and only if the function [image: $$q:E_{int} \rightarrow i\mathbb {R}$$] defined by[image: $$ q_{i\!j} := du_z(e^*_{i\!j}) dz(e_{i\!j}) $$]


is a holomorphic quadratic differential.

Proof
Note q is well defined since[image: $$ q_{i\!j} = du_z(e^*_{i\!j}) dz(e_{i\!j}) = du_z(e^*_{ji}) dz(e_{ji}) =q_{ji}. $$]


It holds for general functions [image: $$u:V \rightarrow \mathbb {R}$$] that[image: $$\begin{aligned}&\text {Re}(q) \equiv 0 \\&\sum _j q_{i\!j}/dz(e_{i\!j})= \sum _j du_z(e^*_{i\!j}) =0 \quad \forall i \in V_{int}. \end{aligned}$$]


We know from Lemma 4.3 that for every interior vertex [image: $$i \in V_{int}$$]
          [image: $$ \sum _j q_{i\!j} = \sum _j du_z(e^*_{i\!j}) dz(e_{i\!j}) = \frac{i}{2} \sum _j (\cot \beta _{i\!j}^k + \cot \beta _{ji}^l) (u_{\!j} -u_i). $$]


Hence, u is harmonic if and only if q is a holomorphic quadratic differential.    [image: $$\square $$]
        

Lemma 4.5
Let [image: $$z:V \rightarrow \mathbb {C}$$] be a realization of a simply connected triangular mesh. Given a function [image: $$q:E_{int} \rightarrow i\mathbb {R}$$] such that for every interior vertex [image: $$i \in V_{int}$$]
          [image: $$ \sum _j q_{i\!j} /dz(e_{i\!j}) =0, $$]


there exists a function [image: $$u:V \rightarrow \mathbb {R}$$] such that for every interior edge [image: $$\{i\!j\}$$]
          [image: $$ q_{i\!j} = du_z(e^*_{i\!j}) dz(e_{i\!j}). $$]





Proof
We consider a dual 1-form [image: $$\tau $$] on M defined by[image: $$ \tau (e^*_{i\!j})=q_{i\!j} /dz(e_{i\!j}). $$]


Since M is simply connected and[image: $$ \sum _j \tau (e^*_{i\!j}) = \sum _j q_{i\!j} /dz(e_{i\!j}) =0, $$]


there exists a function [image: $$h:F \rightarrow \mathbb {C}$$] such that[image: $$ dh(e^*_{i\!j}) := h_{i\!jk} - h_{\!jil} =\tau (e^*_{i\!j}). $$]


It implies we have [image: $${\text {Re}}(dh(e^*)dz(e)) = \text {Re}(q) \equiv 0$$] and[image: $$ \omega (e_{i\!j}) := \langle 2{\bar{h}}_{i\!jk} , dz(e_{i\!j}) \rangle = \langle 2{\bar{h}}_{\!jil} , dz(e_{i\!j}) \rangle $$]


is a well-defined [image: $$\mathbb {R}$$]-valued 1-form. Since the triangular mesh is simply connected and for every face [image: $$\{i\!jk\}$$]
          [image: $$ \omega (e_{i\!j}) + \omega (e_{\!jk}) + \omega (e_{ki}) =0, $$]


there exists a function [image: $$u:V \rightarrow \mathbb {R}$$] such that for every oriented edge [image: $$e_{i\!j}$$]
          [image: $$ du(e_{i\!j}) = u_{\!j} - u_i =\omega (e_{i\!j}). $$]


It can be verified that[image: $$ h = \frac{1}{2}\overline{{{\mathrm{grad}}}_z u} = u_z. $$]


Hence we obtain[image: $$ q_{i\!j} = \tau (e^*_{i\!j}) dz(e_{i\!j})= dh(e^*_{i\!j}) dz(e_{i\!j}) =du_z(e^*_{i\!j}) dz(e_{i\!j}) $$]


for every interior edge [image: $$\{i\!j\}$$].    [image: $$\square $$]
        

Theorem 4.6
Suppose [image: $$z:V \rightarrow \mathbb {C}$$] is a realization of a simply connected triangular mesh. Then any holomorphic quadratic differential [image: $$q: E_{int} \rightarrow i\mathbb {R}$$] is of the form[image: $$ q_{i\!j} = du_z(e^*_{i\!j}) dz(e_{i\!j}) \quad \forall e_{i\!j} \in \vec {E}_{int} $$]


for some harmonic function [image: $$u:V \rightarrow \mathbb {R}$$].
Furthermore, the space of holomorphic quadratic differentials is a vector space isomorphic to the space of discrete harmonic functions module linear functions.

Proof
The first part of the statement follows from Lemmas 4.4 and 4.5. In order to show the second part, it suffices to observe that[image: $$\begin{aligned} du_z \equiv 0 \iff {{\mathrm{grad}}}u \equiv a \iff du = \langle a, dz \rangle \iff u = \langle a,z \rangle +b \end{aligned}$$]


for some [image: $$a,b \in \mathbb {C}$$].    [image: $$\square $$]
        

In previous sections, we showed that every harmonic function corresponds to an infinitesimal conformal deformation. The following shows that discrete holomorphic quadratic differentials are the change in the intersection angles of circumscribed circles.
Theorem 4.7
Let [image: $$z:V \rightarrow \mathbb {C}$$] be a realization of a simply connected triangular mesh. Suppose [image: $$u:V \rightarrow \mathbb {R}$$] is a discrete harmonic function and [image: $${\dot{z}}$$] is an infinitesimal conformal deformation with u as scale factors. Then we have[image: $$ du_z dz = -\frac{1}{2} \frac{{\dot{{{\mathrm{cr}}}}}_{z}}{{{\mathrm{cr}}}_z} = -\frac{i}{2} {\dot{\phi }} $$]


where [image: $${\dot{\phi }}:E_{int} \rightarrow \mathbb {R}$$] denotes the change in the intersection angles of neighboring circumscribed circles.

Proof
We write [image: $$({\dot{z}}_{\!j} -{\dot{z}}_i) = (\frac{h_i + h_{\!j}}{2} + i\omega _{i\!j}) (z_{\!j} -z_i)$$]. Applying Lemma 4.3 we have[image: $$\begin{aligned} {{\dot{{{\mathrm{cr}}}}}}_{z,i\!j}/{{\mathrm{cr}}}_{z,i\!j}&= i\omega _{jk} - i\omega _{ki} + i\omega _{il} - i\omega _{l\!j} \\&= i\big (\cot \beta ^{i}_{jk} (u_k -u_{\!j})+\cot \beta ^{\!j}_{ki} (u_k -u_i)+\cot \beta ^{\!j}_{il} (u_l -u_i)+\cot \beta ^{i}_{l\!j} (u_l -u_{\!j})\big ) \\&= -2 du_z(e^*_{i\!j}) dz(e_{i\!j}). \end{aligned}$$]


The equality[image: $$ \frac{{\dot{{{\mathrm{cr}}}}}_{z}}{{{\mathrm{cr}}}_z} = i{\dot{\phi }} $$]


follows from Equation (1).    [image: $$\square $$]
        


5 Conformal Deformations in Terms of End([image: $$\mathbb {C}^2$$])
In this section we show how an infinitesimal conformal deformation gives rise to a discrete analogue of a holomorphic null curve in [image: $$\mathbb {C}^3$$]. Later we will see that the real parts of such a “holomorphic null curve” can be regarded as the Weierstrass representation of a discrete minimal surface.
Up to now we have mostly treated the Riemann sphere [image: $$\mathbb {C}\text {P}^1$$] as the extended complex plane [image: $$\overline{\mathbb {C}}=\mathbb {C}\cup \{ \infty \}$$]. In this section we will take a more explicitly Möbius geometric approach: We will represent fractional linear transformations of [image: $$\overline{\mathbb {C}}$$] by linear transformations of [image: $$\mathbb {C}^2$$] with determinant one. Actually, the group of Möbius transformations is[image: A371662_1_En_7_Equ6_HTML.gif]

 (6)

However, since we are mainly interested in infinitesimal deformations and any map into [image: $$\text{ PSL }(2,\mathbb {C})$$] whose values stay close to the identity admits a canonical lift to [image: $$\text{ SL }(2,\mathbb {C})$$], we can safely ignore the difference between [image: $$\text{ PSL }(2,\mathbb {C})$$] and [image: $$\text{ SL }(2,\mathbb {C})$$].
Given a realization [image: $$z:V \rightarrow \mathbb {C}$$] of a triangular mesh we consider its lift [image: $$\psi :V \rightarrow \mathbb {C}^2$$]
        [image: $$ \psi := \left( \begin{array}{c} z \\ 1 \end{array} \right) $$]


and regard the realization as a map [image: $$\varPsi :V\rightarrow \mathbb {C}\text {P}^1$$] where[image: $$\begin{aligned} \varPsi :=\mathbb {C}\left( \begin{array}{c} z \\ 1 \end{array} \right) =[\psi ]. \end{aligned}$$]


The action of a Möbius transformation on the Riemann sphere is given by a matrix [image: $$A \in \text{ SL }(2,\mathbb {C})$$], which is unique up to sign:[image: $$ [\varphi ] \mapsto [A\varphi ]. $$]


Before we investigate infinitesimal deformations we first consider finite deformations of a triangular mesh [image: $$\varPsi :V \rightarrow \mathbb {C} P ^1$$]. Given such a finite deformation, the change in the positions of the three vertices of a triangle [image: $$\{i\!jk\}$$] can be described by a Möbius transformation, which is represented by [image: $$G_{i\!jk} \in \text{ SL }(2,\mathbb {C})$$]. They satisfy a compatibility condition on each interior edge [image: $$\{i\!j\}$$] (see Fig. 1):[image: $$\begin{aligned}{}[G_{i\!jk}\psi _i] = [G_{\!jil}\psi _i], \\ [G_{i\!jk}\psi _{\!j}] = [G_{\!jil}\psi _{\!j}]. \end{aligned}$$]


Suppose now that the mesh is simply connected. Then up to a global Möbius transformation the map [image: $$G:F \rightarrow \text{ SL }(2,\mathbb {C})$$] can be uniquely reconstructed from the multiplicative dual 1-form defined as[image: $$\begin{aligned} G(e^*_{i\!j}):=G_{\!jil}^{-1}G_{i\!jk}. \end{aligned}$$]



        [image: $$G(e^*_{i\!j})$$] is defined whenever [image: $$\{i\!j\}$$] is an interior edge and we have[image: $$\begin{aligned} G(e^*_{i\!j}) = G(e^*_{\!ji})^{-1}. \end{aligned}$$]


Moreover, for every interior vertex i we have[image: $$\begin{aligned} \prod _j G(e^*_{i\!j}) = I. \end{aligned}$$]


The compatibility conditions imply that for interior each edge [image: $$\{i\!j\}$$] there exist [image: $$\lambda _{i\!j,i},\lambda _{i\!j,j} \in \mathbb {C} \backslash \{0\}$$] such that[image: $$\begin{aligned} G(e^*_{i\!j}) \psi _i&= \lambda _{i\!j,i} \psi _i \\ G(e^*_{i\!j}) \psi _{\!j}&= \lambda _{i\!j,\!j} \psi _{\!j}. \end{aligned}$$]


Since [image: $$\lambda _{i\!j,i}\,\lambda _{i\!j,j} = \det (G(e^*_{i\!j}))=1$$], we have[image: $$ \lambda _{i\!j} := \lambda _{i\!j,i} = 1/ \lambda _{i\!j,\!j}. $$]


Because of [image: $$G(e^*_{i\!j}) = G(e^*_{i\!j})^{-1}$$] we know[image: $$ \lambda _{i\!j} = \lambda _{i\!j,i} = 1/ \lambda _{\!ji,i} = \lambda _{\!ji}. $$]


Hence [image: $$\lambda $$] defines a complex-valued function on the set [image: $$E_{int}$$] of interior edges.
We now show that for each interior edge [image: $$\lambda _{i\!j}$$] determines the change in the cross ratio of the four points of the two adjacent triangles. Note that the cross ratio of four points in [image: $$\mathbb {C}\text {P}^1$$] can expressed as[image: $$ {{\mathrm{cr}}}([\psi _{\!j}],[\psi _k],[\psi _i],[\psi _l]) = \frac{\det (\psi _k,\psi _{\!j})\det (\psi _l,\psi _i)}{\det (\psi _i,\psi _k)\det (\psi _{\!j},\psi _l)}. $$]


 
Lemma 5.1
Suppose we are given four points [image: $$[\psi _i],[\psi _{\!j}],[\psi _k],[\psi _l] \in \mathbb {C} P ^1$$] and [image: $$G \in SL (2,\mathbb {C})$$] with[image: $$\begin{aligned} G \psi _i&= \lambda ^{-1}\psi _i \\ G \psi _{\!j}&= \lambda \psi _{\!j} \end{aligned}$$]


for some [image: $$\lambda \in \mathbb {C} \backslash \{0\}$$]. Then the cross ratio of the four transformed points[image: $$\begin{aligned}{}[\tilde{\psi }_i]=[G \psi _i],\quad [\tilde{\psi }_{\!j}]=[G \psi _{\!j}],\quad [\tilde{\psi }_k]=[G \psi _k] ,\quad [\tilde{\psi }_l]=[\psi _l] \end{aligned}$$]


is given by

 [image: $$\begin{aligned} {{\mathrm{cr}}}([\tilde{\psi }_{\!j}],[\tilde{\psi }_k],[\tilde{\psi }_i],[\tilde{\psi }_l]) = {{\mathrm{cr}}}([\psi _{\!j}],[\psi _k],[\psi _i],[\psi _l])/\lambda ^2. \end{aligned}$$]


 
Proof

[image: $$\begin{aligned} {{\mathrm{cr}}}([\tilde{\psi }_{\!j}],[\tilde{\psi }_k],[\tilde{\psi }_i],[\tilde{\psi }_l])&=\frac{\det (G\psi _k,G\psi _{\!j})\det (\psi _l,G \psi _i)}{\det (G\psi _i,G\psi _k)\det (G\psi _{\!j},\psi _l)} \\&= {{\mathrm{cr}}}([\psi _{\!j}],[\psi _k],[\psi _i],[\psi _l])/\lambda ^2. \end{aligned}$$]


   [image: $$\square $$]
        

We now can summarize the information about finite deformations of a realization as follows:
Theorem 5.2
Let [image: $$\varPsi :V \rightarrow \mathbb {C} P ^1$$] be a realization of a simply connected triangular mesh. Then there is a bijection between finite deformations of [image: $$\varPsi $$] in [image: $$\mathbb {C} P ^1$$] modulo global Möbius transformations and multiplicative dual 1 forms [image: $$G: \vec {E}^*_{int} \rightarrow SL (2,\mathbb {C})$$] satisfying for every interior vertex i
          [image: $$\begin{aligned} \prod _j G(e^*_{i\!j}) = I \end{aligned}$$]


and for every interior edge[image: $$\begin{aligned} G(e^*_{i\!j})&= G(e^*_{ji})^{-1} \\ G(e^*_{i\!j}) \psi _i&= \lambda _{i\!j}^{-1}\psi _i \\ G(e^*_{i\!j}) \psi _{\!j}&= \lambda _{i\!j} \psi _{\!j} . \end{aligned}$$]


Here [image: $$\lambda :E_{int} \rightarrow \mathbb {C} \backslash \{0\}$$]. We denote [image: $${{\mathrm{cr}}}:E_{int} \rightarrow \mathbb {C}$$] the cross ratios of [image: $$\varPsi $$] and [image: $$\widetilde{{{\mathrm{cr}}}}:E_{int} \rightarrow \mathbb {C}$$] the cross ratios of a new realization described by G. Then[image: $$ \widetilde{{{\mathrm{cr}}}}= {{\mathrm{cr}}}/\lambda ^2. $$]


In particular,[image: $$\begin{aligned} |\lambda | \equiv 1&\implies \text { the deformation is conformal}. \\ {{\mathrm{Arg}}}(\lambda ) \equiv 0&\implies \text { the deformation is a pattern deformation.} \end{aligned}$$]





Suppose we have a family of deformations described by dual 1-forms [image: $$G_t: \vec {E}_{int} \rightarrow \text{ SL }(2,\mathbb {C})$$] with [image: $$G_0 \equiv I$$]. By considering [image: $$\eta := \frac{d}{dt}|_{t=0}\, G_t$$] we obtain the following description of infinitesimal deformations:
Corollary 5.3
Let [image: $$\varPsi :V \rightarrow \mathbb {C} P ^1$$] be a realization of a simply connected triangular mesh. Then there is a bijection between infinitesimal deformations of [image: $$\varPsi $$] in [image: $$\mathbb {C} P ^1$$] modulo infinitesimal Möbius transformations and dual 1 forms [image: $$\eta : \vec {E}_{int} \rightarrow sl (2,\mathbb {C})$$] satisfying for every interior vertex i
          [image: $$\begin{aligned} \sum _j \eta (e^*_{i\!j}) = 0 \end{aligned}$$]

 (7)

and for every interior edge[image: $$\begin{aligned} \eta (e^*_{i\!j})&= -\eta (e^*_{ji}) \\ \eta (e^*_{i\!j}) \psi _i&= -\mu _{i\!j}\,\psi _i \\ \eta (e^*_{i\!j}) \psi _{\!j}&= \mu _{i\!j} \,\psi _{\!j}. \end{aligned}$$]


Here [image: $$\mu : E_{int} \rightarrow \mathbb {C}$$]. We denote [image: $${{\mathrm{cr}}}:E_{int} \rightarrow \mathbb {C}$$] the cross ratios of [image: $$\varPsi $$] and [image: $${\dot{{{\mathrm{cr}}}}}:E_{int} \rightarrow \mathbb {C}$$] the rate of change in cross ratios induced by the infinitesimal deformation described by [image: $$\eta $$]. Then[image: $$ \mu = -\frac{1}{2} \frac{{\dot{{{\mathrm{cr}}}}}}{{{\mathrm{cr}}}}. $$]


In particular,[image: $$\begin{aligned} \text {Re}(\mu ) \equiv 0&\implies \text { the infinitesimal deformation is conformal}, \\ \text {Im}(\mu ) \equiv 0&\implies \text { the infinitesimal deformation is a pattern deformation.} \end{aligned}$$]





Note that given a mesh, the 1-form [image: $$\eta $$] is uniquely determined by the eigenfunction [image: $$\mu $$]. We now investigate the constraints on [image: $$\mu $$] implied by the closedness condition (7) of [image: $$\eta $$].
Consider the symmetric bilinear form [image: $$(\,,): \mathbb {C}^2 \times \mathbb {C}^2 \rightarrow \text{ sl }(2,\mathbb {C})$$]
        [image: $$\begin{aligned} (\phi , \varphi )v := \det (\phi ,v) \varphi + \det (\varphi ,v) \phi . \end{aligned}$$]


For [image: $$\psi _i \ne \psi _{\!j} \in \mathbb {C}^2$$] we define[image: $$ m_{i\!j}:= \frac{1}{\det (\psi _i,\psi _{\!j})} (\psi _{\!j}, \psi _i) \in sl (2,\mathbb {C}). $$]


The matrix [image: $$m_{i\!j}$$] is independent of the representatives of [image: $$[\psi _i],[\psi _{\!j}] \in \mathbb {C} P ^1$$] and we have[image: $$\begin{aligned} m_{i\!j}&= -m_{ji} \\ m_{i\!j} \psi _i&=-\psi _i \\ m_{i\!j} \psi _{\!j}&=\psi _{\!j}. \end{aligned}$$]


Using the representatives [image: $$\psi _i = \left( \begin{array}{c} z_i \\ 1 \end{array}\right) $$] we obtain[image: $$\begin{aligned} \eta (e^*_{i\!j}) =&\frac{\mu _{i\!j}}{\det (\psi _{\!j},\psi _i)} (\psi _i, \psi _{\!j}) \\ =&\frac{\mu _{i\!j}}{z_{\!j} -z_i} \left( \begin{array}{cc} z_i +z_{\!j} &{} -2z_i z_{\!j} \\ 2 &{} -z_i - z_{\!j} \end{array} \right) . \end{aligned}$$]


Hence[image: $$\begin{aligned} \sum _j \eta (e^*_{i\!j}) =0 \quad \iff \quad \sum _j \mu _{i\!j} =0 \quad \text {and} \quad \sum _j \mu _{i\!j}/ (z_{\!j}-z_i) =0. \end{aligned}$$]

 (8)

We consider the Pauli matrices[image: $$\begin{aligned} \sigma _1 = \left( \begin{array}{cc} 0 &{} 1 \\ 1 &{} 0 \end{array} \right) ,\quad \sigma _2 = \left( \begin{array}{cc} 0 &{} i \\ -i &{} 0 \end{array} \right) ,\quad \sigma _3 = \left( \begin{array}{cc} 1 &{} 0 \\ 0 &{} -1 \end{array} \right) \end{aligned}$$]


which form a basis of [image: $$ sl (2,\mathbb {C})$$]. Then[image: $$ \eta (e^*_{i\!j}) = \frac{\mu _{i\!j}}{z_{\!j} -z_i}( (1-z_iz_{\!j})\sigma _1 + i (1+z_iz_{\!j}) \sigma _2 + (z_i+z_{\!j}) \sigma _3). $$]


If we now identify [image: $$ sl (2,\mathbb {C})$$] with [image: $$\mathbb {C}^3$$] via[image: $$ \sigma _i \mapsto \left( \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) ,\sigma _2 \mapsto \left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) ,\sigma _3 \mapsto \left( \begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) , $$]


we obtain[image: $$\begin{aligned} \eta (e^*_{i\!j}) = \frac{\mu _{i\!j}}{z_{\!j} -z_i} \left( \begin{array}{c} 1-z_iz_{\!j} \\ i (1+z_iz_{\!j}) \\ z_i+z_{\!j} \end{array} \right) . \end{aligned}$$]

 (9)

Thus to every infinitesimal deformation of a realized triangular mesh we can associate a closed [image: $$ sl (2,\mathbb {C})$$]-valued dual 1-form. In the special case of an infinitesimal conformal deformation (i.e. [image: $$\mu $$] is real-valued) we will see that this yields a discrete analogue of the Weierstrass representation for minimal surfaces.

6 Weierstrass Representation of Discrete Minimal Surfaces
The Weierstrass representation for minimal surfaces in [image: $$\mathbb {R}^3$$] is the most classical example for applications of complex analysis:
Theorem 6.1
Given two meromorphic functions [image: $$g,h: U \subset \mathbb {C} \rightarrow \mathbb {C}$$] such that [image: $$g^2 h$$] is holomorphic. Then [image: $$f:U \rightarrow \mathbb {R}^3$$] defined by[image: $$\begin{aligned} df = \text {Re}\left( \left( \begin{array}{c} 1-g^2 \\ i(1+g^2) \\ 2g \end{array}\right) h(z) dz \right) = \text {Re}\left( \left( \begin{array}{c} 1-g^2 \\ i(1+g^2) \\ 2g \end{array}\right) \frac{q}{dg} \right) \end{aligned}$$]


is a minimal surface. Its Gauß map n is the stereographic projection of g
          [image: $$\begin{aligned} n=\frac{1}{|g|^2+1}\left( \begin{array}{c}2\text {Re}g \\ 2 \text {Im}g\\ |g|^2-1 \end{array}\right) . \end{aligned}$$]


The holomorphic quadratic differential [image: $$q:= hg_z dz^2$$] is called the Hopf differential of f and encodes its second fundamental form: The direction defined by a nonzero tangent vector W is[image: $$\begin{aligned} \begin{array}{rcl} \text {an asymptotic direction} &{} \iff &{} q(W) \in i \mathbb {R}. \\ \text {a principal curvature direction} &{} \iff &{} q(W) \in \mathbb {R}. \end{array} \end{aligned}$$]


Locally, every minimal surface can be written in this form.

We now develop a discrete version of this theorem for arbitrary triangular meshes realized in the complex plane. A similar formula for quadrilateral meshes with factorized real cross ratios was established by Bobenko and Pinkall [1]. Here we will use the definition of a discrete minimal surface f with Gauß map n given in [8]:
Definition 6.2
Let [image: $$n: V\rightarrow \mathbb {S}^2$$] be a realization of a triangular mesh on the unit sphere in [image: $$\mathbb {R}^3$$]. Then a map [image: $$f:F \rightarrow \mathbb {R}^3$$] defined on the set F of faces is called a discrete minimal surface with Gauß map n if for all oriented interior edges [image: $$e_{i\!j}$$] we have[image: $$ (n_{\!j} - n_i) \times (f_{i\!jk} - f_{jil}) =0. $$]


Here [image: $$\{i\!jk\}$$] and [image: $$\{jil\}$$] denote the left and the right faces of [image: $$e_{i\!j}$$].

 [image: A371662_1_En_7_Fig3_HTML.gif]
Fig. 3
                Left A triangulated surface [image: $$n:V \rightarrow \mathbb {S}^2$$] with vertices on the unit sphere. Right A discrete minimal surface [image: $$f:F \rightarrow \mathbb {R}^3$$] satisfying Definition 6.2
              





This definition mirrors the fact from the smooth theory that minimal surfaces are Christoffel duals of their Gauß maps (Fig. 3). The correspondence between discrete harmonic functions and discrete minimal surfaces was observed in [8]. Here is a Weierstrass representation for discrete minimal surfaces in terms of their Gauß map and their Hopf differential:
Theorem 6.3
Let [image: $$z:V \rightarrow \mathbb {C}$$] be a realization of a simply connected triangular mesh and [image: $$q:E_{int} \rightarrow i\mathbb {R}$$] a holomorphic quadratic differential. Then there exists [image: $$f:F \rightarrow \mathbb {R}^3$$] such that for every interior edge [image: $$\{i\!j\}$$]
          [image: $$\begin{aligned} df(e^*_{i\!j}) = \text {Re}\left( \frac{q_{i\!j}}{i(z_{\!j} - z_i)} \left( \begin{array}{c} 1-z_i z_{\!j} \\ i(1+z_i z_{\!j}) \\ z_i + z_{\!j} \end{array}\right) \right) . \end{aligned}$$]

 (10)

Moreover f is a discrete minimal surface with Gauß map[image: $$\begin{aligned} n = \frac{1}{|z|^2+1}\left( \begin{array}{c}2\text {Re}z \\ 2\text {Im}z \\ |z|^2-1\end{array}\right) . \end{aligned}$$]


Locally, every discrete minimal surface can be written in this form.

Proof
Suppose [image: $$q:E_{int} \rightarrow i\mathbb {R}$$] is a holomorphic quadratic differential. Then by (8) and (9) the dual 1-form [image: $$\eta $$] defined as[image: $$ \eta (e^*_{i\!j}) := \frac{q_{i\!j}}{i(z_{\!j} - z_i)} \left( \begin{array}{c} 1-z_i z_{\!j} \\ i(1+z_i z_{\!j}) \\ z_i + z_{\!j} \end{array}\right) $$]


satisfies[image: $$ \sum _j \eta (e^*_{i\!j}) =0 $$]


for all interior vertices i. Therefore, since the triangular mesh is simply connected, there exists [image: $$\mathfrak {F}:F \rightarrow \mathbb {C}^3$$] such that for any interior edge e we have[image: $$ d\mathfrak {F}(e^*) = \eta (e^*). $$]


Thus the map [image: $$f:F \rightarrow \mathbb {R}^3$$] defined by [image: $$f:= \text {Re}\mathfrak {F}$$] satisfies Eq. (10). To show that f is a discrete minimal surface we define a function [image: $$k:E_{int} \rightarrow \mathbb {R}$$] by[image: $$ k_{i\!j} := -i \,q_{i\!j}/|z_{\!j} - z_i|^2. $$]


Then by direct computation we obtain[image: $$\begin{aligned} df(e^*_{i\!j}) = \frac{k_{i\!j} (1+|z_i|^2) (1+|z_{\!j}|^2)}{2} (n_{\!j} - n_i). \end{aligned}$$]

 (11)

This shows that f is a discrete minimal surface with Gauß map n. The converse is straightforward: Given a discrete minimal surface f with Gauß map n we define [image: $$k:E_{int} \rightarrow \mathbb {R}$$] via (11). Then it can be shown that the function[image: $$ q_{i\!j}:= i\,k_{i\!j} |z_{\!j}-z_i|^2 $$]


is a holomorphic quadratic differential.    [image: $$\square $$]
        

Remark 6.4
The discrete minimal surfaces given by (10) are trivalent meshes with planar vertex stars for purely imaginary q. It is closely related to discrete asymptotic nets. The factor i in front of [image: $$z_{\!j}-z_i$$] appears since the integration is taken over a dual mesh while in the smooth theory [image: $$*dz=idz$$].

Note that we could also consider the periodic one-parameter family of maps [image: $$f^\alpha :F \rightarrow \mathbb {R}^3$$] defined for [image: $$\alpha \in \mathbb {R}$$] by[image: $$ f^{\alpha }:= \text {Re}(e^{i\alpha } \mathfrak {F}). $$]


This family of discrete surfaces can be regarded as an associate family of minimal surfaces and is investigated in [7].
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Abstract
This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ‘normal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

1 Introduction
The system of lines orthogonal to a surface (called the normal congruence of that surface) has close relations to the surface’s curvatures and is a well studied object of classical differential geometry, see e.g. [14]. It is quite surprising that this natural correspondence has not been extensively exploited in discrete differential geometry: most notions of discrete curvature are constructed in a way not involving normals, or involving normals only implicitly. There are however applications such as support structures and shading/lighting systems in architectural geometry where line congruences, and in particular normal congruences, come into play [21]. We continue this study, elaborate on discrete normal congruences in more depth and present a novel discrete curvature theory for triangle meshes which is based on discrete line congruences.

        Contributions and overview. We organize our presentation as as follows. Section 2 summarizes properties of smooth congruences and elaborates on an important example arising in the context of linear interpolation of surface normals.
Section 3 first recalls discrete congruences following the work of Wang et al. [21] and then focuses on the interesting geometry of a new version of discrete normal congruences (defined over triangle meshes). We shed new light onto the behavior of linearly interpolated surface normals and discuss the problem of choosing vertex normals.
In Sect. 4, discrete normal congruences lead to a curvature theory for triangle meshes which has many analogies to the classical smooth setting. Unlike most other concepts of discrete curvature, it assigns values of the curvatures (principal, mean, Gaussian) to the faces of a triangle mesh. We discuss internal consistency of this theory and show by examples (Sect. 5), that it is well suited for curvature estimation and other applications.

        Previous work. Smooth line congruences represent a classical subject. An introduction may be found in the monograph by Pottmann and Wallner [16]. Discrete congruences have appeared both in discrete differential geometry and geometry processing. Let us first mention contributions which study congruences based on triangle meshes: A computational framework for normal congruences and for estimating focal surfaces of meshes with known or estimated normals has been presented by Yu et al. [22]. The paper by Wang et al. [21] is described in more detail below.
Congruences associated with quad meshes are discrete versions of parametrized congruences associated with parametrized surfaces. In particular, the so-called torsal parametrizations are discussed from the integrable systems perspective by Bobenko and Suris [3]. An earlier contribution in this direction is due to Doliwa et al. [6]. These special parametrizations also occur as node axes in torsion-free support structures in architectural geometry [12, 15, 17].
Curvatures of triangle meshes are a well studied subject. One may distinguish between numerical approximation schemes (such as the jet fitting approach [4] or integral invariants [18]) on the one hand, and extensive studies from the discrete differential geometry perspective on the other hand. Without going into any detail we mention that these include discrete exterior calculus [5], the geometry of offset-like sets and distance functions [13], or various ways of defining shape operators [8, 9]. Naturally, also Yu et al. [22] address this topic when studying discrete normal congruences and focal surfaces. We present here yet another definition of curvatures for triangle meshes which is based on discrete normal congruences, and which is at the same time motivated by the Steiner formula (which also plays an important role in [2, 13, 15]).

2 Smooth Line Congruences
The introduction into line congruences in this section follows the paper by Wang et al. [21]. A line congruence [image: A371662_1_En_8_IEq1_HTML.gif] is a smooth 2D manifold of lines described locally by lines L(u, v) which connect corresponding points [image: $${\mathbf a}(u,v)$$] and [image: $${\mathbf b}(u,v)$$] of two surfaces. With [image: $${\mathbf e}(u,v)={\mathbf b}(u,v)-{\mathbf a}(u,v)$$] indicating the direction of the line L(u, v) (see Fig. 1), we employ the volumetric parametrization[image: $$\begin{aligned} {\mathbf x}(u,v,\lambda )={\mathbf a}(u,v) +\lambda {\mathbf e}(u,v) =(1-\lambda ){\mathbf a}(u,v) + \lambda {\mathbf b}(u,v). \end{aligned}$$]


Any 1-parameter family [image: A371662_1_En_8_IEq5_HTML.gif] of lines results in a ruled surface [image: $${\mathbf r}(t,\lambda )= {\mathbf x}(u(t),v(t),\lambda )$$] contained in the congruence. We are particularly interested in developable ruled surfaces: The developability condition reads[image: $$\begin{aligned}&u_t^2 {\mathopen [{\mathbf e}_u,{\mathbf a}_u,{\mathbf e} \mathclose ]} + u_t v_t {(\mathopen [{\mathbf e}_u,{\mathbf a}_v,{\mathbf e} \mathclose ] + \mathopen [{\mathbf e}_v,{\mathbf a}_u,{\mathbf e} \mathclose ])} + v_t^2 {\mathopen [{\mathbf e}_v,{\mathbf a}_v,{\mathbf e} \mathclose ]} \nonumber \\&= (u_t, v_t) \left( \begin{array}{*9{@{\,}c}@{\,}} {\mathopen [{\mathbf e}_u,{\mathbf a}_u,{\mathbf e} \mathclose ]} &{} {\mathopen [{\mathbf e}_u,{\mathbf a}_v,{\mathbf e} \mathclose ] + \mathopen [{\mathbf e}_v,{\mathbf a}_u,{\mathbf e} \mathclose ]}\\ \text {symm.} &{} {\mathopen [{\mathbf e}_v,{\mathbf a}_v,{\mathbf e} \mathclose ]} \end{array} \right) \left( \begin{array}{*9{@{\,}c}@{\,}} v_t \\ u_t \end{array} \right) = 0, \end{aligned}$$]

 (1)

if we use subscripts to indicate differentiation and square brackets for the determinant. Equation (1) tells us that for any (u, v) there are up to two so-called torsal directions [image: $$u_t:v_t$$] which belong to developable surfaces. This behaviour is quite analogous to the fact that for any point in a smooth surface there are two principal tangent directions which belong to principal curvature lines. By integrating the torsal directions one creates ruled surfaces which are developable, which is analogous to finding principal curvature lines by integrating principal directions.[image: A371662_1_En_8_Fig1_HTML.gif]
Fig. 1
                (a) A line congruence [image: A371662_1_En_8_IEq8_HTML.gif] is described by a surface [image: $${\mathbf a}(u,v)$$], and direction vectors [image: $${\mathbf e}(u,v)$$]. (b) Developables [image: A371662_1_En_8_IEq11_HTML.gif], [image: A371662_1_En_8_IEq12_HTML.gif] contained in [image: A371662_1_En_8_IEq13_HTML.gif]. The set of all regression curves [image: $$c_i$$] of these developables makes up the focal sheets [image: $$F_1$$], [image: $$F_2$$] of the congruence (here only [image: $$F_1$$] is shown). The tangent planes of [image: A371662_1_En_8_IEq18_HTML.gif], [image: A371662_1_En_8_IEq19_HTML.gif] along the common line are the torsal planes or focal planes of that line. These images are taken from [21]






        Normal Congruences.
The normals of a surface constitute the normal congruence of that surface. For such congruences the analogy between torsal directions and principal directions mentioned above is actually an equality: The surface normals along a curve form a developable surface if and only if that curve is a principal curvature line [14].
The reference surface [image: $${\mathbf a}(u,v)$$] might be the base surface the lines of [image: A371662_1_En_8_IEq21_HTML.gif] are orthogonal to, but this does not have to be the case. The congruence does not change if the reference surface is changed to [image: $${\mathbf a}^*(u,v)={\mathbf a}(u,v)+\lambda (u,v) {\mathbf e}(u,v)$$], so deciding whether or not [image: A371662_1_En_8_IEq23_HTML.gif] is a normal congruence depends on existence of an alternative reference surface [image: $${\mathbf a}^*$$] orthogonal to the lines of [image: A371662_1_En_8_IEq25_HTML.gif], i.e., [image: $$\langle {\mathbf e},{\mathbf a}^*_u\rangle =\langle {\mathbf e},{\mathbf a}^*_v\rangle =0$$]. Assuming without loss of generality that [image: $$\Vert {\mathbf e}(u,v)\Vert =1$$] and using [image: $$\langle {\mathbf e},{\mathbf e}_u \rangle =\langle {\mathbf e},{\mathbf e}_v \rangle =0$$] the orthogonality condition reduces to [image: $$ \lambda _u = - \langle {\mathbf a}_u,{\mathbf e}\rangle $$], [image: $$\lambda _v = - \langle {\mathbf a}_v,{\mathbf e}\rangle $$]. This PDE for the function [image: $$\lambda $$] has a solution if and only if the integrability condition [image: $$\lambda _{uv}=\lambda _{vu}$$] holds. It is easy to see that this is equivalent to[image: $$\begin{aligned} \langle {\mathbf a}_u,{\mathbf e}_v \rangle = \langle {\mathbf a}_v,{\mathbf e}_u \rangle . \end{aligned}$$]

 (2)

It is not difficult to see that (2) is equivalent to the condition that developables contained in [image: A371662_1_En_8_IEq33_HTML.gif] intersect at right angles.

        Focal surfaces and focal planes.
Loosely speaking, an intersection point of a line in [image: A371662_1_En_8_IEq34_HTML.gif] with an infinitesimally neighbouring line produces a focal point of the congruence [image: A371662_1_En_8_IEq35_HTML.gif]. The rigorous definition of focal point is a point [image: $${\mathbf x}(u,v,\lambda )$$] where the derivatives of [image: $${\mathbf x}$$] are not linearly independent: One gets the condition[image: $$\begin{aligned} \mathopen [{\mathbf x}_u,{\mathbf x}_v,{\mathbf x}_\lambda \mathclose ]= \mathopen [{\mathbf e}_u,{\mathbf e}_v,{\mathbf e} \mathclose ]\lambda ^2+\big ( \mathopen [{\mathbf a}_u,{\mathbf e}_v,{\mathbf e} \mathclose ]+ \mathopen [{\mathbf e}_u,{\mathbf a}_v,{\mathbf e} \mathclose ]\big )\lambda + \mathopen [{\mathbf a}_u,{\mathbf a}_v,{\mathbf e} \mathclose ]=0, \end{aligned}$$]

 (3)

i.e., up to two focal points per line. It is not difficult to see that such singularities are exactly the singularities of developables contained in [image: A371662_1_En_8_IEq38_HTML.gif], see Fig. 1b. For this reason, the tangent planes of developables contained in [image: A371662_1_En_8_IEq39_HTML.gif] are called focal planes as well as torsal planes. Such a focal plane/torsal plane is spanned by a line L(u, v) together with a torsal direction.
For normal congruences, the focal points are precisely the principal centers of curvature; they exist always unless one of the principal curvatures is zero. In each point of the surface, the focal plane (i.e., torsal plane) is spanned by the surface normal and a principal tangent.

        Example: Congruences defined by linear interpolation.
Congruences of the special form[image: $$\begin{aligned} {\mathbf x}(u,v,\lambda )&= (1-\lambda )\big ({\mathbf a}_0+{\mathbf a}_{10} u+{\mathbf a}_{20}v\big ) +\lambda \big ({\mathbf b}_0+{\mathbf b}_{10}u+{\mathbf b}_{20}v\big ) \nonumber \\&= \big ({\mathbf a}_0+{\mathbf a}_{10} u+{\mathbf a}_{20}v\big ) +\lambda \big ({\mathbf e}_0+{\mathbf e}_{10}u+{\mathbf e}_{20}v\big ) \end{aligned}$$]

 (4)

play an important role, both for us and in other places: for example, the set of lines described by such a congruence is the one generated by Phong shading, when one linearly interpolates vertex normals in a triangle.[image: A371662_1_En_8_Fig2_HTML.gif]
Fig. 2Congruences defined by a “linear” volumetric parametrization [image: $${\mathbf x}(u,v,\lambda )$$] turn out to be useful for linear interpolation of triangle meshes, but they have counter-intuitive properties. (a) Planes [image: $$P_\lambda $$] defined by [image: $$\lambda = \mathrm{{const}}$$] are visualized as triangles. Interestingly, all of these triangles contain a planar developable [image: A371662_1_En_8_IEq43_HTML.gif] with a parabola [image: $$r_\lambda $$] as curve of regression. In particular the red triangle [image: $$P_{\lambda _1}$$] represents a torsal plane for the blue line [image: $$L(\frac{1}{3}, \frac{1}{3})$$] which connects the barycenters of triangles [image: $$P_\lambda $$]. The image further shows many lines [image: $$P_{\lambda _1}\cap P_\beta $$], of the planar developable [image: A371662_1_En_8_IEq49_HTML.gif]. (b) The focal surface F of [image: A371662_1_En_8_IEq50_HTML.gif] agrees with the envelope of the family of planes [image: $$P_{\lambda }$$]. It is in general the tangent surface of a cubic polynomial curve [image: $${\mathbf r}$$]. We show in red and yellow the two sheets of this tangent surface F which are separated by the regression curve [image: $${\mathbf r}$$]. We also indicate the point of tangency [image: $$T_\lambda $$] where [image: $$P_\lambda $$] touches [image: $${\mathbf r}$$]. The hyperbolic congruence lines (those which are contained in two focal planes) are bitangents of the focal surface, i.e., they touch F in two points. The regression parabolas [image: $$r_\lambda $$] are contained in F and are obtained by intersecting F with one of its tangent planes [image: $$P_{\lambda }$$]
              





We consider the planes “[image: $$P_\alpha $$]” which are defined as the set of all points [image: $${\mathbf x}(u,v,\alpha )$$], and we study the affine mappings[image: $$\begin{aligned} \phi _{\alpha \beta }: P_\alpha \rightarrow P_\beta , \quad {\mathbf x}(u,v,\alpha ) \mapsto {\mathbf x}(u,v,\beta ). \end{aligned}$$]


The lines L(u, v) of the congruence are precisely the lines which connect points [image: $${\mathbf x}(u,v,\alpha )\in P_\alpha $$] and [image: $${\mathbf x}(u,v,\beta )\in P_\beta $$]. These congruences are studied e.g. in [16, Ex. 7.1.2]. Let us summarize some of their properties, which are illustrated by Fig. 2.

            	(i)Each intersection line [image: $$L = P_{\alpha }\cap P_{\beta }$$] of two planes in the family [image: $$P_{\lambda }$$] is contained in the congruence [image: A371662_1_En_8_IEq65_HTML.gif]. This follows from the fact that L is spanned by the points [image: $$X=\phi _{\alpha \beta }^{-1}(L)\cap L$$] and [image: $$\phi _{\alpha \beta }(X)=L\cap \phi _{\alpha \beta }(L)$$].


 

	(ii)The lines [image: $$P_\alpha \cap P_\beta $$] with [image: $$\alpha $$] fixed, constitute a developable surface [image: A371662_1_En_8_IEq70_HTML.gif] which is planar and contained in [image: $$P_\alpha $$] (in general, it is the tangent surface of a parabola [image: $$r_\alpha $$]).


 

	(iii)For properties of the focal surface, see Fig. 2.


 




          

3 Discrete Normal Congruences
Wang et al. [21] define discrete congruences by means of correspondences between combinatorially equivalent triangle meshes A, B with vertices [image: $$\{{\mathbf a}_i\}$$] and [image: $$\{{\mathbf b}_i\}$$]. Each pair of corresponding triangles [image: $${\mathbf a}_i{\mathbf a}_j{\mathbf a}_k$$] and [image: $${\mathbf b}_i{\mathbf b}_j{\mathbf b}_k$$] defines, via linear interpolation, a piece of a smooth line congruence of the kind described by Eq. (4):[image: $$\begin{aligned}&{\mathbf x}(u,v,\lambda )={\mathbf a}(u,v)+\lambda {\mathbf e}(u,v), \nonumber \\&{\mathbf a}(u,v)={\mathbf a}_i+u{\mathbf a}_{ji}+v{\mathbf a}_{ki}, \quad {\mathbf e}(u,v)={\mathbf e}_i+u{\mathbf e}_{ji}+v{\mathbf e}_{ki}, \quad \text {where} \nonumber \\&{\mathbf e}_i={\mathbf b}_i-{\mathbf a}_i,\quad {\mathbf a}_{ij}={\mathbf a}_i-{\mathbf a}_j,\quad {\mathbf e}_{ij}={\mathbf e}_i-{\mathbf e}_j. \end{aligned}$$]

 (5)

If the domain is restricted to [image: $$u\ge 0$$], [image: $$v\ge 0$$], [image: $$u+v\le 1$$], then the correspondence [image: $${\mathbf x}(u,v,0)\longmapsto {\mathbf x}(u,v,1)$$] is precisely the affine mapping of triangle [image: $${\mathbf a}_i{\mathbf a}_j{\mathbf a}_k$$] to triangle [image: $${\mathbf b}_i{\mathbf b}_j{\mathbf b}_k$$]. Equations (1) and (3) serve to compute torsal directions and focal points of this congruence, and also to trace the developables contained in this congruence (see Fig. 3).[image: A371662_1_En_8_Fig3_HTML.gif]
Fig. 3A piecewise-linear correspondence between meshes A and B defines a piecewise-smooth congruence [image: A371662_1_En_8_IEq83_HTML.gif]. (a) Integrating torsal directions yields corresponding polylines in meshes A and B. (b) Connecting corresponding points of those two polylines yields a piecewise-flat developable [image: A371662_1_En_8_IEq84_HTML.gif]. These images are taken from [21]






        Discrete normal congruences—Version 1.
It is not straightforward to define which correspondence between triangle meshes defines a normal congruence. Firstly this is because congruences of the form (4) are never normal except for degenerate cases. Secondly such a normal congruence would automatically lead to a good definition of constant-distance offset mesh of a triangle mesh which is lacking so far.
We discuss two suitable definitions of “normal congruence” and start with a version already published. Wang et al. [21] require normality to hold only in the barycenters of faces (i.e., they require that Eq. (2) holds for barycenters of faces), see Fig. 4. Figure 5 shows an example demonstrating the efficiency of this definition. Proposition 3.1 below gives an equivalent analytic condition.[image: A371662_1_En_8_Fig4_HTML.gif]
Fig. 4Congruences defined by the piecewise-affine correspondence of meshes A, B can be called discrete-normal, if the normality condition is fulfilled for barycenters of faces. This figure also illustrates the auxiliary projection used by Eq. (7). This normality condition is called ‘version 1 normality’ here (image taken from [21])




[image: A371662_1_En_8_Fig5_HTML.gif]
Fig. 5We demonstrate that Eq. (7) is a working definition of normality: Given a triangle mesh [image: $$\{{\mathbf a}_i\}$$] (white), we find unit vectors [image: $${\mathbf e}_i$$] by optimizing for shading effects according to Wang et al. [21] under the normality constraint (7). Subsequently we check if a triangle mesh [image: $$\{{\mathbf a}_i^*\}$$] orthogonal to the congruence can be found. We let [image: $${\mathbf a}_i^*={\mathbf a}_i + \lambda _i {\mathbf e}_i$$] and solve for [image: $$\lambda _i$$] such that the faces of the new mesh are orthogonal to the congruence in their barycenters. The result of this computation yields a mesh [image: $$\{{\mathbf a}_i^*\}$$] (yellow) where face normals and congruence lines (in face barycenters) differ by an angle [image: $$\beta $$], which assumes a maximum of [image: $$4.1^\circ $$], a mean of [image: $$0.9^\circ $$], and a median of [image: $$0.8^\circ $$]. Instead of the mesh computed here, any constant-distance offset would have been a solution as well. We chose one which lies at a small distance from the original mesh





Proposition 3.1
Consider two combinatorially equivalent triangle meshes and the line congruence [image: A371662_1_En_8_IEq95_HTML.gif] defined by the piecewise-linear correspondence of faces. For each pair [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$], [image: $${\mathbf b}_1{\mathbf b}_2{\mathbf b}_3$$] of corresponding faces perform orthogonal projection in direction of the line which connects their respective barycenters, yielding triangles [image: $$\bar{\mathbf a}_1\bar{\mathbf a}_2\bar{\mathbf a}_3$$], [image: $$\bar{\mathbf b}_1\bar{\mathbf b}_2\bar{\mathbf b}_3$$]. Then [image: A371662_1_En_8_IEq100_HTML.gif] is normal in the barycenters of the two faces if and only if the following analogue of (2) holds:[image: $$\begin{aligned} \langle \bar{\mathbf a}_{j}-\bar{\mathbf a}_{i}, \bar{\mathbf b}_{k}-\bar{\mathbf b}_{i} \rangle&=\langle \bar{\mathbf a}_{k} -\bar{\mathbf a}_{i}, \bar{\mathbf b}_{j}-\bar{\mathbf b}_{i} \rangle , \quad \text {or equivalently}, \end{aligned}$$]

 (6)


[image: $$\begin{aligned} \langle \bar{\mathbf a}_{j}-\bar{\mathbf a}_{i}, \bar{\mathbf e}_{k}-\bar{\mathbf e}_{i} \rangle&=\langle \bar{\mathbf a}_{k} -\bar{\mathbf a}_{i} ,\bar{\mathbf e}_{j}-\bar{\mathbf e}_{i} \rangle , \quad \text {where}\quad {\mathbf e}_i = {\mathbf b}_i-{\mathbf a}_i. \end{aligned}$$]

 (7)

It is sufficient that these conditions hold for at least one choice of indices [image: $$i,j,k\in \{1,2,3\}$$], [image: $$i\ne j\ne k$$].


        Discrete normal congruences—Version 2.
There is an obvious analogy between conditions (2) and (7): they express normality in the smooth and discrete cases respectively. However Eq. (7) is not entirely satisfying as a definition since it involves a projection operator. It is therefore natural to define discrete-normality by the following two equations which replace Eqs. (6), (7):[image: $$\begin{aligned} \langle {\mathbf a}_{j}-{\mathbf a}_{i}, {\mathbf b}_{k}-{\mathbf b}_{i} \rangle =\langle {\mathbf a}_{k} -{\mathbf a}_{i} ,{\mathbf b}_{j}-{\mathbf b}_{i} \rangle \quad \text {or, equivalently,} \end{aligned}$$]

 (6*)


[image: $$\begin{aligned} \langle {\mathbf a}_{j}-{\mathbf a}_{i}, {\mathbf e}_{k}-{\mathbf e}_{i} \rangle =\langle {\mathbf a}_{k} -{\mathbf a}_{i} ,{\mathbf e}_{j}-{\mathbf e}_{i} \rangle . \end{aligned}$$]

 (7*)

We will show that theses conditions are suitable to define normality of discrete congruences defined by a correspondence of triangle meshes. Besides numerical experiments (see later), we show geometric properties of congruences which fulfill these conditions. The first property is a discrete version of the following two facts (i) A normal congruence [image: A371662_1_En_8_IEq103_HTML.gif] has a 1-parameter family of surfaces orthogonal to it, and (ii) for any point in such a surface there are 3 mutually orthogonal planes spanned by the normal and the two principal directions. We show that in the discrete-normal case, there are analogous principal trihedra:
Proposition 3.2
Consider two combinatorially equivalent triangle meshes and the line congruence [image: A371662_1_En_8_IEq104_HTML.gif] defined by the piecewise-affine correspondence of faces, and consider in particular one such pair [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$], [image: $${\mathbf b}_1{\mathbf b}_2{\mathbf b}_3$$] of corresponding faces. In the generic case, the normality condition (6*) implies the following property:
For each plane [image: $$P_{\lambda }$$] spanned by the vertices [image: $$(1-\lambda ){\mathbf a}_i + \lambda {\mathbf b}_i$$] there is a congruence line [image: $$N_\lambda = L(u_\lambda ,v_\lambda )$$] such that the two focal planes of that line together with [image: $$P_\lambda $$] form a trihedron of mutually orthogonal planes.
The meaning of “generic” is discussed in the proof.

Proof
Generically, vectors [image: $${\mathbf e}_i={\mathbf b}_i-{\mathbf a}_i$$] are linearly independent, so we can express a normal vector [image: $${\mathbf n}$$] of the triangle [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$] (which spans [image: $$P_0$$]) as a linear combination [image: $${\mathbf n}=\sum _{i=1}^3\alpha _i{\mathbf e}_i$$]. Generically, [image: $$\sum \alpha _i\ne 0$$], so by multiplying [image: $${\mathbf n}$$] with a factor we can achieve [image: $$\sum \alpha _i=1$$] and by relabeling the coefficients [image: $$\alpha _i$$] we get [image: $${\mathbf n}= (1-u-v){\mathbf e}_1 + u{\mathbf e}_2 + v{\mathbf e}_3$$]. Then Equation (5) shows that the line L(u, v) is orthogonal to [image: $$P_0$$].
Consider the affine correspondence of triangles [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$] and [image: $${\mathbf b}_1{\mathbf b}_2{\mathbf b}_3$$] followed by orthogonal projection onto [image: $$P_0$$]. A vertex [image: $${\mathbf a}_i$$] is mapped to [image: $$\bar{\mathbf b}_i={\mathbf b}_i+\lambda _i{\mathbf n}$$]. There is a linear mapping [image: $$\alpha $$] with [image: $$\alpha ({\mathbf a}_i-{\mathbf a}_j)=\bar{\mathbf b}_i-\bar{\mathbf b}_j$$]. It is clear from Fig. 3 that the eigenvectors of [image: $$\alpha $$] indicate the directions of torsal planes through the line L(u, v). Conditions (6*), (7*) imply[image: $$\begin{aligned}&\langle {\mathbf a}_j-{\mathbf a}_i, \bar{\mathbf b}_k-\bar{\mathbf b}_i \rangle -\langle {\mathbf a}_k -{\mathbf a}_i ,\bar{\mathbf b}_j-\bar{\mathbf b}_i \rangle \\&= \langle {\mathbf a}_j-{\mathbf a}_i, {\mathbf b}_k+\lambda _k{\mathbf n}- {\mathbf b}_i-\lambda _i{\mathbf n}\rangle -\langle {\mathbf a}_k -{\mathbf a}_i ,{\mathbf b}_j+\lambda _j{\mathbf n}-{\mathbf b}_i-\lambda _i{\mathbf n}\rangle \\&= \langle {\mathbf a}_j-{\mathbf a}_i, {\mathbf b}_k - {\mathbf b}_i \rangle -\langle {\mathbf a}_k -{\mathbf a}_i ,{\mathbf b}_j-{\mathbf b}_i \rangle = 0, \end{aligned}$$]


i.e., symmetry of [image: $$\alpha $$] and orthogonality of eigenvectors of [image: $$\alpha $$]. This shows orthogonality of torsal planes and verifies the statement for the case [image: $$\lambda =0$$]. The case [image: $$\lambda =1$$] is analogous, since condition (6*) is invariant if we replace [image: $${\mathbf a}_i$$] by [image: $${\mathbf b}_i$$] and vice versa. For all other values [image: $$\lambda \ne 1$$] we note that replacing vertices [image: $${\mathbf b}_i$$] by vertices [image: $${\mathbf a}_i+\lambda {\mathbf e}_i$$] inflicts the change [image: $${\mathbf e}_i\rightarrow \lambda {\mathbf e}_i$$] without changing [image: $${\mathbf a}_i$$], which does not affect the normality condition (7*).


            [image: A371662_1_En_8_Fig6_HTML.gif]
Fig. 6The “principal” trihedra mentioned in Proposition 3.2, when moved to the origin, lie tangent to a so-called Monge cone. Since these planes rotate about an entire cone as the interpolation parameter [image: $$\lambda $$] varies, one cannot without restrictions interpret these principal trihedra as tangent planes plus principal planes of an offset family of surfaces. Such an interpretation is valid only for small [image: $$\lambda $$]
              




          
As illustrated by Fig. 2, congruences defined by the affine correspondence of triangles have counter-intuitive properties: The planes [image: $$P_\lambda $$] generated by linear interpolation of the defining triangles at the same time are the focal planes of [image: A371662_1_En_8_IEq144_HTML.gif] (and vice versa) since any [image: $$P_\lambda $$] carries the developable surface generated by the lines [image: $$\{P_\lambda \cap P_\alpha \}_{\alpha \in \mathbb R}$$]. The torsal planes [image: $$P_\lambda $$] are tangent to the focal surface F of [image: A371662_1_En_8_IEq148_HTML.gif]. It is known that F is the tangent surface of a cubic polynomial curve, cf. [16, Ex. 7.1.2]. Proposition 3.2 now tells us that this curve has infinitely many triples of mutually orthogonal tangent planes. Translating these planes (the principal trihedra) through the origin, they become tangent planes of the directing cone of F, which is a quadratic cone. This cone is quadratic and must likewise have infinitely many orthogonal circumscribed trihedra. It is therefore a so-called Monge cone, see Fig. 6.
There is a phenomenon in geometry, called porism, cf. [7]. It refers to situations where existence of one object of a certain kind implies existence of an entire 1-parameter family of such objects. Monge cones are an instance of a porism: If a quadratic cone has one circumscribed orthogonal trihedron, then one can move this trihedron around the cone while it remains tangential. This fact is classical knowledge in projective geometry, see e.e. [1, pp. 33–34].
The same porism is hidden in the proof of Proposition 3.2: The normality condition (6*) was equivalent to existence of the principal trihedron associated with [image: $$P_0$$], but it also implied existence of the trihedron for all [image: $$P_\lambda $$].

        Details on principal trihedra in discrete-normal congruences.
We wish to interpret the three mutually orthogonal planes referred to by Proposition 3.2 as the tangent plane and principal planes of a surface. In particular the normal vector [image: $${\mathbf n}_\lambda $$] of [image: $$P_\lambda $$] shall be the normal vector, and the line [image: $$N_\lambda $$] shall be the surface normal, while the torsal planes should represent the principal directions. In order to understand better the behaviour of the objects involved, we study the volumetric parametrization according to Eq. (4) in an adapted coordinate system: the plane [image: $$P_0$$] is the xy plane, and the two torsal planes associated with it shall be the xz and zy planes. Since the affine correspondence between planes [image: $$P_0,P_1$$] may be defined by any pair of corresponding triangles, we choose [image: $${\mathbf a}_1={\mathbf o}$$], [image: $${\mathbf a}_2=(1,0,0)$$], [image: $${\mathbf a}_3=(0,1,0)$$]. We may still change the plane [image: $$P_1$$] without changing the congruence, so we choose [image: $${\mathbf b}_1=(0,0,1)$$]. The vertices [image: $${\mathbf b}_2,{\mathbf b}_3$$] must lie in the xy and xz planes because of our assumption on the torsal planes. Thus we get[image: $$\begin{aligned}&{\mathbf x}(u,v,\lambda )= \left( \begin{array}{*9{@{\,}c}@{\,}} u\\ v\\ 0 \end{array} \right) +\lambda \left( \begin{array}{*9{@{\,}c}@{\,}} -\kappa _1u\\ - \kappa _2v\\ au+bv+1 \end{array} \right) \nonumber \\&\implies {\mathbf n}_\lambda = \frac{\partial {\mathbf x}}{\partial u}\times \frac{\partial {\mathbf x}}{\partial v} = \left( \begin{array}{*9{@{\,}c}@{\,}} a\lambda (\kappa _2\lambda -1)\\ b\lambda (\kappa _1\lambda -1)\\ (\kappa _1\lambda -1)(\kappa _2\lambda -1) \end{array} \right) {.} \end{aligned}$$]

 (8)

We will later interpret [image: $$\kappa _1,\kappa _2$$] as principal curvatures and vectors (1, 0, 0) and (0, 1, 0) as principal directions. Obviously, they are eigenvectors of the linear map [image: $$\alpha $$] which occurs in the proof of Proposition 3.2. The plane [image: $$P_\lambda $$] is given as[image: $$\begin{aligned}&n_{1,\lambda } x_1 + n_{2,\lambda } x_2 + n_{3,\lambda } x_3 -n_{0,\lambda } = a\lambda (\kappa _2\lambda -1)x_1 + b\lambda (\kappa _1\lambda -1)x_2 \\&\qquad \qquad +(\kappa _1\lambda -1)(\kappa _2\lambda -1)x_3- \lambda (\kappa _1\lambda -1)(\kappa _2\lambda -1) = 0. \end{aligned}$$]


This is a cubic family of planes. Translating them through the origin yields the planes [image: $$n_{1,\lambda } x_1 + n_{2,\lambda } x_2 + n_{3,\lambda } x_3 = 0$$], which are tangent planes of the tangent cone illustrated in Fig. 6. Since the plane coefficients satisfy the quadratic equation [image: $$ (\kappa _1-\kappa _2)n_1n_2-an_2n_3+bn_1n_3=0$$], it is indeed a quadratic cone.1

We now look for a line [image: $$L(u_\lambda ,v_\lambda )$$] orthogonal to [image: $$P_\lambda $$]. The direction of L(u, v) can be read off (8), so the condition [image: $$L(u_\lambda ,v_\lambda )\parallel {\mathbf n}_\lambda $$] reads[image: $$\begin{aligned}&\frac{\kappa _1u_\lambda }{\kappa _2v_\lambda } = \frac{a(\kappa _2\lambda -1)}{b(\kappa _1\lambda -1)}, \quad \frac{\kappa _1u_\lambda }{au_\lambda +bv_\lambda +1}=\frac{ a \lambda }{1-\kappa _1\lambda } \nonumber \\&\implies u_\lambda =\frac{a\lambda \kappa _2 (1-\kappa _2\lambda )}{\nu _\lambda }, \quad v_\lambda =\frac{b\lambda \kappa _1 (1-\kappa _1\lambda )}{\nu _\lambda }, \nonumber \\&\text {where}\quad \nu _\lambda =\kappa _1\kappa _2(\kappa _1\lambda -1)(\kappa _2\lambda -1) +a^2\kappa _2\lambda (\kappa _2\lambda -1)+b^2\kappa _1\lambda (\kappa _1\lambda -1). \end{aligned}$$]

 (9)

In particular we see that the curve [image: $${\mathbf x}(u_\lambda ,v_\lambda ,0)$$], consisting of all points [image: $$N_\lambda \cap P_0$$], is a conic. In fact, for every [image: $$\alpha $$], the curve [image: $$\{N_\lambda \cap P_\alpha \}_{\lambda \in \mathbb R}$$] is a conic it corresponds to the curve [image: $$N_\lambda \cap P_0$$] under the affine mapping [image: $$\phi _{0\alpha }:{\mathbf x}(u,v,0)\mapsto (u,v,\alpha )$$], see Fig. 7a. The surface of all [image: $$N_\lambda $$]’s is then algebraic of 4[image: $$^{\circ }$$].[image: A371662_1_En_8_Fig7_HTML.gif]
Fig. 7Behaviour of the principal trihedron and the normal [image: $$N_\lambda $$] of planes [image: $$P_\lambda $$] in a congruence defined by the affine correspondence between two triangles. (a) The normals [image: $$N_\lambda $$] (green) intersect the plane [image: $$P_0$$] in the points [image: $${\mathbf c}(u_\lambda ,v_\lambda ,0)$$] of a conic (red). (b) As [image: $$\lambda $$] changes, the apex [image: $${\mathbf c}_\lambda ={\mathbf x}(u_\lambda ,v_\lambda ,\lambda )$$] of the principal trihedron (yellow) moves along a straight straight line (blue). The ruled surfaces traced out by the edges of the trihedron are shown; their union forms one algebraic ruled surface of degree four





Let us now compute the “apex” [image: $${\mathbf c}_\lambda =N_\lambda \cap P_\lambda ={\mathbf x}(u_\lambda ,v_\lambda ,\lambda )$$] of the principal trihedron: From[image: $$\begin{aligned} {\mathbf c}_\lambda =\frac{\lambda (1-\kappa _1 \lambda )(1-\kappa _2\lambda )}{\nu _\lambda } \left( \begin{array}{*9{@{\,}c}@{\,}} \kappa _2a\\ \kappa _1b\\ \kappa _1\kappa _2 \end{array} \right) \end{aligned}$$]

 (10)

we see that [image: $${\mathbf c}_\lambda $$] moves on a straight line, but the parametrization of this line is cubic. Since the planes [image: $$P_\lambda $$] and the torsal planes stem from the same 1-parameter family of planes, any torsal plane will play the role of [image: $$P_{\lambda '}$$] for another value [image: $$\lambda '$$]; in total each orthogonal trihedron will occur three times, and each of the three edges of the trihedron will play the role of [image: $$N_\lambda $$] three times (see Fig. 7b). We summarize:
Proposition 3.3
If a congruence is defined by the affine correspondence between two triangles [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$] and [image: $${\mathbf b}_1{\mathbf b}_2{\mathbf b}_3$$] and satisfies the normality condition (6*), then its focal surface has a 1-parameter family of circumscribed ‘principal’ orthogonal trihedra whose apex moves on a straight line and whose edges form an algebraic surface of degree 4 which contains that line as a triple line.

The complicated geometry of these congruences reflects the difficulties in defining offset pairs of triangle meshes.

        Discrete normal congruences — Version 3.
An elementary computation shows that either of the two conditions (6*), (7*) is implied by the stronger condition[image: $$\begin{aligned} \langle {\mathbf a}_{j}-{\mathbf a}_{i},{\mathbf e}_{j}+{\mathbf e}_{i} \rangle =0 , \end{aligned}$$]

 (11)

when imposed on all three edges of a triangle. This third version of normality is a more direct expression of the orthogonality between triangle mesh and congruence: the edges [image: $${\mathbf a}_i{\mathbf a}_j$$] of the mesh are required to be orthogonal to the arithmetic mean of normal vectors [image: $${\mathbf e}_i,{\mathbf e}_j$$] at either endpoint of the edge.[image: A371662_1_En_8_Fig8_HTML.gif]
Fig. 8Optimization of normal congruences. For a given mesh with vertices [image: $${\mathbf a}_i$$], a discrete-normal congruence, defined by unit vectors [image: $${\mathbf e}_i$$], has been found by global optimization such that one of the normality conditions considered here is fulfilled. Each of these conditions is linear, so optimization was done by least squares. It turns out that there is no substantial difference between Eqs. (6*) and (11). Faces are colored according to the angle [image: $$\beta $$] enclosed between the congruence line at the barycenter and the face’s normal there. We also give statistics on [image: $$\beta $$] for each figure






        Comparison of definitions.
The various definitions of discrete normal congruences have different advantages. When one wants to design a normal congruence (as in Wang et al. [21]), version 1 may be better because it ensures orthogonality of focal planes in the part of the line congruence which is actually realized. Using version 2, orthogonal focal planes may occur outside the realized part. On the other hand, when using the normal congruence of a given surface, version 2 has the advantage that one plane of a principal frame contains the base mesh triangle; moreover discrete principal directions are orthogonal and lie in the plane of the triangle. Version 3 normality is not used here except for Fig. 8 where we show that imposing version 3 normality leads to results comparable to version 2. Since the weaker condition of version 2 is sufficient to achieve the same results, it is not necessary to impose version 3 normality.

4 Curvatures of Faces of Triangle Meshes
Recall that a smooth normal congruence [image: A371662_1_En_8_IEq201_HTML.gif] possesses a surface A orthogonal to the lines of [image: A371662_1_En_8_IEq202_HTML.gif]. Then automatically all offsets [image: $$A^t$$] also lie orthogonal to [image: A371662_1_En_8_IEq204_HTML.gif]. We assume labeling of offsets such that surfaces [image: $$A^t$$], [image: $$A^s$$] are at constant distance [image: $$|t-s|$$] from each other. Then corresponding infinitesimal surface area elements “[image: $$\mathord {{ {dA}}}^t(u,v)$$]” obey Steiner’s formula[image: $$\begin{aligned} \frac{\mathord {{ {dA}}}^t(u,v)}{\mathord {{ {dA}}}^0(u,v)} =1-2t H(u,v) +t^2 K(u,v), \end{aligned}$$]

 (12)

where H and K denote mean and Gaussian curvature of the surface [image: $$A^0$$], respectively. The sign of H depends on the unit normal vector field; in our case the unit normal vector field points from [image: $$A^0$$] to the surfaces [image: $$A^t$$] with [image: $$t>0$$].
We now return to a discrete congruence [image: A371662_1_En_8_IEq213_HTML.gif] defined by the piecewise-linear correspondence between triangle meshes A, B. Assuming A, B approximate an offset pair of surfaces at distance 1, we consider corresponding faces [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$] and [image: $${\mathbf b}_1{\mathbf b}_2{\mathbf b}_3$$]. We write [image: $${\mathbf b}_i = {\mathbf a}_i + {\mathbf e}_i$$], where the vectors [image: $${\mathbf e}_i$$] approximate unit normal vectors of the mesh A. An offset mesh at distance approximately t then has vertices and faces[image: $$ {\mathbf a}_i^t = {\mathbf a}_i + t{\mathbf e}_i \quad \varDelta ^t = {\mathbf a}_1^t{\mathbf a}_2^t{\mathbf a}_3^t. $$]


We further assume that the congruence [image: A371662_1_En_8_IEq218_HTML.gif] is a normal congruence (which we have defined in two different ways).

            	If [image: A371662_1_En_8_IEq219_HTML.gif] is normal in the sense of Eqs. (6) and (7), then we apply the projection mentioned in Proposition 3.1, resulting in vertices [image: $$\bar{\mathbf a}_1\bar{\mathbf a}_2\bar{\mathbf a}_3$$], [image: $$\bar{\mathbf b}_1\bar{\mathbf b}_2\bar{\mathbf b}_3$$]. The projection is in the direction of a certain unit vector [image: $${\mathbf n}$$].

	As an alternative, the congruence may be normal in the sense of Eqs. (6*), (7*). Here we consider orthogonal projection onto the plane [image: $$P_0$$] which contains [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$]. This projection results in vertices [image: $$\bar{\mathbf a}_i={\mathbf a}_i$$] and [image: $$\bar{\mathbf b}_i$$]. The projection is in direction of the unit normal vector [image: $${\mathbf n}={\mathbf n}_0$$] of the plane [image: $$P_0$$].




          
We now study the behaviour of the area of the face [image: $$\varDelta ^t$$] as t changes. We do not measure the actual area, but apply the projection just mentioned. The area of projected triangles is measured via a determinant in the plane:[image: $$ {\text {p-area}}({\mathbf x}_1{\mathbf x}_2{\mathbf x}_3) = \frac{1}{2} \mathopen [\bar{\mathbf x}_2-\bar{\mathbf x}_1,\bar{\mathbf x}_3-\bar{\mathbf x}_1\mathclose ] = \frac{1}{2} \mathopen [{\mathbf n},\bar{\mathbf x}_2-\bar{\mathbf x}_1,\bar{\mathbf x}_3-\bar{\mathbf x}_1 \mathclose ] = \frac{1}{2} \mathopen [{\mathbf n},{\mathbf x}_2-{\mathbf x}_1,{\mathbf x}_3-{\mathbf x}_1 \mathclose ] $$]


With the notation [image: $$\bar{\mathbf a}_{ij} = \bar{\mathbf a}_i-\bar{\mathbf a}_j$$], [image: $$\bar{\mathbf b}_{ij} = \bar{\mathbf b}_i-\bar{\mathbf b}_j$$], [image: $$\bar{\mathbf e}_{ij} = \bar{\mathbf b}_{ij}-\bar{\mathbf a}_{ij}$$] we get[image: $$\begin{aligned} \frac{{\text {p-area}}(\triangle ^t)}{{\text {p-area}}(\triangle ^0)} = \frac{\frac{1}{2} \mathopen [\bar{\mathbf a}_{12} + t \bar{\mathbf e}_{12},\bar{\mathbf a}_{13} + t\bar{\mathbf e}_{13}\mathclose ]}{\frac{1}{2} \mathopen [\bar{\mathbf a}_{12},\bar{\mathbf a}_{13}\mathclose ]} = 1 + t \frac{\mathopen [\bar{\mathbf a}_{12},\bar{\mathbf e}_{13}\mathclose ]+\mathopen [\bar{\mathbf e}_{12},\bar{\mathbf a}_{13}\mathclose ]}{\mathopen [\bar{\mathbf a}_{12},\bar{\mathbf a}_{13}\mathclose ] } + t^2 \frac{\mathopen [\bar{\mathbf e}_{12},\bar{\mathbf e}_{13}\mathclose ]}{\mathopen [\bar{\mathbf a}_{12},\bar{\mathbf a}_{13}\mathclose ]} . \end{aligned}$$]



        Discrete curvatures and shape operator.
The obvious similarity of this relation with (12) immediately leads to a definition of the mean curvature H and the Gauss curvature K of the face [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$] under consideration:[image: $$\begin{aligned} K =\frac{\mathopen [{\mathbf n},{\mathbf e}_{12},{\mathbf e}_{13} \mathclose ]}{\mathopen [{\mathbf n},{\mathbf a}_{12},{\mathbf a}_{13} \mathclose ]}, \qquad 2H= -\frac{\mathopen [{\mathbf n},{\mathbf a}_{12},{\mathbf e}_{13} \mathclose ]+\mathopen [{\mathbf e}_{12},{\mathbf a}_{13}\mathclose ]}{\mathopen [{\mathbf n},{\mathbf a}_{12},{\mathbf a}_{13} \mathclose ]}. \end{aligned}$$]

 (13)

Principal curvatures [image: $$\kappa _1,\kappa _2$$] are defined by the relations[image: $$ \kappa _1+\kappa _2 = 2H, \quad \kappa _1\kappa _2 = K. $$]


Completing the analogy with the smooth case, we define a shape operator [image: $$\varLambda $$] as the linear mapping which maps[image: $$\begin{aligned} \bar{\mathbf a}_i-\bar{\mathbf a}_j \mathop {\longmapsto }\limits ^{\varLambda } -(\bar{\mathbf e}_i-\bar{\mathbf e}_j), \quad \text {for all}\ i,j\in \{1,2,3\}. \end{aligned}$$]


Recall that the bar indicates projection (which in turn depends on which version of “normality” we employ). In analogy to the smooth case, principal directions are given by the focal planes of the congruence [image: A371662_1_En_8_IEq236_HTML.gif]. All these notions fit together:
Proposition 4.1
The eigenvalues of the shape operator [image: $$\varLambda $$] are the principal curvatures [image: $$\kappa _1,\kappa _2$$], and its trace and determinant are given by 2H and K, respectively. Eigenvectors of [image: $$\varLambda $$] indicate the principal directions.

Proof
We first show the statement for ‘version 2’ normality. Recall the linear mapping [image: $$\alpha $$] in the proof of Proposition 3.2 which maps [image: $$\bar{\mathbf a}_i-\bar{\mathbf a}_j\mathop {\longmapsto }\limits ^{\alpha }(\bar{\mathbf a}_i+\bar{\mathbf e}_i) - (\bar{\mathbf a}_j+\bar{\mathbf e}_j)$$]. Since by construction, [image: $$\varLambda =\mathord {\mathrm{{id}}}-\alpha $$], [image: $$\varLambda $$] has the same eigenvectors as [image: $$\alpha $$], i.e., the torsal directions. The statement about [image: $$\mathop {\mathrm{{tr}}}\varLambda $$] and [image: $$\det \varLambda $$] follows from the relations [image: $$ \det \varLambda = \frac{\det (\varLambda ({\mathbf x}),\varLambda ({\mathbf y}))}{\det ({\mathbf x},{\mathbf y})}$$] and [image: $$\mathop {\mathrm{{tr}}}\varLambda =\frac{\det (\varLambda ({\mathbf x}),{\mathbf y})+\det ({\mathbf x},\varLambda ({\mathbf y}))}{\det ({\mathbf x},{\mathbf y})}$$] which generally hold for linear mappings of [image: $$\mathbb R^2$$]. The statement about eigenvalues follows immediately.
For version 1 normality the proof is the same, only the bars have a different meaning. The mapping [image: $$\alpha $$] is also referred to in the proof of Proposition 3.1 in [21].

Since we have defined principal curvatures [image: $$\kappa _1,\kappa _2$$] implicitly via mean curvature H and Gauss curvature K, their relation to focal geometry is still unclear. In the smooth case, points at distance [image: $$1/\kappa _i$$] from the surface are focal points of the normal congruence. This property holds in the discrete case too, if we use version 2 normality:
Proposition 4.2
Consider a congruence with parametric representation [image: $${\mathbf x}(u,v,\lambda )$$] which is defined by the correspondence of two triangles [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$] and [image: $${\mathbf b}_1{\mathbf b}_2{\mathbf b}_3$$]. Assume that it is normal in the sense of Eq. (6*), and consider (in the notation of Proposition 3.2) the plane [image: $$P_0$$] which contains [image: $${\mathbf a}_1{\mathbf a}_2{\mathbf a}_3$$] and the corresponding normal [image: $$L(u_0,v_0)$$]. Then the focal points of that line lie at distance [image: $$1/\kappa _1$$], [image: $$1/\kappa _2$$] from the plane [image: $$P_0$$], with [image: $$\kappa _i$$] as the principal curvatures, i.e., the focal points are precisely the points [image: $${\mathbf x}(u_0,v_0,1/\kappa _i)$$].

Proof
We consider the parametrization (8) which is with respect to an adapted coordinate system, so that [image: $$u_0=0$$] and [image: $$v_0=0$$]. It is easy to see that the values [image: $$\kappa _1,\kappa _2$$] occurring there are indeed the principal curvatures. A simple computation shows that for the special case [image: $$u=v=0$$], the determinant of partial derivatives of [image: $${\mathbf x}(u,v,\lambda )$$] specializes to [image: $$ \mathopen [{\mathbf x}_u,{\mathbf x}_v,{\mathbf x}_\lambda \mathclose ] = (1-\lambda \kappa _1)(1-\lambda \kappa _2). $$] Thus we have a singularity if [image: $$\lambda =1/\kappa _i$$].


        Special cases.
An umbilic point is characterized by equality of principal curvatures, i.e., [image: $$\kappa _1=\kappa _2=\kappa $$]. In this case some of the geometric objects discussed above simplify. E.g. the above-mentioned cubic family of planes becomes the set of tangent planes of a quadratic cone with vertex [image: $$(0,0,1/\kappa )$$]. Such an umbilic occurs every time two corresponding triangles [image: $$ {\mathbf a}_1 {\mathbf a}_2 {\mathbf a}_3$$] and [image: $${\mathbf b}_1 {\mathbf b}_2 {\mathbf b}_3$$] are in homothetic position, but the converse is not true.
A parabolic point is characterized by one principal curvature, say [image: $$\kappa _1$$], being zero. In this case, Eq. (8) immediately shows that the congruence vectors [image: $${\mathbf e}_1, {\mathbf e}_2, {\mathbf e}_3$$] associated with vertices [image: $${\mathbf a}_1, {\mathbf a}_2, {\mathbf a}_3$$] are not linearly independent, so Proposition 3.2 does not apply. Along the x axis, the lines of the congruence are parallel to each other, which is in accordance with the fact that the focal point [image: $$(0,0,1/\kappa _1)$$] has moved to infinity. The above-mentioned cubic family of planes is quadratic (in fact, it is the family of tangent planes of a parabolic cylinder).
Remark 4.3
We should mention that the approach to curvatures presented here carries over to relative differential geometry where the image of the Gauss map is not a sphere but a general convex body [19]. Another straightforward extension is to curvatures at vertices, which however does not lead to a shape operator in such a natural manner.


5 Results and Discussion

        Numerical examples. Vertex normals of a mesh can be estimated (e.g. as area-weighted averages of face normals). Any such collection of sensible normals is not far away from being a “normal” congruence in our sense. By applying optimization, we can make it as normal as possible, meaning that (6) is fulfilled in the least-squares sense. Numerical experiments show that this improves the quality of the normal field (even if there are not enough d.o.f. to satisfy (6) fully if the vertices of the mesh are kept fixed). Since curvatures and the distribution of normals are inseparable, it makes sense to study curvatures not only as quantities derived from a mesh, but as quantities which arise naturally from the the result of the optimization procedure just mentioned. In this way the natural sensitivity of curvatures with respect to noise is moderated.
The basic task is, of course, the computation of a normal congruence for a given mesh. This is done via a standard optimization procedure, which is initialized from estimated vertex normals. We express the validity of the normality condition in terms of least squares, and minimize subject to the constraints that (in the terminology of previous sections), vectors [image: $${\mathbf e}_i$$] are of unit length. Figure 8 shows an example. In particular one can see that normality according to Eq. (6) (“version 1”) behaves differently from normality according to Eq. (6*) (“version 2”), while there is hardly any difference between conditions (6*) and (11).Table 1Comparison of residuals regarding normalcy of the congruence (“c”) and unit vectors being normalized (“n”) when optimizing congruences
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                        [image: $$2.4\times 10^{-1}$$]
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                        [image: $$9.6\times 10^{-5}$$]
                      
	
                        [image: $$9.5\times 10^{-10}$$]
                      


All meshes are normalized for unit average edge length, and a zero means a zero up to machine precision. The rows in this table correspond to versions 1, 2, 3 of the normalcy condition for congruences. One can see that zero residual happens only for sphere topology





        Degrees of freedom and topology. When optimizing a normal congruence of a mesh with v vertices, e edges and f faces, we count 3v variables for the normals and [image: $$f+v$$] constraints. If a number b of boundary vertices is present, we fix the normals at the boundary, resulting in [image: $$3(v-b)$$] variables and [image: $$f+(v-b)$$] constraints, i.e., [image: $$2v-f-2b$$] d.o.f. Elementary manipulations show that[image: $$ \text {d.o.f.}\, = 2\chi - b, $$]


with [image: $$\chi =f+v-e$$] as the Euler characteristic. We see for meshes of sphere topology we can expect a unique solution, but topological features diminish the available degrees of freedom. If boundary normals are kept fixed, long boundaries diminish this freedom even more. By allowing vertices to move during optimization, we can achieve zero residual again, but of course a compromise has to be found between the quality of the normal congruence and the deviation of the mesh from its previous shape. Table 1 shows some numerical experiments.[image: A371662_1_En_8_Fig9_HTML.gif]
Fig. 9Computing mean curvature H and Gaussian curvature K by means of normal congruences: “version 1” and “version 2” refer to normality defined by Eqs. (6) and (6*), respectively. Estimated normals are optimized so as to become a normal congruence which allows us to compute curvatures in faces. For comparison, curvatures computed by a 3rd order jet fit have been used, cf. [4]. The color scale is the same for each kind of curvature and each model, throughout the 3 methods of computation. One can hardly see any difference. For each mesh, normal congruences have been computed in the way employed for Fig. 8
              




[image: A371662_1_En_8_Fig10_HTML.gif]
Fig. 10We compute asymptotic lines and principal curvature lines of meshs by various means. For the figures of the first column, we have used the 3rd order jet fit method of [4]. For the second column, we used the method of normal cycles (see e.g. [20]). The 3rd and 4th column are computed using our the shape operators, where version 1 and version 2 refer to normality w.r.t. Eqs. (6), (6*), respectively. In both cases the normal congruence needed for defining the shape operator was obtained in the same way as for Fig. 8
              






        Computing Curvatures. Once a normal congruence is available, we can compute curvatures (see Fig. 9) and we can integrate the field of principal curvature directions as well as the field of asymptotic directions (see Fig. 10 for an example). It must be said, however, that we do not want to compete with the many other methods for computing curvatures, and we do not regard the ability to compute curvatures a main result of this study.

        Robustness by using normals. Fig. 11 demonstrates that considering a mesh and its normal congruence together allows us to handle optimization/smoothing in a stable way. After a mesh and its normals have been perturbed (Fig. 11b), an optimization procedure attempts to restore both. We use a target functional composed of a sum of least squares expressing condition (6*) and also the property of vectors [image: $${\mathbf e}_i$$] having length 1 (weight 1), proximity to the input data (weight 1/4), Laplacian fairing for the mesh (weight [image: $$10^{-6}$$]), Laplacian fairing for the normal vectors (weight [image: $$10^{-4}$$]) and compatibility between normal and mesh by penalizing deviation from orthogonality between congruence lines in mesh barycenters and face (weight [image: $$10^{-4}$$]). Figure 11c shows the repaired mesh.[image: A371662_1_En_8_Fig11_HTML.gif]
Fig. 11Computing normals and principal curvature lines for noisy data. Subfigure a shows a triangulated cylinder and some of its principal curvature lines. In b the jet fit method has been used to obtain principal curves for data where noise has been added to both vertex coordinates and normals. Subfigure c shows the result of optimization applied to (b), which results in a smooth mesh equipped with a normal congruence. For c we again show the principal curvature lines computed by our method






        Relevance for discrete differential geometry.
The idea of employing the Steiner formula for defining curvatures has proved very helpful in bringing together various different notions of curvature, and indeed, various different notions of discrete surfaces (like discrete minimal surfaces and discrete cmc surfaces) which were defined in a way not involving curvature directly but by other means like Christoffel duality. We refer to [2, 3] for more details. The theory presented in [2] is restricted to offset-like pairs of polyhedral surfaces where corresponding edges and faces are parallel. There are ongoing efforts to extend this theory to more general situations (we point to recent work on quad meshes [10] and on isothermic triangle meshes of constant mean curvature [11]). It is therefore remarkable that at least for the situation described here, triangle meshes allow an approach to curvatures and even a shape operator which is likewise guided by the Steiner formula, but without the rather restrictive property of parallelity (which for triangle meshes would be even more restrictive).

        Future Research.
As to discrete differential geometry, it is still unclear how known constructions of special discrete surfaces relate to the curvatures defined here: For instance, it seems difficult to gain nice geometric properties from the condition vanishing mean curvature. Nevertheless one of the known constructions of discrete minimal surfaces might be equipped with a canonical normal congruence such that, when our theory is applied, mean curvature vanishes.
Further applications of line congruences have been discussed by Wang et al. [21], but there might be other examples of geometry processing tasks where the notion of line congruence, or even normal congruence, becomes relevant.

Acknowledgments
The authors are grateful to Alexander Bobenko for fruitful discussions and to the anonymous reviewers for their suggestions. This research was supported by the DFG Collaborative Research Center, TRR 109, “Discretization in Geometry and Dynamics” through grants I705 and I706 of the Austrian Science Fund (FWF).


          Open Access This chapter is distributed under the terms of the Creative Commons Attribution-Noncommercial 2.5 License (http://​creativecommons.​org/​licenses/​by-nc/​2.​5/​) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
The images or other third party material in this chapter are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

References
1.
Baker, H.F.: Principles of Geometry, vol. II, 2nd edn. Cambridge University Press (1930)

2.
Bobenko, A., Pottmann, H., Wallner, J.: A curvature theory for discrete surfaces based on mesh parallelity. Math. Annalen 348, 1–24 (2010)MathSciNetCrossRefMATH

3.
Bobenko, A., Suris, Yu.: Discrete Differential Geometry: Integrable Structure. American Mathematical Society (2009)

4.
Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) Proceedings of Symposium on Geometry Processing, pp. 177–187. Eurographics Association (2003)

5.
Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization & Mathematics, vol. 3, pp. 35–57. Springer (2003)

6.
Doliwa, A., Santini, P., Mañas, M.: Transformations of quadrilateral lattices. J. Math. Phys. 41, 944–990 (2000)MathSciNetCrossRefMATH

7.
Dragović, V., Radnović, M.: Poncelet porisms and beyond. Birkhäuser, Basel (2011)CrossRefMATH

8.
Grinspun, E., Gingold, Y., Reisman, J., Zorin, D.: Computing discrete shape operators on general meshes. Comput. Graph. Forum 25(3), 547–556 (2006). Proc. Eurographics

9.
Hildebrandt, K., Polthier, K.: Generalized shape operators on polyhedral surfaces. Comput. Aided Geom. Des. 28, 321–343 (2011)MathSciNetCrossRefMATH

10.
Hoffmann, T., Sageman-Furnas, A., Wardetzky, M.: A discrete parametrized surface theory in [image: $$\mathbb{R}^3$$]. Int. Math. Res. Not. (2016), to appear

11.
Lam, W.Y., Pinkall, U.: Isothermic triangulated surfaces. Math. Annalen (2016), to appear

12.
Liu, Y., Pottmann, H., Wallner, J., Yang, Y.L., Wang, W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25(3), 681–689 (2006). Proc. SIGGRAPH

13.
Morvan, J.M.: Generalized Curvatures. Springer (2008)

14.
Porteous, I.R.: Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge University Press (1994)

15.
Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 26(3), # 65,1–11 (2007). Proc. SIGGRAPH

16.
Pottmann, H., Wallner, J.: Computational Line Geometry. Springer (2001)

17.
Pottmann, H., Wallner, J.: The focal geometry of circular and conical meshes. Adv. Comp. Math 29, 249–268 (2008)MathSciNetCrossRefMATH

18.
Pottmann, H., Wallner, J., Huang, Q., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26, 37–60 (2009)MathSciNetCrossRefMATH

19.
Simon, U., Schwenck-Schellschmidt, A., Viesel, H.: Introduction to the affine differential geometry of hypersurfaces. TU Berlin & Science Univ, Tokyo (1992)MATH

20.
Sun, X., Morvan, J.M.: Curvature measures, normal cycles and asymptotic cones. Actes des recontres du C.I.R.M. 3(1), 3–10 (2013). Proc. “Courbure discrète: théorie et applications”

21.
Wang, J., Jiang, C., Bompas, P., Wallner, J., Pottmann, H.: Discrete line congruences for shading and lighting. Comput. Graph. Forum 32(5), 53–62. Proc. Symp, Geometry Processing (2013)

22.
Yu, J., Yin, X., Gu, X., McMillan, L., Gortler, S.: Focal surfaces of discrete geometry. In: Belyaev, A., Garland, M. (eds.) Proceedings of Symposium on Geometry Processing, pp. 23–32. Eurographics Association (2007)



Footnotes
1The vector of coefficients [image: $$(n_1,n_2,n_3)$$] of the equation of a plane is a normal vector of that plane. This shows that the orthogonal polar cone of the Monge cone fulfills the equation [image: $$(\kappa _1-\kappa _2)x_1x_2-ax_2x_3+bx_1x_3=0$$]. Since the Monge cone had many circumscribed orthogonal trihedra, its polar cone has many inscribed orthogonal frames. These frames are generated by translating the frames seen in Fig. 7b through the origin.
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Abstract
We introduce a novel class of s-conical nets and, in particular, study s-conical nets with constant mean curvature. Moreover we give a unified description of nets of various types: circular, conical and s-isothermic. The later turn out to be interpolating between the circular net discretization and the s-conical one.

1 Introduction
A variety of approaches have been pursued to obtain a notion of discrete constant mean curvature (cmc) surfaces. Two different starting points arise from the interpretation of cmc surfaces as critical points of an area functional [9, 16], and on the other hand from an integrable systems point of view [4, 10]. One principal difference of the two approaches is that, in the first approach, the underlying combinatorial structure is naturally that of a simplicial surface, whereas the integrable systems approach demands a quadrilateral structure of the discrete surface, and one reads about discrete parametrized surfaces. Recently these two approaches were partially merged as soon as a curvature theory for general polyhedral surfaces based on the notions of parallel surfaces and mixed area was developed [5].
Restricting to quadrilateral meshes, and, in particular, to planar quadrilaterals (discrete conjugate nets), may at first sight appear to be a severe restriction. However, it turns out that every surface can be approximated by discrete nets with these properties [3, 6], reflecting the existence of the corresponding parametrizations in the smooth case. In fact these integrable discretizations are structure preserving, i.e. they preserve the key aspects of the geometry. A characteristic feature of surfaces described by integrable systems is the existence of special transformations of Bäcklung and Darboux type that preserve the class of surfaces. In the discrete setup these transformations lead to consistent multi-dimensional nets. The last property has established itself as the integrable structure in discrete differential geometry [6].
There exists a rather developed theory of discrete cmc surfaces from an integrable point of view, reflected in numerous publications. They include Q-nets (nets with planar quadrilaterals) [5], circular nets (nets with circular quadrilaterals) [4, 6, 8, 10, 11, 14, 18, 19], semi-discrete nets [15], s-isothermic nets [12]. The latter can be characterized geometrically [6] by having a sphere at every vertex of the net such that the intersection angles of the spheres along opposite edges in every quadrilateral are the same and the four spheres either have a common orthogonal circle, share a pair of points, or (as a limiting case) all meet in exactly one point.
The key observation of the present paper is that the last subclass of s-isothermic nets is in fact conical. Although the class of conical nets introduced in [13] is very important for applications and belongs to integrable discrete differential geometry [6, 17], investigation of discrete conical surfaces with constant curvature has just started [2]. In this paper we introduce a novel class of s-conical nets and, in particular, study s-conical nets that are cmc. The identification of s-conical surfaces with special s-isothermic surfaces mentioned above leads not only to a description of conical cmc nets but also to a unified description of discrete cmc nets. One can think of s-isothermic nets as “interpolating” between the circular net discretization and the s-conical one.

2 Conical Nets
Here we consider Q-nets, which are discrete surfaces with planar quadrilateral faces. Since we are mostly developing a local theory, for simplicity we consider surfaces with the combinatorics of the square grid [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$]. Some parts of the theory can be generalized to a more general combinatorics [image: $$f:G\rightarrow \mathbb R^3$$], where G is a quad-graph. The latter is a strongly regular cell decomposition of a two-dimensional manifold with all faces being quadrilaterals. Moreover in the developed theory of discrete CMC surfaces the quad-graph should be edge-bipartite, i.e. there is a black and white edge coloring such that for each quadrilateral opposite edges are of the same color.
Through this paper we will use a notation that indicates shifts in the various directions by subscript. For a net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] we will denote a generic point f(k, l) simply by f. Then it is understood that [image: $$f_1 =f(k+1,l)$$], [image: $$f_2 = f(k,l+1)$$], [image: $$f_{12} = f(k+1,l+1)$$], [image: $$f_{\bar{1}} = f(k-1,l)$$] and so forth. This is of particular use in case of [image: $$\mathbb Z^n$$] lattices but also as long as only one or two neighboring quadrilaterals of a quad-graph are concerned it is a useful shorthand. The following definition first appeared in [13].
Definition 2.1
A Q-net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is said to be conical if for each vertex all incident faces touch a common sphere [image: $$\sigma $$].

The touching spheres in the Definition 2.1 of conical nets are not unique. In general there is a 1-parameter family of spheres touching all incident faces for each vertex. These spheres are inscribed in a cone, and their centers lie on the cone axis. This furnishes a canonical normal direction (or line) in each vertex of f.
The normal lines of neighboring vertices are coplanar. Due to this fact conical nets have parallel nets in normal direction. The following theorem as well as all properties of conical nets mentioned in this section are due to [13] (see also [5, 6]).
Theorem 2.2
Let [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] be a conical net. There is a 1-parameter family of conical nets [image: $$f^t:\mathbb Z^2\rightarrow \mathbb R^3$$] such that [image: $$(f^t-f)$$] lies in normal direction to f, f and [image: $$f^t$$] have parallel edges, and the distance between corresponding faces is constant.

Proof
Given a conical net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] one chooses [image: $$f^t$$] at a vertex f such that [image: $$f^t-f$$] is in normal direction. Then there is a touching sphere [image: $$\sigma $$] with center at [image: $$f^t$$]. Let r be its radius. Now one can find touching spheres [image: $$\sigma $$] of radius r at all other vertices. Set [image: $$f^t$$] to be their centers. Then [image: $$(ff^t)$$] is in normal direction everywhere. Consider a quadrilateral [image: $$(f,f_1,f_{12},f_2)$$]. Since the edge [image: $$(ff_1)$$] lies in the intersection of two common tangent planes of [image: $$\sigma _1$$] and [image: $$\sigma $$] it is parallel to the difference of their centers [image: $$f^t_1-f^t$$] as well (the spheres are of equal radius). Thus the corresponding edges (and hence also the faces) of the quadrilaterals [image: $$(f,f_1,f_{12},f_2)$$] and [image: $$(f^t,f^t_1,f^t_{12},f^t_2)$$] are parallel. Moreover since all the spheres have the same radius r, the distance between the planes of these quadrilaterals is r. Since the faces of f and [image: $$f^t$$] are parallel [image: $$f^t$$] is conical as well.

Definition 2.3
Let [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] be a conical net. [image: $$n:\mathbb Z^2\rightarrow \mathbb R^3$$] is called a Gauss map of f if n points in normal direction and the parallel net [image: $$f^1 = f+ n$$] has constant face offset 1, i.e. the distance between the planes of the corresponding faces of f and [image: $$f^1$$] is equal to 1.

Proposition 2.4
Let [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] be a conical net and [image: $$n:\mathbb Z^2\rightarrow \mathbb R^3$$] its Gauss map. Then the edges of n are parallel to the edges of f and the faces of n touch the unit sphere [image: $$S^2$$].

Proof
Since [image: $$f+n$$] is parallel to f, n is parallel to f as well. Moreover since the distance between the faces of [image: $$f+n$$] and f is equal to 1, the projection of n to the face normals N of f (and n) is 1. Thus the faces of n touch the unit sphere.

The parallel nets in Theorem 2.2 are then given by[image: $$\begin{aligned} f^t = f+tn. \end{aligned}$$]

 (1)

We will refer to these nets as (parallel) nets in constant distance.
We can use the notion of parallel nets to give yet another characterization for conical nets:
Proposition 2.5
A Q-net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is a conical net if and only if f has parallel nets with constant face offset. If f is generic the constant face offset nets lie in normal direction.

Proof
Theorem 2.2 shows that conical nets have parallel nets with constant face offset. Now if f is a net with parallel net [image: $$\tilde{f}$$] in constant face distance d, then [image: $$\hat{f} = \tilde{f} - f$$] is parallel to f as well, and the faces of [image: $$\hat{f}$$] touch a sphere of radius d. Thus [image: $$\hat{f}$$] is conical. This also ensures conicality of all its parallel nets, in particular of f and [image: $$\tilde{f}$$]. Finally, [image: $$\hat{f} = \tilde{f} -f$$] is the cone axes for [image: $$\hat{f}$$] and therefore [image: $$(f\tilde{f})$$] is the normal direction for [image: $$\tilde{f}$$] and f as well.

The following angle characterization of conical nets was proven in [20].
Proposition 2.6
A Q-net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is a conical net if and only if at each vertex the sums of the opposite angles (of quadrilaterals) are equal.

Example 2.7
Take any planar polygon [image: $$\gamma (k) = (\gamma ^1(k),\gamma ^2(k))$$] with non vanishing edges and an angle [image: $$0<\phi <\pi $$]. Then the discrete rotational net[image: $$ f(k,l) = (\gamma ^1(k),\cos (l \phi ) \gamma ^2(k),\sin (l \phi )\gamma ^2(k)) $$]


is a conical net.


3 Curvatures of Conical Nets via Steiner’s Formula
The classical Steiner formula couples the areas of a surface f and a parallel offset surface [image: $$f^t$$] with the mean and Gauss curvature of f. If f is an infinitesimal surface patch and [image: $$f^t$$] the parallel one in distance t in normal direction, then Steiner’s formula gives:[image: $$\begin{aligned} A(f^t) = A(f)(1 - 2 H t + K t^2), \end{aligned}$$]

 (2)

where A is the area, and H and K are the mean and the Gauss curvatures of f.
A discrete analogue of this formula was used in [5] to define curvatures for Q-nets with a given Gauss map (see also [18] where this formula first appeared for Q-nets with circular quadrilaterals). Let [image: $$Q = (q,q_1,q_{12},q_2)$$] be a planar quadrilateral and N a unit normal of the plane of Q. Denoting its diagonals with [image: $$d_1 = q_{12} - q$$] and [image: $$d_2= q_2-q_1$$] the area A(Q) can be computed as[image: $$ A(Q) = \frac{1}{2} \det (d_1,d_2,N). $$]


If P is another quadrilateral with edges parallel to the edges of Q and with diagonals [image: $$c_1$$] and [image: $$c_2$$] the area of [image: $$P+t Q$$] is equal to[image: $$\begin{aligned} A(P+t Q) = A(P) +2 t \frac{1}{4}(\det (d_1,c_2,N)+ \det (c_1,d_2,N)) + t^2A(Q). \end{aligned}$$]

 (3)

The space of all planar quadrilaterals with edges parallel to a given one Q is a four dimensional vector space. Moding out the translations leaves a two dimensional one. On this space the area is a quadratic form A(P) and the mixed area is the corresponding symmetric form [image: $$A(P_1,P_2)$$].
Since a conical mesh f and its Gauss map n have parallel edges, the area of the quadrilaterals of the offset net [image: $$f^t = f + t n$$] is quadratic in the distance t. A discrete version of Steiner’s formula suggested in [5] (see also [6]) reads as follows.
Definition 3.1
Let [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] be a conical net with the Gauss map [image: $$n:G\rightarrow \mathbb R^3$$]. Then the discrete Steiner formula
          [image: $$\begin{aligned} A(f+t n) = A(f) (1 - 2 H t + K t^2) \end{aligned}$$]

 (4)

defines a discrete mean curvature H and a discrete Gauss curvature K on the faces of the net f:[image: $$\begin{aligned} H = -\frac{A(f,n)}{A(f)}, \quad K= \frac{A(n)}{A(f)}. \end{aligned}$$]

 (5)

Here A(f) and A(n) are the areas of the quadrilaterals [image: $$(f,f_1,f_{12},f_2)$$] and [image: $$(n,n_1,n_{12},n_2)$$] respectively, and A(f, n) is their mixed area.


4 Dual Quadrilaterals and Koenigs Nets
As we mentioned already, the mixed area A(P, Q) is a symmetric bilinear form on a two-dimensional vector space of quadrilaterals with parallel edges. Quadrilaterals P and Q with [image: $$A(P,Q)=0$$] are “orthogonal” with respect to this form. For any non-vanishing planar quadrilateral Q there is a P with [image: $$A(P,Q) = 0$$] and P is unique up to scaling.
Definition 4.1
Two planar quadrilaterals P and Q with parallel edges are called dual to each other if their mixed area vanishes:[image: $$ A(P,Q) = 0. $$]





Whenever scaling is unimportant we will simply talk about the dual quadrilateral [image: $$P^*$$], satisfying [image: $$A(P,P^*)=0$$].
Let [image: $$P = (p, p_1, p_{12}, p_2) $$] and [image: $$Q = (q,q_1,q_{12},q_2)$$] be two planar quadrilaterals with parallel edges and let N be their common normal then (3) implies the following formula for their mixed area
        [image: $$\begin{aligned} A(P,Q) = \frac{1}{4} \left( \det (p_{12}-p,q_2-q_1,N)+ \det (q_{12}-q,p_1-p_2,N)\right) . \end{aligned}$$]

 (6)

The duality can be described in terms of the diagonals [5, 6].
Proposition 4.2
The mixed area A(P, Q) of two planar quadrilaterals with parallel edges [image: $$P= (p, p_1, p_{12}, p_2)$$] and [image: $$Q(q,q_1,q_{12},q_2)$$] vanishes if and only if their non-corresponding diagonals are parallel, i.e. [image: $$p_{12}-p\parallel q_2-q_1$$] and [image: $$q_{12}-q\parallel p_2-p_1$$].

Let us present also useful explicit formulas for the dual quadrilateral. Let [image: $$o$$] be the intersection point of the diagonals of a planar quadrilateral [image: $$P= (p,p_1,p_{12},p_2)$$], [image: $$e_1 = \frac{p_{12}-p}{\Vert p_{12}-p\Vert },\ e_2 = \frac{p_{2}-p_1}{\Vert p_{2}-p_1\Vert }$$] be the unit vectors of diagonals and define [image: $$\alpha ,\beta ,\gamma ,\delta $$] as the oriented lengths of the connection intervals of the intersection point [image: $$o$$] to the vertices: [image: $$p -o= \alpha e_1$$], [image: $$p_{12} -o= \gamma e_1$$], [image: $$p_1 -o= \beta e_2$$], [image: $$p_2 -o= \delta e_2$$]. Then the quadrilateral [image: $$P^* = (p^*, p_1^*, p_{12}^*, p_2^*)$$] determined by[image: $$\begin{aligned} p^*-o^* = -\frac{1}{\alpha } e_2,\ p_{12}^*-o^* = -\frac{1}{\gamma } e_2,\ p_1^*-o^* = \frac{1}{\beta } e_1,\ p_2^*-o^* = \frac{1}{\delta } e_1 \end{aligned}$$]

 (7)

with some [image: $$o^*$$] is dual to P.
Every planar quadrilateral has a dual one. However generic Q-nets are not dualizable as a whole. Dualizable Q-nets were introduced in [7] (see also [6]).
Definition 4.3
A Q-net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is called a Koenigs net if there is a Q-net [image: $$f^*:\mathbb Z^2\rightarrow \mathbb R^3$$] such that the corresponding quadrilaterals of f and [image: $$f^*$$] are dual to each other; [image: $$f^*$$] is called (Christoffel) dual of f.

Koenigs nets can be characterized [6, 7] in terms of the intersection points of the diagonals.
Proposition 4.4
A Q-net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] in general position (each vertex and its neighbours are not co-planar) is a Koenigs net if and only if the intersection points of the diagonals of four quadrilaterals around each vertex are coplanar.

Since the planes of a planar quadrilateral and its dual are parallel, the conicality conditions for [image: $$f^*$$] and f are satisfied simultaneously.
Proposition 4.5
If [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is conical and Koenigs, its Christoffel dual [image: $$f^*:\mathbb Z^2\rightarrow \mathbb R^3$$] is conical as well.


5 Conical Nets with Constant Mean Curvature and S-Conical Nets
Definition 5.1
A conical net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is called a net with constant mean curvature (cmc net) if its mean curvature H defined by (5) is constant. Conical nets with vanishing mean curvature are called minimal.


            [image: A371662_1_En_9_Fig1_HTML.gif]
Fig. 1To definition of s-conical nets. The cone touches all four neighboring quadrilaterals. The intersection points of the diagonals are circular, and the axis of the circle coincides with the axis of the cone




          
Theorem 5.2
A conical net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is a cmc net with mean curvature [image: $$H\ne 0$$] if and only if it is a Koenigs net with its Christoffel dual in constant distance [image: $$\frac{1}{H}$$]:[image: $$\begin{aligned} H=\mathrm{const} \Leftrightarrow f^*= f-\frac{1}{H} n. \end{aligned}$$]

 (8)

The dual net [image: $$f^*$$] is a conical cmc net with mean curvature H as well.

Indeed, we have[image: $$ HA(f,f) = -A(f,n) \Leftrightarrow 0 = A(f,f-\frac{1}{H}n). $$]


Thus [image: $$f^*$$] exists and is given by (8).
There is a tight connection (see [6, 17]) of conical nets and circular nets, i.e. Q-nets with circular faces. Given a conical net one can choose a point on one of the face’s planes arbitrarily. Mirroring this point at the planes spanned by the face’s edges and their incident normals gives a circular net. Each vertex of this circular net corresponds to a face of the conical net and vice versa. This way each conical net gives rise to a 2-parameter family of circular nets. The circle centers of the circular net lie on the cone axes of the conical one.
On the other hand, given a circular net, we can choose an initial unit vertex normal arbitrarily. Mirroring that normal at the edge-bisecting planes gives rise to a consistent set of vertex normals such that neighboring normals intersect. Their orthogonal planes passing through the vertices of the circular net give rise to a conical net. This way each circular Q-net gives rise to a 2-parameter family of conical nets. We will call these conical and circular nets corresponding to each other.
We complete this section with an introduction of particular conical nets.
Definition 5.3
A discrete conical net [image: $$f:\mathbb Z^2\rightarrow \mathbb R^3$$] is called s-conical if for every vertex the intersection points of the diagonals of the quadrilaterals sharing the vertex lie on a circle, and the axis of this circle is the vertex normal (the cone axis at the vertex).

It is easy to see that an s-conical net and its circular net formed by the intersection points of the diagonals are corresponding (see Fig. 1). Indeed two triangles on two neighboring faces sharing an edge built by this edge and the intersection points of the diagonals are congruent. Therefore they are symmetric with respect to the reflection in the symmetry plane of the planes of the neighboring faces.
Theorem 5.4

              	(i)S-conical nets are Koenigs nets.


 

	(ii)The dual net of an s-conical net is also s-conical.


 




            

Proof

              	(i)follows from Proposition 4.4 since the intersection points of the diagonals are circular.


 

	(ii)Consider two (congruent) triangles [image: $$\varDelta _1, \varDelta _2$$] on two neighboring faces of f with a common edge built by this edge and the intersection points of the diagonals. As it was explained above they are symmetric with respect to the reflection in the symmetry plane P of the planes of the faces. The dualization formula (7) implies that the corresponding triangles [image: $$\varDelta ^*_1, \varDelta ^*_2$$] of the dual net [image: $$f^*$$] are also symmetric with respect to P. This implies that [image: $$f^*$$] is s-conical.


 




            

In Sect. 7 we give an alternative definition of this class and investigate it.

6 S-Isothermic Nets
For an s-conical net the intersection points [image: $$o$$] of the diagonals are circular with the circle centers lying on the corresponding cone axes. Let f be a vertex of an s-conical net and [image: $$o_{\bar{1}\bar{2}},o_{\bar{2}},o,o_{\bar{1}}$$] the diagonal intersection points of the quadrilaterals incident to f. The points [image: $$o_{\bar{1}\bar{2}},o_{\bar{2}},o,o_{\bar{1}}$$] lie on a sphere s with center f. This furnishes a map [image: $$s:\mathbb Z^2\rightarrow \{\text {spheres in }\; \mathbb R^3\}$$] such that each sphere s is centered at the vertex f and in each diagonals intersection point [image: $$o$$] four spheres [image: $$s,s_1,s_{12},s_2$$] meet. Furthermore, opposite spheres s and [image: $$s_{12}$$] as well as [image: $$s_1$$] and [image: $$s_2$$] touch at [image: $$o$$].
In order to proceed further we recall some basic facts about s-isothermic nets and their Möbius geometric description (see [6] for details).
Let [image: $$\mathbb R^{4,1}$$] be the five dimensional Minkowski space with the standard Lorenz inner product[image: $$\langle x,y\rangle = -x_0 y_0 + \sum _{k=1}^4 x_ky_k.$$]


There is a bijection between oriented spheres and planes s in [image: $$\mathbb R^3$$] and unit vectors [image: $$\hat{s}\in \mathbb R^{4,1}$$] (here we consider planes as degenerate spheres), as well as points p in [image: $$\mathbb R^3\cup \infty $$] and isotropic vectors [image: $$\hat{p}\in \mathbb {L}^{4} \subset \mathbb R^{4,1}$$]. For points p one sets[image: $$\begin{aligned} \hat{p} = (\frac{1+\Vert p\Vert ^2}{2},p,\frac{1-\Vert p\Vert ^2}{2}) \end{aligned}$$]

 (9)

with [image: $$\langle \hat{p},\hat{p}\rangle = 0$$]. The point at infinity [image: $$\infty $$] is then given by [image: $$(1,0,0,0,-1)$$]. An oriented sphere s with center c and radius r in [image: $$\mathbb R^3$$]is represented as[image: $$\begin{aligned} \hat{s} = \frac{1}{r} \left( \frac{1+(\Vert c\Vert ^2 -r^2)}{2}, c, \frac{1-(\Vert c\Vert ^2 -r^2)}{2}\right) . \end{aligned}$$]

 (10)

A plane with the normal form [image: $$\langle v,n\rangle |_{\mathbb R^3} = d$$], [image: $$\Vert n \Vert = 1$$] is is given by[image: $$ \hat{s} = (d, n, -d).$$]


In both cases [image: $$\langle \hat{s},\hat{s}\rangle = 1$$]. Changing the orientation of the sphere or plane corresponds to the transformation [image: $$\hat{s}\mapsto - \hat{s}$$]. A point p lies on a sphere s if and only if[image: $$\begin{aligned} p \in s \Leftrightarrow \langle \hat{p} , \hat{s}\rangle = 0. \end{aligned}$$]

 (11)

The intersection angle [image: $$\alpha $$] between two spheres [image: $$s_1$$] and [image: $$s_2$$] can be calculated as[image: $$\begin{aligned} \cos \alpha = \langle \hat{s}_1, \hat{s}_2\rangle . \end{aligned}$$]

 (12)

In particular touching spheres satisfy[image: $$\langle \hat{s}_1, \hat{s}_2\rangle =-1.$$]


From here on we will use the same notation p, s for points and spheres in [image: $$\mathbb R^3$$] and their representatives (10) in [image: $$\mathbb R^{4,1}$$]. The meaning will be clear from the context.
Definition 6.1
A net [image: $$s:\mathbb Z^2\rightarrow \mathbb R^{4,1}$$] of space-like unit vectors solving the discrete Moutard equation[image: $$\begin{aligned} s + s_{12} = \lambda (s_1 + s_2), \lambda \ne 0, \end{aligned}$$]

 (13)

is called s-isothermic.

Proposition 6.2
Let [image: $$s:\mathbb Z^2\rightarrow \mathbb R^{4,1}$$] be an s-isothermic net. Then[image: $$\begin{aligned} \langle s_{12},s_1\rangle = \langle s_2,s\rangle \quad \text {and}\quad \langle s_{12},s_2\rangle = \langle s_1,s\rangle . \end{aligned}$$]

 (14)




Proof
The unit length condition implies[image: $$ 1 = \langle s_{12},s_{12}\rangle = \lambda ^2\langle s_1+s_2,s_1+s_2\rangle - 2 \lambda \langle s_1+s_2,s\rangle + 1, $$]


and finally[image: $$\begin{aligned} \lambda \langle s_1+s_2,s_1+s_2\rangle - 2\langle s_1+s_2,s\rangle =0. \end{aligned}$$]

 (15)

If [image: $$\langle s_1+s_2,s_1+s_2\rangle =0$$] (this is the touching spheres case [image: $$\langle s_1,s_2\rangle =-1$$]) we get from (15) [image: $$\langle s_1,s\rangle =-\langle s_2,s\rangle $$]. This implies [image: $$\langle s_{12},s_1\rangle = \langle \lambda (s_1+s_2) - s, s_1\rangle = -\langle s, s_1\rangle =\langle s, s_2\rangle $$]. In the non-touching case [image: $$\langle s_1+s_2,s_1+s_2\rangle \ne 0$$] substituting [image: $$\lambda $$] given by (15) into (13) we obtain (14).

S-isothermic nets have the following geometric properties formulated in terms of the centers c and the radii r of the corresponding spheres (10) (see [6, 7] for the proof).
Theorem 6.3

              	(i)The centers [image: $$c\in \mathbb R^3$$] of an s-isothermic net build Koenigs nets.


 

	(ii)Let s be an s-isothermic net of spheres with the centers [image: $$c:\mathbb Z^2\rightarrow \mathbb R^3$$] and (signed) radii [image: $$r:\mathbb Z^2\rightarrow \mathbb R$$]. The spheres [image: $$s^*$$] with the centers [image: $$c^*:\mathbb Z^2\rightarrow \mathbb R^3$$] and the radii [image: $$r^*:\mathbb Z^2\rightarrow \mathbb R$$] given by [image: $$\begin{aligned} c_1^* - c^* = \frac{ c_1 - c}{r_1 r},\ c_2^* - c^* = -\frac{ c_2 - c}{r_2 r}, \ r^*=\frac{1}{r}, \end{aligned}$$]

 (16)

 build an s-isothermic net (called Christoffel dual net).


 




            

S-isothermic nets belong to integrable structures of discrete differential geometry [6], i.e. they can be extended consistently to the [image: $$\mathbb Z^N$$] lattice so that all two-dimensional coordinate subnets are s-isothermic. This property can be interpreted as a transformation of two-dimensional s-isothermic nets called Darboux transformation [12].[image: A371662_1_En_9_Fig2_HTML.gif]
Fig. 2A Darboux cube





Definition 6.4
Consider two s-isothermic nets [image: $$s:\mathbb Z^2\rightarrow \mathbb R^{4,1}$$] and [image: $$\hat{s}:\mathbb Z^2\rightarrow \mathbb R^{4,1}$$], and their spheres with the same indexes as corresponding. Thus, for example, the spheres [image: $$s,s_1,s_{12},s_2,\hat{s},\hat{s}_1,\hat{s}_{12},\hat{s}_2$$] build a combinatorial cube shown in Fig. 2, and we treat the faces of s and [image: $$\hat{s}$$] as bottom and top faces of the cube. The s-isothermic nets s and [image: $$\hat{s}$$] are said to be Darboux transforms of each other if the spheres corresponding to the side faces of the cube also satisfy the discrete Moutard equations (with different signs corresponding to two different pairs of opposite faces):[image: $$\begin{aligned} \hat{s}_{1}+s=a(\hat{s}+s_1),\quad \hat{s}_{12}+s_2=a_2(\hat{s_2}+s_{12}),\\ \hat{s}_{2}-s=b(\hat{s}-s_2), \quad \hat{s}_{12}-s_1=b_1(\hat{s_1}-s_{12}). \end{aligned}$$]





Remark 6.5
Given s its Darboux transform [image: $$\hat{s}$$] is uniquely determined by one vertex of [image: $$\hat{s}$$] which can be chosen arbitrary.

Remark 6.6
Note that the sides of a Darboux cube that correspond to the solutions of the Moutard equation with plus sign have embedded quadrilaterals while the ones with minus sign give rise to non-embedded quadrilaterals.

Remark 6.7
To pass to a multidimensional consistent picture mentioned above one should change the orientations of the spheres for every second line [image: $$s_{ij}\rightarrow (-1)^{i}s_{ij}$$].


7 S-Conical Nets as S-Isothermic Nets
The Moutard equation implies that the four spheres of each quadrilateral are linearly dependent vectors in [image: $$\mathbb R^{4,1}$$]. Thus an s-isothermic net s is in particular a Q-net. We obtain three types of s-isothermic surfaces characterized by the fact that the four spheres [image: $$s,s_1,s_2,s_{12}$$]:	share a common orthogonal circle (Type 1),

	intersect in a pair of points (Type 2),

	intersect in exactly one point (Type 3).





These three cases are distinguished by the signature of the Lorentz metric restricted to the subspace of the corresponding spheres [image: $$s,s_1,s_{12},s_2$$] which span a 3-dimensional subspace [image: $$U\subset \mathbb R^{4,1}$$]. Denote its orthogonal complement by [image: $$U^\perp $$]. If the inner product on [image: $$U^\perp $$] is positive definite the unit vectors therein form a 1-parameter family of spheres orthogonal to [image: $$s,s_1,s_{12}$$], and [image: $$s_2$$]. This family shares a circle (given by the isotropic vectors of U) which thus is perpendicular to [image: $$s,s_1,s_{12}$$], and [image: $$s_2$$].
If the inner product on [image: $$U^\perp $$] is indefinite and non degenerate then it contains two isotropic directions [image: $$\hat{p}_1$$] and [image: $$\hat{p}_2$$] which give rise to two points [image: $$p_1$$] and [image: $$p_2$$] that are contained in all four spheres.
Finally if the inner product is degenerate on [image: $$U^\perp $$] the subspace touches the light-cone of [image: $$\mathbb R^{4,1}$$] and that direction gives rise to one common point of [image: $$s,s_1,s_{12}$$], and [image: $$s_2$$].
The first type has a particularly nice special case when all the inner products are 1. In this case the four spheres for each quadrilateral touch cyclically [1, 6]. The orthogonal circle then must pass through the four touching points.
S-isothermic surfaces of type 3 are of particular interest for us. It is the case where the orthogonal circle (or the pair of common points) collapses into a point (Fig. 3).[image: A371662_1_En_9_Fig3_HTML.gif]
Fig. 3An s-conical quadrilateral as an s-isothermic net of type 3





Theorem 7.1
For a map [image: $$s:\mathbb Z^2\rightarrow \mathbb R^{4,1}$$] with [image: $$\langle s,s\rangle =1$$] the following statements are equivalent:	(i)
                  s is s-isothermic of type 3.


 

	(ii)
                  s is a solution to the Moutard equation (13) and the intersection angles of the spheres are complimentary: [image: $$\langle s,s_1\rangle = -\langle s,s_2\rangle $$] and [image: $$|\langle s,s_1\rangle |\le 1$$].


 

	(iii)
                  [image: $$s+s_{12}$$] and [image: $$s_1+s_2$$] are parallel isotropic vectors.


 

	(iv)The centers c of s form an s-conical net and the intersection points [image: $$o$$] of the diagonals lie on the corresponding spheres [image: $$s,s_1,s_{12},s_2$$].


 






Proof
 
                [image: $$(i)\Rightarrow (ii)$$].The centers of the spheres [image: $$s,s_1,s_{12},s_2$$] are coplanar and the opposite spheres touch in a common point. Thus this must be the intersection point of the diagonals. The intersection angle of the diagonals [image: $$\alpha $$] and its complimentary angle [image: $$\pi -\alpha $$] are exactly the intersection angles of the corresponding neighboring spheres. Then the claim follows from (12).



                [image: $$(ii)\Rightarrow (iii)$$].For [image: $$\langle s,s_1\rangle = -\langle s,s_2\rangle $$] Eq. (15) implies that [image: $$s_1+s_2$$] is isotropic (note that [image: $$\lambda \ne 0$$]). Due to (13) [image: $$s_{12}+s$$] is parallel and therefore isotropic as well.



                [image: $$(iii)\Rightarrow (iv)$$].The isotropy [image: $$\langle s_1+s_2,s_1+s_2\rangle =0$$] implies the touching condition [image: $$\langle s_1,s_2\rangle =-1$$]. Moreover [image: $$s_1+s_2$$] and [image: $$s+s_{12}$$] are equivalent projective representations of the common touching point [image: $$o$$]. The centers c of the spheres form a planar quadrilateral for which the diagonals [image: $$(c_1,c_2)$$] and [image: $$(c,c_{12})$$] intersect at the touching points [image: $$o$$]. Since [image: $$o_{\bar{1}\bar{2}},o_{\bar{2}},o,o_{\bar{1}}$$] are the points in which the spheres [image: $$s_{\bar{1}},s_{\bar{2}},s_1,s_2$$] touch cyclically, [image: $$o_{\bar{1}\bar{2}},o_{\bar{2}},o,o_{\bar{1}}$$] lie on a circle,1 which we denote by C. This implies that the net c is a Koenigs net with a circular net of points [image: $$o$$]. It remains to show that it is conical as well.
Since the quadrilateral formed by say [image: $$c,o,c_2$$], and [image: $$o_{\bar{1}}$$] is a folded kite (two pairs of non-opposing edges are equal in length), the planes spanned by [image: $$c,o,c_2$$] and [image: $$c,c_2,o_{\bar{1}}$$] are symmetric with respect to the plane spanned by [image: $$c,c_2$$], and the axis of the circle C. The same holds for the other edges and thus c is a conical net corresponding to the circular net o.



                [image: $$(iv)\Rightarrow (i)$$].Let s have a central net c that is s-conical. The intersection points [image: $$o,o_{\bar{1}},o_{\bar{1}\bar{2}},o_{\bar{2}}$$] lie on the sphere s. Since the connection line through the centers [image: $$c,c_{12}$$] passes through the common point [image: $$o$$] of the spheres [image: $$s, s_{12}$$], these must touch at [image: $$o$$]. The isotropic vector of [image: $$o$$] is projectively equivalently represented by [image: $$s_{12}+s$$] or [image: $$s_1+s_2$$]. This implies that these vectors are parallel, thus s solves the Moutard equation. Since the four spheres share a single point the solution is of the third type.



  

We have shown that s-conical nets and s-isothermic nets of type 3 can be canonically identified: the centers of the spheres of an s-isothermic net of type 3 are the vertices of the corresponding s-conical net, and their intersection (touching) points [image: $$o$$] are the intersection points of the diagonals of the s-conical net.
Christoffel dualizations defined for both these classes also coincide. The following theorem follows from the dualization formulas (7) and (16).
Proposition 7.2
The Christoffel dual net of an s-isothermic net of type 3 is an s-isothermic net of type 3. Moreover the centers c and [image: $$c^*$$] of the corresponding spheres build Christoffel dual s-conical nets in the sense of Theorem 5.4.

Finally a Darboux transform of s-isothermic surfaces preserves nets of type 3 and therefore is well defined for s-conical surfaces.
Theorem 7.3
Let [image: $$c:\mathbb Z^2\rightarrow \mathbb R^3$$] be s-conical with the corresponding s-isothermic net [image: $$s:\mathbb Z^2\rightarrow \mathbb R^{4,1}$$] and let [image: $$\hat{s}:\mathbb Z^2\rightarrow \mathbb R^{4,1}$$] be a Darboux transform of s with central net [image: $$\hat{c}:\mathbb Z^2\rightarrow \mathbb R^3$$]. Then [image: $$\hat{c}$$] is s-conical as well.
Moreover every Darboux cube possesses a (Ribaucour) sphere [image: $$R\in \mathbb R^{4,1}$$] which is orthogonal to all spheres [image: $$s,s_1,\ldots ,\hat{s}_{12}$$] of the Darboux cube,[image: $$ \langle R,s\rangle =\langle R,s_1\rangle =\ldots =\langle R,\hat{s}_{12}\rangle =0, $$]


and passes through the intersection points [image: $$o, \hat{o}$$] of diagonals of c and [image: $$\hat{c}$$].

Proof
Let us use the characterization (ii) of s-isothermic nets of type 3 from Theorem 7.1 that is [image: $$\langle s,s_1\rangle = -\langle s,s_2\rangle $$]. Due to the Moutard equation the scalar products of the spheres at the opposite edges of any face of the Darboux cube are equal (see Proposition 6.2), for example, [image: $$\langle s,s_1\rangle =\langle s^*,s^*_1\rangle $$]. This implies [image: $$\langle s^*,s^*_1\rangle = -\langle s^*,s^*_2\rangle $$].
To prove the second claim, consider the one-parameter family of the spheres touching the quadrilateral [image: $$(c,c_1,c_{12},c_2)$$] at the point [image: $$o$$]. They all are orthogonal to [image: $$s,s_1,s_{12},s_2$$]. Take the sphere R from this family that is orthogonal to [image: $$\hat{s}$$]. Due to Moutard equations it is orthogonal to [image: $$\hat{s}_1,\hat{s}_2,\hat{s}_{12}$$] as well. Thus it touches the quadrilateral [image: $$(\hat{c},\hat{c}_1,\hat{c}_2,\hat{c}_{12})$$] at [image: $$\hat{o}$$].


8 S-Conical Nets with Constant Mean Curvature
In this section we consider s-conical nets with constant mean curvature [image: $$H\ne 0$$]. S-conical minimal surfaces, [image: $$H=0$$], build an interesting subclass of s-conical surfaces with a rich theory (associated family, Weierstrass representation, variational principle). This is a subject of a separate publication [2].
Lemma 8.1
Let [image: $$f, f^*:\mathbb Z^2\rightarrow \mathbb R^3$$] be two s-conical nets. Then any two of the following conditions imply the third:	(i)
                  [image: $$ f^*$$] is a Christoffel dual of f.


 

	(ii)
                  [image: $$ f^*$$] is a Darboux transform of f.


 

	(iii)
                  [image: $$ f^*$$] and f are in constant face offset, and it is equal to the distance [image: $$\Vert o^* - o\Vert $$] between the intersection points of diagonals of the corresponding faces of f and [image: $$f^*$$].


 






Proof

          [image: $$1.\; \text {and}\; 2. \Rightarrow 3.$$]:
Let s and [image: $$s^*$$] be the s-isothermic nets corresponding to f and [image: $$f^*$$] respectively. Consider the Darboux cube formed by the spheres [image: $$s,s_1,s_2,s_{12}$$] and their dual [image: $$s^*, s_1^*, s_2^*, s_{12}^*$$]. In the following [image: $$f, f_1$$] etc. will denote the sphere’s centers, which were previously denoted by [image: $$c,c_1$$] etc. Since the quadrilaterals [image: $$(f,f_1,f_{12},f_2)$$] and [image: $$(f^*, f_1^*, f_{12}^*, f_2^*)$$] are dual they are parallel. Due to Theorem 7.3 they touch the Ribaucour sphere R at [image: $$o$$] and [image: $$o^*$$] respectively. This implies that the line trough [image: $$o$$] and [image: $$o^*$$] intersects these two quadrilaterals orthogonally (Fig. 4).
Next, consider two neighboring quadrilaterals [image: $$(f,f_1,f_{12},f_2)$$] and [image: $$(f_1,f_{11},f_{112},f_{12})$$] with their duals. The common edge [image: $$f_{12}f_{1}$$] of the quadrilaterals is the axis of the circle [image: $$C=s_{1}\cap s_{12}$$]. Obviously [image: $$o,o_1\in C$$]. Moreover because of the orthogonality the lines [image: $$(oo^*)$$] and [image: $$(o_1o^*_1)$$] are tangents to C. The same argument implies that they are also tangent to the circle [image: $$C^*=s^*_{1}\cap s^*_{12}$$].
The circles C and [image: $$C^*$$] are co-planar and two co-planar circles have two sets of common tangents distinguished by whether they intersect the edge between the circle centers or not. Since the Darboux cubes are “flipped over” this happens for one of the lattice directions and not for the other (see Remark 6.6). Therefore [image: $$\Vert o^*-o\Vert = \Vert o_1- o_1^*\Vert $$]. Since those lines are orthogonal to the quads, the face distance for the nets is constant as well.[image: A371662_1_En_9_Fig4_HTML.gif]
Fig. 4A geometric cube in Lemma 8.1. The quadrilaterals [image: $$(ff_1f_{12}f_2)$$], [image: $$(f^*f^*_1f^*_{12}f^*_2)$$], [image: $$(ff_1f^*_1f^*)$$] are embedded, the quadrilateral [image: $$(ff_2f^*_2f^*)$$] is not. The diagonal intersection points [image: $$o, o^*,o',\tilde{o}$$] lie on a common line orthogonal to the planes of the quadrilaterals [image: $$(ff_1f_{12}f_2)$$] and [image: $$(f^*f^*_1f^*_{12}f^*_2)$$]
                






          [image: $$2.\; \text {and}\; 3. \Rightarrow 1.$$]:
Again consider the Darboux cube. All sides are planar quadrilaterals and since f and [image: $$f^*$$] are in constant face distance, they have parallel edges. Moreover all the diagonal intersection points for a Darboux cube are collinear. Let us assume that the quadrilateral [image: $$(f,f_1,f^*_1,f^*)$$] is the one of the embedded sides of the Darboux cube (see Remark 6.6). Its diagonal intersection point [image: $$o'$$] and the points [image: $$o, o^*$$] are collinear. The triangles [image: $$(f,f_1,o')$$] and [image: $$(f^*_1,f^*,o')$$] are obviously similar. The triangles [image: $$(f,f_1,o)$$] and [image: $$(f^*_1,f^*,o^*)$$] are their orthogonal projections and are similar as well. Thus [image: $$f-o$$] and [image: $$f^*_1-o^*$$] are parallel, i.e. the diagonals for f and [image: $$f^*$$] satisfy the duality criteria of Proposition 4.2.

          [image: $$3.\; \text {and}\; 1. \Rightarrow 2.$$]:
Again, the planes of corresponding quadrilaterals for f and [image: $$f^*$$] are parallel since [image: $$f^*$$] is dual to f. Since [image: $$(f,f_{2},o)$$] and [image: $$(f_{2}^*,f^*,o^*)$$] are similar triangles, the arguments of the previous item in the proof imply that the intersection points of the diagonals of all side-quadrilaterals lie on the line connecting [image: $$o$$] and [image: $$o^*$$]. In particular this is the case with the intersection point [image: $$\tilde{o}$$] of the diagonals of the quadrilateral [image: $$(f,f_{2},f^*_{2},f^*)$$]. We will prove the claim in case that this quadrilateral is non-embedded, for embedded quadrilaterals the proof differs just by a minor change of signs ±.
We can assume that [image: $$\tilde{o}$$] lies at the origin. The triangles [image: $$(\tilde{o},f^*,o^*)$$] and [image: $$(\tilde{o},f_{2},o)$$] are similar and [image: $$\Vert of_{2}\Vert =r_{2}$$], [image: $$\Vert o^*f^*\Vert =r^*=\frac{1}{r}$$]. This implies for [image: $$f^*$$] and similarly for [image: $$f^*_{2}$$]:[image: $$f^*=\frac{1}{r r_{2}}f_{2},\quad f^*_{2}=\frac{1}{r r_{2}}f.$$]


Then the middle three coordinates (10) of the spheres [image: $$s,s_{2},s^*_{2}$$] and [image: $$s^*$$] are equal [image: $$\frac{f}{r},\frac{f_{2}}{r_{2}}$$], [image: $$\frac{f_{2}^*}{r_{2}^*} =\frac{ f}{r}$$], and [image: $$\frac{f^*}{r^*} = \frac{ f_{2}}{r_{2}}$$] respectively. To prove the Moutard identity[image: $$ s - s^*_{2} =\mu (s^* - s_{2}), \quad \mu =-\frac{r_{2}}{r} $$]


it remains to verify it for the terms of the form [image: $$\frac{1}{r}$$] and [image: $$\frac{\Vert f\Vert ^2-r^2}{r}$$] in (10). The identity[image: $$ \frac{1}{r}-\frac{1}{r^*_{2}}=\mu (\frac{1}{r^*}-\frac{1}{r_{2}}) $$]


is obvious. For the terms of the form [image: $$\frac{\Vert f\Vert ^2-r^2}{r}$$] the computation is slightly more involved. The claim finally follows from[image: $$ \Vert f\Vert ^2-r^2=\Vert f_{2}\Vert ^2-r^2_{2}=\Vert \tilde{o}-o\Vert ^2. $$]


Thus the cube is Darboux.

Remark 8.2
Considering degenerated examples it is not difficult to convince yourself that the extra condition that the face distance equals the distance between the points [image: $$o$$] and [image: $$o^*$$] (or equivalently that the line [image: $$(oo^*)$$] is perpendicular to the quadrilaterals) in Lemma 8.1 cannot be dropped.

Let us recall that a parallel net in constant distance in the sense of (1) to a conical net lies in a constant distance face offset. We formulate the obtained properties of s-conical cmc nets in the following
Theorem 8.3

              	(i)An s-conical net f is cmc if and only if it has a Christoffel dual [image: $$f^*$$] in constant distance. The lines [image: $$(oo^*)$$] connecting the points of intersection of diagonals of the corresponding quadrilaterals of f and [image: $$f^*$$] intersect the planes of these quadrilaterals at constant angle [image: $$\theta $$]. The distance [image: $$\Vert oo^*\Vert $$] is constant for the whole net.


 

	(ii)An s-conical net f has a Darboux transform [image: $$f^D$$] in constant distance if and only if f is cmc with [image: $$\theta =\pi /2$$]. Then the Darboux transform is Chistoffel dual [image: $$f^D=f^*$$].


 




            

Proof
The first claim in (i) is Theorem 5.2. To prove the claim about the angles, note that the the points [image: $$o$$] and [image: $$o^*$$] corresponding to four quadrilaterals with a common vertex f lie on two circles with the common axis [image: $$(ff^*)$$]. Moreover the corresponding intervals [image: $$oo^*$$] are symmetric with respect to the reflections in the symmetry planes that identify the planes of the faces. This implies that the distance [image: $$\Vert oo^*\Vert $$] is constant for the whole net, and the lines [image: $$(oo^*)$$] intersect the planes of the corresponding quadrilaterals at constant angle.
A Darboux transform [image: $$f^D$$] in constant distance (thus in constant distance face offset) implies that the line through the touching points of the Ribaucour sphere [image: $$(oo_D)$$] is orthogonal to the faces of the quadrilaterals, and the distance [image: $$\Vert oo_D\Vert $$] is constant. Here we have denoted by [image: $$o^D$$] the diagonal intersection points of [image: $$f^D$$]. Then the Darboux transform is Chistoffel dual due to Lemma 8.1, which implies that f is cmc. The reverse statement also follows from this Lemma. Indeed, if f is cmc and [image: $$f^*$$] its dual with orthogonal [image: $$(oo^*)$$] then [image: $$f^*$$] is a Darboux transform of f.

Remark 8.4
Geometric characterizations of s-conical cmc surfaces turn out to be quite similar to the ones of circular cmc surfaces, that also can be characterized as possessing a Christoffel dual, which is simultaneously a Darboux transform, at constant distance [10].


9 Delaunay Nets
In this section we will construct s-conical Delaunay nets that are s-conical analogues of rotationally symmetric cmc surfaces.
A planar polygon [image: $$c:\mathbb Z\rightarrow \mathbb R^2$$] with non-vanishing edges, gives rise to a discrete surface of revolution. Denoting the components of a vertex [image: $$c_k$$] by [image: $$c_k = (x_k, y_k)$$] and choosing an angle [image: $$\phi $$] one can form[image: $$ f(k_,l) = (x_k, \cos (l\phi ) y_k, \sin (l\phi ) y_k). $$]


Since all the polygons [image: $$f(\cdot , l_0)$$] are planar we will not distinguish between the generating polygon c and its resulting rotational symmetric net f in what follows. This abuses the notation to some extend but it is understood that shifts in the first direction are along the polygon and whenever a shift in the second direction occurs it refers to the rotational direction of the net.
By symmetry c is s-isothermic. In order for it to be of type 1 with touching spheres ([image: $$\langle s_1,s\rangle = \langle s_2,s\rangle = 1$$]) the polygon must satisfy in addition[image: $$ \Vert c_1 - c\Vert = \sin \frac{\phi }{2}\; (y_1 +y). $$]


Instead of the polygon c one can look at the midpoint connectors in axial direction. They form a planar polygon as well (see Fig. 5). Calling this polygon [image: $$p = (x,v)$$] one finds that above condition translates to[image: $$ \Vert p_1 - p\Vert ^2 = 4 \tan ^2\frac{\phi }{2}\; v_1 v. $$]



[image: A371662_1_En_9_Fig5_HTML.gif]
Fig. 5Rotationally symmetric nets





Thus in order to allow for the net to be s-isothermic with touching spheres one needs[image: $$\begin{aligned} \frac{\Vert p_1 - p\Vert ^2}{v v_1} = const. \end{aligned}$$]

 (17)

This holds true in particular for a polygon p that arises when unrolling the billiard in an ellipse.[image: A371662_1_En_9_Fig6_HTML.gif]
Fig. 6Unrolling the billiard in an ellipse: consecutively place the edges of the billiard on the axis and mark the position of one of the foci. The second polygon is generated by the other focus and mirroring on the axis





The construction is as follows [11] (see also [5]): Starting with a polygon given by a billiard in an ellipse, unroll it by placing each edge on the axis consecutively and marking the location of one of its foci in this process. This gives rise to a new polygon p (see Fig. 6). The same can be done with the other focus and after mirroring that second polygon along the axis the two polygons p and [image: $$p^*$$] are known to give rise to a pair of discrete cmc nets in the discrete isothermic sense. In particular pairs of edges [image: $$p_1 p$$] and [image: $$p^*_1 p^*$$] form trapezoids (see Fig. 7) with constant distances and diagonals [image: $$\Vert p^* - p\Vert = d = \Vert p^*_1 - p_1\Vert $$] and [image: $$\Vert p^*-p_1 \Vert = l = \Vert p^*_1 - p\vert $$]. Corresponding quadrilaterals from the two nets are dual to each other.
To see that this polygon satisfies Eq. (17) one needs to know that [image: $$\tan \alpha \tan \beta $$], with the angles [image: $$\alpha , \beta $$] in Fig. 7, is an integral of motion for the billiard in an ellipse, i.e.[image: $$\begin{aligned} \tan \frac{\alpha }{2}\tan \frac{\beta }{2} = \tan \frac{\alpha _1}{2}\tan \frac{\beta _1}{2}. \end{aligned}$$]

 (18)

We have[image: $$ \begin{array}{rcl} \gamma &{}=&{} \pi - \alpha - \beta ,\\ \Vert p_1 -p\Vert &{}=&{} 2 \Vert p-o\Vert \sin \frac{\gamma }{2},\\ v &{}=&{} \Vert p-o\Vert \sin \alpha ,\\ v_1 &{}=&{} \Vert p-o \Vert \sin \beta . \end{array} $$]


This implies[image: $$ \frac{\Vert p_1 - p\Vert ^2}{v_1 v} = \cot \frac{\alpha }{2}\cot \frac{\beta }{2} + \tan \frac{\alpha }{2}\tan \frac{\beta }{2} -2 = \mathrm{const}. $$]



[image: A371662_1_En_9_Fig7_HTML.gif]
Fig. 7The polygons from unrolling an ellipse





Summarizing, the billiard in an ellipse gives rise to a pair of polygons p and [image: $$p^*$$] that generate a discrete isothermic cmc surface of revolution and its dual. The same polygons [image: $$p = (x,v)$$], [image: $$p^* = (x^*,v^*)$$] can be read as midpoint connectors in two rotational symmetric s-isothermic nets that are generated by polygons [image: $$c, c^*$$] where[image: $$ c = (x,y) = (x, \frac{v}{\cos \frac{\phi }{2}}), \quad c^* = (x^*,y^*) = (x^*, \frac{v *}{\cos \frac{\phi }{2}}). $$]


Note that the corresponding scaling [image: $$(x,y)\mapsto (x,y/\cos \frac{\phi }{2})$$] is an affine mapping and thus preserves parallelity. Due to Proposition 4.2 the Christoffel duality can be formulated in terms of parallel edges and diagonals, therefore dual quadrilaterals stay dual after such scaling. So, the two resulting s-isothermic nets c and [image: $$c^*$$] are dual to each other as well.
Recall that the s-isothermic nets of type 1 have an orthogonal circle for each quadrilateral of spheres and in the case of touching spheres the circle passes through the touching points. For the s-isothermic nets c and [image: $$c^*$$] one can think of the edges [image: $$p_1 p$$] as diameters in the inscribed circles and we will denote the touching points along the edges [image: $$c_1 c$$] with [image: $$\tilde{p}$$] (see Fig. 8).[image: A371662_1_En_9_Fig8_HTML.gif]
Fig. 8The net c and its dual [image: $$c^*$$] with the inscribed circles





Since [image: $$p,p_1,p^*_1$$], and [image: $$p^*$$] form a symmetric trapezoid, the circles for the quadrilaterals [image: $$(c,c_1, c_{12},c_2)$$] and its dual [image: $$(c^*,c^*_1, c^*_{12},c^*_2)$$] are co-axial. Moreover, since the lines [image: $$(c_1c)$$] and [image: $$(c^*_1c^*)$$] are parallel and tangent (in [image: $$\tilde{p}$$] and [image: $$\tilde{p}^*$$]) to co-axial circles, their distance is [image: $$\Vert \tilde{p}-\tilde{p}^*\Vert = l$$]. Likewise [image: $$(c_2 c)$$] and [image: $$(c^*_2 c^*)$$] are parallel and touch the circles in p and [image: $$p^*$$] thus their distance is [image: $$\Vert p^* -p\Vert = d$$]. Together we see that the two dual s-isothermic nets are in constant edge distance (but with two different distances for the two lattice directions). This is a way to define s-isothermic cmc nets (see [12]).[image: A371662_1_En_9_Fig9_HTML.gif]
Fig. 9An s-conical Delaunay net





Now define a third pair of polygons[image: $$ q = (x,u) = (x,\frac{y}{\cos \frac{\phi }{2}}) = (x, \frac{v}{\cos ^2\frac{\phi }{2}}),\quad q^* = (x,u^*)= (x,\frac{y^*}{\cos \frac{\phi }{2}})= (x, \frac{v^*}{\cos ^2\frac{\phi }{2}}). $$]


Rotating these polygons one gets nets for which one can think of c and [image: $$c^*$$] as the polygons of midpoint connectors. The resulting faces for q and [image: $$q^*$$] thus will have constant face offset. Moreover they will be dual by the same argument as above.
The sphere s centered at c contains [image: $$\tilde{p}$$]. Since (cq) and [image: $$(c \tilde{p})$$] are orthogonal a sphere t centered at q that meets [image: $$\tilde{p}$$] also contains [image: $$\tilde{p}_{\bar{1}}$$]. By symmetry the quadrilaterals formed by the [image: $$\tilde{p}$$] are circular. Finally one finds that the points [image: $$\tilde{p}$$] are the diagonal intersection points of the quadrilaterals of the net q. One can see this for example by noting that the radii for the s-isothermic spheres are [image: $$r = v \tan \frac{\phi }{2}$$], so [image: $$\Vert \tilde{p}-c\Vert = r$$] and half an edge in rotational direction is [image: $$g = \Vert c - q\Vert = y \tan \frac{\phi }{2}$$]. Thus [image: $$\frac{g}{r} = \frac{y}{v}$$] which is constant by construction.[image: A371662_1_En_9_Fig10_HTML.gif]
Fig. 10Nested circular, s-isothermic, and s-conical Delaunay nets





We see that the third net formed by q is in fact an s-conical net with the dual net [image: $$q^*$$] in constant face offset equal the distance between the corresponding diagonal intersection points. Due to Theorem 8.3 this an s-conical cmc net. Figure 9 shows an example of such an s-conical Delaunay net. It is worth mentioning that the three types of discrete Delaunay nets (discrete isothermic, s-isothermic in the touching case, and s-conical) can be arranged in such a way that the second touches the first and the third touches the second as shown in Fig. 10. This is a direct consequence of the construction.
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Footnotes
1This is a simple fact from Möbius geometry that four spheres touching cyclically always have a circle through their touching points.
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Abstract
In this article, we study an analog of the Björling problem for isothermic surfaces (that are a generalization of minimal surfaces): given a regular curve [image: $$\gamma $$] in [image: $$\mathbb {R}^3$$] and a unit normal vector field n along [image: $$\gamma $$], find an isothermic surface that contains [image: $$\gamma $$], is normal to n there, and is such that the tangent vector [image: $$\gamma '$$] bisects the principal directions of curvature. First, we prove that this problem is uniquely solvable locally around each point of [image: $$\gamma $$], provided that [image: $$\gamma $$] and n are real analytic. The main result is that the solution can be obtained by constructing a family of discrete isothermic surfaces (in the sense of Bobenko and Pinkall) from data that is read off from [image: $$\gamma $$], and then passing to the limit of vanishing mesh size. The proof relies on a rephrasing of the Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its discretization which is induced from the geometry of discrete isothermic surfaces. The discrete-to-continuous limit is carried out for the Christoffel and the Darboux transformations as well.

1 Introduction
Isothermic surfaces
         are among the most classical objects in differential geometry: these are surfaces that admit a conformal parametrization along curvature lines, see Definition 1. Like various particular geometries—special coordinate systems, minimal surfaces, surfaces of constant curvature—they have been introduced and intensively studied in the second half of the 19th century [9, 24]. Also, like the many of these classical objects, they have been “rediscovered” in the 1990s, both in connection with integrable systems and in the context of discrete differential geometry. The first description of isothermic surfaces as soliton surfaces is found in [11]. The first definition for discrete isothermic surfaces was made shortly after in [3]. In the most simple case, these are immersions of [image: $${\mathbb {Z}}^2$$] into [image: $${\mathbb {R}}^3$$] such that the vertices of each elementary quadrilateral are conformally equivalent to the corners of a planar square, see Definition 3.
This discrete surface class, its transformations and invariances has been studied e.g. in [7, 8, 20]. A systematic presentation of the theory of isothermic surfaces in the context of Möbius geometry can be found in [15]. Finally, we refer to [4] for a detailed overview on discrete isothermic surfaces as part of discrete differential geometry, including historical remarks.
Despite the manifold results on (classical) isothermic surfaces and the related equations, the fundamental question about their construction from suitably chosen data has apparently been left open. On the one hand, the machinery of integrable systems enables one to construct a rich variety of “solitonic” isothermic surfaces [11]. But on the other hand, nothing seems to be known about the well-posedness of an initial or boundary value problem for the Gauss-Codazzi-equations in general. The latter form a PDE system (cf. Eq. (5)) which contains both elliptic and hyperbolic equations.1 The appearance of an elliptic equation suggests that data for the surface boundary should be prescribed, as it is done for minimal surfaces for example. The hyperbolic equations, on the other hand, suggest to provide data for two curvature lines instead, like in the case of level surfaces in triply orthogonal systems [1]. Neither of the two approaches seems promising for the coupled system.[image: A371662_1_En_10_Fig1_HTML.gif]
Fig. 1Initial zig-zag on a discrete isothermic surface





In contrast, there is a canonical way to pose an initial value problem for a discrete isothermic surface. One prescribes the vertices in [image: $$\mathbb {R}^3$$] for a “zig-zag”-curve in parameter space as indicated in Fig. 1. For vertices in general position, these data can be extended to a discrete isothermic surface in a unique way. In fact, all vertices on the discrete surface are easily obtained inductively from the prescribed data.

        In this paper, we formulate and prove solvability of a Björling problem for real analytic isothermic surfaces. And we prove that the solution can be obtained as the continuous limit of discrete isothermic surfaces.
      
The classical Björling problem is to find a minimal surface that touches a given curve in [image: $$\mathbb {R}^3$$] along prescribed tangent planes. This problem has been solved in general, see [13]. An extension of the Björling problem to surfaces of constant mean curvature has been posed (and solved) in [5]. A natural formulation of the Björling problem in the yet more general class of isothermic surfaces reads as follows.
Problem 1
Given a regular curve [image: $$\gamma $$] in [image: $$\mathbb {R}^3$$], and two mutually orthogonal unit vector fields v, w along [image: $$\gamma $$], neither of which is tangent to [image: $$\gamma $$] at any point. Find an isothermic surface S containing [image: $$\gamma $$] such that v and w are the principal directions of curvature at each point of [image: $$\gamma $$].

We believe that this problem is solvable locally provided that [image: $$\gamma $$], v and w are all real analytic. Indeed, the non-tangency of the vector fields allows to give a reformulation in terms of a non-characteristic Cauchy problem. However, we do not address the Björling problem in this full generality here, but stick to the following restricted setting, where we do not prescribe two tangent vector fields v and w individually, but only a two-dimensional tangent plane:
Problem 2
Given a regular curve [image: $$\gamma $$] in [image: $$\mathbb {R}^3$$], and a unit vector field n that is orthogonal to the tangent vectors [image: $$\gamma '$$] at each point. Find an isothermic surface S containing [image: $$\gamma $$] such that at each point of [image: $$\gamma $$], the vector n is normal to S, and each of the two directions of principal curvature encloses an angle [image: $$\pi /4$$] with [image: $$\gamma '$$].

As a corollary of the results presented here, it follows that this problem is uniquely solvable for real analytic [image: $$\gamma $$] and n, at least locally around each point of [image: $$\gamma $$]. Existence and uniqueness of a real analytic isothermic surface S for given data is the minor result of this paper, see Theorem 1. The main result is that the real analytic data can be “sampled” with a mesh width [image: $$\epsilon >0$$] in a suitable way such that the discrete isothermic surfaces [image: $$S^\epsilon $$] constructed from the discrete data converge in [image: $$C^1$$] to S. The precise formulation is given in Theorem 2.
It is remarkable that naive numerical experiments suggest that such an approximation result might not be true. It was already noted in [3] that discrete isothermic surfaces depend very sensitively on their initial data. The limit [image: $$\epsilon \rightarrow 0$$] is delicate, and inappropriate choices of the initial zig-zag cause the sequence [image: $$S^\epsilon $$] to diverge rapidly. In fact, even the possibility to construct any sequence of discrete isothermic surfaces that approximates a given smooth one is not obvious. Discrete isothermic surfaces are one of many examples of a discretized geometric structure for which the passage back to the original continuous structure needs a highly non-trivial approximation result, the proof of which is analysis-based and goes far beyond elementary geometric considerations. Further such non-trivial convergence results are available, for instance, for discrete surfaces of constant negative Gaussian curvature [2], for discrete triply orthogonal systems [1], and, most importantly, for circle patterns [6, 21, 22] as approximations to conformal maps.
The core of our convergence proof is a stability analysis of the discrete Gauss-Codazzi system that we derive for discrete isothermic surfaces. We show that the solution to the discrete Gauss-Codazzi equations with sampled data as initial condition remains close to the solution of the classical Gauss-Codazzi system for the same (continuous) initial data. In a second step, this implies proximity of the respective discrete and continuous surfaces. We are able to quantify the approximation error in terms of the supremum-distance between analytic functions on complex domains: it is linear in the mesh size. In fact, we conjecture that this result is sub-optimal, and second-order approximation should be provable, using a more refined analysis and a more careful approximation of the data.
The techniques used in the proof are similar to those employed by one of the authors [17] to prove convergence of circle patterns to conformal maps. The geometric situation for isothermic surfaces, however, is much more complicated, and the structure of the Gauss-Codazzi system is much more complex than the Cauchy-Riemann equations. The proof of stability relies on estimates for the solution of analytic Cauchy problems in scales of Banach spaces. These estimates have been developed—in the classical, non-discretized setting—in Nagumo’s famous article [18] as part of the existence proof for analytic Cauchy problems. Here, we shall rather use Nirenberg’s [19] version of these estimates. For an overview over the history of analytic Cauchy problems and the related estimates, see the beautiful article of Walter [23].
Note that the convergence proof here is more direct than the one in [17]. While the latter was based on purely discrete considerations, the current proof uses semi-discrete techniques: a–somewhat artificial–extension of the discrete functions to continuous domains allows to formulate estimates more easily. The main simplification, however, is that we separate the proofs for existence of a classical solution and its approximation by discrete solutions.
The paper is organized as follows. In Sect. 2 we formulate the Gauss-Codazzi-system for smooth isothermic surfaces in the framework of analytic Cauchy problems and prove unique local solvability of the Björling problem by the Cauchy-Kowalevskaya theorem. In Sect. 3 we derive an analogous system of difference equations for discrete isothermic surfaces. For appropriate initial conditions, the convergence of the discrete solutions to the corresponding smooth ones is proven in Sect. 4. Then, in Sect. 5 we explain how to discretize the Björling initial data appropriately, and prove convergence of the discrete surfaces to the respective smooth one. Finally, in Sect. 6, the convergence result is extended to Christoffel and Darboux transformations.

2 Smooth Isothermic Surfaces
We start by summarizing basic properties of smooth isothermic surfaces
          
         and proving our first result on the local solvability of the Björling problem.
2.1 Coordinates and Domains
For concise statements and proofs, we need to work with two different coordinate systems [image: $$(\xi ,\eta )$$] and (x, y) on [image: $$\mathbb {R}^2$$] simultaneously. These coordinates are related to each other by[image: $$\begin{aligned} \xi =\frac{x-y}{2},\quad \eta =\frac{x+y}{2} \quad \Leftrightarrow \quad x=\eta +\xi ,\quad y=\eta -\xi , \end{aligned}$$]

 (1)

see Fig. 2. Accordingly, the partial derivatives transform as follows:[image: $$\begin{aligned} \partial _\xi = \partial _x-\partial _y,\quad \partial _\eta =\partial _x+\partial _y. \end{aligned}$$]


Observe in particular that[image: $$\begin{aligned} \partial _\xi ^2+\partial _\eta ^2=2(\partial _x^2+\partial _y^2). \end{aligned}$$]

 (2)

It will be convenient to consider [image: $$(\xi ,\eta )$$] as the “basic” coordinates and (x, y) as the auxiliary ones. More precisely: in the rare cases that we need to specify explicitly the arguments of a function [image: $$g:\varOmega \rightarrow \mathbb {R}$$] defined on a domain [image: $$\varOmega \subset \mathbb {R}^2$$], then we shall write [image: $$g(\xi ,\eta )$$] for the value of g at the point with coordinates [image: $$x=\eta +\xi $$] and [image: $$y=\eta -\xi $$].
For further reference, define for [image: $$r\ge h>0$$] the domains[image: $$\begin{aligned} \varOmega (r|h) = \big \{ (\xi ,\eta )\in \mathbb {R}^2\,;\,|\xi |+|\eta |\le r,\,-h<\eta \le h\big \}. \end{aligned}$$]


In the (x, y)-coordinates, [image: $$\varOmega (r|h)$$] is a axes-parallel square of side length 2r, centered at the origin, that is cut off at the top-right and bottom-left corners.[image: A371662_1_En_10_Fig2_HTML.gif]
Fig. 2Relation between the coordinates (x, y) and [image: $$(\xi ,\eta )$$]
                






2.2 Definition and Equations
By abuse of notation, we use the term “(parametrized) surface” for a smooth and non-degenerate map [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$]. Here non-degeneracy means that the vector fields [image: $$F_x$$] and [image: $$F_y$$] are linearly independent. Every such surface comes with a smooth normal map [image: $$N:\varOmega (r|h) \rightarrow \mathbb {S}^2$$], given by[image: $$\begin{aligned} N=\frac{F_x\times F_y}{\Vert F_x\times F_y\Vert }. \end{aligned}$$]




Definition 1

            [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] is a (parametrized) isothermic surface, if	(1)
                    F is conformal, i.e., there exists a conformal factor [image: $$u:\varOmega (r|h)\rightarrow \mathbb {R}$$] such that [image: $$\begin{aligned} \Vert F_x\Vert ^2 = \Vert F_y\Vert ^2 = e^{2u},\quad \langle F_x,F_y \rangle = 0, \end{aligned}$$]

 (3)





 

	(2)
                    F parametrizes along curvature lines, i.e., the normal map [image: $$N:\varOmega (r|h)\rightarrow \mathbb {S}^2$$] satisfies [image: $$\begin{aligned} \langle F_{xy},N\rangle = 0. \end{aligned}$$]

 (4)





 





The quantities [image: $$\mathfrak {k},\mathfrak {l}:\varOmega (r|h)\rightarrow \mathbb {R}$$] in[image: $$\begin{aligned} -\langle N_x,F_x \rangle = e^{u}\mathfrak {k},\quad -\langle N_y,F_y \rangle = e^{u}\mathfrak {l}, \end{aligned}$$]


are the (scaled) principal curvatures.

Remark 1
The genuine principal curvature functions are given by [image: $$e^{-u}\mathfrak {k}$$] and [image: $$e^{-u}\mathfrak {l}$$]. The quantities [image: $$\mathfrak {k}$$] and [image: $$\mathfrak {l}$$] are better suited for the calculations below.

The next result is classical.
Lemma 1
Assume that an isothermic surface [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] is given. Then the conformal factor [image: $$u$$] and the scaled curvatures [image: $$\mathfrak {k},\mathfrak {l}$$] satisfy the Gauss-Codazzi equations
            
[image: $$\begin{aligned} - (u_{xx} + u_{yy}) = \mathfrak {k}\mathfrak {l}, \quad \mathfrak {l}_x = \mathfrak {k}u_x, \quad \mathfrak {k}_y = \mathfrak {l}u_y. \end{aligned}$$]

 (5)

Conversely, if functions [image: $$u,\mathfrak {k},\mathfrak {l}:\varOmega (r|h)\rightarrow \mathbb {R}$$] satisfy the system (5), then there exists an isothermic surface [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}$$] that has [image: $$u$$] as its conformal factor and has scaled curvatures [image: $$\mathfrak {k},\mathfrak {l}$$]. Moreover, F is uniquely determined up to Euclidean motions.

We briefly recall the proof, since we shall need some of the calculations later.
Proof
(Sketch) For a given isothermic surface [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$], introduce the adapted frame[image: $$\begin{aligned} \varPsi :=\big (e^{-u}F_x,e^{-u}F_y,N\big ):\varOmega (r|h)\rightarrow \mathrm {SO(3)} \end{aligned}$$]


and define the transition matrices [image: $$U,V:\varOmega (r|h)\rightarrow \mathrm {so(3)}$$] implicitly by[image: $$\begin{aligned} \varPsi _x=\varPsi U,\quad \varPsi _y=\varPsi V. \end{aligned}$$]

 (6)

Using the defining properties of the isothermic parametrization, one easily obtains the following explicit expressions for U and V:[image: $$\begin{aligned} U= \begin{pmatrix} 0 &{} u_y &{} -\mathfrak {k}\\ -u_y &{} 0 &{} 0 \\ \mathfrak {k}&{} 0 &{} 0 \end{pmatrix}, \quad V= \begin{pmatrix} 0 &{} -u_x &{} 0 \\ u_x &{} 0 &{} -\mathfrak {l}\\ 0 &{} \mathfrak {l}&{} 0 \end{pmatrix} \end{aligned}$$]

 (7)

The compatibility condition [image: $$U_y-V_x=UV-VU$$] implies the equations in (5).
Conversely, if [image: $$u,\mathfrak {k},\mathfrak {l}$$] satisfy (5), then the matrix functions [image: $$U,V:\varOmega (r|h)\rightarrow \mathrm {so(3)}$$] defined by (7) satisfy compatibility condition [image: $$U_y-V_x=UV-VU$$]. Consequently, one can define a further matrix function [image: $$\varPsi =(\varPsi _1,\varPsi _2,\varPsi _3):\varOmega (r|h)\rightarrow \mathrm {SO(3)}$$] as solution to the system (6). Clearly, the solution [image: $$\varPsi $$] is uniquely determined by its value [image: $$\varPsi (0)\in \mathrm {SO(3)}$$] at [image: $$(x,y)=0$$]. The particular form of U and V imply that[image: $$\begin{aligned} \partial _x(e^u\varPsi _2)=\partial _y(e^u\varPsi _1), \end{aligned}$$]


which further implies the existence of a map [image: $$F:\varOmega (r)\rightarrow \mathbb {R}^3$$] such that[image: $$\begin{aligned} \partial _xF=e^u\varPsi _1\quad \text {and}\quad \partial _yF=e^u\varPsi _2. \end{aligned}$$]

 (8)

The map F is non-degenerate, and it is uniquely determined by its value [image: $$F(0)\in \mathbb {R}^3$$] at [image: $$(x,y)=0$$]. Clearly [image: $$\varPsi $$] is an adapted frame for the surface defined by F, whose normal vector field is given by [image: $$\varPsi _3$$]. It follows directly from (8) that F is conformal (3). The property (4) is a further direct consequence of (6) and the special form of U and V from (7). [image: $$\square $$]
          

A different form of the Gauss-Codazzi equations (5) is needed in the following. Remind the relation between the coordinates (x, y) and [image: $$(\xi ,\eta )$$] by [image: $$x=\eta +\xi $$] and [image: $$y=\eta -\xi $$] in Sect. 2.1. Introduce auxiliary functions [image: $$v,w:\varOmega (r|h)\rightarrow \mathbb {R}$$] by[image: $$\begin{aligned} v=\frac{1}{2}u_\xi ,\quad w=\frac{1}{2}u_\eta . \end{aligned}$$]


Further recall (2). Then the Gauss-Codazzi system (5) attains the form[image: $$\begin{aligned} v_\eta&= w_\xi , \end{aligned}$$]

 (9)


[image: $$\begin{aligned} w_\eta&= -v_\xi - \mathfrak {k}\mathfrak {l}, \end{aligned}$$]

 (10)


[image: $$\begin{aligned} \mathfrak {k}_y&= \mathfrak {l}(w-v), \end{aligned}$$]

 (11)


[image: $$\begin{aligned} \mathfrak {l}_x&= \mathfrak {k}(w+v). \end{aligned}$$]

 (12)




2.3 Local Solution of the Björling Problem
The following result implies local solvability of (the restricted version of) the Björling problem for isothermic surfaces, with real analytic data. To see the equivalence to Problem 2 stated in the introduction, observe that the conformal parametrization F of an isothermic surface and our coordinates in (1) are such that the images of [image: $$\{x=\mathrm {const}\}$$] and of [image: $$\{y=\mathrm {const}\}$$] are mapped to curvature lines under F, whereas the tangent to each curve [image: $$\xi \mapsto F(\xi ,\eta )$$] is always at an angle of [image: $$\pi /4$$] to both curvature directions.
Theorem 1
Let an analytic and regular curve [image: $$f:(-r,r)\rightarrow \mathbb {R}^3$$] and an analytic normal unit vector field [image: $$n:(-r,r)\rightarrow \mathbb {S}^2$$] be given, that is [image: $$\langle f',n\rangle \equiv 0$$]. Then, for some [image: $$h>0$$] with [image: $$h\le r$$], there exists a unique analytic isothermic surface [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] such that F and its normal vector field N satisfy[image: $$\begin{aligned} F(\xi ,0)=f(\xi ),\quad N(\xi ,0)=n(\xi ) \quad \text {for all}\ \xi \in (-r,r). \end{aligned}$$]

 (13)




Remark 2
The original Björling problem consists in finding a minimal surface in [image: $$\mathbb {R}^3$$] that touches a given curve along prescribed tangent planes. See [5] for an extension to constant mean curvature surfaces. Our problem is a bit different since (13) implies in addition that the tangential vector to the data curve is everywhere at angle [image: $$\pi /4$$] with the directions of principal curvature, see (14). Such additional restrictions are expected to guarantee unique solvability of the Björling problem in the much larger class of isothermic surfaces.

Proof
(of Theorem 1) If there exists an isothermic surface [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] with the properties (13), then[image: $$\begin{aligned} f'(\xi ) = F_\xi (\xi ,0) = F_x(\xi ,0)-F_y(\xi ,0) \end{aligned}$$]

 (14)

at every [image: $$\xi \in (-r,r)$$], and in particular[image: $$\begin{aligned} \Vert f'(\xi )\Vert ^2 = \Vert F_x(\xi ,0)\Vert ^2+\Vert F_y(\xi ,0)\Vert ^2-\langle F_x(\xi ,0),F_y(\xi ,0)\rangle = 2e^{2u(\xi ,0)}. \end{aligned}$$]


It follows that f and n determine both the conformal factor [image: $$u$$] and the adapted frame [image: $$\varPsi =(e^{-u}F_x,e^{-u}F_y,N):\varOmega (r|h) \rightarrow \mathrm {SO(3)}$$] uniquely on [image: $$\eta =0$$]; denote the corresponding functions by [image: $$u^0:(-r,r)\rightarrow \mathbb {R}$$] and [image: $$\varPsi ^0:(-r,r)\rightarrow \mathrm {SO(3)}$$], respectively.
Next, introduce functions [image: $$v^0,w^0,\mathfrak {k}^0,\mathfrak {l}^0:(-r,r)\rightarrow \mathbb {R}$$] by[image: $$\begin{aligned} (u^0)' = 2v^0u^0, \qquad (\varPsi ^0)' = \varPsi ^0 \begin{pmatrix} 0 &{} 2w^0 &{} - \mathfrak {k}^0 \\ -2w^0 &{} 0 &{} \mathfrak {l}^0 \\ \mathfrak {k}^0 &{} -\mathfrak {l}^0 &{} 0 \end{pmatrix}{.} \end{aligned}$$]

 (15)

The line [image: $$\{\eta =0\}=\{x+y=0\}$$] is obviously non-characteristic for the system of equations (9)–(12). Hence, the Cauchy-Kowalevskaya theorem applies in this situation. For some sufficiently small [image: $$h>0$$], there exists a unique analytic solution [image: $$v,w,\mathfrak {k},\mathfrak {l}:\varOmega (r|h)\rightarrow \mathbb {R}$$] to (9)–(12) with the initial conditions [image: $$v^0,w^0,\mathfrak {k}^0,\mathfrak {l}^0$$] at [image: $$\eta =0$$]. Since (9) is a compatibility condition for the linear system[image: $$\begin{aligned} u_\xi = 2v,\quad u_\eta = 2w, \end{aligned}$$]


there exists a unique analytic solution [image: $$u:\varOmega (r|h)\rightarrow \mathbb {R}$$] with [image: $$u=u^0$$] for [image: $$\eta =0$$]. The triple [image: $$(u,\mathfrak {k},\mathfrak {l})$$] satisfies (5). Lemma 1 guarantees the existence of a unique isothermic surface [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] with [image: $$u$$] as conformal factor, with scaled principle curvatures [image: $$\mathfrak {k}$$] and [image: $$\mathfrak {l}$$], and with the normalizations[image: $$\begin{aligned} F(0)=f(0),\ N(0)=n(0),\, F_x(0)-F_y(0)=f'(0). \end{aligned}$$]

 (16)

Analyticity of F is clear from its construction in the proof. To see that F attains the initial data (13), first observe that an adapted frame [image: $$\varPsi $$] necessarily satisfies [image: $$\varPsi _\xi =\varPsi _x-\varPsi _y=\varPsi (U-V)$$], and so [image: $$\varPsi =\varPsi ^0$$] on [image: $$\eta =0$$], thanks to (7) and (15), (16). In particular, we have that [image: $$\varPsi _3(\xi ,0)=N(\xi )$$]. And further, [image: $$F_\xi = \varPsi _1-\varPsi _2 =\varPsi _1^0-\varPsi _2^0$$] implies [image: $$F=f$$] on [image: $$\eta =0$$].
Concerning uniqueness: f and [image: $$\varPsi ^0$$] determine the initial data [image: $$(v^0,w^0,\mathfrak {k}^0,\mathfrak {l}^0)$$] for (9)–(12)—and hence also its solution [image: $$(v,w,\mathfrak {k},\mathfrak {l})$$]—uniquely. Invoking again Lemma 1, it follows that F with the normalization (16) is unique as well
              
            . [image: $$\square $$]
          



3 Discrete Isothermic Surfaces
          
        

Throughout this section, we assume that some (small) parameter [image: $$\epsilon >0$$] is given, which quantifies the average mesh width of the considered discrete isothermic surfaces. We introduce the abbreviation[image: $$\begin{aligned} z^*=\sqrt{1-\epsilon ^2z^2} \end{aligned}$$]

 (17)

for arbitrary quantities z, assuming that [image: $$|\epsilon z|<1$$].
3.1 Coordinates and Domains
Recall that we are working with the two coordinate systems from (1) simultaneously, [image: $$(\xi ,\eta )$$] being the “basic” coordinates and (x, y) being the “auxiliary” ones. Introduce the associated shift-operators [image: $${{T}}_x,{{T}}_y,{{T}}_\xi ,{{T}}_\eta $$] by[image: $$\begin{aligned}&{{T}}_x(\xi ,\eta ) = (\xi +\frac{\epsilon }{4},\eta +\frac{\epsilon }{4}),\ \ \ \qquad \qquad {{T}}_\xi (\xi ,\eta ) = (\xi +\frac{\epsilon }{2},\eta ) \\&{{T}}_y(\xi ,\eta ) = (\xi -\frac{\epsilon }{4},\eta +\frac{\epsilon }{4}), \ \qquad \qquad {{T}}_\eta (\xi ,\eta ) = (\xi ,\eta +\frac{\epsilon }{2}) . \end{aligned}$$]


By slight abuse of notation, we shall use the same symbols for the associated contra-variant shifts of functions [image: $$f:\varOmega (r|h)\rightarrow \mathbb {R}$$], i.e., [image: $${{T}}_xf:=f\circ {{T}}_x$$] etc. The associated central difference quotient operators are defined by[image: $$\begin{aligned}&\delta _xf=\frac{1}{\epsilon }({{T}}_xf-{{T}}^{-1}_xf),\ \ \ \qquad \qquad \delta _\xi f=\frac{1}{\epsilon }({{T}}_\xi f-{{T}}^{-1}_\xi f) \\&\delta _yf=\frac{1}{\epsilon }({{T}}_yf-{{T}}^{-1}_yf),\ \qquad \qquad \delta _\eta f=\frac{1}{\epsilon }({{T}}_\eta f-{{T}}^{-1}_\eta f). \end{aligned}$$]


It is a notorious inconvenience in discrete differential geometry that the various quantities which are derived from discrete geometric objects are associated to different natural domains of definition. To account for that, we need to single out specific subdomains inside our basic domain [image: $$\varOmega (r|h)$$]: let[image: $$\begin{aligned} \varOmega ^{[x]\epsilon }(r|h) = \varOmega (r|h)\cap {{T}}_x\varOmega (r|h)\cap {{T}}^{-1}_x\varOmega (r|h), \end{aligned}$$]


be the natural domain of definition for [image: $$\delta _xf$$], when f is defined on [image: $$\varOmega (r|h)$$]. Likewise, we define [image: $$\varOmega ^{[y]\epsilon }(r|h)$$]. The domain[image: $$\begin{aligned} \varOmega ^{[xy]\epsilon }(r|h)=\varOmega (r-\frac{\epsilon }{2}|h-\frac{\epsilon }{2}) \end{aligned}$$]


is such that the mixed difference quotient [image: $$\delta _x\delta _y f$$] is well-defined there; notice that [image: $$\delta _\xi f$$] and [image: $$\delta _\eta f$$] are well-defined on [image: $$\varOmega ^{[xy]\epsilon }(r|h)$$]. In the same spirit, we introduce [image: $$\varOmega ^{[xxy]\epsilon }(r|h)$$] as domain for [image: $$\delta _x^2\delta _yf$$] etc. For each point [image: $$\zeta \in \varOmega ^{[xy]\epsilon }(r|h)$$], we say that the four points [image: $${{T}}_\xi \zeta $$], [image: $${{T}}_\eta \zeta $$], [image: $${{T}}^{-1}_\xi \zeta $$] and [image: $${{T}}^{-1}_\eta \zeta $$] form an elementary [image: $$\epsilon $$]-square.

3.2 Definition of Discrete Isothermic Surfaces
In this section, we give a variant of the definition for discrete isothermic surfaces from [3], which is well-suited for the passage to the continuum limit. First, we need auxiliary notation.
Definition 2
Four points [image: $$p_1,\ldots ,p_4\in \mathbb {R}^3$$] form a (non-degenerate) conformal square iff they lie on a circle, but no three of them are on a line, they are cyclically ordered,2 and their mutual distances are related by[image: $$\begin{aligned} \Vert p_1-p_2\Vert \cdot \Vert p_3-p_4\Vert = \Vert p_1-p_4\Vert \cdot \Vert p_2-p_3\Vert . \end{aligned}$$]

 (18)




Remark 3
The name refers to the fact that [image: $$p_1,\ldots ,p_4$$] form a (non-degenerate) conformal square if and only if there is a Möbius transformation of [image: $$\mathbb {R}^3$$] which takes these points to the corners of the unit square, (0, 0, 0), (1, 0, 0), (1, 1, 0) and (0, 1, 0), respectively. Notice that the non-degeneracy condition is important for the equivalence, since certain point configurations on a straight line can be Möbius transformed into the unit square as well.[image: A371662_1_En_10_Fig3_HTML.gif]
Fig. 3Conformal squares and the association of quantities to lattice points





Alternatively, one could define conformal squares by saying that [image: $$p_1$$] to [image: $$p_4$$] have cross-ratio equal to minus one, either in the sense of quaternions, see for example [15], or after identification of these points with complex numbers in their common plane. Again, non-degeneracy is important for equivalence of the definitions.

The following is an easy exercise in elementary geometry.
Lemma 2
For any given three points [image: $$p_1,p_2,p_3\in \mathbb {R}^3$$] (with ordering) that are not collinear (and in particular pairwise distinct), there exists precisely one fourth point [image: $$p_4\in \mathbb {R}^3$$] that completes the conformal square. Moreover, the coordinates of [image: $$p_4$$] depend analytically on those of [image: $$p_1$$], [image: $$p_2$$] and [image: $$p_3$$].

We are now going to state the main definition, namely the one for discrete isothermic surfaces. Originally [3], discrete surfaces have been introduced as particular immersed lattices in [image: $$\mathbb {R}^3$$]. Having the continuous limit in mind, we give a slightly different definition, which describes a continuous immersion in [image: $$\mathbb {R}^3$$], corresponding to a two-parameter family of lattices.
Definition 3
A map [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] is called (the parametrization of) a [image: $$\epsilon $$]-discrete isothermic surface, if elementary [image: $$\epsilon $$]-squares are mapped to conformal squares in [image: $$\mathbb {R}^3$$].

Remark 4
Since no continuity is required for [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$], one can think of it—at this point—for instance as the piecewise constant extension of a map [image: $$\tilde{F}^\epsilon :\varLambda ^{\epsilon }(r|h)\rightarrow \mathbb {R}^3$$] that is only defined on a suitable lattice [image: $$\varLambda ^{\epsilon }(r|h)\subset \varOmega (r|h)$$], e.g. on[image: $$\begin{aligned} \varLambda ^{\epsilon }(r|h) = \left\{ (\xi ,\eta )\in \varOmega (r|h)\,;\,\frac{\xi }{\epsilon }+\frac{\eta }{\epsilon }\in \mathbb {Z}\right\} . \end{aligned}$$]





Alternatively, one can say that [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] is a discrete isothermic surface, if and only if the four vectors[image: $$\begin{aligned} {{T}}_y\delta _xF^\epsilon ,\,{{T}}_x\delta _yF^\epsilon ,\,{{T}}^{-1}_y\delta _xF^\epsilon ,\,{{T}}^{-1}_x\delta _yF^\epsilon \end{aligned}$$]


always lie in one common plane and satisfy[image: $$\begin{aligned} \big \Vert {{T}}_y\delta _xF^\epsilon \big \Vert \,\big \Vert {{T}}^{-1}_y\delta _xF^\epsilon \Vert = \big \Vert {{T}}_x\delta _yF^\epsilon \big \Vert \,\big \Vert {{T}}^{-1}_x\delta _yF^\epsilon \Vert . \end{aligned}$$]

 (19)

Note that this identity is a discrete replacement for the relation [image: $$\Vert F_x\Vert ^2=\Vert F_y\Vert ^2$$] on smooth conformally parametrized surfaces.

3.3 The Discrete Björling Problem
We introduce the analog of the Björling problem for [image: $$\epsilon $$]-discrete isothermic surfaces. In contrast to its continuous counterpart, its solution is immediate. First, we need some more notation to formulate conditions on the data.
Definition 4
A function [image: $$f^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] is said to be non-degenerate if neither any of the point triples[image: $$\begin{aligned} \big ({{T}}^{-1}_\xi f^\epsilon ,{{T}}^{-1}_\eta f^\epsilon ,{{T}}_\xi f^\epsilon \big )(\xi ,\eta ), \end{aligned}$$]


nor any of the point triples[image: $$\begin{aligned} \big ({{T}}^{-1}_\xi f^\epsilon ,{{T}}_\eta f^\epsilon ,{{T}}_\xi f^\epsilon \big )(\xi ',\eta ') \end{aligned}$$]


are collinear, where [image: $$(\xi ,\eta ),(\xi ',\eta ')\in \varOmega (r|h)$$] are arbitrary points such that these respective values of [image: $$f^\epsilon $$] are defined. If collinearities occur, then [image: $$f^\epsilon $$] is called degenerate.

Definition 5
We call a function [image: $$f^\epsilon :\varOmega (r|\frac{\epsilon }{2})\rightarrow \mathbb {R}^3$$] Björling data for the construction of an [image: $$\epsilon $$]-discrete isothermic surface if it is non-degenerate.

Proposition 1
Let [image: $$\bar{h}$$] and [image: $$\epsilon >0$$] with [image: $$r>\bar{h}>\frac{\epsilon }{2}$$] and Björling data [image: $$f^\epsilon $$] be given. Then, there exists some maximal [image: $$h\in (\frac{\epsilon }{2},\bar{h}]$$] and a unique [image: $$\epsilon $$]-discrete isothermic surface [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] such that [image: $$F^\epsilon =f^\epsilon $$] on [image: $$\varOmega (r|\frac{\epsilon }{2})$$]. Here maximal has to be understood as follows: either [image: $$h=\bar{h}$$], or the restriction of [image: $$F^\epsilon $$] to [image: $$\varOmega (r|h-\frac{\epsilon }{2})$$] is degenerate.

Proof
The proof is a direct application of Lemma 2: from the data [image: $$f^\epsilon $$] given on [image: $$\varOmega (r|\frac{\epsilon }{2})$$], one directly calculates the values of [image: $$F^\epsilon $$] on [image: $$\varOmega (r|\epsilon )$$]. These are then extended to [image: $$\varOmega (r|3\frac{\epsilon }{2})$$] in the next step, and so on. The procedure works as long as no degeneracies occur. [image: $$\square $$]
          


3.4 Discrete Quantities and Basic Relations
Let some discrete isothermic surface [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] be given. Below, we introduce quantities that play an analogous role for [image: $$F^\epsilon $$] as [image: $$u$$], [image: $$\mathfrak {k}$$], [image: $$\mathfrak {l}$$] etc. do for F. Figure 3 (right) indicates, on which lattices these respective quantities live.
Define the discrete conformal factors [image: $${\hat{u}}:\varOmega ^{[x]\epsilon }(r|h)\rightarrow \mathbb {R}$$] and [image: $${\check{u}}:\varOmega ^{[y]\epsilon }(r|h)\rightarrow \mathbb {R}$$], respectively, by[image: $$\begin{aligned} e^{\hat{u}}= \Vert \delta _xF^\epsilon \Vert , \quad e^{\check{u}}= \Vert \delta _yF^\epsilon \Vert . \end{aligned}$$]


Thanks to the property (19) of discrete isothermic surfaces, these seemingly different quantities are related to each other by the identity[image: $$\begin{aligned} {{T}}_x{\check{u}}+ {{T}}^{-1}_x{\check{u}}= {{T}}_y{\hat{u}}+ {{T}}^{-1}_y{\hat{u}}\end{aligned}$$]


that holds on [image: $$\varOmega ^{[xy]\epsilon }(r|h)$$]. We may thus unambiguously define the discrete derivatives [image: $$v,w:\varOmega ^{[xy]\epsilon }(r|h)\rightarrow \mathbb {R}$$] of the conformal factor by[image: $$\begin{aligned} v = \frac{{{T}}_x{\check{u}}-{{T}}_y{\hat{u}}}{\epsilon } = \frac{{{T}}^{-1}_y{\hat{u}}-{{T}}^{-1}_x{\check{u}}}{\epsilon }, \quad w = \frac{{{T}}_x{\check{u}}-{{T}}^{-1}_y{\hat{u}}}{\epsilon } = \frac{{{T}}_y{\hat{u}}-{{T}}^{-1}_x{\check{u}}}{\epsilon }. \end{aligned}$$]

 (20)

Next, define the discrete unit tangent vectors [image: $$a:\varOmega ^{[x]\epsilon }(r|h)\rightarrow \mathbb {S}^2$$] and [image: $$b:\varOmega ^{[y]\epsilon }(r|h)\rightarrow \mathbb {S}^2$$], respectively, by[image: $$\begin{aligned} a= e^{-{\hat{u}}}\delta _xF^\epsilon , \quad b= e^{-{\check{u}}}\delta _yF^\epsilon . \end{aligned}$$]


Since conformal squares are planar, there is a natural notion of normal field [image: $$N:\varOmega ^{[xy]\epsilon }(r|h)\rightarrow \mathbb {S}^2$$], namely[image: $$\begin{aligned} N = \frac{{{T}}_y\delta _xF^\epsilon \times {{T}}_x\delta _yF^\epsilon }{\Vert {{T}}_y\delta _xF^\epsilon \times {{T}}_x\delta _yF^\epsilon \Vert }. \end{aligned}$$]


With the help of the discrete orthonormal frame [image: $$(a,b,N)$$], we introduce the discrete scaled principal curvatures [image: $$\mathfrak {k}:\varOmega ^{[xxy]\epsilon }(r|h)\rightarrow \mathbb {R}$$] and [image: $$\mathfrak {l}:\varOmega ^{[xyy]\epsilon }(r|h)\rightarrow \mathbb {R}$$], respectively, by[image: $$\begin{aligned} \epsilon \mathfrak {k}=-\langle {{T}}^{-1}_xN\times {{T}}_xN,b\rangle , \quad \epsilon \mathfrak {l}=\langle {{T}}^{-1}_yN\times {{T}}_yN,a\rangle . \end{aligned}$$]

 (21)

Note that [image: $$\epsilon \mathfrak {k}$$] and [image: $$\epsilon \mathfrak {l}$$] are equal to [image: $$\sin \angle ({{T}}^{-1}_xN,{{T}}_xN)$$] and to [image: $$\sin \angle ({{T}}^{-1}_yN,{{T}}_yN)$$], respectively, with the signs chosen to maintain consistency with the continuous quantities.
Finally, to facilitate the calculations below, we need two more discrete functions [image: $${\tilde{v}},{\tilde{w}}:\varOmega ^{[xy]\epsilon }(r|h)\rightarrow \mathbb {R}$$], given by[image: $$\begin{aligned} {\begin{matrix} \epsilon {\tilde{v}}&{}= \frac{\langle {{T}}_y\delta _xF^\epsilon ,{{T}}^{-1}_x\delta _yF^\epsilon \rangle }{\Vert {{T}}_y\delta _xF^\epsilon \Vert {{T}}^{-1}_x\delta _yF^\epsilon \Vert } = - \frac{\langle {{T}}^{-1}_y\delta _xF^\epsilon ,{{T}}_x\delta _yF^\epsilon \rangle }{\Vert {{T}}^{-1}_y\delta _xF^\epsilon \Vert \Vert {{T}}_x\delta _yF^\epsilon \Vert }, \\ \epsilon {\tilde{w}}&{}= \frac{\langle {{T}}_y\delta _xF^\epsilon ,{{T}}_x\delta _yF^\epsilon \rangle }{\Vert {{T}}_y\delta _xF^\epsilon \Vert \Vert {{T}}_x\delta _yF^\epsilon \Vert } = - \frac{\langle {{T}}^{-1}_y\delta _xF^\epsilon ,{{T}}^{-1}_x\delta _yF^\epsilon \rangle }{\Vert {{T}}^{-1}_y\delta _xF^\epsilon \Vert \Vert {{T}}^{-1}_x\delta _yF^\epsilon \Vert }. \end{matrix}} \end{aligned}$$]

 (22)

The equalities follow since opposite angles in a conformal square sum up to [image: $$\pi $$]. The two pairs (v, w) and [image: $$({\tilde{v}},{\tilde{w}})$$] are just different representations of the same geometric information.
Lemma 3
There is a one-to-one correspondence between the pairs (v, w) and [image: $$({\tilde{v}},{\tilde{w}})$$] of functions. Specifically, recalling the [image: $${}^*$$]-notation introduced in (17),[image: $$\begin{aligned} \sinh (\epsilon v) = \epsilon \frac{{\tilde{v}}{\tilde{w}}^*}{{\tilde{v}}^*} \quad \text{ and }\quad \sinh (\epsilon w) = \epsilon \frac{{\tilde{w}}{\tilde{v}}^*}{{\tilde{w}}^*}. \end{aligned}$$]

 (23)

Moreover, the pair [image: $$(v,{\tilde{w}})$$] uniquely determines the pair [image: $$({\tilde{v}},w)$$], and vice versa.

Proof
This is a general statement about four geometric quantities defined for conformal squares. It thus suffices to consider a single conformal square with vertices[image: $$\begin{aligned} p_1={{T}}^{-1}_\eta F^\epsilon ,\,p_2={{T}}_\xi F^\epsilon ,\,p_3={{T}}_\eta F^\epsilon ,\,p_4={{T}}^{-1}_\xi F^\epsilon . \end{aligned}$$]


The respective four real numbers [image: $$v,w,{\tilde{v}},{\tilde{w}}$$] are given by[image: $$\begin{aligned} e^{\epsilon v} = \frac{\Vert p_2-p_1\Vert }{\Vert p_1-p_4\Vert } = \frac{\Vert p_3-p_2\Vert }{\Vert p_4-p_3\Vert },&\quad e^{\epsilon w} = \frac{\Vert p_3-p_2\Vert }{\Vert p_2-p_1\Vert } = \frac{\Vert p_3-p_4\Vert }{\Vert p_4-p_1\Vert },\\ \epsilon {\tilde{v}}= \cos (\angle p_1p_2p_3) = -\cos (\angle p_3p_4p_1),&\quad \epsilon {\tilde{w}}= \cos (\angle p_2p_3p_4) = -\cos (\angle p_4p_1p_2). \end{aligned}$$]


Observe that[image: $$\begin{aligned} \Vert p_3-p_2\Vert ^2+\Vert p_1-p_2\Vert ^2-2\langle p_3-p_2,p_1-&p_2\rangle =\Vert p_3-p_4\Vert ^2\\&+\Vert p_1-p_4\Vert ^2-2\langle p_3-p_4,p_1-p_4\rangle \end{aligned}$$]


since both expressions are equal to [image: $$\Vert p_3-p_1\Vert ^2$$]. Divide by [image: $$\Vert p_3-p_2\Vert ^2$$] and use the definitions of [image: $$v,w,{\tilde{v}},{\tilde{w}}$$] to obtain, after simplification, that[image: $$\begin{aligned} 1 + e^{-2\epsilon w} - 2 \epsilon {\tilde{v}}e^{-\epsilon w} = e^{-2\epsilon v} (1 + e^{-2\epsilon w} + 2 \epsilon {\tilde{v}}e^{-\epsilon w}). \end{aligned}$$]

 (24)

The analogous considerations with [image: $$\Vert p_4-p_2\Vert ^2$$] in place of [image: $$\Vert p_3-p_1\Vert ^2$$] give (24) with [image: $${\tilde{w}}$$] in place of [image: $${\tilde{v}}$$], and with the roles of w and v exchanged. Clearly, these equations are uniquely solvable for [image: $$({\tilde{v}},{\tilde{w}})$$] in terms of (v, w):[image: $$\begin{aligned} \epsilon {\tilde{v}}= \tanh (\epsilon v)\,\cosh (\epsilon w),\quad \epsilon {\tilde{w}}= \tanh (\epsilon w)\,\cosh (\epsilon v). \end{aligned}$$]

 (25)

Note that in particular[image: $$\begin{aligned} \epsilon ^2{\tilde{v}}{\tilde{w}}= \sinh (\epsilon v)\sinh (\epsilon w). \end{aligned}$$]

 (26)

To derive (23) from here, take the square of the equations in (25), and express [image: $$\cosh ^2$$] and [image: $$\tanh ^2$$] in terms of [image: $$\sinh ^2$$] only. Then use (26) to eliminate [image: $$\sinh ^2(\epsilon w)$$] from the first equation and [image: $$\sinh ^2(\epsilon v)$$] from the second one. This yields[image: $$\begin{aligned} \sinh ^2(\epsilon v) = \Big (\epsilon \frac{{\tilde{v}}{\tilde{w}}^*}{{\tilde{v}}^*}\Big )^2, \quad \sinh ^2(\epsilon w) = \Big (\epsilon \frac{{\tilde{w}}{\tilde{v}}^*}{{\tilde{w}}^*}\Big )^2. \end{aligned}$$]


Now take the square root, bearing in mind that v, [image: $${\tilde{v}}$$] have the same sign, and w, [image: $${\tilde{w}}$$] have the same sign by (25).
Finally, to calculate [image: $${\tilde{v}}$$] from a given [image: $$(v,{\tilde{w}})$$] using the first relation in (23), it suffices to invert the (strictly increasing) function [image: $${\tilde{v}}\mapsto {\tilde{v}}/{\tilde{v}}^*$$]. Then, knowing [image: $${\tilde{v}}$$] and [image: $${\tilde{w}}$$], the value of w can be obtained from the second relation in (23). [image: $$\square $$]
          

Recall that all discrete quantities defined above depend on the parameter [image: $$\epsilon $$]. To stress this fact, we will in the following use the superscript [image: $$\epsilon $$].
For later reference, we draw some first consequences of the definitions above. Specifically, we summarize the relations between the geometric quantities [image: $$(a^\epsilon ,b^\epsilon ,{\hat{u}}^\epsilon ,{\check{u}}^\epsilon )$$], and, of course, to [image: $$F^\epsilon $$] itself, to the more abstract quantities [image: $$(v^\epsilon ,w^\epsilon ,\mathfrak {k}^\epsilon ,\mathfrak {l}^\epsilon )$$] that satisfy the Gauss-Codazzi system (31)–(34). These relations can be seen as a discrete analog of the frame equations (6) and (7).
Lemma 4
On [image: $$\varOmega ^{[xxyy]\epsilon }(r|h)$$], one has[image: $$\begin{aligned}&\delta _yF^\epsilon = \exp ({\hat{u}}^\epsilon )a^\epsilon ,\quad \delta _xF^\epsilon =\exp ({\check{u}}^\epsilon )b^\epsilon , \end{aligned}$$]

 (27)


[image: $$\begin{aligned}&\delta _y{\hat{u}}^\epsilon = w^\epsilon -v^\epsilon , \quad \delta _x{\check{u}}^\epsilon = w^\epsilon +v^\epsilon , \end{aligned}$$]

 (28)


[image: $$\begin{aligned}&\delta _ya^\epsilon = \left[ \frac{({\tilde{v}}^\epsilon )^*}{({\tilde{w}}^\epsilon )^*}{\tilde{w}}^\epsilon -{\tilde{v}}^\epsilon \right] {{T}}^{-1}_xb^\epsilon + \frac{1}{\epsilon }\left[ \frac{({\tilde{v}}^\epsilon )^*}{({\tilde{w}}^\epsilon )^*}-1\right] {{T}}^{-1}_ya^\epsilon , \end{aligned}$$]

 (29)


[image: $$\begin{aligned}&\delta _xb^\epsilon = \left[ \frac{({\tilde{v}}^\epsilon )^*}{({\tilde{w}}^\epsilon )^*}{\tilde{w}}^\epsilon -{\tilde{v}}^\epsilon \right] {{T}}^{-1}_ya^\epsilon + \frac{1}{\epsilon }\left[ \frac{({\tilde{v}}^\epsilon )^*}{({\tilde{w}}^\epsilon )^*}-1\right] {{T}}^{-1}_xb^\epsilon . \end{aligned}$$]

 (30)




Proof
The two equations in (28) are obtained by rearranging the identities in (20). For the derivation of (29), one makes the ansatz[image: $$\begin{aligned} {{T}}_ya^\epsilon = \mu _a{{T}}^{-1}_ya^\epsilon +\mu _b{{T}}^{-1}_xb^\epsilon . \end{aligned}$$]


Such a representation of [image: $${{T}}_ya^\epsilon $$] must exist since elementary squares are mapped to (flat) quadrilaterals by [image: $$F^\epsilon $$]. The coefficients [image: $$\mu _a$$] and [image: $$\mu _b$$] can be determined by solving the system of equations[image: $$ 1=\Vert {{T}}_ya^\epsilon \Vert ^2=\mu _a^2+\mu _b^2-2\epsilon \mu _a\mu _b{\tilde{w}}^\epsilon , \quad \epsilon {\tilde{v}}^\epsilon = \langle {{T}}_ya^\epsilon ,{{T}}^{-1}_xb^\epsilon \rangle = -\epsilon \mu _a{\tilde{w}}^\epsilon +\mu _b. $$]


The analogous ansatz—with the roles of [image: $$a^\epsilon $$] and [image: $$b^\epsilon $$] interchanged—leads to (30). [image: $$\square $$]
          


3.5 Discrete Gauss-Codazzi System
This section is devoted to derive a discrete version of the Gauss-Codazzi equations (9)–(12).
             The following definition is needed to classify the difference between the continuous and the discrete system.
Definition 6
A family [image: $$(h_\epsilon )_{\epsilon >0}$$] of real functions on respective domains [image: $$D_\epsilon \subset \mathbb {R}^n$$] is called asymptotically analytic on [image: $$\mathbb {C}^n$$] if the following is true. For every [image: $$M>0$$], there is an [image: $$\epsilon (M)>0$$] such that each [image: $$h_\epsilon $$] with [image: $$0<\epsilon <\epsilon (M)$$] extends from [image: $$D_\epsilon $$] to a complex-analytic function [image: $$\tilde{h}_\epsilon :{\mathbb D}_M^n\rightarrow \mathbb {C}$$] on the n-dimensional complex multi-disc[image: $$\begin{aligned} {\mathbb D}_M^n = \big \{ z=(z_1,\ldots ,z_n)\in \mathbb {C}^n\,\big |\,|z_j|<M\ \text {for each}\ j=1,\ldots ,n\big \}. \end{aligned}$$]


And the extensions [image: $$\tilde{h}_\epsilon $$] are bounded on [image: $${\mathbb D}_M^n$$], uniformly in [image: $$0<\epsilon <\epsilon (M)$$].

The prototypical example for a family [image: $$(h_\epsilon )_{\epsilon >0}$$] that is asymptotically analytic on [image: $$\mathbb {C}$$] is given by [image: $$h_\epsilon (z)=1/z^*=(1-\epsilon ^2z^2)^{-1/2}$$]. It is further easily seen that also the functions [image: $$g_\epsilon =\epsilon ^{-2}(h_\epsilon -1)$$] form such a family; this is a very strong way of saying that [image: $$h_\epsilon =1+\mathscr {O}(\epsilon ^2)$$].
Proposition 2
There are four families [image: $$(h_{1,\epsilon })_{\epsilon>0},\ldots ,(h_{4,\epsilon })_{\epsilon >0}$$] of asymptotically analytic functions on [image: $$\mathbb {C}^8$$] for which the following is true: let any [image: $$\epsilon $$]-discrete isothermic surface [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] be given, and define the functions [image: $$v^\epsilon ,w^{\epsilon },\mathfrak {k}^{\epsilon },\mathfrak {l}^{\epsilon }$$] accordingly. Then the following system of discrete equations is satisfied on [image: $$\varOmega ^{[xy]\epsilon }(r|h)$$]: [image: $$\begin{aligned} \delta _\eta v^{\epsilon }&= \delta _\xi w^\epsilon , \end{aligned}$$]

 (31)


[image: $$\begin{aligned} \delta _\eta w^{\epsilon }&= \delta _\xi v^\epsilon - ({{T}}^{-1}_y\mathfrak {k}^\epsilon )({{T}}^{-1}_x\mathfrak {l}^{\epsilon }) + \epsilon h^{\epsilon }_2({{T}}{\theta }^\epsilon ), \end{aligned}$$]

 (32)


[image: $$\begin{aligned} \delta _y\mathfrak {k}^{\epsilon }&= ({{T}}^{-1}_x\mathfrak {l}^\epsilon )({{T}}^{-1}_\eta w^{\epsilon } - {{T}}_\xi v^\epsilon ) + \epsilon ^2 h^\epsilon _3({{T}}{\theta }^\epsilon ) \end{aligned}$$]

 (33)


[image: $$\begin{aligned} \delta _x\mathfrak {l}^{\epsilon }&= ({{T}}^{-1}_y\mathfrak {k}^\epsilon )({{T}}^{-1}_\eta w^{\epsilon } + {{T}}^{-1}_\xi v^{\epsilon } ) + \epsilon h^{\epsilon }_4({{T}}{\theta }^\epsilon ), \end{aligned}$$]

 (34)

where the [image: $$h^{\epsilon }_j$$] are evaluated on[image: $$\begin{aligned} {{T}}{\theta }^\epsilon = \big ({{T}}_\xi v^\epsilon ,{{T}}_\xi w^\epsilon ,{{T}}^{-1}_\xi v^\epsilon ,{{T}}^{-1}_\xi w^\epsilon ,{{T}}^{-1}_\eta v^\epsilon ,{{T}}^{-1}_\eta w^\epsilon ,{{T}}^{-1}_y\mathfrak {k}^\epsilon ,{{T}}^{-1}_x\mathfrak {l}^\epsilon \big ). \end{aligned}$$]





Remark 5
Equations (31)–(34) are explicit in [image: $$\eta $$]-direction in the sense that they express the “unknown” quantities [image: $${{T}}_\eta v^\epsilon $$], [image: $${{T}}_\eta w^\epsilon $$], [image: $${{T}}_y\mathfrak {k}^\epsilon $$] and [image: $${{T}}_x\mathfrak {l}^\epsilon $$] in terms of the “given” eight quantities summarized in [image: $${{T}}{\theta }^\epsilon $$].

The rest of this section is devoted to the proof of Proposition 2. Since [image: $$\epsilon >0$$] is fixed in the derivation of (31)–(34), we shall omit the superscript [image: $$\epsilon $$] on the occurring quantities.
For the derivation of (31)–(34), one can obviously work locally: it suffices to fix some point in [image: $$\varOmega ^{[xxyy]\epsilon }(r|h)$$] and to consider the eight values of v, w on the midpoints of the four elementary squares incident to that vertex, and the four values of [image: $$\mathfrak {k}$$], [image: $$\mathfrak {l}$$] on the respective connecting edges.
The setup is visualized in Fig. 4. The “unknown” quantities [image: $$v_+,w_+$$] and [image: $$\mathfrak {k}_{+},\mathfrak {l}_{+}$$] are marked by [image: $$\circ $$], the “given” quantities [image: $$v_0,w_0,v_L,w_L,v_R,w_R$$] and [image: $$\mathfrak {k}_{0},\mathfrak {l}_{0}$$] are marked by [image: $$\bullet $$]. To facilitate the calculations, we also assume that values for [image: $$a_0,b_0,{\hat{u}}_0,{\check{u}}_0,N_0,N_L,N_R$$] are given; and then obtain the values of [image: $$a_+,b_+,{\hat{u}}_+,{\check{u}}_+,N_+$$], see Fig. 4 right. Naturally, the final formulas for [image: $$v_+,w_+$$] and [image: $$\mathfrak {k}_{+},\mathfrak {l}_{+}$$] will be independent of these quantities.[image: A371662_1_En_10_Fig4_HTML.gif]
Fig. 4Four elementary squares with discrete quantities for the Cauchy problem





3.5.1 Derivation of Equation (31)
Compare the following two alternative ways to calculate [image: $${\hat{u}}_{+}$$], the logarithmic length of the edge separating the right and the top plaquettes, from [image: $${\hat{u}}_0$$], the logarithmic length of the edge between the plaquettes at bottom and left:[image: $$ e^{\epsilon {\hat{u}}_0} e^{\epsilon v_0} e^{\epsilon w_R} = e^{\epsilon {\hat{u}}+} = e^{\epsilon {\hat{u}}_0} e^{\epsilon w_L} e^{\epsilon v_+} $$]


holds by property (20) of the functions v and w. Take the logarithm to obtain (31).

3.5.2 Derivation of Equation (32)
First recall that by Lemma 3, there is a one-to-one correspondence between (v, w) and [image: $$({\tilde{v}},{\tilde{w}})$$], so we can assume that values for [image: $$({\tilde{v}}_0,{\tilde{w}}_0)$$], [image: $$({\tilde{v}}_L,{\tilde{w}}_L)$$], [image: $$({\tilde{v}}_R,{\tilde{w}}_R)$$] are given as well. Using that [image: $$N_R$$] is the normalized cross product [image: $$a_+\times b_0$$], it is elementary to derive the following representation of [image: $$a_+$$]:[image: $$\begin{aligned} a_{+} = \epsilon {\tilde{v}}_Rb_0 + {\tilde{v}}_R^* (b_0\times N_R). \end{aligned}$$]

 (35)

Taking the scalar product with [image: $$N_0$$], one obtains[image: $$\begin{aligned} \langle a_+,N_0 \rangle = {\tilde{v}}_R^*\langle b_0,N_R\times N_0\rangle = \epsilon {\tilde{v}}_R^*\mathfrak {k}_0. \end{aligned}$$]


Hence [image: $$a_{+}$$] can be expanded in the basis [image: $$a_{0}$$], [image: $$b_{0}$$] and [image: $$N_0$$] as follows:[image: $$\begin{aligned} a_{+} = \mu _a a_{0} + \mu _b b_{0} + \epsilon {\tilde{v}}_R^*\mathfrak {k}_{0}N_0 \end{aligned}$$]

 (36)

with some real coefficients [image: $$\mu _a$$] and [image: $$\mu _b$$] to be determined. Calculating the square norm on both sides gives[image: $$\begin{aligned} 1 = \mu _a^2 + \mu _b^2 + 2\epsilon {\tilde{w}}_0\mu _a\mu _b + \epsilon ^2({\tilde{v}}_R^*)^2\mathfrak {k}_{0}^2, \end{aligned}$$]

 (37)

and the scalar product with [image: $$b_{0}$$] yields[image: $$\begin{aligned} \epsilon {\tilde{v}}_R = \epsilon {\tilde{w}}_0\mu _a + \mu _b . \end{aligned}$$]

 (38)

Use (38) to eliminate [image: $$\mu _b$$] from (37), then solve for [image: $$\mu _a$$]. This gives[image: $$\begin{aligned} \mu _a = \frac{{\tilde{v}}_R^*\mathfrak {k}_0^*}{{{\tilde{w}}}_0^*}, \qquad \mu _b = \epsilon {\tilde{v}}_R - \epsilon \frac{{\tilde{v}}_R^*\mathfrak {k}_0^*}{{\tilde{v}}_0^*}{\tilde{w}}_0. \end{aligned}$$]

 (39)

On the other hand, starting from[image: $$\begin{aligned} b_{+} = \lambda _b b_{0} + \lambda _a a_{0} + \epsilon {\tilde{v}}_L^* \mathfrak {l}_{0} N_0 \end{aligned}$$]

 (40)

instead of (36), one obtains by analogous calculations that[image: $$\begin{aligned} \lambda _b = \frac{{\tilde{v}}_L^*\mathfrak {l}_0^*}{{\tilde{w}}_0^*}, \qquad \lambda _a = -\epsilon {\tilde{v}}_L - \epsilon \frac{{\tilde{v}}_L^*\mathfrak {l}_0^*}{{\tilde{w}}_0^*} {\tilde{w}}_0. \end{aligned}$$]


Since [image: $$\epsilon {\tilde{w}}_+=-\langle a_+,b_+\rangle $$], it eventually follows that[image: $$\begin{aligned} {\tilde{w}}_+&= \frac{{\tilde{v}}_L^*{\tilde{v}}_R^*\mathfrak {k}_{0}^*\mathfrak {l}_{0}^*}{({\tilde{w}}_0^*)^2}{\tilde{w}}_0 - \frac{{\tilde{v}}_L^*\mathfrak {l}_{0}^*}{{\tilde{w}}_0^*}{\tilde{v}}_R + \frac{{\tilde{v}}_R^*\mathfrak {k}_{0}^*}{{\tilde{w}}_0^*}{\tilde{v}}_L - \epsilon {\tilde{v}}_R^*{\tilde{v}}_L^*\mathfrak {k}_{0}\mathfrak {l}_{0} \nonumber \\&\qquad \qquad + \epsilon ^2{\tilde{w}}_0 \left( -{\tilde{v}}_R{\tilde{v}}_L +\frac{{\tilde{v}}_R^*{\tilde{v}}_L\mathfrak {k}_{0}^*-{\tilde{v}}_R{\tilde{v}}_L^*\mathfrak {l}_0^*}{{\tilde{w}}_0^*}{\tilde{w}}_0 +\frac{{\tilde{v}}_R^*{\tilde{v}}_L^*\mathfrak {k}_{0}^*\mathfrak {l}_0^*}{({\tilde{w}}_0^*)^2}{\tilde{w}}_0^2\right) . \end{aligned}$$]

 (41)

Next, recall that one may consider (v, w) as a function of [image: $$({\tilde{v}},{\tilde{w}})$$]. More precisely, by (23), one has that v and w approximate [image: $${\tilde{v}}$$] and [image: $${\tilde{w}}$$], respectively, to order [image: $$\epsilon ^2$$], in the sense that the family of functions[image: $$\begin{aligned} ({\tilde{v}},{\tilde{w}})\mapsto&\big (\epsilon ^{-2}(v-{\tilde{v}}),\epsilon ^{-2}(w-{\tilde{w}})\big ) \\&=\bigg (\frac{1}{\epsilon ^2}\bigg [\epsilon ^{-1}\mathrm{arsinh}\Big (\epsilon \frac{{\tilde{v}}{\tilde{w}}^*}{{\tilde{v}}^*}\bigg )-{\tilde{v}}\bigg ], \frac{1}{\epsilon ^2}\bigg [\epsilon ^{-1}\mathrm{arsinh}\Big (\epsilon \frac{{\tilde{w}}{\tilde{v}}^*}{{\tilde{w}}^*}\bigg )-{\tilde{w}}\bigg ]\bigg ) \end{aligned}$$]


is asymptotically analytic on [image: $$\mathbb {C}^2$$], see Definition 6. Observe further that [image: $$\epsilon ^{-2}(1-{\tilde{v}}^*)$$] etc. are asymptotically analytic as well. With this, it is straight-forward to conclude (32) from (41).

3.5.3 Derivation of Equation (33)
In analogy to (35), one obtains by elementary considerations the following representation of [image: $$a_+$$]:[image: $$\begin{aligned} a_{+} = -\epsilon {\tilde{w}}_+b_{+} + {\tilde{w}}_+^*(b_{+}\times N_+). \end{aligned}$$]


Using the definition (21) of [image: $$\mathfrak {k}$$], it then follows that[image: $$\begin{aligned} \langle a_+,N_L \rangle = {\tilde{w}}_+^*\langle b_+,N_+\times N_L\rangle = \epsilon {\tilde{w}}_+^*\mathfrak {k}_+. \end{aligned}$$]


On the other hand, the computation (36)–(39) implies that[image: $$\begin{aligned} \langle a_{+}, N_L\rangle&= \mu _b \langle b_0,N_L\rangle + \epsilon {\tilde{v}}_R^*\mathfrak {k}_0 \langle N_0,N_L \rangle \\&= \frac{\mu _b}{{\tilde{v}}_L^*} \langle b_0, a_0\times b_+\rangle + \epsilon {\tilde{v}}_R^* \mathfrak {l}_0^*\mathfrak {k}_0 \\&= -\frac{\mu _b{\tilde{w}}_0^*}{{\tilde{v}}_L^*} \langle b_+, N_0\rangle + \epsilon {\tilde{v}}_R^*\mathfrak {l}_0^*\mathfrak {k}_0 \\&= -\epsilon ^2({\tilde{w}}_0^*{\tilde{v}}_R - {\tilde{v}}_R^*\mathfrak {k}_0^*{\tilde{w}}_0) \mathfrak {l}_0 + \epsilon {\tilde{v}}_R^* \mathfrak {l}_0^*\mathfrak {k}_0. \end{aligned}$$]


In combination, this yields[image: $$\begin{aligned} {\tilde{w}}_+^*\mathfrak {k}_+ = {\tilde{v}}_R^* \mathfrak {l}_0^*\mathfrak {k}_0 + \epsilon ({\tilde{v}}_R^*\mathfrak {k}_0^*{\tilde{w}}_0 - {\tilde{w}}_0^*{\tilde{v}}_R) \mathfrak {l}_0. \end{aligned}$$]


We can now substitute (41) to express the unknown [image: $${\tilde{w}}_+$$] in terms of the known quantities only. Using once again that [image: $$\epsilon ^{-2}(1-{\tilde{w}}_+^*)$$] etc. are asymptotically analytic according to Definition 6, we arrive at (33).
The derivation of Eq. (34) is analogous.
                  
                  
                




4 The Abstract Convergence Result
In this section, we analyze the convergence of solutions to the classical Gauss-Codazzi system (9)–(12) by solutions to the discrete system (31)–(34). This is the core part of the convergence proof, from which our main result will be easily deduced in the next section.
4.1 Domains
A key concept in the proof is to work with analytic extensions of the quantities v, w, [image: $$\mathfrak {k}$$] and [image: $$\mathfrak {l}$$] defined in Sect. 3.4. The analytic setting forces us to introduce yet another class of domains, and corresponding spaces of real analytic functions. In the following, we assume that [image: $$r>0$$] and [image: $$\bar{\rho }>0$$] are fixed parameters (which will be frequently omitted in notations), while [image: $$h\in (0,\bar{\rho })$$] and [image: $$\epsilon >0$$] may vary, with the restriction that [image: $$\epsilon <h$$].
For each domain [image: $$\varOmega (r|h)$$], introduce its analytic fattening [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)$$] as follows:[image: $$\begin{aligned} \widehat{\varOmega }_{\bar{\rho }}(r|h) = \left\{ (\xi ,\eta )\in \mathbb {C}\times \mathbb {R}\,;\, \exists (\xi ',\eta )\in \varOmega (r|h)\text { s.t. }|\xi -\xi '|/\bar{\rho }+|\eta |/h<1\right\} . \end{aligned}$$]


On these domains, we introduce the function class[image: $$\begin{aligned} C^{\omega }\big (\widehat{\varOmega }(r|h)\big ) := \big \{ f:\widehat{\varOmega }_{\bar{\rho }}(r|h)\rightarrow \mathbb {C}\,;\, f(\cdot ,\eta )\, \text {is real analytic, for each}\,\eta \big \}. \end{aligned}$$]


Notice that we require analyticity with respect to [image: $$\xi $$], but not even continuity with respect to [image: $$\eta $$]. Next, introduce semi-norms [image: $$\left| \cdot \right| _{\eta ,\rho }$$] for functions [image: $$f\in C^{\omega }\big (\widehat{\varOmega }(r|h)\big )$$], depending on parameters [image: $$\eta \in [-h,h]$$] and [image: $$\rho \in [0,\bar{\rho }]$$] with [image: $$\rho /\bar{\rho }+|\eta |/h<1$$] as follows:[image: $$\begin{aligned} \left| f\right| _{\eta ,\rho } = \sup \left\{ |f(\xi ,\eta )|\,;\,\,\xi \in \mathbb {C}\text { s.t. } \exists (\xi ',\eta )\in \varOmega (r|h)\text { with }|\xi -\xi '|<\rho \right\} . \end{aligned}$$]


These semi-norms are perfectly suited to apply Cauchy estimates; indeed, one easily proves with the Cauchy integral formula that[image: $$\begin{aligned} \left| \partial _\xi f\right| _{\eta ,\rho } \le \frac{1}{\rho '-\rho }\left| f\right| _{\eta ,\rho '}, \end{aligned}$$]

 (42)

provided that [image: $$\rho '>\rho $$]. The semi-norms are now combined into a genuine norm [image: $$\left\| \cdot \right\| _{h}$$] on [image: $$C^{\omega }\big (\widehat{\varOmega }(r|h)\big )$$] as follows:[image: $$\begin{aligned} \left\| f\right\| _{h} = \sup \left\{ \varLambda (\eta ,\rho )\left| f\right| _{\eta ,\rho }\,;\,\frac{|\eta |}{h}+\frac{\rho }{\bar{\rho }}<1\right\} , \end{aligned}$$]

 (43)

where the positive weight [image: $$\varLambda $$] is given by[image: $$\begin{aligned} \varLambda (\eta ,\rho ) = 1-\frac{|\eta |/h}{1-\rho /\bar{\rho }}. \end{aligned}$$]

 (44)

This norm makes [image: $$C^{\omega }\big (\widehat{\varOmega }(r|h)\big )$$] a Banach space.
There is another semi-norm [image: $$\big \{\cdot \big \}_{h,\delta }$$] that will be of importance below: for each [image: $$\delta \in [0,1]$$], let[image: $$\begin{aligned} \big \{f\big \}_{h,\delta } = \sup \left\{ \left| f\right| _{\eta ,\rho }\,;\,\frac{|\eta |}{h}+\frac{\rho }{\bar{\rho }}\le 1-\delta \right\} . \end{aligned}$$]


By definition (44) of the weight [image: $$\varLambda $$], the following estimate is immediate:[image: $$\begin{aligned} \big \{f\big \}_{h,\delta } \le \delta ^{-1}\left\| f\right\| _{h}, \end{aligned}$$]

 (45)

provided that [image: $$\delta >0$$].
Replacing [image: $$\varOmega (r|h)$$] by [image: $$\varOmega ^{[xy]\epsilon }(r|h)$$] above yields definitions for analytically fattened domains [image: $$\widehat{\varOmega }_{\bar{\rho }}^{[xy]\epsilon }(r|h)$$] with respective spaces [image: $$C^{\omega }\big (\widehat{\varOmega }^{[xy]\epsilon }(r|h)\big )$$], semi-norms [image: $$\left| \cdot \right| ^{[xy]\epsilon }_{\eta ,\rho }$$] and [image: $$\big \{\cdot \big \}^{[xy]\epsilon }_{h,\delta }$$], and norms [image: $$\left\| \cdot \right\| ^{[xy]\epsilon }_{h}$$] etc.

4.2 Statement of the Approximation Result
Recall that [image: $$r>0$$] and [image: $$\bar{\rho }>0$$] are fixed parameters.
Definition 7
An analytic solution [image: $$\theta =(v,w,\mathfrak {k},\mathfrak {l})$$] of the classical Gauss-Codazzi system on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)$$] consists of four functions [image: $$v,w,\mathfrak {k},\mathfrak {l}\in C^{\omega }\big (\widehat{\varOmega }(r|h)\big )$$] that are globally bounded on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)$$], are continuously differentiable with respect to [image: $$\eta $$], and satisfy Eqs. (9)–(12) on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)$$].
An analytic solution [image: $$\theta ^\epsilon =(v^\epsilon ,w^\epsilon ,\mathfrak {k}^\epsilon ,\mathfrak {l}^\epsilon )$$] of the [image: $$\epsilon $$]-discrete Gauss-Codazzi system on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)$$] consists of four functions [image: $$v^\epsilon ,w^\epsilon \in C^{\omega }\big (\widehat{\varOmega }^{[xy]\epsilon }(r|h)\big )$$], [image: $$\mathfrak {k}^{\epsilon }\in C^{\omega }\big (\widehat{\varOmega }^{[xxy]\epsilon }(r|h)\big )$$], [image: $$\mathfrak {l}^\epsilon \in C^{\omega }\big (\widehat{\varOmega }^{[xyy]\epsilon }(r|h)\big )$$] that satisfy Eqs. (31)–(34) on [image: $$\widehat{\varOmega }_{\bar{\rho }}^{[xxyy]\epsilon }(r|h)$$].

A suitable norm to measure the deviation of an [image: $$\epsilon $$]-discrete solution [image: $$\theta ^{\epsilon }$$] to a classical solution [image: $$\theta $$] on the same domain [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)$$] is given by the norms of the differences of the four components,[image: $$\begin{aligned} |||\theta ^\epsilon -\theta |||_{h} = \max \left( \left\| v^\epsilon -v\right\| ^{[xy]\epsilon }_{h}, \left\| w^\epsilon -w\right\| ^{[xy]\epsilon }_{h}, \left\| \mathfrak {k}^\epsilon -\mathfrak {k}\right\| ^{[xxy]\epsilon }_{h}, \left\| \mathfrak {l}^\epsilon -\mathfrak {l}\right\| ^{[xyy]\epsilon }_{h}\right) . \end{aligned}$$]




Proposition 3
Let an analytic solution [image: $$\theta $$] to the Gauss-Codazzi system on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|\bar{h})$$] be given, and consider a family [image: $$(\theta ^\epsilon )_{\epsilon >0}$$] of (a priori not necessarily analytic) solutions [image: $$\theta ^\epsilon =(v^\epsilon ,w^\epsilon ,\mathfrak {k}^\epsilon ,\mathfrak {l}^\epsilon )$$] to the [image: $$\epsilon $$]-discrete Gauss-Codazzi equations on [image: $$\varOmega (r|h^\epsilon )$$]. Then there are numbers [image: $$A,B>0$$] and [image: $$\bar{\epsilon }>0$$] such that the following is true for all [image: $$\epsilon \in (0,\bar{\epsilon })$$]: if [image: $$\theta ^\epsilon $$] possesses sufficient regularity to admit [image: $$\xi $$]-analytic complex extensions for [image: $$\eta $$] near zero such that[image: $$\begin{aligned} |||\theta -\theta ^\epsilon |||_{\epsilon } < A\epsilon , \end{aligned}$$]

 (46)

then [image: $$\theta ^\epsilon $$] as a whole extends to an analytic solution [image: $$\theta ^\epsilon $$] of the [image: $$\epsilon $$]-discrete Gauss-Codazzi system on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)^{\epsilon }$$], and[image: $$\begin{aligned} |||\theta -\theta ^\epsilon |||_{h^\epsilon } \le B\epsilon . \end{aligned}$$]

 (47)




Remark 6
The formulation of the proposition suggests that the height h of the domain on which convergence takes place is small. However, this is misleading in general. As it turns out in the proof, the limitation for h is mostly determined by the value of [image: $$\bar{\rho }$$]. In many examples of interest, [image: $$\bar{\rho }$$] is large compared to the region of interest (determined by [image: $$\bar{h}$$] and r), and consequently, one has [image: $$h^\epsilon =\bar{h}$$] above, i.e., convergence takes place on the entire domain of definition of [image: $$\theta $$].

The rest of this section is devoted to the proof of Proposition 3.

4.3 Consistency
We start with an evaluation of the difference between the classical and the [image: $$\epsilon $$]-discrete Gauss-Codazzi equations. Here, we need yet another measure for the deviation of [image: $$\theta ^\epsilon $$] from [image: $$\theta $$]:[image: $$\begin{aligned} \big \{\!\{\theta ^\epsilon -\theta \}\!\big \}_{h,\delta } = \max \left( \big \{v^\epsilon -v\big \}^{[xy]\epsilon }_{h,\delta }, \big \{w^\epsilon -w\big \}^{[xy]\epsilon }_{h,\delta }, \big \{\mathfrak {k}^\epsilon -\mathfrak {k}\big \}^{[xxy]\epsilon }_{h,\delta }, \big \{\mathfrak {l}^\epsilon -\mathfrak {l}\big \}^{[xyy]\epsilon }_{h,\delta }\right) . \end{aligned}$$]


This semi-norm is similar to [image: $$|||\theta ^\epsilon -\theta |||_{h}$$]. For further reference, we note that[image: $$\begin{aligned} \big \{\!\{\theta ^\epsilon -\theta \}\!\big \}_{h,\delta } \le \frac{1}{\delta }|||\theta ^\epsilon -\theta |||_{h}, \end{aligned}$$]

 (48)

thanks to (45), provided that [image: $$\delta >0$$]. Furthermore, we denote for abbreviation the difference between corresponding discrete and continuous quantities by [image: $$\varDelta $$], i.e. [image: $$\varDelta v^\epsilon =v^\epsilon -v$$] etc.
Lemma 5
Let an analytic solution [image: $$\theta $$] to the classical Gauss-Codazzi system and an analytic solution [image: $$\theta ^\epsilon $$] to the [image: $$\epsilon $$]-discrete Gauss-Codazzi system be given, both on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|h)$$]. Define the residuals [image: $$\tilde{g}^\epsilon _1,\ldots ,\tilde{g}^\epsilon _4\in C^{\omega }\big (\widehat{\varOmega }^{[xxyy]\epsilon }(r|h)\big )$$] by[image: $$\begin{aligned} \delta _\eta \varDelta v^\epsilon&= \delta _\xi \varDelta w^\epsilon + \epsilon \tilde{g}^\epsilon _1 \end{aligned}$$]

 (49)


[image: $$\begin{aligned} \delta _\eta \varDelta w^\epsilon&= - \delta _\xi \varDelta v^\epsilon + {{T}}^{-1}_y\mathfrak {k}^\epsilon {{T}}^{-1}_x \varDelta \mathfrak {l}^\epsilon + {{T}}^{-1}_y \varDelta \mathfrak {k}^\epsilon {{T}}^{-1}_x \mathfrak {l}+ \epsilon \tilde{g}^\epsilon _2 \end{aligned}$$]

 (50)


[image: $$\begin{aligned} \delta _y \varDelta \mathfrak {k}^\epsilon&= ({{T}}^{-1}_x\mathfrak {l}^\epsilon )\,({{T}}^{-1}_\eta \varDelta w^\epsilon -{{T}}_\xi \varDelta v^\epsilon ) + ({{T}}^{-1}_x\varDelta \mathfrak {l}^\epsilon )\,({{T}}^{-1}_\eta w-{{T}}_\xi v) + \epsilon \tilde{g}^\epsilon _3 \end{aligned}$$]

 (51)


[image: $$\begin{aligned} \delta _x \varDelta \mathfrak {l}^\epsilon&= ({{T}}^{-1}_y\mathfrak {k}^\epsilon )\,({{T}}^{-1}_\eta \varDelta w^\epsilon +{{T}}^{-1}_\xi \varDelta v^\epsilon ) + ({{T}}^{-1}_y\varDelta \mathfrak {k}^\epsilon )\, ({{T}}^{-1}_\eta w+{{T}}^{-1}_\xi v) +\epsilon \tilde{g}^\epsilon _4 . \end{aligned}$$]

 (52)

Then the [image: $$\tilde{g}^\epsilon _j$$] are uniformly bounded with respect to [image: $$\epsilon <\bar{\epsilon }$$] on their respective domains:[image: $$\begin{aligned} |\tilde{g}^\epsilon _j| \le G \quad \text {on}\, \widehat{\varOmega }_{\bar{\rho }}^{[xxyy]\epsilon }(r|h), \text {for each}\ j=1,\ldots ,4, \end{aligned}$$]

 (53)

with a suitable constant G that depends on [image: $$\theta $$], and [image: $$\theta ^\epsilon $$] only via [image: $$\big \{\!\{\theta ^\epsilon -\theta \}\!\big \}_{h,0}$$], but is independent of [image: $$\epsilon $$].

Proof
By analyticity of [image: $$\theta $$] it is clear that the central difference quotients obey[image: $$ \delta _\xi v=\partial _\xi v+\epsilon g^\epsilon _{v,\xi },\quad \delta _\eta v=\partial _\eta v+\epsilon g^\epsilon _{v,\eta }\quad \text {etc.} $$]


with functions [image: $$g_{v,\xi }^\epsilon ,g_{v,\eta }^\epsilon ,\ldots \in C^{\omega }\big (\widehat{\varOmega }^{[xxyy]\epsilon }(r|h)\big )$$] that are bounded uniformly w.r.t. [image: $$\epsilon $$]. The classical Gauss-Codazzi system (9)–(12) thus implies that[image: $$\begin{aligned} \delta _\eta v&= \delta _\xi w + \epsilon g_1^\epsilon , \\ \delta _\eta w&= - \delta _\xi v - ({{T}}^{-1}_y\mathfrak {k})({{T}}^{-1}_x\mathfrak {l}) + \epsilon g_2^\epsilon , \\ \delta _y\mathfrak {k}&= ({{T}}^{-1}_x\mathfrak {l})({{T}}^{-1}_\eta w-{{T}}_\xi v) + \epsilon g_3^\epsilon , \\ \delta _x\mathfrak {l}&= ({{T}}^{-1}_y\mathfrak {k})({{T}}^{-1}_\eta w+{{T}}^{-1}_\xi v) + \epsilon g_4^\epsilon , \end{aligned}$$]


where each of the functions [image: $$g_j^\epsilon $$] is bounded on [image: $$\varOmega ^{[xxyy]\epsilon }(r|h)$$], with an [image: $$\epsilon $$]-independent bound. Taking the difference between each equation of this system and the respective equation of the [image: $$\epsilon $$]-discrete Gauss-Codazzi equation (31)–(34) yields (49)–(52), with[image: $$\begin{aligned} \tilde{g}^\epsilon _j = h^\epsilon _j({{T}}{\theta }^\epsilon ) - g^\epsilon _j . \end{aligned}$$]


Since the [image: $$h^\epsilon _j$$] are asymptotically analytic on [image: $$\mathbb {C}^8$$], it follows that the modulus of [image: $$h^\epsilon _j({{T}}{\theta }^\epsilon )$$] is uniformly controlled on [image: $$\varOmega ^{[xxyy]\epsilon }(r|h)$$] by the supremum of the modulus of [image: $$(\theta ^\epsilon )$$]’s components. [image: $$\square $$]
          


4.4 Stability
Stability is shown inductively. More precisely, we prove for each [image: $$n=1,2,\ldots $$] with [image: $$n\frac{\epsilon }{2}\le h$$] that[image: $$\begin{aligned} |||\theta ^\epsilon -\theta |||_{n\frac{\epsilon }{2}} < B\epsilon . \end{aligned}$$]

 (54)

In fact, there is nothing to show for [image: $$n=1$$]. For [image: $$n=2$$], the claim (54) is a consequence of estimate (46) on the initial data. Now assume that (54) has been shown for some [image: $$n\ge 2$$]. We are going to extend the estimate to [image: $$n+1$$].

          Estimate on [image: $$\varDelta v^\epsilon $$]. We begin by proving the estimate for the v-component of [image: $$\varDelta \theta ^\epsilon $$]. Since [image: $$v^\epsilon $$] is defined on [image: $$\widehat{\varOmega }_{\bar{\rho }}^{[xy]\epsilon }(r|h)$$], the step [image: $$n\rightarrow n+1$$] requires to estimate the values of [image: $$\varDelta v^\epsilon (\cdot ,\eta ^*)$$] for [image: $$\eta ^*\in ((n-1)\frac{\epsilon }{2},n\frac{\epsilon }{2}]$$]. Choose such an [image: $$\eta ^*$$], and define accordingly [image: $$\ell $$] such that [image: $$\eta ^*_0:=\eta ^*-\ell \epsilon \in (-\frac{\epsilon }{2},\frac{\epsilon }{2}]$$]; in fact, [image: $$2\ell =n$$] if n is even, and [image: $$n=2\ell +1$$] if n is odd. For [image: $$0\le k\le 2\ell $$], introduce[image: $$\begin{aligned} \eta ^*_k = \eta ^* - (2\ell -k)\frac{\epsilon }{2}; \end{aligned}$$]

 (55)

non-integer values of k are admitted. (55) is consistent with the definition of [image: $$\eta ^*_0$$], and moreover, [image: $$\eta ^*=\eta ^*_{2\ell }$$]. Using the evolution equation (49), we obtain[image: $$\begin{aligned} \varDelta v^\epsilon (\cdot ,\eta ^*)&= \varDelta v^\epsilon (\cdot ,\eta ^*_0) + \sum _{k=1}^\ell \big ({{T}}_\eta \varDelta v^\epsilon -{{T}}^{-1}_\eta \varDelta v^\epsilon \big )(\cdot ,\eta ^*_{2k-1}) \nonumber \\&= \varDelta v^\epsilon (\cdot ,\eta ^*_0) + \epsilon \sum _{k=1}^\ell \delta _\xi \varDelta w^\epsilon (\cdot ,\eta ^*_{2k-1}) + \epsilon ^2\sum _{k=1}^\ell \tilde{g}_1^\epsilon (\cdot ,\eta ^*_{2k-1}). \end{aligned}$$]

 (56)

Next, pick a [image: $$\rho ^*>0$$] such that[image: $$\begin{aligned} \frac{\rho ^*}{\bar{\rho }} + \frac{\eta ^*}{h} < 1. \end{aligned}$$]

 (57)

We estimate:[image: $$\begin{aligned} \left| \varDelta v^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*,\rho ^*} \le&\left| \varDelta v^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*_0,\rho ^*} + \epsilon \sum _{k=1}^\ell \left| \delta _\xi \varDelta w^\epsilon \right| ^{[xy\xi ]\epsilon }_{\eta ^*_{2k-1},\rho ^*} + \epsilon ^2\sum _{k=1}^\ell \left| \tilde{g}_1^\epsilon \right| ^{[xxyy]\epsilon }_{\eta ^*_{2k-1},\rho ^*} \nonumber \\&=: \mathrm {(I)} + \mathrm {(II)} + \mathrm {(III)}. \end{aligned}$$]

 (58)

We consider the terms [image: $$\mathrm {(I){-}(III)}$$] separately. First, thanks to our hypothesis (46) on the initial conditions, we find that[image: $$\begin{aligned} \mathrm {(I)} = \left| \varDelta v^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*_0,\rho ^*} \le \left\| \varDelta v^\epsilon \right\| ^{[xy]\epsilon }_{\epsilon } \le A\epsilon . \end{aligned}$$]


Second, recalling the definition of [image: $$\left\| \cdot \right\| ^{[xy]\epsilon }_{h}$$], and using a Cauchy estimate (42), we obtain for given [image: $$\rho ^*_{2k-1}>\rho ^*$$]—yet to be determined—[image: $$\begin{aligned} \mathrm {(II)}&=\epsilon \sum _{k=1}^\ell \left| \delta _\xi \varDelta w^\epsilon \right| ^{[xy\xi ]\epsilon }_{\eta ^*_{2k-1},\rho ^*} \le \epsilon \sum _{k=1}^\ell \left| \partial _\xi \varDelta w^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*_{2k-1},\rho ^*} \le \epsilon \sum _{k=1}^\ell \frac{\left| \varDelta w^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*_{2k-1},\rho ^*_{2k-1}}}{\rho ^*_{2k-1}-\rho ^*}\\&\le \epsilon \left( \sum _{k=1}^\ell \frac{1}{(\rho ^*_{2k-1}-\rho ^*)\varLambda (\eta ^*_{2k-1},\rho ^*_ { 2k-1})}\right) \,\left\| \varDelta w^\epsilon \right\| ^{[xy]\epsilon }_{n\frac{\epsilon }{2}}. \end{aligned}$$]


We make the particular choice[image: $$\begin{aligned} \rho ^*_{2k-1} := \frac{\bar{\rho }}{2}\left( 1-\frac{\eta ^*_{2k-1}}{h}+\frac{\rho ^*}{\bar{\rho }}\right) , \end{aligned}$$]


which yields that[image: $$\begin{aligned} \rho ^*_{2k-1}-\rho ^*&= \frac{\bar{\rho }}{2}\left( 1-\frac{\eta ^*_{2k-1}}{h}-\frac{\rho ^*}{\bar{\rho }}\right) , \\ \varLambda (\eta ^*_{2k-1},\rho ^*_{2k-1})&= \frac{1-\frac{\eta ^*_{2k-1}}{h}-\frac{\rho ^*_{2k-1}}{\bar{\rho }}}{1-\frac{\rho ^*_{2k-1}}{\bar{\rho }}} = \frac{1-\frac{\eta ^*_{2k-1}}{h}-\frac{\rho ^*}{\bar{\rho }}}{1+\frac{\eta ^*_{2k-1}}{h}-\frac{\rho ^*}{\bar{\rho }}}. \end{aligned}$$]


And so we obtain[image: $$\begin{aligned} \mathrm {(II)}&\le \frac{2}{\bar{\rho }}\left( 1+\frac{\eta ^*}{h}-\frac{\rho ^*}{\bar{\rho }}\right) \left( \epsilon \sum _{k=1}^\ell \left( 1-\frac{\eta ^*_{2k-1}}{h}-\frac{\rho ^*}{\bar{\rho }}\right) ^{-2}\right) \,\left\| \varDelta w^\epsilon \right\| ^{[xy]\epsilon }_{n\frac{\epsilon }{2}}. \end{aligned}$$]


To estimate the sum above, define [image: $$\varphi :(\eta ^*_0,\eta ^*)\rightarrow \mathbb {R}$$] by[image: $$\begin{aligned} \varphi (\eta ) = \left( 1-\frac{\eta }{h}-\frac{\rho ^*}{\bar{\rho }}\right) ^{-2}. \end{aligned}$$]


Since [image: $$\varphi $$] is a convex function, Jensen’s inequality implies that[image: $$\begin{aligned} \int _{\eta ^*_{2k-2}}^{\eta ^*_{2k}}\varphi (\eta )\,\mathrm {d}\eta \ge (\eta ^*_{2k}-\eta ^*_{2k-2})\varphi \left( \frac{1}{\eta ^*_{2k}-\eta ^*_{2k-2}}\int _{\eta ^*_{2k-2}}^{\eta ^*_{2k}}\eta \,\mathrm {d}\eta \right) = \epsilon \varphi (\eta ^*_{2k-1}). \end{aligned}$$]


Hence the sum is bounded from above by the respective integral,[image: $$\begin{aligned} \epsilon \sum _{k=1}^\ell \left( 1-\frac{\eta ^*_{2k-1}}{h}-\frac{\rho ^*}{\bar{\rho }}\right) ^{-2}&\le \int _{\eta ^*_0}^{\eta ^*_{2\ell }}\left( 1-\frac{\eta }{h}-\frac{\rho ^*}{\bar{\rho }}\right) ^{-2}\,\mathrm {d}\eta \\&\le h\,\left( 1-\frac{\eta ^*}{h}-\frac{\rho ^*}{\bar{\rho }}\right) ^{-1} = \frac{h}{\varLambda (\eta ^*,\rho ^*)\,(1-\rho ^*/\bar{\rho })}. \end{aligned}$$]


The last term [image: $$\mathrm {(III)}$$] is estimated with the help of the bound (53). However, there is a subtlety: a priori, the constant G there is controlled in terms of [image: $$\big \{\!\{\theta ^\epsilon -\theta \}\!\big \}_{n\frac{\epsilon }{2},0}$$], but the induction estimate (54) is not sufficient to provide such a uniform bound, due to the weight [image: $$\varLambda $$]. Fortunately, a close inspection of the terms in [image: $$\mathrm {(III)}$$] reveals in combination with (57) that we only need bounds on [image: $$|\tilde{g}^\epsilon _j|_{\eta ,\rho }$$] where [image: $$\rho /\bar{\rho }<1-\eta ^*/h-\frac{\epsilon }{2}/h$$]. It is easily deduced from Lemma 5 that an [image: $$\epsilon $$]-uniform estimate on [image: $$\big \{\!\{\theta ^\epsilon -\theta \}\!\big \}_{n\frac{\epsilon }{2},\delta }$$] with [image: $$\delta :=\bar{\rho }/h\frac{\epsilon }{2}>0$$] suffices in this case, and the latter is obtained by combining (54) with (48). Enlarging G if necessary, we arrive at[image: $$\begin{aligned} \mathrm {(III)} \le \epsilon ^2\sum _{k=1}^\ell G = (\epsilon \ell )\epsilon G \le G h \epsilon . \end{aligned}$$]


After multiplication of (58) by [image: $$\varLambda (\eta ^*,\rho ^*)\le 1$$], we arrive at[image: $$\begin{aligned} \varLambda (\eta ^*,\rho ^*)\left| \varDelta v^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*,\rho ^*}&\le A\epsilon + \frac{2h}{\bar{\rho }}\frac{1+\eta ^*/h-\rho ^*/\bar{\rho }}{1-\rho ^*/\bar{\rho }} \left\| \varDelta w^\epsilon \right\| ^{[xy]\epsilon }_{n\frac{\epsilon }{2}}+ G h \epsilon \nonumber \\&\le \left( A + \frac{4h}{\bar{\rho }}B + Gh \right) \epsilon , \end{aligned}$$]

 (59)

where we have used the induction hypothesis (54) for estimation of [image: $$\left\| \varDelta w^\epsilon \right\| ^{[xy]\epsilon }_{n\frac{\epsilon }{2}}$$], and the relation (57) for estimation of the quotient. We have just proven inequality (59) for every [image: $$\eta ^*\in ((n-1)\frac{\epsilon }{2},n\frac{\epsilon }{2}]$$], and for every [image: $$\rho ^*\ge 0$$] that satisfies (57). Taking the supremum with respect to these quantities yields[image: $$\begin{aligned} \left\| \varDelta v^\epsilon \right\| ^{[xy]\epsilon }_{(n+1)\frac{\epsilon }{2}} \le \left( A + \frac{4h}{\bar{\rho }}B + Gh \right) \epsilon . \end{aligned}$$]

 (60)


          Estimate on [image: $$\varDelta w^\epsilon $$]. For estimation of the w-component, let [image: $$\eta ^*\in ((n-1)\frac{\epsilon }{2},n\frac{\epsilon }{2}]$$] be given as before, and define [image: $$\eta ^*_k$$] as in (55). In analogy to (56), we have[image: $$\begin{aligned} \varDelta w^\epsilon (\cdot ,\eta ^*)&= \varDelta w^\epsilon (\cdot ,\eta ^*_0) + \epsilon \sum _{k=1}^\ell \delta _\xi \varDelta v^\epsilon (\cdot ,\eta ^*_{2k-1}) + \epsilon ^2\sum _{k=1}^\ell \tilde{g}_2^\epsilon (\cdot ,\eta ^*_{2k-1}) \\&+ \epsilon \sum _{k=1}^\ell \big ({{T}}^{-1}_y\mathfrak {k}^\epsilon \,{{T}}^{-1}_x\varDelta \mathfrak {l}^\epsilon \big )(\cdot ,\eta ^*_{2k-1}) + \epsilon \sum _{k=1}^\ell \big ({{T}}^{-1}_y\varDelta \mathfrak {k}^\epsilon \,{{T}}^{-1}_x\mathfrak {l}\big )(\cdot , \eta ^*_{2k-1}). \end{aligned}$$]


Taking the [image: $$\left| \cdot \right| ^{[xy]\epsilon }_{\eta ^*,\rho ^*}$$]-norm on both sides, multiplying by [image: $$\varLambda (\eta ^*,\rho ^*)<1$$], and estimating the first couple of terms as above, we find that[image: $$\begin{aligned}&\quad \varLambda (\eta ^*,\rho ^*)\left| \varDelta w^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*,\rho ^*} \le \left( A + \frac{4h}{\bar{\rho }}B + Gh \right) \epsilon \nonumber \\&+ \epsilon \sum _{k=1}^\ell \left( \left| \mathfrak {k}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*}\,\varLambda (\eta ^*,\rho ^*)\left| \varDelta \mathfrak {l}^\epsilon \right| ^{[xyy ]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*} +\left| \mathfrak {l}\right| ^{[xyy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*}\,\varLambda (\eta ^*,\rho ^*)\left| \varDelta \mathfrak {k}^\epsilon \right| ^{[ xxy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*} \right) \nonumber \\&\le \left( A + \frac{4h}{\bar{\rho }}B + Gh \right) \epsilon + \epsilon \sum _{k=1}^\ell \left( \left| \mathfrak {k}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*}\, \left\| \varDelta \mathfrak {l}^\epsilon \right\| ^{[xxy]\epsilon }_{n\frac{\epsilon }{2}} +\left| \mathfrak {l}\right| ^{[xyy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*}\, \left\| \varDelta \mathfrak {k}^\epsilon \right\| ^{[xxy]\epsilon }_{n\frac{\epsilon }{2}}\right) . \end{aligned}$$]

 (61)

On the one hand, the analytic solution [image: $$\theta $$] is bounded on [image: $$\widehat{\varOmega }_{\bar{\rho }}(r|\bar{h})$$], and so[image: $$\begin{aligned} \left\| \mathfrak {k}\right\| ^{[xxy]\epsilon }_{n\frac{\epsilon }{2}} \le \varTheta :=\sup _{\widehat{\varOmega }_{\bar{\rho }}(r|\bar{h})}|\theta |. \end{aligned}$$]

 (62)

On the other hand, since [image: $$\eta ^*_{2k-\frac{3}{2}}\le \eta ^*-\frac{3}{4}\epsilon $$], and because of (57), we have that[image: $$\begin{aligned} \varLambda (\eta ^*_{2k-\frac{3}{2}},\rho ^*) = \frac{1-\eta ^*_{2k-\frac{3}{2}}/h-\rho ^*/\bar{\rho }}{1-\rho ^*/\bar{\rho }} \ge \frac{3}{4}\frac{\epsilon }{h}, \end{aligned}$$]


and therefore, using the induction hypothesis (54),[image: $$\begin{aligned} \left| \mathfrak {k}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*} \le \left| \mathfrak {k}\right| ^{[xxy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*} + \left| \varDelta \mathfrak {k}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{2k-\frac{3}{2}},\rho ^*}&\le \sup _{\widehat{\varOmega }_{\bar{\rho }}(r|\bar{h})}|\theta | + \frac{\left\| \varDelta \mathfrak {k}^\epsilon \right\| ^{[xxy]\epsilon }_{n\frac{\epsilon }{2}}}{\varLambda (\eta ^*_{2k-\frac{3}{2}},\rho ^*)} \nonumber \\&\le \varTheta + \frac{B\epsilon }{(3\epsilon )/(4h)} = \varTheta + \frac{4}{3}Bh. \end{aligned}$$]

 (63)

The remaining terms [image: $$\left\| \varDelta \mathfrak {k}^\epsilon \right\| ^{[xyy]\epsilon }_{n\frac{\epsilon }{2}}$$] and [image: $$\left\| \varDelta \mathfrak {l}^\epsilon \right\| ^{[xyy]\epsilon }_{n\frac{\epsilon }{2}}$$] in (61) can be estimated directly by (54). Substitution of these partial estimates into (61), and recalling that [image: $$\ell \epsilon \le h$$], leads to[image: $$\begin{aligned} \varLambda (\eta ^*,\rho ^*)\left| \varDelta v^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*,\rho ^*} \le \left( A + \left[ \frac{4}{\bar{\rho }}+2\varTheta +\frac{4}{3}Bh\right] Bh + Gh \right) \epsilon . \end{aligned}$$]

 (64)


          Estimate on [image: $$\varDelta \mathfrak {k}^\epsilon $$]. Finally, let us estimate [image: $$\varDelta \mathfrak {k}^\epsilon (\cdot ,\eta ^*)$$] at some [image: $$\eta ^*\in ((n-\frac{3}{2})\frac{\epsilon }{2},(n-\frac{1}{2})\frac{\epsilon }{2}]$$]. For the estimates below, let in addition a [image: $$\xi ^*\in \mathbb {C}$$] be given such that [image: $$(\xi ^*,\eta ^*)\in \widehat{\varOmega }_{\bar{\rho }}^{[xxy]\epsilon }(r|h)$$]. We need to use a slightly different normalization for the [image: $$\eta ^*_k$$] in (55): write [image: $$\eta ^*=\eta ^*_{-\frac{1}{2}}+m\frac{\epsilon }{2}$$] for suitable [image: $$\eta ^*_{-\frac{1}{2}}\in (-\frac{\epsilon }{4},\frac{\epsilon }{4}]$$] and a (uniquely determined) [image: $$m\in \mathbb {N}$$]. Now define[image: $$\begin{aligned} \xi ^*_k=\xi ^*+(m-k+\frac{1}{2})\frac{\epsilon }{2}, \quad \eta ^*_k=\eta ^*-(m-k+\frac{1}{2})\frac{\epsilon }{2}; \end{aligned}$$]


note that [image: $$\xi ^*=\xi ^*_{m-1/2}$$] and [image: $$\eta ^*=\eta ^*_{m-\frac{1}{2}}$$]. With these notations:[image: $$\begin{aligned}&\varDelta \mathfrak {k}^\epsilon (\xi ^*,\eta ^*) = \varDelta \mathfrak {k}^\epsilon (\xi ^*_{-\frac{1}{2}},\eta ^*_{-\frac{1}{2}}) + \sum _{k=0}^{m-1} \big ({{T}}_y\varDelta \mathfrak {k}^\epsilon -{{T}}^{-1}_y\varDelta \mathfrak {k}^\epsilon \big ) (\xi ^*_k,\eta ^*_k) \\&\ = \varDelta \mathfrak {k}^\epsilon (\xi ^*_{-\frac{1}{2}},\eta ^*_{-\frac{1}{2}}) + \epsilon \sum _{k=0}^{m-1}\mathfrak {l}^\epsilon (\xi ^*_{k+\frac{1}{2}},\eta ^*_{k-\frac{1}{2}})\, \left( \varDelta w^\epsilon (\xi ^*_k,\eta ^*_{k-1})-\varDelta v^\epsilon (\xi ^*_{k+1},\eta _k)\right) \\&\quad +\epsilon \sum _{k=0}^{m-1}\varDelta \mathfrak {l}^\epsilon (\xi ^*_{k+\frac{1}{2}},\eta ^*_{k-\frac{1}{2}})\, \left( w(\xi ^*_k,\eta ^*_{k-1})-v(\xi ^*_{k+1},\eta ^*_k)\right) +\epsilon ^2\sum _{k=0}^{m-1}\tilde{g}_3^\epsilon (\xi ^*_k,\eta ^*_{k}). \end{aligned}$$]


It is straight-forward to verify that all the terms on the right-hand side are well-defined for the given arguments. For a given [image: $$\rho ^*$$] that satisfies (57), we apply the semi-norm [image: $$\left| \cdot \right| ^{[xxy]\epsilon }_{\eta ^*,\rho ^*}$$] to both sides and estimate further, using the triangle inequality:[image: $$\begin{aligned} \left| \varDelta \mathfrak {k}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^{*},\rho ^{*}} \le&\left| \varDelta \mathfrak {k}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{-\frac{1}{2}},\rho ^*} + \epsilon \sum _{k=0}^{m-1}\left| \mathfrak {l}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{k-\frac{1}{2}},\rho ^*} \left( \left| \varDelta w^\epsilon \right| ^{[xy]\epsilon }_{\eta _{k-1},\rho ^*}+\left| \varDelta v^\epsilon \right| ^{[xy]\epsilon }_{\eta _k,\rho ^*}\right) \nonumber \\&+ \epsilon \sum _{k=0}^{m-1}\left| \varDelta \mathfrak {l}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{k-\frac{1}{2}},\rho ^*} \left( \left| w\right| ^{[xy]\epsilon }_{\eta _{k-1},\rho ^*}+\left| v\right| ^{[xy]\epsilon }_{\eta ^*_k,\rho ^*}\right) +\epsilon ^2\sum _{k=0}^{m-1}\left| \tilde{g}_3^\epsilon \right| ^{[xy]\epsilon }_{\eta ^*_k,\rho ^*}. \end{aligned}$$]

 (65)

On the one hand, we have that[image: $$\begin{aligned} \left| w\right| ^{[xy]\epsilon }_{\eta _{k-1},\rho ^*}+\left| v\right| ^{[xy]\epsilon }_{\eta _k,\rho ^*} \le \sup _{\widehat{\varOmega }_{\bar{\rho }}(r|\bar{h})}|w| + \sup _{\widehat{\varOmega }_{\bar{\rho }}(r|\bar{h})}|v| \le 2\varTheta , \end{aligned}$$]


with the bound [image: $$\varTheta $$] from (62). And on the other hand, arguing like in (63) on grounds of [image: $$\eta ^*_{k-\frac{1}{2}}\le \eta ^*-\frac{3}{4}\epsilon $$] for all [image: $$k=0,\ldots ,m-1$$], we have the estimate[image: $$\begin{aligned} \left| \mathfrak {l}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{k-\frac{1}{2}},\rho ^*} \le \left| \mathfrak {l}\right| ^{[xxy]\epsilon }_{\eta ^*_{k-\frac{1}{2}},\rho ^*} + \left| \varDelta \mathfrak {l}^\epsilon \right| ^{[xxy]\epsilon }_{\eta ^*_{k-\frac{1}{2}},\rho ^*} \le \varTheta + \frac{4}{3}Bh. \end{aligned}$$]


Substitute this into (65) and multiply by [image: $$\varLambda (\eta ^*,\rho ^*)$$] to obtain[image: $$\begin{aligned} \left\| \varDelta \mathfrak {k}^\epsilon \right\| ^{[xxy]\epsilon }_{(n+1)\frac{\epsilon }{2}} \le \left( A + 4\left[ \varTheta +\frac{1}{3}Bh\right] Bh +Gh\right) \epsilon . \end{aligned}$$]

 (66)


          Estimate on [image: $$\varDelta \mathfrak {l}^\epsilon $$]. This is completely analogous to the estimate for [image: $$\varDelta \mathfrak {k}^\epsilon $$] above.
Summarizing the results in (60), (64) and (66), we obtain (54) with [image: $$n+1$$] in place of n, for an arbitrary choice of [image: $$B>A$$], and any corresponding [image: $$h>0$$] that is sufficiently small to make the coefficients in front of [image: $$\epsilon $$] in (60), (64) and (66) smaller than B. Notice that the implied smallness condition on h is independent of [image: $$\epsilon $$].


5 The Continuous Limit of Discrete Isothermic Surfaces
We are finally in the position to formulate and prove our main approximation result.
5.1 From Björling Data to Cauchy Data and Back
Given analytic Björling data (f, n) in the sense of Theorem 1, first compute the associated frame [image: $$\varPsi ^0$$], the conformal factor [image: $$u^0$$], and the derived quantities [image: $$v^0,w^0,\mathfrak {k}^0,\mathfrak {l}^0$$] as functions on [image: $$(-r,r)$$] as detailed in the proof there. We claim that, for any sufficiently small [image: $$\epsilon >0$$], associated Björling data [image: $$f^\epsilon :\varOmega (r|\frac{\epsilon }{2})\rightarrow \mathbb {R}^3$$] for construction of an [image: $$\epsilon $$]-discrete isothermic surface can be prescribed such that the following are true:	(1)The initial surface piece and its tangent vectors are approximated to first order in [image: $$\epsilon $$], [image: $$\begin{aligned} f^\epsilon (\xi ,\eta )&= f(\xi ) + \mathscr {O}(\epsilon ),\nonumber \\ \delta _xf^\epsilon (\xi ,\eta )&= \exp (u^0(\xi ))\varPsi ^0_1(\xi ) + \mathscr {O}(\epsilon ),\nonumber \\ \delta _yf^\epsilon (\xi ,\eta )&= \exp (u^0(\xi ))\varPsi ^0_2(\xi ) + \mathscr {O}(\epsilon ), \end{aligned}$$]

 (67)

 where the [image: $$\mathscr {O}(\epsilon )$$] indicate [image: $$\epsilon $$]-smallness that is uniform in [image: $$(\xi ,\eta )$$] on the domains [image: $$\varOmega (r|\frac{\epsilon }{2})$$] for [image: $$f^\epsilon $$], and [image: $$\varOmega ^{[x]\epsilon }(r|\frac{\epsilon }{2})$$] for [image: $$\delta _xf^\epsilon $$], and [image: $$\varOmega ^{[y]\epsilon }(r|\frac{\epsilon }{2})$$] for [image: $$\delta _yf^\epsilon $$], respectively.


 

	(2)The derived quantities [image: $$(v^\epsilon , w^\epsilon ,\mathfrak {k}^\epsilon ,\mathfrak {l}^\epsilon )$$] satisfy [image: $$\begin{aligned} v^\epsilon (\xi ,\eta )=v^0(\xi ), \quad {\tilde{w}}^\epsilon (\xi ,\eta )=w^0(\xi ), \quad \mathfrak {k}^\epsilon (\xi ,\eta )=\mathfrak {k}^0(\xi ), \quad \mathfrak {l}^\epsilon (\xi ,\eta )=\mathfrak {l}^0(\xi ), \end{aligned}$$]

 (68)

 at each point [image: $$(\xi ,\eta )$$] in [image: $$\varOmega ^{[xy]\epsilon }(r|\epsilon )$$] for [image: $$v^\epsilon ,{\tilde{w}}^\epsilon $$], in [image: $$\varOmega ^{[xxy]\epsilon }(r|\epsilon )$$] for [image: $$\mathfrak {k}^\epsilon $$], and in [image: $$\varOmega ^{[xyy]\epsilon }(r|\epsilon )$$] for [image: $$\mathfrak {l}^\epsilon $$], respectively.


 





Notice that the data [image: $$(v^\epsilon , w^\epsilon ,\mathfrak {k}^\epsilon ,\mathfrak {l}^\epsilon )$$] are [image: $$\xi $$]-analytic quantities; ironically, one cannot even expect continuity of the respective data [image: $$f^\epsilon $$] in general.
For later reference, we briefly sketch one possible construction of such data [image: $$f^\epsilon $$]. We start by defining [image: $$f^\epsilon $$] on point triples in the strip [image: $$-3\frac{\epsilon }{4}<\xi \le 3\frac{\epsilon }{4}$$]: let [image: $$(\xi ,\eta )\in \varOmega (r|\frac{\epsilon }{2})$$] be a point with [image: $$-\frac{\epsilon }{4}<\xi \le \frac{\epsilon }{4}$$]. We distinguish two cases. If [image: $$0<\eta \le \frac{\epsilon }{2}$$], then we define [image: $$f^\epsilon (\xi ,\eta -\frac{\epsilon }{2})=f(0)$$], and there is a unique way to assign data [image: $$f^\epsilon $$] at the two points [image: $$(\xi -\frac{\epsilon }{2},\eta )$$] and [image: $$(\xi +\frac{\epsilon }{2},\eta )$$] such that for the vectors[image: $$ a=\frac{1}{\epsilon }\big (f^\epsilon (\xi +\frac{\epsilon }{2},\eta )-f^\epsilon (\xi ,\eta -\frac{\epsilon }{2})\big ), \quad b=\frac{1}{\epsilon }\big (f^\epsilon (\xi -\frac{\epsilon }{2},\eta )-f^\epsilon (\xi ,\eta -\frac{\epsilon }{2})\big ), $$]


the following is true:	(1)
                  a is parallel to [image: $$\varPsi ^0_1(0)$$], and b is orthogonal to n(0),


 

	(2)
                  [image: $$\displaystyle {\epsilon w^0(\xi ) = \frac{\langle a,b\rangle }{\Vert a\Vert \Vert b\Vert }}$$],


 

	(3)
                  [image: $$\Vert a\Vert =\exp \big (u^0(0)+\frac{\epsilon }{2}v^0(\xi )\big )$$] and [image: $$\Vert b\Vert =\exp \big (u^0(0)-\frac{\epsilon }{2}v^0(\xi )\big )$$].


 





If instead [image: $$-\frac{\epsilon }{2}<\eta \le 0$$], then we define [image: $$f^\epsilon (\xi ,\eta +\frac{\epsilon }{2})=f(0)$$], and we assign data [image: $$f^\epsilon $$] at [image: $$(\xi +\frac{\epsilon }{2},\eta )$$] and at [image: $$(\xi -\frac{\epsilon }{2},\eta )$$] with the respective adaptations for the conditions on the vectors.
Up to here, there has been a certain degree of freedom in the choice of the [image: $$f^\epsilon $$]. From now on, there is a unique way to extend the already prescribed [image: $$f^\epsilon $$] to all of [image: $$\varOmega (r|\frac{\epsilon }{2})$$] such that (68)—and, incidentally, also (67)—holds. We briefly indicate how to proceed in the next step; the further steps are then made inductively in the same way. Let [image: $$(\xi ,\eta )$$] be a point with [image: $$3\frac{\epsilon }{4}<\xi \le 5\frac{\epsilon }{4}$$], and with [image: $$-\frac{\epsilon }{2}<\eta \le 0$$]. Note that [image: $$f^\epsilon $$] is already defined at the following points: [image: $$(\xi -\epsilon ,\eta )$$], [image: $$(\xi -\frac{\epsilon }{2},\eta +\frac{\epsilon }{2})$$] and [image: $$(\xi -3\frac{\epsilon }{2},\eta +\frac{\epsilon }{2})$$]. Let us introduce the vectors[image: $$\begin{aligned} a=\frac{1}{\epsilon }\big (f^\epsilon (\xi -\frac{\epsilon }{2},\eta +\frac{\epsilon }{2})-f^\epsilon (\xi -\epsilon ,\eta )\big ), \quad b=\frac{1}{\epsilon }\big (f^\epsilon (\xi -3\frac{\epsilon }{2},\eta +\frac{\epsilon }{2})-f^\epsilon (\xi -\epsilon ,\eta )\big ). \end{aligned}$$]


Then, there is a unique choice for [image: $$f^\epsilon (\xi ,\eta )$$] such that the new vector[image: $$\begin{aligned} c=\frac{1}{\epsilon }\big (f^\epsilon (\xi -\frac{\epsilon }{2},\eta +\frac{\epsilon }{2})-f^\epsilon (\xi ,\eta )\big ) \end{aligned}$$]


satisfies the following conditions:	(1)the [image: $$\sin $$]-value of the angle between the planes spanned by (a, b) and by (b, c), respectively, equals to [image: $$\epsilon \mathfrak {k}^0(\xi -3\frac{\epsilon }{4})$$],


 

	(2)
                  [image: $$\displaystyle {\frac{\langle a,c\rangle }{\Vert a\Vert \Vert c\Vert }=\epsilon w^0(\xi -\frac{\epsilon }{2})}$$],


 

	(3)
                  [image: $$\Vert c\Vert =\Vert b\Vert \exp (\frac{\epsilon }{2}v^0(\xi -\frac{\epsilon }{2}))$$].


 





By continuing this construction in an inductive manner, we enlarge the domain of definition with respect to [image: $$\xi $$] by [image: $$\frac{\epsilon }{2}$$] in both directions in each step, until [image: $$f^\epsilon $$] is defined on all of [image: $$\varOmega (r|\frac{\epsilon }{2})$$]. It is obvious from the construction that (68) holds. The verification of (67) is a tedious but straight-forward exercise in elementary geometry that we leave to the interested reader. An important point is that the aforementioned construction only uses data that can be obtained very directly from the Björling data (f, n). Indeed, the calculation of [image: $$u^0$$], [image: $$\varPsi ^0$$] and [image: $$(v^0,w^0,\mathfrak {k}^0,\mathfrak {l}^0)$$] from (f, n) only involves differentiation and inversion of matrices. In particular, all operations are local.
Definition 8
Assume that analytic Björling data (f, n) and discrete data [image: $$f^\epsilon :\varOmega (r|\frac{\epsilon }{2})$$] are given such that (67) and (68) are satisfied. The maximal [image: $$\epsilon $$]-discrete isothermic surface [image: $$F^\epsilon :\varOmega (r|h_\epsilon )$$] that is obtained from [image: $$f^\epsilon $$] as Björling data—see Proposition 1—is referred to as grown from (f, n).


5.2 Main Result
The central approximation result is the following.
Theorem 2
Let analytic Björling data (f, n) on [image: $$(-r,r)$$] be given, and let [image: $$F:\varOmega (r|\bar{h})\rightarrow \mathbb {R}^3$$] be the corresponding real-analytic isothermic surface. Further, let [image: $$F^\epsilon :\varOmega (r|h^\epsilon )\rightarrow \mathbb {R}^3$$] be the family of [image: $$\epsilon $$]-discrete isothermic surfaces that are grown from (f, n).
Then, there are some [image: $$h>0$$] and [image: $$C>0$$], such that for all sufficiently small [image: $$\epsilon >0$$], we have that [image: $$h_\epsilon \ge h$$], and[image: $$\begin{aligned} \Vert F^\epsilon (\xi ,\eta )-F(\xi ,\eta )\Vert \le C\epsilon , \quad \Vert \delta _xF^\epsilon (\xi ,&\eta )-F_x(\xi ,\eta )\Vert \le C\epsilon , \nonumber \\&\Vert \delta _yF^\epsilon (\xi ,\eta )-F_y(\xi ,\eta )\Vert \le C\epsilon , \end{aligned}$$]

 (69)

for all [image: $$(\xi ,\eta )\in \varOmega ^{[xy]\epsilon }(r|h)$$].

Theorem 2 above gives an answer to the question of how to approximate the unique isothermic surface F that is determined by given Björling data by a family of [image: $$\epsilon $$]-isothermic surfaces [image: $$F^\epsilon $$]. Our construction of the surface [image: $$F^\epsilon $$] is completely explicit, and it requires no a priori knowledge about F. The plots in Figs. 5 and 6 illustrate that our construction can be used to generate pictures of the surfaces [image: $$F^\epsilon $$] with just a few lines of code.[image: A371662_1_En_10_Fig5_HTML.gif]
Fig. 5A part of a sphere in different degrees of discretization




[image: A371662_1_En_10_Fig6_HTML.gif]
Fig. 6Examples of discrete isothermic surfaces: torus (left), hyperbolic paraboloid (right)





Remark 7
Note that if the discrete isothermic surfaces [image: $$F^\epsilon $$] converge to a smooth isothermic surface F, then also the discrete Christoffel and Darboux transforms of [image: $$F^\epsilon $$] converge to the corresponding smooth Christoffel and Darboux transforms of F. This will be proven in Sect. 6.

Proof
(of Theorem 2) Since F is real-analytic on [image: $$\varOmega (r|\bar{h})$$], the derived quantities u, v, w and [image: $$\mathfrak {k},\mathfrak {l}$$] are real-analytic there as well, and can be extended to functions in [image: $$C^{\omega }\big (\widehat{\varOmega }(r|\bar{h})\big )$$], for a suitable choice of the “fattening parameter” [image: $$\bar{\rho }>0$$], after diminishing [image: $$\bar{h}>0$$] if necessary. The extensions satisfy the Gauss-Codazzi system (9)–(12) on the complexified domain.
Next, consider the [image: $$\epsilon $$]-discrete isothermic surfaces [image: $$F^\epsilon :\varOmega (r|h_\epsilon )\rightarrow \mathbb {R}$$] that are grown from the Björling data (f, n). Define the associated quantities [image: $$v^\epsilon ,w^\epsilon ,\mathfrak {k}^\epsilon ,\mathfrak {l}^\epsilon $$]. Thanks to (68), these are real analytic functions on [image: $$\varOmega ^{[xy]\epsilon }(r|\epsilon )$$], and they extend complex-analytically w.r.t. [image: $$\xi $$] to [image: $$\widehat{\varOmega }_{\bar{\rho }}^{[xy]\epsilon }(r|\epsilon )$$]. Since the quadruple [image: $$(v^\epsilon ,w^\epsilon ,\mathfrak {k}^\epsilon ,\mathfrak {l}^\epsilon )$$] satisfies the discrete Gauss-Codazzi equations (31)–(34), the [image: $$\xi $$]-analyticity is propagated from the initial strip to the maximal domain of existence, i.e., [image: $$v^\epsilon ,w^\epsilon \in C^{\omega }\big (\widehat{\varOmega }^{[xy]\epsilon }(r|h_\epsilon )\big )$$] etc.
Moreover, again thanks to (68), the differences [image: $$\varDelta v^\epsilon $$], [image: $$\varDelta \mathfrak {k}^\epsilon $$] and [image: $$\varDelta \mathfrak {l}^\epsilon $$] are of order [image: $$\mathscr {O}(\epsilon )$$] on the initial strip:[image: $$ \left\| \varDelta v^\epsilon \right\| ^{[xy]\epsilon }_{\epsilon }\le A\epsilon ,\quad \left\| \varDelta \mathfrak {k}^\epsilon \right\| ^{[xxy]\epsilon }_{\epsilon }\le A\epsilon , \quad \left\| \varDelta \mathfrak {l}^\epsilon \right\| ^{[xyy]\epsilon }_{\epsilon }\le A\epsilon , $$]


with a suitable [image: $$\epsilon $$]-independent constant A. For the remaining differences [image: $$\varDelta w^\epsilon $$], it follows via Lemma 3 on the equivalence of [image: $$(v^\epsilon ,w^\epsilon )$$] and [image: $$({\tilde{v}}^\epsilon ,{\tilde{w}}^\epsilon )$$] that they satisfy the same estimate (enlarging A if necessary):[image: $$\begin{aligned} \left\| \varDelta w^\epsilon \right\| ^{[xy]\epsilon }_{\epsilon }\le A\epsilon . \end{aligned}$$]


We are thus in the situation to apply Proposition 3. From the estimate (47), it follows in particular that[image: $$\begin{aligned} v^\epsilon = v+\mathscr {O}(\epsilon ), \quad w^\epsilon = w+\mathscr {O}(\epsilon ), \quad \mathfrak {k}^\epsilon = \mathfrak {k}+\mathscr {O}(\epsilon ), \quad \mathfrak {l}^\epsilon = \mathfrak {l}+\mathscr {O}(\epsilon ). \end{aligned}$$]

 (70)

Here and below, we use the slightly ambiguous notation [image: $$\mathscr {O}(\epsilon )$$] to express that the discrete quantities approximate the associated continuous ones uniformly on their respective (real) domains [image: $$\varOmega ^{[xy]\epsilon }(r|h_{\epsilon })$$] or [image: $$\varOmega ^{[xxy]\epsilon }(r|h_{\epsilon })$$], [image: $$\varOmega ^{[xyy]\epsilon }(r|h_{\epsilon })$$], with a maximal error of order [image: $$\epsilon $$].
Next, we conclude from (70) that also[image: $$\begin{aligned} a^\epsilon = a + \mathscr {O}(\epsilon ), \quad b^\epsilon = b+\mathscr {O}(\epsilon ), \quad {\hat{u}}^\epsilon = u +\mathscr {O}(\epsilon ), \quad {\check{u}}^\epsilon = u + \mathscr {O}(\epsilon ). \end{aligned}$$]

 (71)

Indeed, it follows directly from the definition of these quantities that (71) implies[image: $$\begin{aligned} \delta _xF^\epsilon = \exp ({\hat{u}}^\epsilon )a^\epsilon = \exp \big (u+\mathscr {O}(\epsilon )\big )\big (a+\mathscr {O}(\epsilon )\big ) = \exp (u)a+\mathscr {O}(\epsilon ) = \partial _xF+\mathscr {O}(\epsilon ), \end{aligned}$$]


and, likewise, [image: $$\delta _yF^\epsilon =\partial _yF+\mathscr {O}(\epsilon )$$], which, eventually, implies further that also [image: $$F^\epsilon =F+\mathscr {O}(\epsilon )$$], thanks to [image: $$F^\epsilon (\xi ,\eta )= F(0)$$] for [image: $$-\frac{\epsilon }{4}<\xi <\frac{\epsilon }{4}$$] and [image: $$-\frac{\epsilon }{2}<\eta \le \frac{\epsilon }{2}$$] by construction. Therefore, our claim (69) is a consequence of (71).
We only sketch the proof of (71), that is little more than a repeated application of the Gronwall lemma. For further technical details, we refer the reader to [2], where the relevant estimates have been carried out in a very similar situation, see the proof of Theorem 5.4 therein.
First of all, the claim (71) holds on the strip [image: $$\varOmega ^{[xy]\epsilon }(r|\epsilon )$$] thanks to (67). Now compare the frame equations (6) & (7) with their discrete analogs from (28)–(30):[image: $$\begin{aligned}&\partial _xu = w+v \quad \text {and} \quad \delta _x{\check{u}}^\epsilon = w^\epsilon + v^\epsilon ,\\&\partial _yu = w-v \quad \text {and} \quad \delta _y{\hat{u}}^\epsilon = w^\epsilon - v^\epsilon ,\\&\partial _xb = (w-v) ({{T}}^{-1}_ya+\mathscr {O}(\epsilon )) \quad \text {and} \quad \delta _xb^\epsilon = (w^\epsilon -v^\epsilon +\mathscr {O}(\epsilon )){{T}}^{-1}_ya^\epsilon +\mathscr {O}(\epsilon ){{T}}^{-1}_xb^\epsilon , \\&\partial _ya = (w-v) ({{T}}^{-1}_xb+\mathscr {O}(\epsilon )) \quad \text {and} \quad \delta _ya^\epsilon = (w^\epsilon -v^\epsilon +\mathscr {O}(\epsilon )){{T}}^{-1}_xb^\epsilon +\mathscr {O}(\epsilon ){{T}}^{-1}_ya^\epsilon . \end{aligned}$$]


Subtract the respective equations, recall (70), and use a standard Gronwall argument to conclude that the validity of (71) extends from the “initial strip” to the entire domain [image: $$\varOmega ^{[xxyy]\epsilon }(r|h)$$].
A posteriori, we conclude that [image: $$h_\epsilon \uparrow h$$] as [image: $$\epsilon \downarrow 0$$]. where [image: $$h>0$$] is the constant obtained in the proof of Proposition 3. Indeed, thanks to the uniform closeness of the discrete tangent vectors [image: $$\delta _xF^\epsilon $$], [image: $$\delta _yF^\epsilon $$] to their continuous counterparts [image: $$\partial _xF$$], [image: $$\partial _yF$$]—which are orthogonal with non-vanishing length—it easily follows that there cannot occur any degeneracies in [image: $$F^\epsilon $$] at any [image: $$h^\epsilon <h$$]. [image: $$\square $$]
          



6 Transformations
Isothermic surfaces have an exceptionally rich transformation theory. For the definition of discrete isothermic surfaces used in this paper this transformation theory carries over to the discrete setup.
We consider two important transformations, namely the Christoffel transformation and Darboux transformation. Their analogs for discrete isothermic surfaces may for example be found in [3, 4, 14–16]. It is a natural question whether the convergence results of Theorem 2 can be generalized to imply the convergence of the transformed surfaces.
6.1 Christoffel Transformation
We briefly remind the classical definition of the Christoffel transformation. The included existence claim was first proved by Christoffel [10].
Definition 9
Let [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] be an isothermic surface. Then the [image: $$\mathbb {R}^3$$]-valued one-form [image: $$dF^\star $$] defined by[image: $$\begin{aligned} F_x^\star =\frac{F_x}{\Vert F_x\Vert ^2}, \qquad F_y^\star =-\frac{F_y}{\Vert F_y\Vert ^2}, \end{aligned}$$]


is closed. The surface [image: $$F^\star :\varOmega (r|h)\rightarrow \mathbb {R}^3$$], defined (up to translation) by integration of this one-form, is isothermic and is called dual to the surface F or Christoffel transform of the surface F.

Given any isothermic surface F and its dual [image: $$F^\star $$], straightforward calculation leads to the following relations between corresponding quantities.[image: $$\begin{aligned} F_x^\star&= \text {e}^{-2u}F_x,&F_y^\star&= -\text {e}^{-2u}F_y,&N^\star&=-N, \\ u^\star&=-u,&v^\star&=-v,&w^\star&=-w,&\mathfrak {k}^\star&= -\mathfrak {k},&\mathfrak {l}^\star&= \mathfrak {l}. \end{aligned}$$]


The discrete case is nearly the same, see for example [3].
Definition 10
Let [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] be a discrete isothermic surface. Then the [image: $$\mathbb {R}^3$$]-valued discrete one-form [image: $$\delta (F^\star )^\epsilon $$] defined by[image: $$ \delta _x (F^\star )^\epsilon =\frac{\delta _x F^\epsilon }{\Vert \delta _x F^\epsilon \Vert ^2}, \qquad \delta _y (F^\star )^\epsilon = -\frac{\delta _y F^\epsilon }{\Vert \delta _y F^\epsilon \Vert ^2}, $$]


is closed. The surface [image: $$(F^\star )^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$], defined (up to translation) by integration of this discrete one-form, is a discrete isothermic surface and is called dual to [image: $$F^\epsilon $$] or Christoffel transform of [image: $$F^\epsilon $$].

Corollary 1
Under the assumptions of Theorem 2 not only the discrete isothermic surface itself converges to the corresponding smooth isothermic surface, but also the discrete Christoffel transforms converge to the corresponding Christoffel transforms of the smooth isothermic surface.

Proof
Recall the definitions of the discrete quantities in Sect. 3.4. We immediately deduce the following relations for a discrete isothermic surface [image: $$F^\epsilon $$] and its dual [image: $$(F^\star )^\epsilon $$]. For better reading we omit the superscript [image: $$\epsilon $$].[image: $$\begin{aligned} a^\star&= a,&b^\star&= -b,&{\hat{u}}^\star&=-{\hat{u}},&{\check{u}}^\star&=-{\check{u}},&N^\star&=-N, \\ {\tilde{v}}^\star&=-{\tilde{v}},&{\tilde{w}}^\star&=-{\tilde{w}},&v^\star&=-v,&w^\star&=-w,&\mathfrak {k}^\star&= -\mathfrak {k},&\mathfrak {l}^\star&= \mathfrak {l}. \end{aligned}$$]


Now the proof follows directly from the corresponding proofs in Sects. 4 and 5. [image: $$\square $$]
          


6.2 Darboux Transformation
The Darboux transformation for isothermic surfaces was introduced by Darboux [12]. It is a special case of a Ribaucour transformation and is closely connected to Möbius geometry as well as to the integrable system approach to isothermic surfaces, see for example [15].
Definition 11
Let [image: $$F:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] be an isothermic surface. Then the isothermic surface [image: $$F^+:\varOmega (r|h)\rightarrow \mathbb {R}^3$$] is called a Darboux transform of F if[image: $$\begin{aligned} F_x^+&=-\frac{\Vert F^+-F\Vert ^2}{C\Vert F_x\Vert ^2} \left( F_x -2\langle F_x, \frac{F^+-F}{\Vert F^+-F\Vert }\rangle \frac{F^+-F}{\Vert F^+-F\Vert } \right) , \\ F_y^+&=\frac{\Vert F^+-F\Vert ^2}{C\Vert F_y\Vert ^2} \left( F_y -2\langle F_y, \frac{F^+-F}{\Vert F^+-F\Vert }\rangle \frac{F^+-F}{\Vert F^+-F\Vert }\right) , \end{aligned}$$]


where [image: $$C\in \mathbb {R}$$], [image: $$C\ne 0$$], is a constant which is called parameter of the Darboux transformation.

In the discrete case the definition of the Darboux transformation may be interpreted as “discrete Ribaucour transformation” using intersecting instead of touching spheres. In particular, recall the definition of the cross-ratio [image: $$q(p_1,p_2,p_3,p_4)$$] of four coplanar points [image: $$p_1,\dots ,p_4$$]. After identification of their common plane with the complex plane [image: $$\mathbb {C}$$] the cross-ratio may be calculated by the formula[image: $$\begin{aligned} q(p_1,p_2,p_3,p_4):=(p_1-p_2)(p_2-p_3)^{-1}(p_3-p_4)(p_4-p_1)^{-1} \end{aligned}$$]


The following definition first appeared in [16], see also [4, 15].
Definition 12
Let [image: $$F^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] be a discrete isothermic surface. Then the discrete isothermic surface [image: $$(F^+)^\epsilon :\varOmega (r|h)\rightarrow \mathbb {R}^3$$] is called a discrete Darboux transform of [image: $$F^\epsilon $$] if the following conditions are satisfied.

                	(i)The four points [image: $${{T}}^{-1}_x F^\epsilon , {{T}}_x F^\epsilon , {{T}}^{-1}_x (F^+)^\epsilon ,{{T}}_x (F^+)^\epsilon $$] lie in a common plane and the same is true for [image: $${{T}}^{-1}_y F^\epsilon $$], [image: $${{T}}_y F^\epsilon $$], [image: $${{T}}^{-1}_y (F^+)^\epsilon $$], [image: $${{T}}_y (F^+)^\epsilon $$].


 

	(ii)
                    [image: $$\displaystyle q({{T}}^{-1}_x F^\epsilon , {{T}}_x F^\epsilon , {{T}}_x (F^+)^\epsilon , {{T}}^{-1}_x (F^+)^\epsilon )=\frac{1}{\gamma }$$] and [image: $$\displaystyle q({{T}}^{-1}_y F^\epsilon ,{{T}}_y F^\epsilon ,{{T}}_y (F^+)^\epsilon , {{T}}^{-1}_y(F^+)^\epsilon )=-\frac{1}{\gamma },$$] where [image: $$\gamma \in \mathbb {R}$$], [image: $$\gamma \ne 0$$] is a constant which is called parameter of the Darboux transformation.


 




              

Note that given any discrete isothermic surface, a discrete Darboux transform may be obtained by prescribing the value of [image: $$(F^+)^\epsilon $$] at one point and using the conditions of the definition to successively build a new surface which is also discrete isothermic (as long as the surface does not degenerate).
In order to obtain convergence of the discrete Darboux transform to the corresponding continuous one, we choose [image: $$\gamma =C/\epsilon ^2$$].
Corollary 2
Under the assumptions of Theorem 2 not only the discrete isothermic surface itself converges to the corresponding smooth isothermic surface, but also the discrete Darboux transforms (with [image: $$\gamma =C/\epsilon ^2$$]) converge to the corresponding Darboux transforms (with parameter C) of the smooth isothermic surface.

Proof
Assume that the discrete isothermic surface itself converges to the corresponding smooth isothermic surface with errors of order [image: $$\mathscr {O}(\epsilon )$$] as in the proofs of Theorem 2. Now start with [image: $$(F^+)^\epsilon (0,0)=F^+(0,0)$$] and build the discrete Darboux transform successively using the above definition. Denote the distance between corresponding points by [image: $$d^\epsilon =(F^+)^\epsilon -F^\epsilon $$].
In order to relate corresponding discrete and smooth quantities, we first use the simple equivalence[image: $$\begin{aligned} \frac{(p_2-p_1)(p_4-p_3)}{(p_3-p_2)(p_1-p_4)}=\frac{1}{q} \quad \iff \quad p_3-p_2=\frac{(p_4-p_1)-(p_2-p_1)}{1-q\frac{(p_4-p_1)}{(p_2-p_1)}}. \end{aligned}$$]

 (72)

Then we use the fact that in our case [image: $$(p_2-p_1)=\mathscr {O}(\epsilon )$$] and [image: $$q= C/\epsilon ^2$$]. Thus we obtain that[image: $$\begin{aligned} p_3-p_2=\frac{(p_4-p_1)-\epsilon \frac{(p_2-p_1)}{\epsilon }}{1-\frac{\epsilon ^2(p_4-p_1)}{ C(p_2-p_1) } }= (p_4-p_1) + \epsilon \left( \frac{(p_4-p_1)^2}{C\frac{(p_2-p_1)}{\epsilon }}-\frac{(p_2-p_1)}{\epsilon }\right) +\mathscr {O}(\epsilon ^2) . \end{aligned}$$]


Now we identify[image: $$(p_3-p_2)={{T}}_x d^\epsilon ,\quad (p_4-p_1)={{T}}^{-1}_xd^\epsilon ,\quad \frac{(p_2-p_1)}{\epsilon } =\delta _x F^\epsilon $$]


and easily deduce by straightforward identifications of complex numbers and vectors that[image: $$\begin{aligned} \frac{{{T}}_x d^\epsilon -{{T}}^{-1}_xd^\epsilon }{\epsilon }&= \frac{1}{C\Vert \delta _x F^\epsilon \Vert ^2}(-\Vert {{T}}^{-1}_xd^\epsilon \Vert ^2 \delta _x F^\epsilon + 2{{T}}^{-1}_xd^\epsilon \langle {{T}}^{-1}_xd^\epsilon , \delta _x F^\epsilon \rangle ) -\delta _x F^\epsilon +\mathscr {O}(\epsilon ) \\&= F_x^+- F_x +\mathscr {O}(\epsilon ). \end{aligned}$$]


Analogously, we obtain[image: $$\begin{aligned} \frac{{{T}}_y d^\epsilon -{{T}}^{-1}_yd^\epsilon }{\epsilon }&= \frac{1}{C\Vert \delta _y F^\epsilon \Vert ^2}(\Vert {{T}}^{-1}_yd^\epsilon \Vert ^2 \delta _y F^\epsilon - 2{{T}}^{-1}_yd^\epsilon \langle {{T}}^{-1}_yd^\epsilon , \delta _y F^\epsilon \rangle ) -\delta _y F^\epsilon +\mathscr {O}(\epsilon ) \\&= F_y^+- F_y +\mathscr {O}(\epsilon ). \end{aligned}$$]


Thus starting with [image: $$(F^+)^\epsilon (0,0)=F^+(0,0)$$] and building the discrete Darboux transform successively using the above definition, in each step we add an error of order [image: $$\mathscr {O}(\epsilon ^2)$$] to the difference [image: $$d=F^+-F$$] of the Darboux pair. Therefore we obtain [image: $$(F^+)^\epsilon =F^+ + \mathscr {O}(\epsilon )$$] as claimed. [image: $$\square $$]
          

Remark 8
Using the definitions of continuous and discrete Darboux transformations, corresponding formulas for [image: $$a^+$$], [image: $$b^+$$], [image: $${\hat{u}}^+$$], [image: $${\check{u}}^+$$], [image: $$N^+$$], [image: $${\tilde{v}}^+$$], [image: $${\tilde{w}}^+$$], [image: $$v^+$$], [image: $$w^+$$], [image: $$\mathfrak {k}^+$$], [image: $$\mathfrak {l}^+$$] may be deduced, which also converge under the assumptions of Theorem 2.
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Footnotes
1The system of Gauss-Codazzi-equations can be simplified to Calapso’s equation [8], which is a single scalar fourth order PDE, but unfortunately of indefinite type.

 

2Cyclic ordering means that walking around the circle either clockwise or anti-clockwise, one passes [image: $$p_1$$], [image: $$p_2$$], [image: $$p_3$$] and [image: $$p_4$$] in that order, see Fig. 3 (left).
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Abstract
We develop the concept of pluri-Lagrangian structures for integrable hierarchies. This is a continuous counterpart of the pluri-Lagrangian (or Lagrangian multiform) theory of integrable lattice systems. We derive the multi-time Euler Lagrange equations in their full generality for hierarchies of two-dimensional systems, and construct a pluri-Lagrangian formulation of the potential Korteweg-de Vries hierarchy.

1 Introduction
In this paper, our departure point are two developments which have taken place in the field of discrete integrable systems in recent years.

            	Firstly, multi-dimensional consistency of lattice systems has been proposed as a notion of integrability [8, 15]. In retrospect, this notion can be seen as a discrete counterpart of the well-known fact that integrable systems never appear alone but are organized into integrable hierarchies. Based on the notion of multi-dimensional consistency, a classification of two-dimensional integrable lattice systems (the so called ABS list) was given in [1]. Moreover, for all equations of the ABS list, considered as equations on [image: $$\mathbb Z^2$$], a variational interpretation was found in [1].

	Secondly, the idea of the multi-dimensional consistency was blended with the variational formulation in [13], where it was shown that solutions of any ABS equation on any quad surface [image: $$\varSigma $$] in [image: $$\mathbb {Z}^N$$] are critical points of a certain action functional [image: $$\int _\varSigma \mathscr {L}$$] obtained by integration of a suitable discrete Lagrangian two-form [image: $$\mathscr {L}$$]. Moreover, it was observed in [13] that the critical value of the action remains invariant under local changes of the underlying quad-surface, or, in other words, that the 2-form [image: $$\mathscr {L}$$] is closed on solutions of quad-equations, and it was suggested to consider this as a defining feature of integrability. However, later research [10] revealed that [image: $$\mathscr {L}$$] is closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding Euler-Lagrange equations. Therefore, at least for discrete systems, the closedness condition is implicitly contained in the variational formulation.




          
A general theory of multi-time one-dimensional Lagrangian systems, both discrete and continuous, has been developed in [20]. A first attempt to formulate the theory for continuous two-dimensional systems was made in [21]. For such systems, a solution is a critical point of the action functional [image: $$\int _S \mathscr {L}$$] on any two-dimensional surface S in [image: $$\mathbb {R}^N$$], where [image: $$\mathscr {L}$$] is a suitable differential two-form. The treatment in [21] was restricted to second order Lagrangians, i.e. to two-forms [image: $$\mathscr {L}$$] that only depend on the second jet bundle. In the present work we will extend this to Lagrangians of any order.
As argued in [10], the unconventional idea to consider the action on arbitrary two-dimensional surfaces in the multi-dimensional space of independent variables has significant precursors. These include:	
              Theory of pluriharmonic functions and, more generally, of pluriharmonic maps [11, 17, 19]. By definition, a pluriharmonic function of several complex variables [image: $$f:\mathbb {C}^N\rightarrow \mathbb {R}$$] minimizes the Dirichlet functional [image: $$E_\varGamma =\int _\varGamma |(f\circ \varGamma )_z|^2dz\wedge d\bar{z}$$] along any holomorphic curve in its domain [image: $$\varGamma :\mathbb {C}\rightarrow \mathbb {C}^N$$]. Differential equations governing pluriharmonic functions, [image: $$ \frac{\partial ^2 f}{\partial z_i\partial \bar{z}_j}=0 \qquad \mathrm{for\;all}\qquad i,j=1,\ldots ,N, $$]


 are heavily overdetermined. Therefore it is not surprising that pluriharmonic functions (and maps) belong to the theory of integrable systems.
This motivates the term pluri-Lagrangian systems, which was proposed in [9, 10].

	
              Baxter’s Z-invariance of solvable models of statistical mechanics [3, 4]. This concept is based on invariance of the partition functions of solvable models under elementary local transformations of the underlying planar graphs. It is well known (see, e.g., [7]) that one can identify planar graphs underlying these models with quad-surfaces in [image: $$\mathbb {Z}^N$$]. On the other hand, the classical mechanical analogue of the partition function is the action functional. This suggests the relation of Z-invariance to the concept of closedness of the Lagrangian 2-form, at least at the heuristic level. This relation has been made mathematically precise for a number of models, through the quasiclassical limit [5, 6].

	The classical notion of variational symmetry, going back to the seminal work of E. Noether [16], has been shown to be directly related to the closedness of the Lagrangian form in the multi-time [21].





The main goal of this paper is two-fold: to derive the Euler Lagrange equations for two-dimensional pluri-Lagrangian problems of arbitrary order, and to state the (potential) KdV hierarchy as a pluri-Lagrangian system. We will also discuss the closedness of the Lagrangian two-form, which turns out to be related to the Hamiltonian theory of integrable hierarchies.
Note that the influential monograph [12], according to the foreword, is “about hierarchies of integrable equations rather than about individual equations”. However, its Lagrangian part (Chaps. 19, 20) only deals with individual equations. The reason for this is apparently the absence of the concept of pluri-Lagrangian systems. We hope that this paper opens up the way for a variational approach to integrable hierarchies.

2 Pluri-Lagrangian Systems
2.1 Definition
We place our discussion in the formalism of the variational bicomplex as presented in [12, Chap. 19] (and summarized, for the reader’s convenience, in Appendix A). Slightly different versions of this theory can be found in [18] and in [2].
Consider a vector bundle [image: $$X: \mathbb {R}^N \rightarrow \mathbb {R}$$] and its nth jet bundle [image: $$J^n X$$]. Let [image: $$\mathscr {L}\in \mathscr {A}^{(0,d)}(J^n X)$$] be a smooth horizontal d-form. In other words, [image: $$\mathscr {L}$$] is a d-form on [image: $$\mathbb R^N$$] whose coefficients depend on a function [image: $$u: \mathbb {R}^N \rightarrow \mathbb {R}$$] and its partial derivatives up to order n. We call [image: $$\mathbb {R}^N$$] the multi-time, u the field, and [image: $$\mathscr {L}$$] the Lagrangian d-form. We will use coordinates [image: $$(t_1, \ldots , t_N)$$] on [image: $$\mathbb {R}^N$$]. Recall that in the standard calculus of variations the Lagrangian is a volume form, so that [image: $$d=N$$].
Definition 2.1
We say that the field u solves the pluri-Lagrangian problem for [image: $$\mathscr {L}$$] if u is a critical point of the action [image: $$\int _S \mathscr {L}$$] simultaneously for all d-dimensional surfaces S in [image: $$\mathbb {R}^N$$]. The equations describing this condition are called the multi-time Euler-Lagrange equations. We say that they form a pluri-Lagrangian system and that [image: $$\mathscr {L}$$] is a pluri-Lagrangian structure for these equations.

To discuss critical points of a pluri-Lagrangian problem, consider the vertical derivative [image: $$\delta \mathscr {L}$$] of the (0,d)-form [image: $$\mathscr {L}$$] in the variational bicomplex, and a variation [image: $$\mathscr {V}$$]. Note that we consider variations [image: $$\mathscr {V}$$] as vertical vector fields; such a restriction is justified by our interest, in the present paper, in autonomous systems only. Besides, in the context of discrete systems only vertical vector fields seem to possess a natural analogs. The criticality condition of the action, [image: $$\delta \int _S \mathscr {L}=0$$], is described by the equation[image: $$\begin{aligned} \int _S {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}= 0, \end{aligned}$$]

 (1)

which has to be satisfied for any variation [image: $$\mathscr {V}$$] on S that vanishes at the boundary [image: $$\partial S$$]. Recall that [image: $${{\mathrm{pr}}}\mathscr {V}$$] is the nth jet prolongation of the vertical vector field [image: $$\mathscr {V}$$], and that [image: $${{\mathrm{\iota }}}$$] stands for the contraction. One fundamental property of critical points can be established right from the outset.
Proposition 2.2
The exterior derivative [image: $$\mathrm{{d}}\mathscr {L}$$] of the Lagrangian is constant on critical points u.

Proof
Consider a critical point u and a small [image: $$(d+1)$$]-dimensional ball B. Because [image: $$S := \partial B$$] has no boundary, Eq. (1) is satisfied for any variation [image: $$\mathscr {V}$$]. Using Stokes’ theorem and the properties that [image: $$\delta \mathrm{{d}}+ \mathrm{{d}}\delta = 0$$] and [image: $${{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \mathrm{{d}}+ \mathrm{{d}}{{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} = 0$$] (Propositions A.1 and A.4 in Appendix A), we find that[image: $$ 0 = \int _{\partial B} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}= \int _B \mathrm{{d}}({{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}) = -\int _B {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \mathrm{{d}}(\delta \mathscr {L}) = \int _B {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta (\mathrm{{d}}\mathscr {L}). $$]


Since this holds for any ball B it follows that [image: $${{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta (\mathrm{{d}}\mathscr {L}) = 0$$] for any variation [image: $$\mathscr {V}$$] of a critical point u. Therefore, [image: $$\delta (\mathrm{{d}}\mathscr {L})=0$$], so that [image: $$\mathrm{{d}}\mathscr {L}$$] is constant on critical points u. Note that here we silently assume that the space of critical points is connected. It would be difficult to justify this property in any generality, but it is usually clear in applications, where the critical points are solutions of certain well-posed systems of partial differential equations. [image: $$\square $$]
          

We will take a closer look at the property [image: $$\mathrm{{d}}\mathscr {L}=\mathrm{const}$$] in Sect. 6, when we discuss the link with Hamiltonian theory. It will be shown that vanishing of this constant, i.e., closedness of [image: $$\mathscr {L}$$] on critical points, is related to integrability of the multi-time Euler-Lagrange equations.

2.2 Approximation by Stepped Surfaces
For computations, we will use the multi-index notation for partial derivatives. For any multi-index [image: $$I=(i_1,\ldots ,i_N)$$] we set[image: $$ u_I = \frac{\partial ^{|I|} u}{(\partial t_1)^{i_1} \ldots (\partial t_N)^{i_N}}, $$]


where [image: $$|I| = i_1 + \ldots + i_N$$]. The notations Ik and [image: $$Ik^\alpha $$] will represent the multi-indices [image: $$(i_1,\ldots ,i_k + 1, \ldots i_N)$$] and [image: $$(i_1,\ldots ,i_k + \alpha , \ldots i_N)$$] respectively. When convenient we will also use the notations [image: $$It_k$$] and [image: $$It_k^\alpha $$] for these multi-indices. We will write [image: $$k \not \in I$$] if [image: $$i_k = 0$$] and [image: $$k \in I$$] if [image: $$i_k > 0$$]. We will denote by [image: $${{\mathrm{D}}}_i$$] or [image: $${{\mathrm{D}}}_{t_i}$$] the total derivative with respect to coordinate direction [image: $$t_i$$],[image: $$ {{\mathrm{D}}}_i := {{\mathrm{D}}}_{t_i} := \sum _I u_{I i} \frac{\partial {}}{\partial {u_I}} $$]


and by [image: $${{\mathrm{D}}}_I := {{\mathrm{D}}}_{t_1}^{i_1} \ldots {{\mathrm{D}}}_{t_N}^{i_N}$$] the corresponding higher order derivatives.
Our main general result is the derivation of the multi-time Euler-Lagrange equations for two-dimensional surfaces ([image: $$d = 2$$]). That will allow us to study the KdV hierarchy as a pluri-Lagrangian system. However, it is instructive to first derive the multi-time Euler-Lagrange equations for curves ([image: $$d = 1$$]).
The key technical result used to derive multi-time Euler-Lagrange equations is the observation that it suffices to consider a very specific type of surface.
Definition 2.3
A stepped d-surface is a d-surface that is a finite union of coordinate d-surfaces. A coordinate d-surface of the direction [image: $$(i_1, \ldots , i_d)$$] is a d-surface lying in an affine d-plane [image: $$\{(t_1,\ldots ,t_N) \mid t_j = c_j\; \; \mathrm{for} \;\; j \ne i_1,\ldots ,i_d\}$$].

Lemma 2.4
If the action is stationary on any stepped surface, then it is stationary on any smooth surface.

The proof of this Lemma can be found in appendix B.

2.3 Multi-time Euler-Lagrange Equations for Curves
Theorem 2.5
Consider a Lagrangian 1-form [image: $$\mathscr {L} = \sum _{i=1}^N L_i \,\mathrm{{d}}t_i$$]. The multi-time Euler-Lagrange equations for curves are:[image: $$\begin{aligned}&\frac{\delta _{i} {L_i}}{\delta {u_I}} = 0 \qquad \forall I \not \ni i, \end{aligned}$$]

 (2)


[image: $$\begin{aligned}&\frac{\delta _{i} {L_i}}{\delta {u_{Ii}}} = \frac{\delta _{j} {L_j}}{\delta {u_{Ij}}} \qquad \forall I, \end{aligned}$$]

 (3)

where i and j are distinct, and the following notation is used for the variational derivative corresponding to the coordinate direction i:[image: $$ \frac{\delta _{i} {L_i}}{\delta {u_{I}}} = \sum _{\alpha \ge 0} (-1)^\alpha {{\mathrm{D}}}_i^\alpha \frac{\partial {L_i}}{\partial {u_{I i^\alpha }}} = \frac{\partial {L_i}}{\partial {u_I}} - {{\mathrm{D}}}_i \frac{\partial {L_i}}{\partial {u_{I i}}} + {{\mathrm{D}}}_i^2 \frac{\partial {L_i}}{\partial {u_{I i^2}}} - \ldots . $$]





Remark 2.6
In the special case that [image: $$\mathscr {L}$$] only depends on the first jet bundle, system (2)–(3) reduces to the equations found in [20]:[image: $$\begin{aligned}&\frac{\delta _{i} {L_i}}{\delta {u}} = 0 \quad \Leftrightarrow \quad \frac{\partial L_i}{\partial u}- {{\mathrm{D}}}_i \frac{\partial L_i}{\partial u_i} =0, \\&\frac{\delta _{i} {L_i}}{\delta {u_j}} = 0 \quad \Leftrightarrow \quad \frac{\partial L_i}{\partial u_j}=0\quad \mathrm{for}\quad i\ne j,\\&\frac{\delta _{i} {L_i}}{\delta {u_{i}}} = \frac{\delta _{j} {L_j}}{\delta {u_{j}}} \quad \Leftrightarrow \quad \frac{\partial L_i}{\partial u_i}=\frac{\partial L_j}{\partial u_j} \quad \mathrm{for}\quad i\ne j. \end{aligned}$$]





Proof
(of Theorem 2.5) According to Lemma 2.4, it is sufficient to look at a general L-shaped curve [image: $$S = S_i \cup S_j$$], where [image: $$S_i$$] is a line segment of the coordinate direction i and [image: $$S_j$$] is a line segment of the coordinate direction j. Denote the cusp by [image: $$p := S_i \cap S_j$$]. We orient the curve such that [image: $$S_i$$] induces the positive orientation on the point p and [image: $$S_j$$] the negative orientation. There are four cases, depending on how the L-shape is rotated. They are depicted in Fig. 1. To each case we associate a pair [image: $$(\varepsilon _i, \varepsilon _j) \in \{-1,+1\}^2$$], where the positive value is taken if the respective piece of curve is oriented in the coordinate direction, and negative if it is oriented opposite to the coordinate direction.[image: A371662_1_En_11_Fig1_HTML.gif]
Fig. 1The four L-shaped curves with their values of [image: $$(\varepsilon _i, \varepsilon _j)$$]
                  





The variation of the action is[image: $$\begin{aligned} \int _{S} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}&= \varepsilon _i \int _{S_i} ({{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta L_i) \,\mathrm{{d}}t_i + \varepsilon _j \int _{S_j} ({{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta L_j) \,\mathrm{{d}}t_j \\&= \varepsilon _i \int _{S_i} \sum _{I} \frac{\partial {L_i}}{\partial {u_I}} \delta u_I(\mathscr {V}) \,\mathrm{{d}}t_i + \varepsilon _j \int _{S_j} \sum _{I} \frac{\partial {L_j}}{\partial {u_I}} \delta u_I(\mathscr {V}) \,\mathrm{{d}}t_j. \end{aligned}$$]


Note that these sums are actually finite. Indeed, since [image: $$\mathscr {L}$$] depends on the nth jet bundle all terms with [image: $$|I| := i_1 + \ldots + i_N > n$$] vanish.
Now we expand the sum in the first of the integrals and perform integration by parts.[image: $$\begin{aligned} \varepsilon _i&\int _{S_i} ({{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta L_i) \,\mathrm{{d}}t_i \\&= \varepsilon _i \int _{S_i} \sum _{I \not \ni i} \bigg ( \frac{\partial {L_i}}{\partial {u_I}} \delta u_I(\mathscr {V}) + \frac{\partial {L_i}}{\partial {u_{I i}}} \delta u_{I i}(\mathscr {V}) + \frac{\partial {L_i}}{\partial {u_{I i^2}}} \delta u_{I i^2}(\mathscr {V}) + \ldots \bigg ) \mathrm{{d}}t_i\\&= \varepsilon _i \int _{S_i} \sum _{I \not \ni i} \bigg (\frac{\partial {L_i}}{\partial {u_I}} - {{\mathrm{D}}}_i \frac{\partial {L_i}}{\partial {u_{I i}}} + {{\mathrm{D}}}_i^2 \frac{\partial {L_i}}{\partial {u_{I i^2}}} - {{\mathrm{D}}}_i^3 \frac{\partial {L_i}}{\partial {u_{I i^3}}} + \ldots \bigg ) \delta u_I(\mathscr {V}) \, \mathrm{{d}}t_i\\&\quad + \sum _{I \not \ni i} \bigg ( \frac{\partial {L_i}}{\partial {u_{I i}}} \delta u_I(\mathscr {V}) + \frac{\partial {L_i}}{\partial {u_{I i^2}}} \delta u_{I i}(\mathscr {V}) - {{\mathrm{D}}}_i \frac{\partial {L_i}}{\partial {u_{I i^2}}} \delta u_{I}(\mathscr {V}) \\&\qquad \quad + \frac{\partial {L_i}}{\partial {u_{I i^3}}} \delta u_{I i^2}(\mathscr {V}) - {{\mathrm{D}}}_i \frac{\partial {L_i}}{\partial {u_{I i^3}}}(\mathscr {V}) \delta u_{I i}(\mathscr {V}) + {{\mathrm{D}}}_i^2 \frac{\partial {L_i}}{\partial {u_{I i^3}}} \delta u_{I}(\mathscr {V}) + \ldots \bigg ) \bigg |_p. \end{aligned}$$]


Using the language of variational derivatives, this reads[image: $$\begin{aligned} \varepsilon _i \int _{S_i} ({{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta L_i) \,\mathrm{{d}}t_i&= \varepsilon _i \int _{S_i} \sum _{I \not \ni i} \frac{\delta _{i} {L_i}}{\delta {u_I}} \delta u_I(\mathscr {V}) \,\mathrm{{d}}t_i \\&\qquad + \sum _{I \not \ni i} \bigg ( \frac{\delta _{i} {L_i}}{\delta {u_{I i}}} \delta u_I(\mathscr {V}) + \frac{\delta _{i} {L_i}}{\delta {u_{I i^2}}} \delta u_{I i}(\mathscr {V}) + \ldots \bigg ) \bigg |_p\\&= \varepsilon _i \int _{S_i} \sum _{I \not \ni i} \frac{\delta _{i} {L_i}}{\delta {u_I}} \delta u_I(\mathscr {V}) \,\mathrm{{d}}t_i + \sum _{I}\bigg ( \frac{\delta _{i} {L_i}}{\delta {u_{I i}}} \delta u_I(\mathscr {V}) \bigg )\bigg |_p. \end{aligned}$$]


The other piece, [image: $$S_j$$], contributes[image: $$ \varepsilon _j \int _{S_j} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta L_j \,\mathrm{{d}}t_j = \varepsilon _j \int _{S_j} \sum _{I \not \ni j} \frac{\delta _{j} {L_j}}{\delta {u_I}} \delta u_I(\mathscr {V}) \,\mathrm{{d}}t_j - \sum _{I} \bigg ( \frac{\delta _{j} {L_j}}{\delta {u_{I j}}} \delta u_I(\mathscr {V}) \bigg )\bigg |_p, $$]


where the minus sign comes from the fact that [image: $$S_j$$] induces negative orientation on the point p. Summing the two contributions, we find[image: $$\begin{aligned} \int _{S} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}&= \varepsilon _i \int _{S_i} \sum _{I \not \ni i} \frac{\delta _{i} {L_i}}{\delta {u_I}} \delta u_I(\mathscr {V}) \,\mathrm{{d}}t_i + \varepsilon _j \int _{S_j} \sum _{I \not \ni j} \frac{\delta _{j} {L_j}}{\delta {u_I}} \delta u_I(\mathscr {V}) \,\mathrm{{d}}t_j \nonumber \\&\qquad + \sum _{I} \bigg ( \frac{\delta _{i} {L_i}}{\delta {u_{I i}}} \delta u_I(\mathscr {V}) - \frac{\delta _{j} {L_j}}{\delta {u_{I j}}} \delta u_I(\mathscr {V}) \bigg )\bigg |_p. \end{aligned}$$]

 (4)

Now require that the variation (4) of the action is zero for any variation [image: $$\mathscr {V}$$]. If we consider variations that vanish on [image: $$S_j$$], then we find for every multi-index I which does not contain i that[image: $$ \frac{\delta _{i} {L_i}}{\delta {u_I}} = 0. $$]


Given this equation, and its analogue for the index j, only the last term remains in the right hand side of Eq. (4). Considering variations around the cusp p we find for every multi-index I that[image: $$ \frac{\delta _{i} {L_i}}{\delta {u_{Ii}}} = \frac{\delta _{j} {L_j}}{\delta {u_{Ij}}}. $$]


It is clear these equations combined are also sufficient for the action to be critical. [image: $$\square $$]
          


2.4 Multi-time Euler-Lagrange Equations for Two-Dimensional Surfaces
The two-dimensional case ([image: $$d = 2$$]) covers many known integrable hierarchies, including the potential KdV hierarchy which we will discuss in detail later on. We consider a Lagrangian two-form [image: $$\mathscr {L} = \sum _{i < j} L_{ij} \,\mathrm{{d}}t_i \wedge \mathrm{{d}}t_j$$] and we will use the notational convention [image: $$L_{ji} = - L_{ij}$$].
Theorem 2.7
The multi-time Euler-Lagrange equations for two-dimensional surfaces are[image: $$\begin{aligned}&\frac{\delta _{ij} {L_{ij}}}{\delta {u_I}} =0,&\forall I \not \ni i,j, \end{aligned}$$]

 (5)


[image: $$\begin{aligned}&\frac{\delta _{ij} {L_{ij}}}{\delta {u_{I j}}} = \frac{\delta _{ik} {L_{ik}}}{\delta {u_{I k}}}&\forall I \not \ni i, \end{aligned}$$]

 (6)


[image: $$\begin{aligned}&\frac{\delta _{ij} {L_{ij}}}{\delta {u_{I i j}}} + \frac{\delta _{jk} {L_{jk}}}{\delta {u_{I j k}}} + \frac{\delta _{ki} {L_{ki}}}{\delta {u_{I k i}}} = 0&\forall I, \end{aligned}$$]

 (7)

where i, j and k are distinct, and the following notation is used for the variational derivative corresponding to the coordinate directions i, j:[image: $$ \frac{\delta _{ij} {L_{ij}}}{\delta {u_{I}}} := \sum _{\alpha ,\beta \ge 0} (-1)^{\alpha +\beta } {{\mathrm{D}}}_i^\alpha {{\mathrm{D}}}_j^\beta \frac{\partial {L_{ij}}}{\partial {u_{I i^\alpha j^\beta }}}. $$]





Remark 2.8
In the special case that [image: $$\mathscr {L}$$] only depends on the second jet bundle, this system reduces to the equations stated in [21].

Before proceeding with the proof of Theorem 2.7, we introduce some terminology and prove a lemma. A two-dimensional stepped surface consisting of q flat pieces intersecting at some point p is called a q-flower around p, the flat pieces are called its petals. If the action is stationary on every q-flower, it is stationary on any stepped surface. By Lemma 2.4 the action will then be stationary on any surface. The following Lemma shows that it is sufficient to consider 3-flowers.
Lemma 2.9
If the action is stationary on every 3-flower, then it is stationary on every q-flower for any [image: $$q > 3$$].

Proof
Let F be a q-flower. Denote its petals corresponding to coordinate directions [image: $$(t_{i_1},t_{i_2})$$], [image: $$(t_{i_2},t_{i_3})$$], [image: $$\ldots , (t_{i_q},t_{i_1})$$] by [image: $$S_{12}$$], [image: $$S_{23}, \ldots , S_{q1}$$] respectively. Consider the 3-flower [image: $$F_{123} = S_{12} \cup S_{23} \cup S_{31}$$], where [image: $$S_{31}$$] is a petal in the coordinate direction [image: $$(t_{i_3},t_{i_1})$$] such that [image: $$F_{123}$$] is a flower around the same point as F. Similarly, define [image: $$F_{134}, \ldots , F_{1\,q-1\,q}$$]. Then (for any integrand)[image: $$\begin{aligned} \int _{F_{123}} + \int _{F_{134}}&+ \ldots + \int _{F_{1\,q-1\,q}} \\ =&\int _{S_{12}} + \int _{S_{23}} + \int _{S_{31}} + \int _{S_{13}} + \int _{S_{34}} + \int _{S_{41}} + \ldots + \int _{S_{1\,q-1}} + \int _{S_{q-1\,q}} + \int _{S_{q1}}. \end{aligned}$$]


Here, [image: $$S_{21}$$], [image: $$S_{32}$$], ... are the petals [image: $$S_{12}$$], [image: $$S_{23}$$], ... but with opposite orientation (see Fig. 2). Therefore all terms where the index of S contains 1 cancel, except for the first and last, leaving[image: $$ \int _{F_{123}} + \ldots + \int _{F_{1\,q-1\,q}} = \int _{S_{12}} + \int _{S_{23}} + \int _{S_{34}} + \ldots + \int _{S_{q-1\,q}} + \int _{S_{q1}} = \int _F. $$]


By assumption the action is stationary on every 3-flower, so[image: $$ \int _F {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}= \int _{F_{123}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}+ \ldots + \int _{F_{1\,q-1\,q}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}= 0. $$]



            [image: $$\square $$]
          


              [image: A371662_1_En_11_Fig2_HTML.gif]
Fig. 2Two 3-flowers composed to form a 4-flower. The common petal does not contribute to the integral because it occurs twice with opposite orientation




              [image: A371662_1_En_11_Fig3_HTML.gif]
Fig. 3A 3-flower. Different petals induce the opposite orientation on the common boundary




            
Proof
(of Theorem 2.7) Consider a 3-flower [image: $$S = S_{ij} \cup S_{jk} \cup S_{ki}$$] around the point [image: $$p = S_{ij} \cap S_{jk} \cap S_{ki}$$]. Denote its interior edges by[image: $$\partial S_i:= S_{ij} \cap S_{ki} ,\qquad \partial S_j := S_{jk} \cap S_{ij} ,\qquad \partial S_k := S_{ki} \cap S_{jk}.$$]


On [image: $$\partial S_i$$], [image: $$\partial S_j$$] and [image: $$\partial S_k$$] we choose the orientations that induce negative orientation on p. We consider the case where these orientations correspond to the coordinate directions, as in Fig. 3. The cases where one or more of these orientations are opposite to the corresponding coordinate direction (see Fig. 4) can be treated analogously and yield the same result.[image: A371662_1_En_11_Fig4_HTML.gif]
Fig. 4Three of the other 3-flowers. The orientations of the interior edges do not all correspond to the coordinate direction





We choose the orientation on the petals in such a way that the orientations of [image: $$\partial S_i$$], [image: $$\partial S_j$$] and [image: $$\partial S_k$$] are induced by [image: $$S_{ij}$$], [image: $$S_{jk}$$] and [image: $$S_{ki}$$] respectively. Then the orientations of [image: $$\partial S_i$$], [image: $$\partial S_j$$] and [image: $$\partial S_k$$] are the opposite of those induced by [image: $$S_{ki}$$], [image: $$S_{ij}$$] and [image: $$S_{jk}$$] respectively (see Fig. 3).
We will calculate[image: $$\begin{aligned} \int _{S} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L} = \int _{S_{ij}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L} + \int _{S_{jk}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L} + \int _{S_{ki}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L} \end{aligned}$$]

 (8)

and require it to be zero for any variation [image: $$\mathscr {V}$$] which vanishes on the (outer) boundary of S. This will give us the multi-time Euler-Lagrange equations.
For the first term of Eq. (8) we find[image: $$\begin{aligned} \int _{S_{ij}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}&=\int _{S_{ij}} \sum _I \frac{\partial L_{ij}}{\partial u_{I}} \delta u_{I}(\mathscr {V}) \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j \\&= \int _{S_{ij}} \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I i^\lambda j^\mu }(\mathscr {V}) \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j. \end{aligned}$$]


First we perform integration by parts with respect to [image: $$t_i$$] as many times as possible.[image: $$\begin{aligned} \int _{S_{ij}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}&=\int _{S_{ij}} \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} (-1)^\lambda {{\mathrm{D}}}_i^\lambda \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I j^\mu }(\mathscr {V}) \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j \\&\qquad - \int _{\partial S_j} \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} \sum _{\pi = 0}^{\lambda -1} (-1)^\pi {{\mathrm{D}}}_i^\pi \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I i^{\lambda - \pi -1}j^\mu }(\mathscr {V}) \, \mathrm{{d}}t_j. \end{aligned}$$]


Next integrate by parts with respect to [image: $$t_j$$] as many times as possible.[image: $$\begin{aligned} \int _{S_{ij}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}&=\int _{S_{ij}} \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} (-1)^{\lambda +\mu } {{\mathrm{D}}}_i^\lambda {{\mathrm{D}}}_j^\mu \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I}(\mathscr {V}) \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j \end{aligned}$$]

 (9)


[image: $$\begin{aligned}&\quad - \int _{\partial S_j} \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} \sum _{\pi = 0}^{\lambda -1} (-1)^\pi {{\mathrm{D}}}_i^\pi \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I i^{\lambda - \pi -1}j^\mu }(\mathscr {V}) \, \mathrm{{d}}t_j \end{aligned}$$]

 (10)


[image: $$\begin{aligned}&\quad - \int _{\partial S_i} \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} \sum _{\rho = 0}^{\mu -1} (-1)^{\lambda + \rho } {{\mathrm{D}}}_i^\lambda {{\mathrm{D}}}_j^\rho \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I j^{\mu - \rho -1}}(\mathscr {V}) \, \mathrm{{d}}t_i. \end{aligned}$$]

 (11)

The signs of (10) and (11) are due to the choice of orientations (see Fig. 3). We can rewrite the integral (9) as[image: $$\int _{S_{ij}} \sum _{I \not \ni i,j} \frac{\delta _{ij} {L_{ij}}}{\delta {u_I}} \delta u_I(\mathscr {V}) \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j.$$]


The last integral (11) takes a similar form if we replace the index [image: $$\mu $$] by [image: $$\beta = \mu - \rho - 1$$].[image: $$\begin{aligned} -\int _{\partial S_i} \sum _{I \not \ni i,j}&\sum _{\lambda ,\mu \ge 0} \sum _{\rho = 0}^{\mu -1} (-1)^{\lambda + \rho } {{\mathrm{D}}}_i^\lambda {{\mathrm{D}}}_j^\rho \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I j^{\mu - \rho -1}}(\mathscr {V}) \, \mathrm{{d}}t_i \\&= -\int _{\partial S_i} \sum _{I \not \ni i,j} \sum _{\beta ,\lambda ,\rho \ge 0} (-1)^{\lambda + \rho } {{\mathrm{D}}}_i^\lambda {{\mathrm{D}}}_j^\rho \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^{\beta + \rho + 1}}} \delta u_{I j^\beta }(\mathscr {V}) \, \mathrm{{d}}t_i \\&= -\int _{\partial S_i} \sum _{I \not \ni i,j} \sum _{\beta \ge 0} \frac{\delta _{ij} {L_{ij}}}{\delta {u_{I j^{\beta +1}}}} \delta u_{I j^\beta }(\mathscr {V}) \,\mathrm{{d}}t_i. \end{aligned}$$]


To write the other boundary integral (10) in this form we first perform integration by parts.[image: $$\begin{aligned} - \int _{\partial S_j}&\sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} \sum _{\pi = 0}^{\lambda -1} (-1)^\pi {{\mathrm{D}}}_i^\pi \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I i^{\lambda - \pi -1} j^\mu }(\mathscr {V}) \, \mathrm{{d}}t_j \\&= - \int _{\partial S_j} \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} \sum _{\pi = 0}^{\lambda -1} (-1)^{\pi + \mu } {{\mathrm{D}}}_i^\pi {{\mathrm{D}}}_j^\mu \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I i^{\lambda - \pi -1}}(\mathscr {V}) \, \mathrm{{d}}t_j \\&\qquad + \sum _{I \not \ni i,j} \sum _{\lambda ,\mu \ge 0} \sum _{\pi = 0}^{\lambda -1} \sum _{\rho = 0}^{\mu -1} (-1)^{\pi + \rho } \bigg ( {{\mathrm{D}}}_i^\pi {{\mathrm{D}}}_j^\rho \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I i^{\lambda - \pi -1} j^{\mu - \rho -1}}(\mathscr {V}) \bigg ) \bigg |_p . \end{aligned}$$]


Then we replace [image: $$\lambda $$] by [image: $$\alpha = \lambda - \pi -1$$] and in the last term [image: $$\mu $$] by [image: $$\beta = \mu - \rho - 1$$].[image: $$\begin{aligned} -&\int _{\partial S_j} \sum _{I \not \ni i,j} \sum _{\lambda ,\ge 0} \sum _{\pi = 0}^{\lambda -1} (-1)^\pi {{\mathrm{D}}}_i^\pi \frac{\partial L_{ij}}{\partial u_{I i^\lambda j^\mu }} \delta u_{I i^{\lambda - \pi -1} j^\mu }(\mathscr {V}) \, \mathrm{{d}}t_j \\&= - \int _{\partial S_j} \sum _{I \not \ni i,j} \sum _{\alpha ,\mu ,\pi \ge 0} (-1)^{\pi + \mu } {{\mathrm{D}}}_i^\pi {{\mathrm{D}}}_j^\mu \frac{\partial L_{ij}}{\partial u_{I i^{\alpha + \pi + 1} j^\mu }} \delta u_{I i^\alpha }(\mathscr {V}) \, \mathrm{{d}}t_j \\&\qquad + \sum _{I \not \ni i,j} \sum _{\alpha ,\beta ,\pi ,\rho \ge 0} \bigg ( (-1)^{\pi + \rho } {{\mathrm{D}}}_i^\pi {{\mathrm{D}}}_j^\rho \frac{\partial L_{ij}}{\partial u_{I i^{\alpha + \pi + 1} j^{\beta + \rho + 1}}} \delta u_{I i^\alpha j^\beta }(\mathscr {V}) \bigg ) \bigg |_p \\&= - \int _{\partial S_j} \sum _{I \not \ni i,j} \sum _{\alpha \ge 0} \frac{\delta _{ij} {L_{ij}}}{\delta {u_{I i^{\alpha + 1}}}} \delta u_{I i^\alpha }(\mathscr {V}) \, \mathrm{{d}}t_j + \sum _{I \not \ni i,j} \sum _{\alpha ,\beta \ge 0} \bigg ( \frac{\delta _{ij} {L_{ij}}}{\delta {u_{I i^{\alpha + 1} j^{\beta + 1}}}} \delta u_{I i^\alpha j^\beta }(\mathscr {V}) \bigg )\bigg |_p . \end{aligned}$$]


Putting everything together we find[image: $$\begin{aligned} \int _{S_{ij}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}&= \int _{S_{ij}} \sum _{I \not \ni i,j} \frac{\delta _{ij} {L_{ij}}}{\delta {u_I}} \delta u_I(\mathscr {V}) \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j - \int _{\partial S_i} \sum _{I \not \ni i} \frac{\delta _{ij} {L_{ij}}}{\delta {u_{Ij}}} \delta u_{I}(\mathscr {V}) \mathrm{{d}}t_i \\&\qquad - \int _{\partial S_j} \sum _{I \not \ni j} \frac{\delta _{ij} {L_{ij}}}{\delta {u_{Ii}}} \delta u_{I}(\mathscr {V}) \, \mathrm{{d}}t_j + \bigg ( \sum _{I} \frac{\delta _{ij} {L_{ij}}}{\delta {u_{I i j}}} \delta u_{I}(\mathscr {V}) \bigg )\bigg |_p . \end{aligned}$$]


Expressions for the integrals over [image: $$S_{jk}$$] and [image: $$S_{ki}$$] are found by cyclic permutation of the indices. Finally we obtain[image: $$\begin{aligned} \int _{S} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}&= \int _{S_{ij}} \sum _{I \not \ni i,j} \frac{\delta _{ij} {L_{ij}}}{\delta {u_I}} \delta u_I(\mathscr {V}) \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j \nonumber \\&\qquad - \int _{\partial S_i} \bigg (\sum _{I \not \ni i} \frac{\delta _{ij} {L_{ij}}}{\delta {u_{I j}}} \delta u_{I}(\mathscr {V}) + \sum _{I \not \ni i} \frac{\delta _{ki} {L_{ki}}}{\delta {u_{I k}}} \delta u_{I}(\mathscr {V}) \bigg ) \, \mathrm{{d}}t_i \nonumber \\&\qquad + \sum _{I} \bigg ( \frac{\delta _{ij} {L_{ij}}}{\delta {u_{I i j}}} \delta u_{I}(\mathscr {V}) \bigg ) \bigg |_p \qquad + \text { cyclic permutations in } i,j,k. \end{aligned}$$]

 (12)

From this we can read off the multi-time Euler-Lagrange equations. [image: $$\square $$]
          



3 Pluri-Lagrangian Structure of the Sine-Gordon Equation
We borrow our first example of a pluri-Lagrangian system from [21].
The Sine-Gordon equation [image: $$u_{xy}=\sin u$$] is the Euler-Lagrange equation for[image: $$L = \frac{1}{2}u_xu_y-\cos u.$$]


Consider the vector field [image: $$\varphi \frac{\partial {}}{\partial {u}}$$] with[image: $$\varphi =u_{xxx}+\frac{1}{2}u_x^3$$]


and its prolongation [image: $${{\mathrm{D}}}_\varphi := \sum _I \varphi _I \frac{\partial {}}{\partial {u_I}}.$$] It is known that [image: $${{\mathrm{D}}}_\varphi $$] is a variational symmetry for the sine-Gordon equation [18, p. 336]. In particular, we have that[image: $$\begin{aligned} {{\mathrm{D}}}_\varphi L= {{\mathrm{D}}}_x N + {{\mathrm{D}}}_y M \end{aligned}$$]

 (13)

with[image: $$\begin{aligned} M&= \dfrac{1}{2}\varphi u_x-\dfrac{1}{8}u_x^4+\dfrac{1}{2}u_{xx}^2, \\ N&= \dfrac{1}{2}\varphi u_y -\dfrac{1}{2}u_x^2\cos u - u_{xx}(u_{xy}-\sin u). \end{aligned}$$]


Now we introduce a new independent variable z corresponding to the “flow” of the generalized vector field [image: $${{\mathrm{D}}}_\varphi $$], i.e. [image: $$u_z = \varphi $$]. Consider simultaneous solutions of the Euler-Lagrange equation [image: $$\frac{\delta _{} {L}}{\delta {u}} = 0$$] and of the flow [image: $$u_z = \varphi $$] as functions of three independent variables x, y, z. Then Eq. (13) expresses the closedness of the two-form[image: $$\mathscr {L}= L\, dx \wedge dy - M\, dz \wedge dx - N\, dy\wedge dz.$$]


The fact that [image: $$\mathrm{{d}}\mathscr {L}= 0$$] on solutions is consistent with Proposition 2.2. Hence [image: $$\mathscr {L}$$] is a reasonable candidate for a Lagrangian two-form.
Theorem 3.1
The multi-time Euler-Lagrange equations for the Lagrangian two-form[image: $$\mathscr {L}= L_{12}\ dx\wedge dy + L_{13}\ dx\wedge dz + L_{23}\ dy\wedge dz$$]


with the components[image: $$\begin{aligned} L_{12}&= \frac{1}{2}u_xu_y-\cos u, \end{aligned}$$]

 (14)


[image: $$\begin{aligned} L_{13}&= \frac{1}{2}u_xu_z-\dfrac{1}{8}u_x^4+\dfrac{1}{2}u_{xx}^2, \end{aligned}$$]

 (15)


[image: $$\begin{aligned} L_{23}&= -\frac{1}{2}u_yu_z+\dfrac{1}{2}u_x^2\cos u+u_{xx}(u_{xy}-\sin u), \end{aligned}$$]

 (16)

consist of the sine-Gordon equation[image: $$u_{xy} = \sin u,$$]


the modified KdV equation[image: $$u_z = u_{xxx} + \frac{1}{2} u_x^3,$$]


and corollaries thereof. On solutions of either of these equations the two-form [image: $$\mathscr {L}$$] is closed.

Proof
Let us calculate the multi-time Euler-Lagrange Eqs. (5)–(7) one by one:	The equation [image: $$\displaystyle \frac{\delta _{12} {L_{12}}}{\delta {u}} = 0$$] yields [image: A371662_1_En_11_IEq151_HTML.gif].
For any [image: $$\alpha > 0$$] the equation [image: $$\displaystyle \frac{\delta _{12} {L_{12}}}{\delta {u_{z^\alpha }}} = 0$$] yields [image: $$0=0$$].

	The equation [image: $$\displaystyle \frac{\delta _{13} {L_{13}}}{\delta {u}} = 0$$] yields [image: A371662_1_En_11_IEq156_HTML.gif].
For any [image: $$\alpha > 0$$] the equation [image: $$\displaystyle \frac{\delta _{13} {L_{13}}}{\delta {u_{y^\alpha }}} = 0$$] yields [image: $$0=0$$].

	The equation [image: $$\displaystyle \frac{\delta _{23} {L_{23}}}{\delta {u}} = 0$$] yields [image: A371662_1_En_11_IEq161_HTML.gif].
The equation [image: $$\displaystyle \frac{\delta _{23} {L_{23}}}{\delta {u_x}} = 0$$] yields [image: A371662_1_En_11_IEq163_HTML.gif]. The equation [image: $$\displaystyle \frac{\delta _{23} {L_{23}}}{\delta {u_{xx}}} = 0$$] yields [image: A371662_1_En_11_IEq165_HTML.gif].
For any [image: $$\alpha > 2$$], the equation [image: $$\displaystyle \frac{\delta _{23} {L_{23}}}{\delta {u_{x^\alpha }}} = 0$$] yields [image: $$0=0$$].

	The equation [image: $$\displaystyle \frac{\delta _{13} {L_{13}}}{\delta {u_x}} = \frac{\delta _{23} {L_{23}}}{\delta {u_y}}$$] yields [image: A371662_1_En_11_IEq170_HTML.gif].
The equation [image: $$\displaystyle \frac{\delta _{13} {L_{13}}}{\delta {u_{xx}}} = \frac{\delta _{23} {L_{23}}}{\delta {u_{xy}}}$$] yields [image: $$u_{xx} = u_{xx}$$].
For any other I the equation [image: $$\displaystyle \frac{\delta _{13} {L_{13}}}{\delta {u_{Ix}}} = \frac{\delta _{23} {L_{23}}}{\delta {u_{Iy}}}$$] yields [image: $$0=0$$].

	The equation [image: $$\displaystyle \frac{\delta _{12} {L_{12}}}{\delta {u_y}} = \frac{\delta _{13} {L_{13}}}{\delta {u_z}}$$] yields [image: $$\frac{1}{2}u_x = \frac{1}{2}u_x$$].
For any nonempty I, the equation [image: $$\displaystyle \frac{\delta _{12} {L_{12}}}{\delta {u_{Iy}}} = \frac{\delta _{13} {L_{13}}}{\delta {u_{Iz}}}$$] yields [image: $$0=0$$].

	The equation [image: $$\displaystyle \frac{\delta _{12} {L_{12}}}{\delta {u_x}} = \frac{\delta _{23} {L_{32}}}{\delta {u_z}}$$] yields [image: $$\frac{1}{2}u_y = \frac{1}{2}u_y$$].
For any nonempty I, the equation [image: $$\displaystyle \frac{\delta _{12} {L_{12}}}{\delta {u_{Ix}}} = \frac{\delta _{23} {L_{32}}}{\delta {u_{Iz}}}$$] yields [image: $$0=0$$].

	For any I the equation [image: $$\displaystyle \frac{\delta _{12} {L_{12}}}{\delta {u_{Ixy}}} + \frac{\delta _{23} {L_{23}}}{\delta {u_{Iyz}}} + \frac{\delta _{13} {L_{31}}}{\delta {u_{Izx}}} = 0$$] yields [image: $$0=0$$].





It remains to notice that all nontrivial equations in this list are corollaries of the equations [image: $$u_{xy} = \sin u$$] and [image: $$u_z = u_{xxx} + \frac{1}{2} u_x^3$$], derived by differentiation.
The closedness of [image: $$\mathscr {L}$$] can be verified by direct calculation:[image: $$\begin{aligned} {{\mathrm{D}}}_z L_{12} - {{\mathrm{D}}}_y L_{13} + {{\mathrm{D}}}_x L_{23}&= \frac{1}{2} (u_{yz} u_x + u_{xz} u_y) + u_z \sin u \\&\qquad - \frac{1}{2} u_{yz} u_x - \frac{1}{2} u_z u_{xy} + \frac{1}{2} u_x^3 u_{xy} - u_{xx} u_{xxy} \\&\qquad - \frac{1}{2} u_{xz} u_y - \frac{1}{2} u_z u_{xy} + u_x u_{xx} \cos u - \frac{1}{2} u_x^3 \sin u \\&\qquad + u_{xxx} (u_{xy} - \sin u) + u_{xx} (u_{xxy} - u_x \cos u) \\&= - \left( u_z - \frac{1}{2} u_x^3 - u_{xxx}\right) (u_{xy} - \sin u). \end{aligned}$$]



          [image: $$\square $$]
        

Remark 3.2
The Sine-Gordon equation and the modified KdV equation are the simplest equations of their respective hierarchies. Furthermore, those hierarchies can be seen as the positive and negative parts of one single hierarchy that is infinite in both directions [14, Sect. 3c and 5k]. It seems likely that this whole hierarchy possesses a pluri-Lagrangian structure.


4 The KdV Hierarchy
Our second and the main example of a pluri-Lagrangian system will be the (potential) KdV hierarchy. This section gives an overview of the relevant known facts about KdV, mainly following Dickey [12, Sect. 3.7]. The next section will present its pluri-Lagrangian structure.
One way to introduce the Korteweg-de Vries (KdV) hierarchy is to consider a formal power series[image: $$ R = \sum _{k=0}^\infty r_k z^{-2k-1}, $$]


with the coefficients [image: $$r_k=r_k[u]$$] being polynomials of u and its partial derivatives with respect to x, satisfying the equation[image: $$\begin{aligned} R_{xxx} + 4uR_x + 2u_x R - z^2 R_x = 0. \end{aligned}$$]

 (17)

Multiplying this equation by R and integrating with respect to x we find[image: $$\begin{aligned} R R_{xx} - \frac{1}{2} R_x^2 + 2 \left( u - \frac{1}{4} z^2 \right) R^2 = C(z), \end{aligned}$$]

 (18)

where [image: $$C(z) = \sum _{k = 0}^\infty c_k z^{-2k}$$] is a formal power series in [image: $$z^{-2}$$], with coefficients [image: $$c_k$$] being constants. Different choices of C(z) correspond to different normalizations of the KdV hierarchy. We take [image: $$C(z) = \frac{1}{8}$$], i.e. [image: $$c_0 = \frac{1}{8}$$] and [image: $$c_k = 0$$] for [image: $$k >0$$]. The first few coefficients of the power series [image: $$R = r_0 z^{-1} + r_1 z^{-3} + r_2 z^{-5} + \ldots $$] are[image: $$ r_0 = \frac{1}{2}, \quad r_1 = u, \quad r_2 = u_{xx} + 3 u^2, \quad r_{3} = u_{xxxx} + 10 u u_{xx} + 5 u_x^2 + 10 u^3. $$]


The Korteweg-de Vries hierarchy is defined as follows.
Definition 4.1

              	The KdV hierarchy is the family of equations [image: $$ u_{t_k} = ( r_k[u] )_x. $$]





	Write [image: $$g_k[v] := r_k[v_x]$$]. The potential KdV (PKdV) hierarchy is the family of equations [image: $$ v_{t_k} = g_k[v] . $$]





	The differentiated potential KdV (DPKdV) hierarchy is the family of equations [image: $$ v_{x t_k} = ( g_k[v] )_x.$$]








            

The right-hand sides of first few PKdV equations are[image: $$ g_1 = v_x, \quad g_2 = v_{xxx} + 3 v_x^2, \quad g_{3} = v_{xxxxx} + 10 v_x v_{xxx} + 5 v_{xx}^2 + 10 v_x^3. $$]




Remark 4.2
The first KdV and PKdV equations, [image: $$u_{t_1} = u_x$$], resp. [image: $$v_{t_1}=v_x$$], allow us to identify x with [image: $$t_1$$].

Proposition 4.3
The differential polynomials [image: $$r_k[u]$$] satisfy[image: $$ \frac{\delta _{} {r_k}}{\delta {u}} = \left( 4 k - 2\right) r_{k-1}, $$]


where [image: $$\frac{\delta _{} {}}{\delta {u}}$$] is shorthand notation for [image: $$\frac{\delta _{1} {}}{\delta {u}}$$].

A proof of this statement can be found in [12, 3.7.11–3.7.14].
Corollary 4.4
Set [image: $$h_k [v]:= \frac{1}{4 k + 2}g_{k+1}[v]$$], then the differential polynomials [image: $$g_k$$] and [image: $$h_k$$] satisfy[image: $$\frac{\delta _{} {g_k}}{\delta {v_x}} = \left( 4 k - 2\right) g_{k-1} \qquad \text {and} \qquad \frac{\delta _{} {h_k}}{\delta {v_x}} = g_k.$$]





Before we proceed, let us formulate a simple Lemma.
Lemma 4.5
For any multi-index I and for any differential polynomial f[v] we have:[image: $$ {{\mathrm{D}}}_{x} \left( \frac{\delta _{} {f}}{\delta {v_{Ix}}} \right) = \frac{\partial {f}}{\partial {v_I}} - \frac{\delta _{} {f}}{\delta {v_I}}.$$]





Proof
By direct calculation:[image: $$\begin{aligned} {{\mathrm{D}}}_{x} \left( \frac{\delta _{} {f}}{\delta {v_{Ix}}} \right)&= {{\mathrm{D}}}_x \bigg ( \frac{\partial {f}}{\partial {v_{Ix}}} - {{\mathrm{D}}}_x \frac{\partial {f}}{\partial {v_{Ix^2}}} + {{\mathrm{D}}}_x^2 \frac{\partial {f}}{\partial {v_{Ix^3}}} - \ldots \bigg ) \\&= {{\mathrm{D}}}_x \frac{\partial {f}}{\partial {v_{Ix}}} - {{\mathrm{D}}}_x^2 \frac{\partial {f}}{\partial {v_{Ix^2}}} + {{\mathrm{D}}}_x^2 \frac{\partial {f}}{\partial {v_{Ix^3}}} - \ldots =\frac{\partial {f}}{\partial {v_I}} - \frac{\delta _{} {f}}{\delta {v_I}}. \end{aligned}$$]



          [image: $$\square $$]
        

We can now find Lagrangians for the the DPKdV equations.
Proposition 4.6
The DPKdV equations are Lagrangian, with the Lagrange functions[image: $$ L_k[v] = \frac{1}{2}v_x v_{t_k} - h_k[v]. $$]





Proof
Since [image: $$h_k = \frac{1}{4k + 2}g_{k+1}$$] does not depend on v directly, it follows from Lemma 4.5 and Corollary 4.4 that[image: $$ \frac{\delta _{} {L_k}}{\delta {v}} = -v_{t_k x} - \frac{\delta _{} {h_k}}{\delta {v}} = - v_{t_k x} + {{\mathrm{D}}}_x\frac{\delta _{} {h_k}}{\delta {v_x}} = -v_{t_k x} + (g_k)_x. $$]



          [image: $$\square $$]
        


5 Pluri-Lagrangian Structure of PKdV Hierarchy
Since the individual KdV and PKdV equations are evolutionary (not variational), it seems not very plausible that they could have a pluri-Lagrangian structure. However, it turns out that the PKdV hierarchy as a whole is pluri-Lagrangian. Let us stress that this structure is only visible if one considers several PKdV equations simultaneously and not individually. We consider a finite-dimensional multi-time [image: $$\mathbb {R}^N$$] parametrized by [image: $$t_1,t_2,\ldots , t_N$$] supporting the first N flows of the PKdV hierarchy. Recall that the first PKdV equation reads [image: $$v_{t_1} = v_{x}$$], which allows us to identify [image: $$t_1$$] with x.
The formulation of the main result involves certain differential polynomials introduced in the following statement.
Lemma 5.1

              	There exist differential polynomials [image: $$b_{ij}[v]$$] depending on v and [image: $$v_{x^\alpha }$$], [image: $$\alpha >0$$], such that [image: $$\begin{aligned} {{\mathrm{D}}}_x(g_i) g_j = {{\mathrm{D}}}_x(b_{ij}). \end{aligned}$$]

 (19)




	These polynomials satisfy [image: $$\begin{aligned} b_{ij} + b_{ji} = g_i g_j. \end{aligned}$$]

 (20)




	The differential polynomials [image: $$a_{ij}[v]$$] (depending on [image: $$v_{x^\alpha }$$] and [image: $$v_{x^\alpha t_j}$$], [image: $$\alpha \ge 0$$]) defined by [image: $$\begin{aligned} a_{ij} := v_{t_j} \frac{\delta _{1} {h_i}}{\delta {v_x}} + v_{x t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + v_{xx t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} + \ldots \end{aligned}$$]

 (21)

 satisfy [image: $$\begin{aligned} {{\mathrm{D}}}_j(h_i) + {{\mathrm{D}}}_{x}(g_i) v_{t_j} = {{\mathrm{D}}}_x(a_{ij}). \end{aligned}$$]

 (22)







            

Proof
The existence of polynomials [image: $$b_{ij}$$] is shown in [12, 3.7.9]. Since[image: $${{\mathrm{D}}}_x ( b_{ij} + b_{ji} ) = {{\mathrm{D}}}_x (g_i) g_j + g_i {{\mathrm{D}}}_x (g_j) = {{\mathrm{D}}}_x(g_i g_j),$$]


and since neither [image: $$b_{ij} + b_{ji}$$] nor [image: $$g_i g_j$$] contain constant terms, Eq. (20) follows. The last claim is a straightforward calculation using Lemma 4.5:[image: $$\begin{aligned} {{\mathrm{D}}}_x(a_{ij})&= {{\mathrm{D}}}_x \left( v_{t_j} \frac{\delta _{1} {h_i}}{\delta {v_x}} + v_{x t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + v_{xx t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} + \ldots \right) \\&= v_{x t_j} \frac{\delta _{1} {h_i}}{\delta {v_x}} + v_{xx t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + v_{xxx t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} + \ldots \\&\quad + v_{t_j} {{\mathrm{D}}}_x \left( \frac{\delta _{1} {h_i}}{\delta {v_x}}\right) + v_{x t_j} {{\mathrm{D}}}_x \left( \frac{\delta _{1} {h_i}}{\delta {v_{xx}}}\right) + v_{xx t_j} {{\mathrm{D}}}_x \left( \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}}\right) + \ldots \\&= v_{x t_j} \frac{\delta _{1} {h_i}}{\delta {v_x}} + v_{xx t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + v_{xxx t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} + \ldots \\&\quad - v_{t_j} \frac{\delta _{1} {h_i}}{\delta {v}} + v_{t_j} \frac{\partial {h_i}}{\partial {v}} - v_{x t_j} \frac{\delta _{1} {h_i}}{\delta {v_{x}}} + v_{x t_j} \frac{\partial {h_i}}{\partial {v_{x}}} - v_{xx t_j} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + v_{xx t_j} \frac{\partial {h_i}}{\partial {v_{xx}}} - \ldots \\&= {{\mathrm{D}}}_j h_i - v_{t_j} \frac{\delta _{1} {h_i}}{\delta {v}} = {{\mathrm{D}}}_j h_i + {{\mathrm{D}}}_x(g_i) v_{t_j} . \end{aligned}$$]



          [image: $$\square $$]
        

Now we are in a position to give a pluri-Lagrangian formulation of the PKdV hierarchy.
Theorem 5.2
The multi-time Euler-Lagrange equations for the Lagrangian two-form [image: $$\mathscr {L}= \sum _{i<j} L_{ij} \,\mathrm{{d}}t_i \wedge \mathrm{{d}}t_j$$], with coefficients given by[image: $$\begin{aligned} L_{1i} := L_i = \frac{1}{2} v_x v_{t_i} - h_i \end{aligned}$$]

 (23)

and[image: $$\begin{aligned} L_{ij} := \frac{1}{2} (v_{t_i} g_j - v_{t_j} g_i) + (a_{ij} - a_{ji}) - \frac{1}{2}(b_{ij} - b_{ji}) \quad \text {for} \quad j>i>1 \end{aligned}$$]

 (24)

are the first [image: $$N-1$$] nontrivial PKdV equations[image: $$v_{t_2} = g_2, \quad v_{t_3} = g_3, \quad \ldots \quad v_{t_N} = g_N,$$]


and equations that follow from these by differentiation.

5.1 Variational Symmetries and the Pluri-Lagrangian Form
Before proving Theorem 5.2, let us give an heuristic derivation of expression (24) for [image: $$L_{ij}$$]. The ansatz is that different flows of the PKdV hierarchy should be variational symmetries of each other. (We are grateful to V. Adler who proposed this derivation to us in a private communication.)
Fix two distinct integers [image: $$i,j \in \{ 2, 3, \ldots , N \}$$]. Consider the the ith DPKdV equation, which is nothing but the conventional two-dimensional variational system generated in the [image: $$(x,t_i)$$]-plane by the Lagrange function[image: $$ L_{1i} [v]= \frac{1}{2} v_x v_{t_i} - h_i[v]. $$]


Consider the evolutionary equation [image: $$v_{t_j} = g_j[v]$$], i.e., the jth PKdV equation, and the corresponding generalized vector field[image: $$ {{\mathrm{D}}}_{g_j} := \sum _{I\not \ni j} ({{\mathrm{D}}}_I g_j)\frac{\partial }{\partial v_I}. $$]


We want to show that [image: $${{\mathrm{D}}}_{g_j}$$] is a variational symmetry of [image: $$L_{1i}$$]. For this end, we look for [image: $$L_{ij}$$] such that[image: $$\begin{aligned} {{\mathrm{D}}}_{g_j} (L_{1i}) - {{\mathrm{D}}}_i \left( L_{1j}^{(g_j)}\right) + {{\mathrm{D}}}_x (L_{ij})= 0. \end{aligned}$$]

 (25)

Here, [image: $$L_{1j}^{(g_j)}$$] is the Lagrangian defined by (23) but with [image: $$v_{t_j}$$] replaced by [image: $$g_j$$]:[image: $$ L_{1j}^{(g_j)} := \frac{1}{2} v_x g_j - h_j. $$]


We have:[image: $$\begin{aligned}&{{\mathrm{D}}}_i \left( L_{1j}^{(g_j)}\right) = \frac{1}{2} v_{t_i x} g_j + \frac{1}{2} v_x (g_j)_{t_i} - {{\mathrm{D}}}_i (h_j),\\&{{\mathrm{D}}}_{g_j} (L_{1i}) = \frac{1}{2} (g_j)_x v_{t_i} + \frac{1}{2} v_x (g_j)_{t_i} - {{\mathrm{D}}}_{g_j}(h_i). \end{aligned}$$]


Upon using (22) and (19), and introducing the polynomial[image: $$ a_{ij}^{(g_j)} := g_j \frac{\delta _{1} {h_i}}{\delta {v_x}} + (g_j)_x \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + (g_j)_{xx} \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} + \ldots $$]


obtained from [image: $$a_{ij}$$] through the replacement of [image: $$v_{t_j}$$] by [image: $$g_j$$], we find:[image: $$\begin{aligned} {{\mathrm{D}}}_i \left( L_{1j}^{(g_j)}\right) - {{\mathrm{D}}}_{g_j} (L_{1i})&= \frac{1}{2} v_{t_i x} g_j - \frac{1}{2} (g_j)_x v_{t_i} - {{\mathrm{D}}}_i (h_j) + {{\mathrm{D}}}_{g_j}(h_i) \\&= \frac{1}{2} v_{t_i x} g_j - \frac{1}{2} (g_j)_x v_{t_i} - (a_{ji})_x + (g_j)_x v_{t_i} + \left( a_{ij}^{(g_j)} \right) _x - (g_i)_x g_j \\&= \frac{1}{2} v_{t_i x} g_j + \frac{1}{2} (g_j)_x v_{t_i} - \left( a_{ji} - a_{ij}^{(g_j)} \right) _x - (g_i)_x g_j \\&= \frac{1}{2} (v_{t_i}g_j)_x + \left( a_{ij}^{(g_j)} - a_{ji} \right) _x - (b_{ij})_x. \end{aligned}$$]


We denote the antiderivative with respect to x of this quantity by[image: $$L_{ij}^{(i)} := \frac{1}{2} v_{t_i}g_j + \left( a_{ij}^{(g_j)} - a_{ji} \right) - b_{ij}.$$]


The analogous calculation with coordinates x and [image: $$t_j$$] yields[image: $$ {{\mathrm{D}}}_{g_i} (L_{1j}) - {{\mathrm{D}}}_j\left( L_{1i}^{(g_i)}\right) = -\frac{1}{2} (v_{t_j} g_i)_x + \left( a_{ij} - a_{ji}^{(g_i)} \right) _x + (b_{ji})_x.$$]


We denote its antiderivative by[image: $$L_{ij}^{(j)} := -\frac{1}{2} v_{t_j} g_i + \left( a_{ij} - a_{ji}^{(g_i)} \right) + b_{ji}. $$]


Now we look for a differential polynomial [image: $$L_{ij}[v]$$] depending on the partial derivatives of v with respect to x, [image: $$t_i$$] and [image: $$t_j$$] that reduces to [image: $$L_{ij}^{(i)}$$] and to [image: $$L_{ij}^{(j)}$$] after the substitutions [image: $$v_{t_j} = g_j$$] and [image: $$v_{t_i} = g_i$$], respectively. It turns out that there is a one-parameter family of such functions, given by[image: $$ L_{ij} = c v_{t_i}v_{t_j} + (a_{ij} - a_{ji}) + \left( \frac{1}{2} - c \right) v_{t_i} g_j - \left( \frac{1}{2} + c \right) v_{t_j} g_i + \frac{1}{2}(b_{ji} - b_{ij}) + c g_i g_j$$]


for [image: $$c \in \mathbb {R}$$]. Checking this is a straightforward calculation using Eq. (20). Our theory does not depend in any essential way on the choice of [image: $$L_{ij}$$] within this family. For aesthetic reasons we chose [image: $$c=0$$], which gives us Eq. (24).
Remark 5.3
We could also take [image: $$\mathscr {L}$$] to be the c-linear part of the form we have just obtained, i.e. [image: $$\mathscr {L}=\sum _{1<i<j} (v_{t_i} - g_i)(v_{t_j} - g_j) \,\mathrm{{d}}t_i \wedge \mathrm{{d}}t_j$$]. One can think of this as choosing [image: $$c = \infty $$]. Such a two-form [image: $$\mathscr {L}$$] can be considered for any family of evolutionary equations [image: $$v_{t_i}=g_i[v]$$]. However, due to the vanishing components [image: $$L_{1i}$$], this form [image: $$\mathscr {L}$$] has no relation to the classical variational formulation of the individual differential equations [image: $$v_{xt_i}=(g_i)_x$$].

Eventually, Eq. (25) leads to the following closedness property.
Proposition 5.4
The two-form [image: $$\mathscr {L}= \sum _{i<j} L_{ij} \,\mathrm{{d}}t_i \wedge \mathrm{{d}}t_j$$], with coefficients given by (23) and (24), is closed as soon as v solves all but one of the PKdV equations [image: $$v_{t_2} = g_2, \ldots , v_{t_N} = g_N$$].

Proof
We use the notation[image: $$\begin{aligned} \mathrm{{d}}\mathscr {L}= \sum _{i< j < k} M_{ijk} \, \mathrm{{d}}t_i \wedge \mathrm{{d}}t_j \wedge \mathrm{{d}}t_k, \quad M_{ijk}={{\mathrm{D}}}_k L_{ij} - {{\mathrm{D}}}_j L_{ik} + {{\mathrm{D}}}_i L_{jk} \end{aligned}$$]

 (26)

We start by showing that [image: $$M_{1jk}={{\mathrm{D}}}_k L_{1j} - {{\mathrm{D}}}_j L_{1k} + {{\mathrm{D}}}_{x} L_{jk}$$] vanishes as soon as either [image: $$v_{t_j} = g_j$$] or [image: $$v_{t_k} = g_k$$] is satisfied. Indeed, we have:[image: $$\begin{aligned} M_{1jk}&= {{\mathrm{D}}}_k L_{1j} - {{\mathrm{D}}}_j L_{1k} + {{\mathrm{D}}}_x L_{jk} \nonumber \\&= \frac{1}{2} v_{t_j t_k} v_x + \frac{1}{2} v_{t_j} v_{x t_k} - {{\mathrm{D}}}_k h_j - \frac{1}{2} v_{t_j t_k} v_x - \frac{1}{2} v_{t_k} v_{x t_j} + {{\mathrm{D}}}_j h_k \nonumber \\&\qquad + \frac{1}{2} \left( v_{x t_j} g_k + v_{t_j} {{\mathrm{D}}}_x g_k - v_{x t_k} g_j - v_{t_k} {{\mathrm{D}}}_x g_j \right) \nonumber \\&\qquad + {{\mathrm{D}}}_k h_j + v_{t_k} {{\mathrm{D}}}_x g_j - {{\mathrm{D}}}_j h_k - v_{t_j} {{\mathrm{D}}}_x g_k - \frac{1}{2}( g_k {{\mathrm{D}}}_x g_j - g_j {{\mathrm{D}}}_x g_k ) \nonumber \\&= \frac{1}{2} \Big (v_{t_j} v_{x t_k} - v_{t_k} v_{x t_j} + v_{x t_j} g_k - v_{t_j} {{\mathrm{D}}}_x g_k \nonumber \\&\qquad \quad - v_{x t_k} g_j + v_{t_k} {{\mathrm{D}}}_x g_j - g_k {{\mathrm{D}}}_x g_j + g_j {{\mathrm{D}}}_x g_k \Big ) \nonumber \\&= \frac{1}{2} \left( v_{t_j} - g_j \right) {{\mathrm{D}}}_x \left( v_{t_k} - g_k \right) - \frac{1}{2} \left( v_{t_k} - g_k \right) {{\mathrm{D}}}_x \left( v_{t_j} - g_j \right) . \end{aligned}$$]

 (27)

For the case [image: $$i,j,k > 1$$], we assume without loss of generality that [image: $$v_{t_i} = g_i$$] and [image: $$v_{t_j} = g_j$$] are satisfied. We do not assume that [image: $$v_{t_k}=g_k$$] holds, and correspondingly we do not make any identification involving [image: $$v_{t_k}$$], [image: $$v_{x t_k}$$], .... Using Eq. (27), we find:[image: $$\begin{aligned} {{\mathrm{D}}}_x M_{ijk}&= {{\mathrm{D}}}_x \left( {{\mathrm{D}}}_k L_{ij} - {{\mathrm{D}}}_j L_{ik} + {{\mathrm{D}}}_i L_{jk} \right) \\&= {{\mathrm{D}}}_k \left( {{\mathrm{D}}}_i L_{1j} - {{\mathrm{D}}}_j L_{1i} \right) - {{\mathrm{D}}}_j \Big ( {{\mathrm{D}}}_i L_{1k} - {{\mathrm{D}}}_k L_{1i} \Big ) + {{\mathrm{D}}}_i \left( {{\mathrm{D}}}_j L_{1k} - {{\mathrm{D}}}_k L_{1j} \right) \\&= 0. \end{aligned}$$]


Since these polynomials do not contain constant terms, it follows that[image: $$ {{\mathrm{D}}}_k L_{ij} - {{\mathrm{D}}}_j L_{ik} + {{\mathrm{D}}}_i L_{jk} = 0. $$]



            [image: $$\square $$]
          

Remark 5.5
Assuming that the statement of Theorem 5.2 holds true, one can easily prove a somewhat weaker claim than Proposition 5.4, namely that the two-form [image: $$\mathscr {L}$$] is closed on simultaneous solutions of all the PKdV equations. Indeed, by Proposition 2.2, [image: $$\mathrm{{d}}\mathscr {L}$$] is constant on solutions of the multi-time Euler-Lagrange equations [image: $$v_{t_i} = g_i$$]. Vanishing of this constant follows from the fact that [image: $$\mathrm{{d}}\mathscr {L}=0$$] on the trivial solution [image: $$v \equiv 0$$].


5.2 The Multi-time Euler-Lagrange Equations
Proof
(of Theorem 5.2) We check all multi-time Euler-Lagrange Eqs. (5)–(7) individually. If [image: $$N>3$$], we fix [image: $$k> j> i >1$$]. If [image: $$N=3$$], we take [image: $$j=3$$], [image: $$i=2$$], and in the following ignore all equations containing k. We use the convention [image: $$L_{ji} = - L_{ij}$$], etc.


          Equations (7)

	The equations [image: $$\frac{\delta _{1i} {L_{1i}}}{\delta {v_{Ix t_i}}} + \frac{\delta _{ij} {L_{ij}}}{\delta {v_{It_i t_j}}} + \frac{\delta _{1j} {L_{j1}}}{\delta {v_{It_j x}}} = 0$$]


 and [image: $$\frac{\delta _{ij} {L_{ij}}}{\delta {v_{It_i t_j}}} + \frac{\delta _{jk} {L_{jk}}}{\delta {v_{It_j t_k}}} + \frac{\delta _{ki} {L_{ki}}}{\delta {v_{It_k t_i}}}= 0$$]


 are trivial because all terms vanish.




          Equations (6)

	The equation [image: $$\frac{\delta _{1i} {L_{1i}}}{\delta {v_{x}}} = \frac{\delta _{ij} {L_{ji}}}{\delta {v_{t_j}}}$$]


 yields [image: $$\begin{aligned} \frac{1}{2} v_{t_i} - \frac{\delta _{1i} {h_i}}{\delta {v_x}}&= \frac{1}{2} g_i - \frac{\delta _{ij} {a_{ij}}}{\delta {v_{t_j}}} \\&= \frac{1}{2} g_i - \frac{\delta _{ij} {}}{\delta {v_{t_j}}} \left( v_{t_j} \frac{\delta _{1} {h_i}}{\delta {v_x}} + v_{t_j x} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + v_{t_j xx} \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} +\ldots \right) \\&= \frac{1}{2} g_i - \frac{\delta _{1} {h_i}}{\delta {v_x}}. \end{aligned}$$]


 This simplifies to the PKdV equation [image: $$\begin{aligned} v_{t_i} = g_i. \end{aligned}$$]

 (28)




	For [image: $$\alpha > 0$$], the equation [image: $$\frac{\delta _{1i} {L_{1i}}}{\delta {v_{x^{\alpha +1}}}} = \frac{\delta _{ij} {L_{ji}}}{\delta {v_{t_j x^\alpha }}}$$]


 yields [image: $$\begin{aligned} -\frac{\delta _{1i} {h_i}}{\delta {v_{x^{\alpha +1}}}}&= -\frac{\delta _{ij} {}}{\delta {v_{t_j x^\alpha }}} \left( v_{t_j} \frac{\delta _{1} {h_i}}{\delta {v_x}} + v_{t_j x} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + v_{t_j xx} \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} +\ldots \right) \\&= -\frac{\delta _{1} {h_i}}{\delta {v_{x^{\alpha +1}}}}, \end{aligned}$$]


 which is trivial.

	Similarly, the equation [image: $$\frac{\delta _{1j} {L_{1j}}}{\delta {v_{x}}} = \frac{\delta _{ij} {L_{ij}}}{\delta {v_{t_i}}}$$]


 yields PKdV equation [image: $$\begin{aligned} v_{t_j} = g_j, \end{aligned}$$]

 (29)

 and for [image: $$\alpha > 0$$], the equation [image: $$\frac{\delta _{1j} {L_{1j}}}{\delta {v_{x^{\alpha +1}}}} = \frac{\delta _{ij} {L_{ij}}}{\delta {v_{t_i x^\alpha }}}$$]


 is trivial.

	All equations of the form [image: $$\frac{\delta _{1i} {L_{1i}}}{\delta {v_{x I}}} = \frac{\delta _{ij} {L_{ji}}}{\delta {v_{t_j I}}} \quad (t_i \not \in I) \qquad \text {and} \qquad \frac{\delta _{1j} {L_{1j}}}{\delta {v_{x I}}} = \frac{\delta _{ij} {L_{ij}}}{\delta {v_{t_i I}}} \quad (t_j \not \in I)$$]


 where I contains any [image: $$t_l$$] ([image: $$l > 1$$]) are trivial because each term is zero.

	The equations [image: $$\frac{\delta _{1i} {L_{1i}}}{\delta {v_{It_i}}} = \frac{\delta _{1j} {L_{1j}}}{\delta {v_{It_j}}} \qquad (x \not \in I)$$]


 and [image: $$\frac{\delta _{ij} {L_{ij}}}{\delta {v_{It_j}}} = \frac{\delta _{ik} {L_{ik}}}{\delta {v_{It_k}}} \qquad (t_i \not \in I)$$]


 are easily seen to be trivial as well.




          Equations (5)

              	By construction, the equations [image: $$\displaystyle \frac{\delta _{1i} {L_{1i}}}{\delta {v}} = 0$$] for [image: $$i >1$$] are the equations [image: $$\begin{aligned} v_{x t_i} = {{\mathrm{D}}}_x g_i. \end{aligned}$$]

 (30)

 For I containing any [image: $$t_l$$], [image: $$l > 1$$], [image: $$l \ne i$$], the equations [image: $$\displaystyle \frac{\delta _{1i} {L_{1i}}}{\delta {v_{t_I}}} = 0 $$] are trivial.

	The last family of equations we discuss as a lemma because its calculation is far from trivial.




            
Lemma 5.6
The equations [image: $$\displaystyle \frac{\delta _{ij} {L_{ij}}}{\delta {v_{x^\alpha }}} = 0$$] are corollaries of the PKdV equations.

Proof
(of Lemma 5.6) From Eq. (24) we see that the variational derivative of [image: $$L_{ij}$$] contains only three nonzero terms,[image: $$\begin{aligned} \frac{\delta _{ij} {L_{ij}}}{\delta {v_{x^\alpha }}} = \frac{\partial {L_{ij}}}{\partial {v_{x^\alpha }}} - {{\mathrm{D}}}_{i} \left( \frac{\partial {L_{ij}}}{\partial {v_{x^\alpha t_i}}} \right) - {{\mathrm{D}}}_{j} \left( \frac{\partial {L_{ij}}}{\partial {v_{x^\alpha t_j}}} \right) . \end{aligned}$$]

 (31)

In particular, the equation [image: $$\displaystyle \frac{\delta _{ij} {L_{ij}}}{\delta {v}} = 0$$] yields [image: $${{\mathrm{D}}}_i g_j - {{\mathrm{D}}}_j g_i = 0$$], that is, the compatibility condition of the flows [image: $$v_{t_i}=g_i$$] and [image: $$v_{t_j}=g_j$$]. To determine the first term on the right hand side of Eq. (31) for an arbitrary [image: $$\alpha >0$$], we use an indirect method. Assume that the dimension of multi-time N is at least 4 and fix [image: $$k > 1$$] distinct from i and j. Let v be a solution of all PKdV equations except [image: $$v_{t_k} = g_k$$]. By Proposition 5.4 we have[image: $$\begin{aligned} \sum _I \frac{\partial {L_{ij}}}{\partial {v_I}} v_{I t_k} = {{\mathrm{D}}}_{k} L_{ij} = {{\mathrm{D}}}_{j} L_{ik} - {{\mathrm{D}}}_{i} L_{jk}. \end{aligned}$$]

 (32)

Since [image: $$\frac{\partial {L_{ij}}}{\partial {v_I}}$$] does not contain any derivatives with respect to [image: $$t_k$$], we can determine [image: $$\frac{\partial {L_{ij}}}{\partial {v_{x^\alpha }}}$$] by looking at the terms in the right hand side of Eq. (32) containing [image: $$v_{x^\alpha t_k}$$]. These are[image: $$\begin{aligned}&\quad {{\mathrm{D}}}_{j} \bigg ( - \frac{1}{2} g_i v_{t_k} + v_{t_k} \frac{\delta _{1} {h_i}}{\delta {v_x}} + v_{x t_k} \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} + \ldots \bigg ) \\&- {{\mathrm{D}}}_{i} \bigg ( - \frac{1}{2} g_j v_{t_k} + v_{t_k} \frac{\delta _{1} {h_j}}{\delta {v_x}} + v_{x t_k} \frac{\delta _{1} {h_j}}{\delta {v_{xx}}} + \ldots \bigg ). \end{aligned}$$]


Now we expand the brackets. By again throwing out all terms that do not contain any [image: $$v_{x^\alpha t_k}$$], and those that cancel modulo [image: $$v_{t_i} = g_i$$] or [image: $$v_{t_j} = g_j$$], we get[image: $$\begin{aligned}&- v_{t_k} {{\mathrm{D}}}_{j}\left( \frac{\delta _{1} {h_i}}{\delta {v_x}} \right) + v_{x t_k} {{\mathrm{D}}}_{j}\left( \frac{\delta _{1} {h_i}}{\delta {v_{xx}}} \right) + v_{xx t_k} {{\mathrm{D}}}_{j}\left( \frac{\delta _{1} {h_i}}{\delta {v_{xxx}}} \right) + \ldots \\&+ v_{t_k} {{\mathrm{D}}}_{i}\bigg ( \frac{\delta _{1} {h_j}}{\delta {v_x}} \bigg ) - v_{x t_k} {{\mathrm{D}}}_{i}\bigg ( \frac{\delta _{1} {h_j}}{\delta {v_{xx}}} \bigg ) - v_{xx t_k} {{\mathrm{D}}}_{i}\bigg ( \frac{\delta _{1} {h_j}}{\delta {v_{xxx}}} \bigg ) - \ldots . \end{aligned}$$]


Comparing this to Eq. (32), we find that[image: $$\frac{\partial {L_{ij}}}{\partial {v_{x^\alpha }}} = -{{\mathrm{D}}}_{i}\left( \frac{\delta _{1} {h_j}}{\delta {v_{x^{\alpha +1}}}} \right) + {{\mathrm{D}}}_{j}\left( \frac{\delta _{1} {h_i}}{\delta {v_{x^{\alpha +1}}}} \right) . $$]


On the other hand we have[image: $$- {{\mathrm{D}}}_{i} \left( \frac{\partial {L_{ij}}}{\partial {v_{x^\alpha t_i}}} \right) - {{\mathrm{D}}}_{j} \left( \frac{\partial {L_{ij}}}{\partial {v_{x^\alpha t_j}}} \right) = {{\mathrm{D}}}_{i} \left( \frac{\delta _{1} {h_j}}{\delta {v_{x^{\alpha +1}}}} \right) - {{\mathrm{D}}}_{j} \left( \frac{\delta _{1} {h_i}}{\delta {v_{x^{\alpha +1}}}} \right) ,$$]


so Equation (31) implies that [image: $$\displaystyle \frac{\delta _{ij} {L_{ij}}}{\delta {v_{x^\alpha }}} = 0$$] for any [image: $$\alpha $$].
Since [image: $$\displaystyle \frac{\delta _{23} {L_{23}}}{\delta {v_{x^\alpha }}} = 0$$] does not depend on the dimension [image: $$N \geqslant 3$$], the result for [image: $$N \geqslant 4$$] implies the claim for [image: $$N = 3$$]. [image: $$\square $$]
          

This concludes the proof of Theorem 5.2. [image: $$\square $$]
        


6 Relation to Hamiltonian Formalism
In this last section, we briefly discuss the connection between the closedness of [image: $$\mathscr {L}$$] and the involutivity of the corresponding Hamiltonians.
In Proposition 2.2 we saw that [image: $$\mathrm{{d}}\mathscr {L}$$] is constant on solutions. For the one–dimensional case ([image: $$d=1$$]) with [image: $$\mathscr {L}$$] depending on the first jet bundle only, it has been shown in [20] that this is equivalent to the commutativity of the corresponding Hamiltonian flows. If the constant is zero then the Hamiltonians are in involution. Now we will prove a similar result for the two-dimensional case.
We will use a Poisson bracket on formal integrals, i.e. equivalence classes of functions modulo x-derivatives [12, Chap. 1–2]. In this section, the integral sign [image: $$\int $$] will always denote an equivalence class, not an integration operator. The Poisson bracket due to Gardner-Zakharov-Faddeev is defined by[image: $$ \left\{ {\textstyle \int }F, {\textstyle \int }G \right\} = \int \left( {{\mathrm{D}}}_x\frac{\delta _{1} {F}}{\delta {u}} \right) \frac{\delta _{1} {G}}{\delta {u}}.$$]


Using integration by parts, we see that this bracket is anti-symmetric. Less obvious is the fact that it satisfies the Jacobi identity [18, Chap. 7]. As we did when studying the KdV hierarchy, we introduce a potential v that satisfies [image: $$v_x = u$$], and we identify the space-coordinate x with the first coordinate [image: $$t_1$$] of multi-time. We can now re-write the Poisson bracket as[image: $$\begin{aligned} \left\{ {\textstyle \int }F, {\textstyle \int }G \right\} = \int \left( {{\mathrm{D}}}_x \frac{\delta _{1} {F}}{\delta {v_x}} \right) \frac{\delta _{1} {G}}{\delta {v_x}} = - \int \frac{\delta _{1} {F}}{\delta {v}} \frac{\delta _{1} {G}}{\delta {v_x}}, \end{aligned}$$]

 (33)

for functions F and G that depend on the x-derivatives of v but not on v itself.
Assume that the coefficients [image: $$L_{1j}$$] of the Lagrangian two-from [image: $$\mathscr {L}$$] are given by[image: $$L_{1j} = \frac{1}{2} v_x v_{t_j} - h_j,$$]


where [image: $$h_j$$] is a differential polynomial in [image: $$v_x, v_{xx}, \ldots $$]. This is the case for the PKdV hierarchy. The [image: $$L_{1j}$$] are Lagrangians of the equations[image: $$v_{x t_j} = {{\mathrm{D}}}_x g_j \qquad \text {or} \qquad u_{t_j} = {{\mathrm{D}}}_x g_j,$$]


where [image: $$g_j := \frac{\delta _{1} {h_j}}{\delta {v_x}}$$], hence [image: $$\frac{\delta _{1} {h_j}}{\delta {v}} = - {{\mathrm{D}}}_x g_j$$]. It turns out that the formal integral [image: $${\textstyle \int }h_j$$] is the Hamilton functional for the equation [image: $$u_{t_j} = {{\mathrm{D}}}_x g_j$$] with respect to the Poisson bracket (33). Formally:[image: $$ \left\{ {\textstyle \int }h_j, u(y) \right\} =\left\{ {\textstyle \int }h_j, {\textstyle \int }u \,\delta (\cdot - y) \right\} = -\int \frac{\delta _{1} {h_j}}{\delta {v}} \delta (x - y) \ = {{\mathrm{D}}}_x g_j (y),$$]


where [image: $$\delta $$] denotes the Dirac delta.
Theorem 6.1
If [image: $$\mathrm{{d}}\mathscr {L}= 0$$] on solutions, then the Hamiltonians are in involution,[image: $$\left\{ {\textstyle \int }h_i, {\textstyle \int }h_j \right\} = 0.$$]





Proof
Recall notation (26). We have[image: $$\begin{aligned} {\textstyle \int }M_{1jk}&= \int \big ( {{\mathrm{D}}}_x L_{jk} - {{\mathrm{D}}}_j L_{1k} + {{\mathrm{D}}}_k L_{1j} \big ) \\&= \int \big ( - {{\mathrm{D}}}_j L_{1k} + {{\mathrm{D}}}_k L_{1j} \big ) \\&= \int \left( -\frac{1}{2} v_{x t_j} v_{t_k} - \frac{1}{2} v_x v_{t_k t_j} + {{\mathrm{D}}}_j h_k + \frac{1}{2} v_{x t_k} v_{t_j} + \frac{1}{2} v_x v_{t_j t_k} - {{\mathrm{D}}}_k L_{1j} \right) \\&= \int \left( \frac{1}{2} \big ( v_{x t_k} v_{t_j} - v_{x t_j} v_{t_k} \big ) - {{\mathrm{D}}}_k L_{1j} + {{\mathrm{D}}}_j h_k \right) \end{aligned}$$]


Using Eq. (21) (which, as opposed to Eq. (19), is independent of the form of [image: $$h_i$$] and [image: $$g_i$$]), the evolution equations [image: $$v_{t_j} = g_j$$], and integration by parts, we find that[image: $$\begin{aligned} {\textstyle \int }M_{1jk}&= \int \left( \frac{1}{2} \big (v_{x t_k} v_{t_j} - v_{x t_j} v_{t_k} \big ) - {{\mathrm{D}}}_x a_{jk} + v_{t_k} {{\mathrm{D}}}_x g_j + {{\mathrm{D}}}_x a_{kj} - v_{t_j} D_x g_k \right) \\&= \int \left( -\frac{1}{2} \big ( g_j {{\mathrm{D}}}_x g_k - g_k {{\mathrm{D}}}_x g_j \big ) - {{\mathrm{D}}}_x a_{jk} + {{\mathrm{D}}}_x a_{kj} \right) \\&= \int g_k {{\mathrm{D}}}_x g_j \\&= - \int \frac{\delta _{1} {h_j}}{\delta {v}} \frac{\delta _{1} {h_k}}{\delta {v_x}} \\&= \left\{ {\textstyle \int }h_j, {\textstyle \int }h_k \right\} . \end{aligned}$$]


Hence if [image: $$\mathrm{{d}}\mathscr {L}= 0$$] on solutions of the evolution equations [image: $$v_{t_j} = g_j$$], then the Hamilton functionals are in involution. [image: $$\square $$]
        


7 Conclusion
We have formulated the pluri-Lagrangian theory of integrable hierarchies, and propose it as a definition of integrability. The motivation for this definition comes from the discrete case [10, 13, 20] and the fact that we have established a relation with the Hamiltonian side of the theory. For the Hamiltonians to be in involution, we need the additional fact that the Lagrangian two-form is closed. However, we believe that the essential part of the theory is inherently contained in the pluri-Lagrangian formalism.
Since the KdV hierarchy is one of the most important examples of an integrable hierarchy, our construction of a pluri-Lagrangian structure for the PKdV hierarchy is an additional indication that the existence of a pluri-Lagrangian structure is a reasonable definition of integrability.
It is remarkable that multi-time Euler-Lagrange equations are capable of producing evolutionary equations. This is a striking difference from the discrete case, where the evolution equations (quad equations) imply the multi-time Euler–Lagrange equations (corner equations), but are themselves not variational [10].
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A. A very short introduction to the variational bicomplex
Here we introduce the variational bicomplex and derive the basic results that we use in the text. We follow Dickey, who provides a more complete discussion in [12, Chap. 19]. Another good source on a (subtly different) variational bicomplex is Anderson’s unfinished manuscript [2]. For ease of notation we restrict to real fields [image: $$u: \mathbb {R}^N \rightarrow \mathbb {R}$$], rather than vector-valued fields.
The space of (p, q)-forms [image: $$\mathscr {A}^{(p,q)}$$] consists of all formal sums[image: $$\begin{aligned} \omega ^{p,q} = \sum f \,\delta u_{I_1} \wedge \ldots \wedge \delta u_{I_p} \wedge \mathrm{{d}}t_{j_1} \wedge \ldots \wedge \mathrm{{d}}t_{j_q}, \end{aligned}$$]


where f is a polynomial in u and partial derivatives of u of arbitrary order with respect to any coordinates. The vertical one-forms [image: $$\delta u_I$$] are dual to the vector fields [image: $$\frac{\partial {}}{\partial {u_I}}$$]. The action of the derivative [image: $${{\mathrm{D}}}_i$$] on [image: $$\omega ^{p,q}$$] is[image: $$\begin{aligned} {{\mathrm{D}}}_i \omega ^{p,q}&= \sum ({{\mathrm{D}}}_i f) \,\delta u_{I_1} \wedge \ldots \wedge \delta u_{I_p} \wedge \mathrm{{d}}t_{j_1} \wedge \ldots \wedge \mathrm{{d}}t_{j_q} \\&\qquad \quad +\, f \,\delta u_{I_1i} \wedge \ldots \wedge \delta u_{I_p} \wedge \mathrm{{d}}t_{j_1} \wedge \ldots \wedge \mathrm{{d}}t_{j_q} \\&\qquad \quad + \,\ldots + f \,\delta u_{I_1} \wedge \ldots \wedge \delta u_{I_pi} \wedge \mathrm{{d}}t_{j_1} \wedge \ldots \wedge \mathrm{{d}}t_{j_q}. \end{aligned}$$]


The integral of [image: $$\omega ^{p,q}$$] over an q-dimensional manifold is the (p, 0)-form defined by[image: $$\begin{aligned} \int \omega ^{p,q} = \sum \left( \int f \, \mathrm{{d}}t_{j_1} \wedge \ldots \wedge \mathrm{{d}}t_{j_q} \right) \delta u_{I_1} \wedge \ldots \wedge \delta u_{I_p}. \end{aligned}$$]


We call (0, q)-forms horizontal and (p, 0)-forms vertical. The horizontal exterior derivative [image: $$\mathrm{{d}}: \mathscr {A}^{(p,q)} \rightarrow \mathscr {A}^{(p,q+1)}$$] and the vertical exterior derivative [image: $$\delta : \mathscr {A}^{(p,q)} \rightarrow \mathscr {A}^{(p+1,q)}$$] are defined by the anti-derivation property	(a)
                  [image: $$\displaystyle \mathrm{{d}}\left( \omega _1^{p_1,q_1} \wedge \omega _2^{p_2,q_2} \right) = \mathrm{{d}}\omega _1^{p_1,q_1} \wedge \omega _2^{p_2,q_2} + (-1)^{p_1+q_1} \, \omega _1^{p_1,q_1} \wedge \mathrm{{d}}\omega _2^{p_2,q_2}$$],

                  [image: $$\displaystyle \delta \left( \omega _1^{p_1,q_1} \wedge \omega _2^{p_2,q_2} \right) = \delta \omega _1^{p_1,q_1} \wedge \omega _2^{p_2,q_2} + (-1)^{p_1+q_1} \, \omega _1^{p_1,q_1} \wedge \delta \omega _2^{p_2,q_2}$$],


 



and by the way they act on (0, 0)-, (1, 0)-, and (0, 1)-forms:	(b)
                  [image: $$\displaystyle \mathrm{{d}}f = \sum _j {{\mathrm{D}}}_j f \,\mathrm{{d}}t_j = \sum _j \bigg (\frac{\partial {f}}{\partial {t_j}} + \sum _I \frac{\partial {f}}{\partial {u_I}}u_{Ij} \bigg ) \mathrm{{d}}t_j$$],    [image: $$\displaystyle \delta f = \sum _I \frac{\partial {f}}{\partial {u_I}} \delta u_{I}$$],


 

	(c)
                  [image: $$\displaystyle \mathrm{{d}}(\delta u_I )= - \sum _j \delta u_{Ij} \wedge \mathrm{{d}}t_j,$$]    [image: $$\delta (\delta u_I) = 0$$],


 

	(d)
                  [image: $$\mathrm{{d}}(\mathrm{{d}}t_j) = 0$$],    [image: $$\delta (\mathrm{{d}}t_j) = 0$$],    [image: $$\displaystyle \delta (\mathrm{{d}}u_I )= - \mathrm{{d}}(\delta u_I )= \sum _j \delta u_{Ij} \wedge \mathrm{{d}}t_j$$].


 





Properties (a)–(d) determine the action of [image: $$\mathrm{{d}}$$] and [image: $$\delta $$] on any form. The corresponding mapping diagram is known as the variational bicomplex.[image: $$\begin{aligned} \begin{matrix} \vdots &{} &{} \vdots &{} &{} &{} &{} \vdots &{} &{} \vdots \\ \uparrow {\scriptstyle \delta } &{} &{} \uparrow {\scriptstyle \delta } &{} &{} &{} &{} \uparrow {\scriptstyle \delta } &{} &{} \uparrow {\scriptstyle \delta } \\ \mathscr {A}^{(1,0)} &{} \xrightarrow {\mathrm{{d}}} &{} \mathscr {A}^{(1,1)} &{} \xrightarrow {\mathrm{{d}}} &{} \ldots &{} \xrightarrow {\mathrm{{d}}} &{} \mathscr {A}^{(1,n-1)} &{} \xrightarrow {\mathrm{{d}}} &{} \mathscr {A}^{(1,n)} \\ \uparrow {\scriptstyle \delta } &{} &{} \uparrow {\scriptstyle \delta } &{} &{} &{} &{} \uparrow {\scriptstyle \delta } &{} &{} \uparrow {\scriptstyle \delta } \\ \mathscr {A}^{(0,0)} &{} \xrightarrow {\mathrm{{d}}} &{} \mathscr {A}^{(0,1)} &{} \xrightarrow {\mathrm{{d}}} &{} \ldots &{} \xrightarrow {\mathrm{{d}}} &{} \mathscr {A}^{(0,n-1)} &{} \xrightarrow {\mathrm{{d}}} &{} \mathscr {A}^{(0,n)} \\ \end{matrix} \end{aligned}$$]


The following claims follow immediately from the definitions.
Proposition A.1
We have [image: $$\mathrm{{d}}^2 = \delta ^2 = 0$$] and [image: $$\mathrm{{d}}\delta + \delta \mathrm{{d}}= 0$$].

Remark A.2
This implies that [image: $$\mathrm{{d}}+ \delta : \mathscr {A}^k \rightarrow \mathscr {A}^{k+1}$$], where [image: $$\mathscr {A}^k := \bigcup _{i=0}^k \mathscr {A}^{(i,k-i)}$$], is an exterior derivative as well.

Proposition A.3
We have [image: $${{\mathrm{D}}}_i \delta = \delta {{\mathrm{D}}}_i$$].

Proposition A.4
For a differential polynomial h, define the corresponding vertical generalized vector field by [image: $$\partial _h := \sum _I h_I \frac{\partial {}}{\partial {u_I}}$$]. We have [image: $$\mathrm{{d}}{{\mathrm{\iota }}}_{\partial _h} + {{\mathrm{\iota }}}_{\partial _h} \mathrm{{d}}= 0$$].

Proof
It suffices to show this for (0,0)-forms (polynomials f in u and partial derivatives of u), for (0,1)-forms [image: $$\mathrm{{d}}t_j$$], and for (1,0)-forms [image: $$\delta u_I$$]. For (0,0)-forms, both terms of the claimed identity are zero:[image: $$ \mathrm{{d}}\Big ( {{\mathrm{\iota }}}_{\partial _h} f \Big ) = 0, \quad {{\mathrm{\iota }}}_{\partial _h} ( \mathrm{{d}}f )= {{\mathrm{\iota }}}_{\partial _h} \bigg ( \sum _j {{\mathrm{D}}}_j f \,\mathrm{{d}}t_j\bigg ) = 0. $$]


Likewise for (0,1)-forms:[image: $$ \mathrm{{d}}\Big ( {{\mathrm{\iota }}}_{\partial _h} \mathrm{{d}}t_j \Big ) = 0, \quad {{\mathrm{\iota }}}_{\partial _h} ( \mathrm{{d}}\mathrm{{d}}t_j ) = 0. $$]


For (1,0)-forms we find:[image: $$ {{\mathrm{\iota }}}_{\partial _h} ( \mathrm{{d}}\delta u_I ) = {{\mathrm{\iota }}}_{\partial _h} \bigg ( - \sum _j \delta u_{Ij} \wedge \mathrm{{d}}t_j \bigg ) = - \sum _j h_{Ij} \, \mathrm{{d}}t_j = - \mathrm{{d}}h_{I} = - \mathrm{{d}}\Big ( {{\mathrm{\iota }}}_{\partial _h} \delta u_I \Big ). $$]



            [image: $$\square $$]
          



B. Proof of Lemma 2.4
        
Assume that the action is stationary on all d-dimensional stepped surfaces in [image: $$\mathbb {R}^N$$]. Let S be a smooth d-dimensional surface in [image: $$\mathbb {R}^N$$]. Partition the space [image: $$\mathbb {R}^N$$] into hypercubes [image: $$C_i$$] of edge length [image: $$\varepsilon $$]. We can choose this partitioning in such a way that the surface S does not contain the center of any of the hypercubes. Denote [image: $$S_i^N := S \cap C_i$$].
We give each hypercube its own coordinate system [image: $$[-1,1]^N \rightarrow C_i$$] and identify the hypercube with its coordinates. In each punctured hypercube [image: $$[-1,1]^N \setminus \{0\}$$] we define a family of balloon maps
          [image: $$ \mathscr {B}_\alpha ^{N}: [-1,1]^N \setminus \{0\} \rightarrow [-1,1]^N \setminus \{0\}: x \mapsto {\left\{ \begin{array}{ll} \dfrac{\alpha x}{\Vert x \Vert _\mathrm {max}} &{} \text {if } \Vert x \Vert _\mathrm {max} < \alpha \\ x &{} \text {if } \Vert x \Vert _\mathrm {max} \geqslant \alpha \end{array}\right. }$$]


for [image: $$\alpha \in [0,1]$$]. Here, [image: $$ \Vert x \Vert _\mathrm {max} := \max (|x_1|, \ldots |x_N|)$$] denotes the maximum norm with respect to the local coordinates. The idea is that from the center of each hypercube, we inflate a square balloon which pushes the curve away from the center, until it lies on the boundary of the hypercube.
Indeed, the deformed surface [image: $$S_i^{N-1} := \mathscr {B}_1^{N} (S_i^N) = \mathscr {B}_1^{N} (S \cap C_i)$$] lies on the boundary of the hypercube, i.e. within the [image: $$(N-1)$$]-faces of the hypercube. We want it to lie within the d-faces of the hypercube, which would imply that it is a stepped surface. To achieve this, we introduce a balloon map[image: $$ \mathscr {B}_\alpha ^{N-1,j}: [-1,1]^{N-1} \setminus \{0\} \rightarrow [-1,1]^{N-1} \setminus \{0\}: x \mapsto {\left\{ \begin{array}{ll} \dfrac{\alpha x}{\Vert x \Vert _\mathrm {max}} &{} \text {if } \Vert x \Vert _\mathrm {max} < \alpha \\ x &{} \text {if } \Vert x \Vert _\mathrm {max} \geqslant \alpha \end{array}\right. }$$]


in each of the [image: $$(N-1)$$]-faces [image: $$C_i^j$$] of the hypercube [image: $$C_i$$], which pushes the surface into the [image: $$(N-2)$$]-faces. We denote the surface we obtain this way by [image: $$S_i^{N-2}$$]. If the surface happens to contain the center of a [image: $$(N-1)$$]-face, we can slightly perturb the surface without affecting the argument. By iterating this procedure, using balloon maps [image: $$\mathscr {B}_\alpha ^{k,j}$$] in each k-face [image: $$C_i^j$$] ([image: $$N \geqslant k \geqslant d+1$$]), we obtain a surface [image: $$S_i^d$$] that lies in the d-faces (Figs. 5 and 6).
Consider the [image: $$(d+1)$$]-dimensional surface[image: $$ M_i := \bigcup _{k=d+1}^N \bigcup _{\begin{array}{c} j:\ C_i^j \text { is a} \\ k\text { -face of } C_i \end{array}} \bigcup _{\alpha \in [0,1]} \mathscr {B}_\alpha ^{k,j} (S_i^k \cap C_i^j)$$]


that is swept out by the consecutive application of the balloon maps to [image: $$S_i^N := S \cap C_i$$]. Assuming that [image: $$\varepsilon $$] is small compared to the curvature of S, the [image: $$(d+1)$$]-dimensional volume of each of the [image: $$\bigcup _{\alpha \in [0,1]} \mathscr {B}_\alpha ^{k,j} (S_i^k \cap C_i^j)$$] is of the order [image: $$\varepsilon ^{d+1}$$]. The number of such volumes making up [image: $$M_i$$] only depends on the dimensions N and d, not on [image: $$\varepsilon $$], so the [image: $$(d+1)$$]-dimensional volume [image: $$|M_i|$$] of [image: $$M_i$$] is of the order [image: $$|M_i| = \mathscr {O}(\varepsilon ^{d+1})$$].[image: A371662_1_En_11_Fig5_HTML.gif]
Fig. 5Balloon maps in nine adjacent squares deforming a curve in [image: $$\mathbb {R}^2$$]. From left to right: [image: $$\alpha = 0.2$$], [image: $$\alpha = 0.7$$] and [image: $$\alpha = 1$$]
                





Now consider a variation [image: $$\mathscr {V}$$] with compact support and restrict the surface S to this support. Denote by [image: $$\widehat{S} := \bigcup _i S_i^d$$] the stepped surface obtained from S by repeated application of balloon maps in all the hypercubes, and by [image: $$M := \bigcup _i M_i$$] the [image: $$(d+1)$$]-dimensional surface swept out by these balloon maps. The bounary of M consists of S, [image: $$\widehat{S}$$], and a small strip of area [image: $$\mathscr {O}(\varepsilon )$$] connecting the boundaries of S and [image: $$\widehat{S}$$] (the dotted line in Fig. 5). The number of hypercubes intersecting S is of order [image: $$\varepsilon ^{-d}$$], so [image: $$| M | = \mathscr {O}(\varepsilon ^{-d}) \mathscr {O}(\varepsilon ^{d+1}) = \mathscr {O}(\varepsilon )$$]. It follows that[image: $$\begin{aligned} \left| \int _{\widehat{S}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}- \int _{S} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}\right|&= \left| \int _{\partial M} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}\right| +\mathscr {O}(\varepsilon ) \\&= \left| \int _{M} \mathrm{{d}}({{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}) \right| +\mathscr {O}(\varepsilon ) \rightarrow 0 \end{aligned}$$]


as [image: $$\varepsilon \rightarrow 0$$]. By assumption, [image: $$\int _{\widehat{S}} {{\mathrm{\iota }}}_{{{\mathrm{pr}}}\mathscr {V}} \delta \mathscr {L}= 0$$] for all [image: $$\varepsilon $$], so the action on S will be stationary as well. [image: $$\square $$]
          [image: A371662_1_En_11_Fig6_HTML.gif]
Fig. 6The second and last iteration for a curve in [image: $$\mathbb {R}^3$$]. From left to right: [image: $$\alpha = 0.1$$], [image: $$\alpha = 0.6$$] and [image: $$\alpha = 1$$]
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Abstract
We study the variational structure of the discrete Kadomtsev-Petviashvili (dKP) equation by means of its pluri-Lagrangian formulation. We consider the dKP equation and its variational formulation on the cubic lattice [image: $$\mathbb Z^{N}$$] as well as on the root lattice [image: $$Q(A_{N})$$]. We prove that, on a lattice of dimension at least four, the corresponding Euler-Lagrange equations are equivalent to the dKP equation.

1 Introduction
We developed the theory of pluri-Lagrangian problems (integrable systems of variational origin) in recent papers [2–6, 15, 16], influenced by the fundamental insight of [11–13, 17]. In the present paper, we consider the pluri-Lagrangian formulation of the discrete bilinear Kadomtsev-Petviashvili (dKP) equation on three-dimensional lattices and its consistent extension to higher dimensional lattices. This equation belongs to integrable octahedron-type equations which were classified in [1]. A Lagrangian formulation of this equation was given in [13]. There, the authors consider a discrete 3-form on the lattice [image: $$\mathbb Z^{3}$$] together with the corresponding Euler-Lagrange equations which are shown to be satisfied on solutions of the dKP equation. They also show that this 3-form is closed on solutions of the dKP equation, namely, the so-called 4D closure relation is satisfied. The main goal of the present paper is to provide a more precise understanding of the findings in that paper. More concretely:	In the framework of the pluri-Lagrangian formulation, we construct the elementary building blocks of Euler-Lagrange equations, which, in the present situation, are the so-called 4D corner equations.

	In the two-dimensional case, as noticed in [4], the corresponding 3D corner equations build a consistent system. Its solutions are more general then the solutions of the underlying hyperbolic system of quad-equations. On the contrary, in the present three-dimensional situation, the system of 4D corner equations is not consistent in the usual sense (i.e., it does not allow to determine general solutions with the maximal number of initial data). However, this system turns out to be equivalent, in a sense which we are going to explain later, to the corresponding hyperbolic system, namely the dKP equation.

	We provide a rigorous consideration of the branches of the logarithm functions involved in the Euler-Lagrange equations. This leads to the following more precise result: the system of 4D corner equations is equivalent, and thus provides a variational formulation, to two different hyperbolic equations, namely the dKP equation itself and its version obtained under inversion [image: $$x\mapsto x^{-1}$$] of all fields which will be denoted by [image: $$\mathrm {dKP}^{-}$$].





One can consider the dKP equation on the cubic lattice [image: $$\mathbb Z^{3}$$] and its higher dimensional analogues [image: $$\mathbb Z^{N}$$], but, as discussed in [1, 8, 9] another natural setting the dKP equation (and related octahedron-type equations) is the three-dimensional root lattice[image: $$ Q(A_{3}):=\{(n_{i},n_{j},n_{k},n_{\ell }):n_{i}+n_{j}+n_{k}+n_{\ell }=0\}. $$]


Also in this setting, the dKP equation can be extended in a consistent way to the higher dimensional lattices [image: $$Q(A_{N})$$] with [image: $$N>3$$].
Both lattices have their advantages and disadvantages. The cubic lattice [image: $$\mathbb Z^{N}$$], on the one hand, is more manageable and easier to visualize. Its cell structure is very simple: for every dimension N, all N-dimensional elementary cells are N-dimensional cubes. On the other hand, it is less natural to consider dKP on the lattice [image: $$\mathbb Z^{3}$$], because this equation depends on the variables assigned to six out of eight vertices of a (three-dimensional) cube.
The root lattice [image: $$Q(A_{N})$$], in contrast, has a more complicated cell structure, because the number of different N-dimensional elementary cells increases with the dimension N. For instance, for [image: $$N=3$$] there are two types of elementary cells octahedra and tetrahedra. Moreover, especially in higher dimensions, a visualization of the elementary cells is difficult, if not impossible. However, this lattice is more natural for the consideration of dKP from the combinatorial point of view, because this equation depends on variables which can be assigned to the six vertices of an octahedron, one of the elementary cells of the lattice. Furthermore, the four-dimensional elementary cells are combinatorially smaller (they contain only 10 vertices, as compared with 16 vertices of a four-dimensional cube) and possess higher symmetry than the cubic ones. Since they support the equations which serve as variational analogue of the dKP equation, this leads to a simpler situation.
We will see that a four-dimensional cube is combinatorially equivalent to the sum of four elementary cells of the root lattice [image: $$Q(A_{4})$$]. Therefore, several results in the cubic case can be seen as direct consequences of results of the more fundamental [image: $$Q(A_{N})$$]-case.
Let us start with some concrete definitions valid for an arbitrary N-dimensional lattice [image: $$\mathscr {X}$$].
Definition 1.1
(Discrete 3-form) A discrete 3-form on [image: $$\mathscr {X}$$] is a real-valued function [image: $$\mathscr {L}$$] of oriented 3-cells [image: $$\sigma $$] depending on some field [image: $$x:\mathscr {X}\rightarrow \mathbb R$$], such that [image: $$\mathscr {L}$$] changes the sign by changing the orientation of [image: $$\sigma $$].

For instance, in [image: $$Q(A_{N})$$], the 3-cells are tetrahedra and octahedra, and, in [image: $$\mathbb Z^{N}$$], the 3-cells are 3D cubes.
Definition 1.2
(3-dimensional pluri-Lagrangian problem) Let [image: $$\mathscr {L}$$] be a discrete 3-form on [image: $$\mathscr {X}$$] depending on [image: $$x:\mathscr {X}\rightarrow \mathbb R$$].

              	To an arbitrary 3-manifold [image: $$\varSigma \subset \mathscr {X}$$], i.e., a union of oriented 3-cells which forms an oriented three-dimensional topological manifold, there corresponds the action functional, which assigns to [image: $$x|_{V(\varSigma )}$$], i.e., to the fields in the set of the vertices [image: $$V(\varSigma )$$] of [image: $$\varSigma $$], the number [image: $$\begin{aligned} S_{\varSigma }:=\sum _{\sigma \in \varSigma }\mathscr {L}(\sigma ). \end{aligned}$$]





	We say that the field [image: $$x:V(\varSigma )\rightarrow \mathbb R$$] is a critical point of [image: $$S_{\varSigma }$$], if at any interior point [image: $$n\in V(\varSigma )$$], we have [image: $$\begin{aligned} \frac{\partial S_{\varSigma }}{\partial x(n)}=0. \end{aligned}$$]

 (1)

 Equation (1) are called discrete Euler-Lagrange equations for the action [image: $$S_{\varSigma }$$].

	We say that the field [image: $$x:\mathscr {X}\rightarrow \mathbb R$$] solves the pluri-Lagrangian problem for the Lagrangian 3-form [image: $$\mathscr {L}$$] if, for any 3-manifold [image: $$\varSigma \subset \mathscr {X}$$], the restriction [image: $$x|_{V(\varSigma )}$$] is a critical point of the corresponding action [image: $$S_{\varSigma }$$].




            

In the present paper, we focus on the variational formulation of the dKP equation on [image: $$Q(A_{N})$$] and [image: $$\mathbb Z^{N}$$]. Let us formulate the main results of the paper.
On the lattice [image: $$Q(A_{N})$$], we consider discrete 3-forms vanishing on all tetrahedra. One can show (see Corollary 2.5) that, for an arbitrary interior vertex of any 3-manifold in [image: $$Q(A_{N})$$], the Euler-Lagrange equations follow from certain elementary building blocks. These so-called 4D corner equations are the Euler-Lagrange equations for elementary 4-cells of [image: $$Q(A_{N})$$] different from 4-simplices, so-called 4-ambo-simplices. Such a 4-ambo-simplex has ten vertices. Therefore, the crucial issue is the study of the system consisting of the corresponding ten corner equations. In our case, each corner equation depends on all ten fields at the vertices of the 4-ambo-simplex. Therefore, one could call this system consistent if any two equations are functionally dependent. It turns out that this is not the case. We will prove the following statement:
Theorem 1.3
Every solution of the system of ten corner equations for a 4-ambo-simplex in [image: $$Q(A_{N})$$] satisfies either the system of five dKP equations or the system of five [image: $$ dKP ^{-}$$] equations on the five octahedral facets of the 4-ambo-simplex.

Thus, one can prescribe arbitrary initial values at seven vertices of a 4-ambo-simplex. We will also prove the following theorem:
Theorem 1.4
The discrete 3-form [image: $$\mathscr {L}$$] is closed on any solution of the system of corner equations.

In [4, 15], it was shown that in dimensions 1 and 2 the analogues of the property formulated in Theorem 1.4 are related to more traditional integrability attributes.
For the case of the cubic lattice [image: $$\mathbb Z^{N}$$], the situation is similar: one can show (see Corollary 4.2) that, for an arbitrary interior vertex of any 3-manifold in [image: $$\mathbb Z^{3}$$], the Euler-Lagrange equations follow from certain elementary building blocks. These so-called 4D corner equations are the Euler-Lagrange equations for elementary 4D cubes in [image: $$\mathbb Z^{N}$$]. A 4D cube has sixteen vertices, but in our case the action on a 4D cube turns out to be independent of the fields on two of the vertices. Therefore, the crucial issue is the study of the system consisting of the corresponding fourteen corner equations. Six of the fourteen corner equations depend each on thirteen of the fourteen fields. There do not exist pairs of such equations which are independent of one and the same field. All other equations depend each on ten of the fourteen fields. Therefore, one could call this system consistent if it would have the minimal possible rank 2 (assign twelve fields arbitrarily and use two of the six corner equations—depending on thirteen fields—to determine the remaining two fields, then all twelve remaining equations should be satisfied automatically). It turns out that the system of the fourteen corner equations is not consistent in this sense. We will prove the following analogue of Theorem 1.3:
Theorem 1.5
Every solution of the system of fourteen corner equations for a 4D cube in [image: $$\mathbb Z^{N}$$] satisfies either the system of eight dKP equations or the system of eight [image: $$ dKP ^{-}$$] equations on the eight cubic facets of the 4D cube.

Thus, one can prescribe arbitrary initial values at nine vertices of a 4D cube. Correspondingly, we will also prove the following statement:
Theorem 1.6
The discrete 3-form [image: $$\mathscr {L}$$] is closed on any solution of the system of corner equations.

The paper is organized as follows: we start with the root lattice [image: $$Q(A_{N})$$], thus considering the combinatorial issues and some general properties of pluri-Lagrangian systems. Then we introduce the dKP equation and its pluri-Lagrangian structure. In the second part of the paper the present similar considerations for the cubic lattice [image: $$\mathbb Z^{N}$$].

2 The Root Lattice [image: $$Q(A_{N})$$]
      
We consider the root lattice[image: $$ Q(A_{N}):=\{n:=(n_{0},n_{1},\ldots ,n_{N})\in \mathbb Z^{N+1}:n_{0}+n_{1}+\ldots +n_{N}=0\}, $$]


where [image: $$N\ge 3$$]. The three-dimensional sub-lattices [image: $$Q(A_{3})$$] are given by[image: $$ Q(A_{3}):=\{(n_{i},n_{j},n_{k},n_{\ell }):n_{i}+n_{j}+n_{k}+n_{\ell }=\mathrm {const}\}. $$]


We consider fields [image: $$x:Q(A_{N})\rightarrow \mathbb R$$], and use the shorthand notations[image: $$ x_{\bar{\imath }}=x(n-e_{i}),\qquad x=x(n),\qquad \text {and}\qquad x_{i}=x(n+e_{i}), $$]


where [image: $$e_{i}$$] is the unit vector in the ith coordinate direction. Furthermore, the shift functions [image: $$T_{i}$$] and [image: $$T_{\bar{\imath }}$$] are defined by[image: $$ T_{i}x_{\alpha }:=x_{i\alpha }\quad \text {and}\quad T_{\bar{\imath }}x_{\alpha }:=x_{\bar{\imath }\alpha } $$]


for a multiindex [image: $$\alpha $$]. For simplicity, we sometimes abuse notations by identifying lattice points n with the corresponding fields x(n).
We now give a very brief introduction to the Delaunay cell structure of the n-dimensional root lattice [image: $$Q(A_{N})$$] [7, 14]. Here, we restrict ourselves to a very elementary description which is appropriate to our purposes and follow the considerations in [1]. For each N there are N sorts of N-cells of [image: $$Q(A_{N})$$] denoted by P(k, N) with [image: $$k=1,\ldots ,N$$]:	Two sorts of 2-cells:

                  [image: $$\begin{array}{ll} P(1,2):&{} \text {black triangles}\lfloor ijk\rfloor :=\{x_{i},x_{j},x_{k}\};\\ P(2,2):&{} \text {white triangles} \lceil ijk\rceil :=\{x_{ij},x_{ik},x_{jk}\}; \end{array}$$]
                

	Three sorts of 3-cells:

                  [image: $$\begin{array}{ll} P(1,3):&{} \text {black tetrahedra} \lfloor ijk\ell \rfloor :=\{x_{i},x_{j},x_{k},x_{\ell }\};\\ P(2,3):&{} \text {octahedra} [ijk\ell ]:=\{x_{ij},x_{ik},x_{i\ell },x_{jk},x_{j\ell },x_{k\ell }\};\\ P(3,3):&{} \text {white tetrahedra} \lceil ijk\ell \rceil :=\{x_{ijk},x_{ij\ell },x_{ik\ell },x_{jk\ell }\}; \end{array}$$]
                

	Four sorts of 4-cells:

                  [image: $${\begin{array}{ll} P(1,4): \text {black 4-simplices} \lfloor \!\!\lfloor ijk\ell m\rfloor \!\!\rfloor :=\{x_{i},x_{j},x_{k},x_{\ell },x_{m}\};\\ P(2,4): \text {black 4-ambo-simplices} \lfloor ijk\ell m\rfloor :=\{x_{\alpha \beta }:\alpha ,\beta \in \{i,j,k,\ell ,m\}, \alpha \ne \beta \};\\ P(3,4): \text {white 4-ambo-simplices} \lceil ijk\ell m\rceil :=\{x_{\alpha \beta \gamma }:\alpha ,\beta ,\gamma \in \{i,j,k,\ell ,m\},\\ \alpha \ne \beta \ne \gamma \ne \alpha \};\\ P(4,4): \text {white 4-simplices} \lceil \!\!\lceil ijk\ell m\rceil \!\!\rceil :=\{x_{ijk\ell },x_{ijkm},x_{ij\ell m},x_{ik\ell m},x_{jk\ell m}\}. \end{array}}$$]
                





The facets of 3-cells and 4-cells can be found in Appendix 1.
In the present paper we will consider objects on oriented manifolds. We say that a black triangle [image: $$\lfloor ijk\rfloor $$] and white triangle [image: $$\lceil ijk\rceil $$] are positively oriented if [image: $$i<j<k$$] (see Fig. 1). Any permutation of two indices changes the orientation to the opposite one.[image: A371662_1_En_12_Fig1_HTML.gif]
Fig. 1Orientation of triangles: a the black triangle [image: $$\lfloor ijk\rfloor $$]; b the white triangle [image: $$\lceil ijk\rceil $$]
              





When we use the bracket notation, we always write the letters in brackets in increasing order, so, e.g., in writing [image: $$\lfloor ijk\rfloor $$] we assume that [image: $$i<j<k$$] and avoid the notation [image: $$\lfloor jik\rfloor $$] or [image: $$\lfloor ikj\rfloor $$] for the negatively oriented triangle [image: $$-\lfloor ijk\rfloor $$].
There is a simple recipe to derive the orientation of facets of an N-cell: On every index in the brackets we put alternately a “[image: $$+$$]” or a “−” starting with a “[image: $$+$$]” on the last index. Then we get each of its facets by deleting one index and putting the corresponding sign in front of the bracket. For instance, the black 4-ambo-simplex[image: $$\begin{aligned} \begin{array}{ccccccc} &{}+&{}-&{}+&{}-&{}+&{}\\ \lfloor &{}i&{}j&{}k&{}\ell &{}m&{}\rfloor \end{array} \end{aligned}$$]


has the five octahedral facets [image: $$[ijk\ell ]$$], [image: $$-[ijkm]$$], [image: $$[ij\ell m]$$], [image: $$-[ik\ell m]$$], and [image: $$[jk\ell m]$$].
The following two definitions are valid for arbitrary N-dimensional lattices [image: $$\mathscr {X}$$].
Definition 2.1
(Adjacent N
          -cell) Given an N-cell [image: $$\sigma $$], another N-cell [image: $$\bar{\sigma }$$] is called adjacent to [image: $$\sigma $$] if [image: $$\sigma $$] and [image: $$\bar{\sigma }$$] share a common [image: $$(N-1)$$]-cell. The orientation of this [image: $$(N-1)$$]-cell in [image: $$\sigma $$] must be opposite to its orientation in [image: $$\bar{\sigma }$$].

The latter property guarantees that the orientations of the adjacent N-cells agree.
Definition 2.2
(Flower) A 3-manifold in [image: $$\mathscr {X}$$] with exactly one interior vertex x is called a flower with center x. The flower at an interior vertex x of a given 3-manifold is the flower with center x which lies completely in the 3-manifold.

As a consequence, in [image: $$Q(A_{N})$$], in each flower every tetrahedron has exactly three adjacent 3-cells and every octahedron has exactly four adjacent 3-cells.
Examples for open 3-manifolds in [image: $$Q(A_{N})$$] are the three-dimensional sub-lattices [image: $$Q(A_{3})$$]. Here, the flower at an interior vertex consists of eight tetrahedra (four black and four white ones) and six octahedra.
Examples of closed 3-manifolds in [image: $$Q(A_{N})$$] are the set of facets of a 4-ambo-simplex (consisting of five tetrahedra) and the set of facets of a 4-ambo-simplex (consisting of five tetrahedra and five octahedra).
The elementary building blocks of 3-manifolds are so-called 4D corners:
Definition 2.3
(4D corner) A 4D corner with center x is a 3-manifold consisting of all facets of a 4-cell adjacent to x.

In [image: $$Q(A_{N})$$], there are two different types of 4D corners: a corner on a 4-simplex (consisting of a four tetrahedra) and a corner on a 4-ambo-simplex (consisting of two tetrahedra and three octahedra), see Appendix 2 for details.
The following combinatorial statement will be proven in Appendix 3:
Theorem 2.4
The flower at any interior vertex of any 3-manifold in [image: $$Q(A_{N})$$] can be represented as a sum of 4D corners in [image: $$Q(A_{N+2})$$].

Let [image: $$\mathscr {L}$$] be a discrete 3-form on [image: $$Q(A_{N})$$]. The exterior derivative [image: $$d\mathscr {L}$$] is a discrete 4-form whose value at any 4-cell in [image: $$Q(A_{N})$$] is the action functional of [image: $$\mathscr {L}$$] on the 3-manifold consisting of the facets of the 4-cell. For our purposes, we consider discrete 3-forms [image: $$\mathscr {L}$$] vanishing on all tetrahedra. In particular, we have[image: $$ d\mathscr {L}(\lfloor \!\!\lfloor ijk\ell m\rfloor \!\!\rfloor )\equiv 0\quad \text {and}\quad d\mathscr {L}(\lceil \!\!\lceil ijk\ell m\rceil \!\!\rceil )\equiv 0 $$]


since a 4-simplices only contain tetrahedra. The exterior derivative on a black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$] is given by[image: $$\begin{aligned} \begin{aligned} \underline{S}^{ijk\ell m}&:=d\mathscr {L}(\lfloor ijk\ell m\rfloor )\\&{:}=\mathscr {L}([ijk\ell ])+\mathscr {L}(-[ijkm])+\mathscr {L}([ij\ell m])+\mathscr {L}(-[ik\ell m])+\mathscr {L}([jk\ell m]). \end{aligned} \end{aligned}$$]

 (2)

The exterior derivative on a white 4-ambo-simplex [image: $$\lceil ijk\ell m\rceil $$] is given by[image: $$\begin{aligned} \begin{aligned} \bar{S}^{ijk\ell m}&:=d\mathscr {L}(\lceil ijk\ell m\rceil )\\&{:}=\mathscr {L}(T_{m}[ijk\ell ])+\mathscr {L}(-T_{\ell }[ijkm])+\mathscr {L}(T_{k}[ij\ell m])+\mathscr {L}(-T_{j}[ik\ell m])\\&\qquad +\mathscr {L}(T_{i}[jk\ell m]). \end{aligned} \end{aligned}$$]

 (3)

Accordingly, the Euler-Lagrange equations on black 4-ambo-simplices [image: $$\lfloor ijk\ell m\rfloor $$] are[image: $$\begin{aligned} \begin{aligned} \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{ij}}&=0,\quad&\frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{ik}}=0,\quad \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{i\ell }}=0,\quad \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{im}}=0,\quad \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{jk}}=0,\\ \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{j\ell }}&=0,\quad&\frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{jm}}=0,\quad \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{k\ell }}=0,\quad \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{km}}=0,\quad \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{\ell m}}=0. \end{aligned} \end{aligned}$$]

 (4)

and the Euler-Lagrange equations on white 4-ambo-simplices [image: $$\lceil ijk\ell m\rceil $$] are[image: $$\begin{aligned} \begin{aligned} \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ijk}}&=0,\quad&\frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ij\ell }}=0,\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ijm}}=0,\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ik\ell }}=0,\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ikm}}=0,\\ \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{i\ell m}}&=0,\quad&\frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{jk\ell }}=0,\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{jkm}}=0,\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{j\ell m}}=0,\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{k\ell m}}=0. \end{aligned} \end{aligned}$$]

 (5)

The last two systems are called corner equations.
The following statement is an immediate consequence of Theorem 2.4:
Theorem 2.5
For discrete every 3-form on [image: $$Q(A_{N})$$] and every 3-manifold in [image: $$Q(A_{N})$$] all corresponding Euler-Lagrange equations can be written as a sum of corner equations.


3 The dKP Equation on [image: $$Q(A_{N})$$]
      
We will now introduce the dKP equation on the root lattice [image: $$Q(A_{3})$$]. Every oriented octahedron [image: $$[ijk\ell ]$$] ([image: $$i<j<k<\ell $$]) in [image: $$Q(A_{3})$$] supports the equation[image: $$\begin{aligned} x_{ij}x_{k\ell }-x_{ik}x_{j\ell }+x_{i\ell }x_{jk}=0. \end{aligned}$$]

 (6)

We can extend this system in a consistent way (see [1]) to the four-dimensional root lattice [image: $$Q(A_{4})$$] and higher-dimensional analogues, such that the five octahedral facets [image: $$[ijk\ell ]$$], [image: $$[jk\ell m]$$], [image: $$-[ik\ell m]$$], [image: $$[ijm\ell ]$$], and [image: $$-[ijkm]$$] of the black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$] support the equations[image: $$\begin{aligned} \begin{aligned}&x_{ij}x_{k\ell }-x_{ik}x_{j\ell }+x_{i\ell }x_{jk}=0,\\&x_{jk}x_{\ell m}-x_{j\ell }x_{km}+x_{jm}x_{k\ell }=0,\\&x_{k\ell }x_{im}-x_{km}x_{i\ell }+x_{ik}x_{\ell m}=0,\\&x_{\ell m}x_{ij}-x_{i\ell }x_{jm}+x_{j\ell }x_{im}=0,\\&x_{im}x_{jk}-x_{jm}x_{ik}+x_{km}x_{ij}=0 \end{aligned} \end{aligned}$$]

 (7)

and the five octahedral facets [image: $$T_{m}[ijk\ell ]$$], [image: $$T_{i}[jk\ell m]$$], [image: $$-T_{j}[ik\ell m]$$], [image: $$T_{k}[ij\ell m]$$], and [image: $$-T_{\ell }[ijkm]$$] of the white 4-ambo-simplex [image: $$\lceil ijk\ell m\rceil $$] support the equations[image: $$\begin{aligned} \begin{aligned}&x_{ijm}x_{k\ell m}-x_{ikm}x_{j\ell m}+x_{i\ell m}x_{jkm}=0,\\&x_{ijk}x_{i\ell m}-x_{ij\ell }x_{ikm}+x_{ijm}x_{ik\ell }=0,\\&x_{jk\ell }x_{ijm}-x_{jkm}x_{ij\ell }+x_{ijk}x_{j\ell m}=0,\\&x_{k\ell m}x_{ijk}-x_{ik\ell }x_{jkm}+x_{jk\ell }x_{ikm}=0,\\&x_{i\ell m}x_{jk\ell }-x_{j\ell m}x_{ik\ell }+x_{k\ell m}x_{ij\ell }=0. \end{aligned} \end{aligned}$$]

 (8)

In both systems one can derive one equation from another by cyclic permutations of indices [image: $$(ijk\ell m)$$].
We propose the following discrete 3-form [image: $$\mathscr {L}$$] defined on oriented octahedra [image: $$[ijk\ell ]$$]:[image: $$\begin{aligned} \mathscr {L}([ijk\ell ]):=\frac{1}{2}\left( \varLambda \!\left( \frac{x_{ij}x_{k\ell }}{x_{ik}x_{j\ell }}\right) +\varLambda \!\left( \frac{x_{ik}x_{j\ell }}{x_{i\ell }x_{jk}}\right) +\varLambda \!\left( -\frac{x_{i\ell }x_{jk}}{x_{ij}x_{k\ell }}\right) \right) , \end{aligned}$$]

 (9)

where[image: $$\begin{aligned} \varLambda (z):=\lambda (z)-\lambda \!\left( \frac{1}{z}\right) \quad \text {and}\quad \lambda (z):=-\int _{0}^{z}\frac{\log |1-x|}{x}dx. \end{aligned}$$]

 (10)

The discrete 3-form (9) has its motivation in [13]. Indeed, in [13], the authors consider a similar discrete 3-form on the cubic lattice [image: $$\mathbb Z^{N}$$]. One can also consider our 3-form on the cubic lattice [image: $$\mathbb Z^{N}$$]. Then one would assign to each 3D cube the 3-form at its inscribed octahedron. This 3-form differs from their one by an additive constant and a slightly different definition of the function [image: $$\lambda (z)$$]: they use the function[image: $$\begin{aligned} \text {Li}_{2}(z):=-\int _{0}^{z}\frac{\log (1-x)}{x}dx \end{aligned}$$]

 (11)

instead of [image: $$\lambda (z)$$]. Our choice of [image: $$\lambda (z)$$] allows us for a more precise consideration of the branches of the occurring logarithm.
Observe that the expression (9) only changes its sign under the cyclic permutation of indices [image: $$(ijk\ell m)$$]. This follows from [image: $$\varLambda (z)=-\varLambda (z^{-1})$$]. As a consequence, the exterior derivatives [image: $$\underline{S}^{ijk\ell m}$$] and [image: $$\bar{S}^{ijk\ell m}$$] defined in (2) and (3), respectively, are invariant under the cyclic permutation of indices [image: $$(ijk\ell m)$$]. Therefore, one can obtain all corner equations in (4) and (5) by (iterated) cyclic permutation [image: $$(ijk\ell m)$$] from[image: $$ \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{ij}}=0,\quad \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{ik}}=0,\quad \text {and}\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ijk}}=0,\quad \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ij\ell }}=0. $$]


Let us study separately the corner equations on black and white 4-ambo-simplices. The corner equations which live on the black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$] are given by[image: $$\begin{aligned} \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{ij}}=\frac{\partial \mathscr {L}([ijk\ell ])}{\partial x_{ij}}+\frac{\partial \mathscr {L}(-[ijkm])}{\partial x_{ij}}+\frac{\partial \mathscr {L}([ij\ell m])}{\partial x_{ij}}=0 \end{aligned}$$]


and[image: $$\begin{aligned} \frac{\partial \underline{S}^{ijk\ell m}}{\partial x_{ik}}=\frac{\partial \mathscr {L}([ijk\ell ])}{\partial x_{ik}}+\frac{\partial \mathscr {L}(-[ijkm])}{\partial x_{ik}}+\frac{\partial \mathscr {L}(-[ik\ell m])}{\partial x_{ik}}=0. \end{aligned}$$]


Explicitly, they read[image: $$\begin{aligned} \frac{1}{x_{ij}}\log |E_{ij}|=0\quad \text {and}\quad \frac{1}{x_{ik}}\log |E_{ik}|=0, \end{aligned}$$]

 (12)

where[image: $$\begin{aligned} E_{ij}:=\frac{x_{ij}x_{k\ell }+x_{i\ell }x_{jk}}{x_{ij}x_{k\ell }-x_{ik}x_{j\ell }}\cdot \frac{x_{ij}x_{km}-x_{ik}x_{jm}}{x_{ij}x_{km}+x_{im}x_{jk}}\cdot \frac{x_{ij}x_{\ell m}+x_{im}x_{j\ell }}{x_{ij}x_{\ell m}-x_{i\ell }x_{jm}} \end{aligned}$$]


and[image: $$\begin{aligned} E_{ik}:=\frac{x_{ik}x_{j\ell }-x_{ij}x_{k\ell }}{x_{ik}x_{j\ell }-x_{i\ell }x_{jk}}\cdot \frac{x_{ik}x_{jm}-x_{im}x_{jk}}{x_{ik}x_{jm}-x_{ij}x_{km}}\cdot \frac{x_{ik}x_{\ell m}-x_{i\ell }x_{km}}{x_{ik}x_{\ell m}+x_{im}x_{k\ell }}. \end{aligned}$$]


For every corner equation (12) there are two classes of solutions, because any solution can either solve [image: $$E_{ij}=-1$$] or [image: $$E_{ij}=1$$]. Hereafter, we only consider solutions, where all fields [image: $$x_{ij}$$] are non-zero (we call such solutions non-singular).
Theorem 3.1
Every solution of the system (4) solves either the system[image: $$\begin{aligned} \begin{aligned} E_{ij}&=-1,\quad E_{ik}=-1,\quad E_{i\ell }=-1,\quad E_{im}=-1,\quad E_{jk}=-1,\\ E_{j\ell }&=-1,\quad E_{jm}=-1,\quad E_{k\ell }=-1,\quad E_{km}=-1,\quad E_{\ell m}=-1 \end{aligned} \end{aligned}$$]

 (13)

or the system[image: $$\begin{aligned} \begin{aligned} E_{ij}&=1,\quad E_{ik}=1,\quad E_{i\ell }=1,\quad E_{im}=1,\quad E_{jk}=1,\\ E_{j\ell }&=1,\quad E_{jm}=1,\quad E_{k\ell }=1,\quad E_{km}=1,\quad E_{\ell m}=1. \end{aligned} \end{aligned}$$]

 (14)

Furthermore, the system (13) is equivalent to the system (7) (that is dKP on the corresponding black 4-ambo-simplex). The system (14) is equivalent to the system[image: $$\begin{aligned} \begin{aligned}&x_{ik}x_{i\ell }x_{jk}x_{j\ell }-x_{ij}x_{i\ell }x_{jk}x_{k\ell }+x_{ij}x_{ik}x_{j\ell }x_{k\ell }=0,\\&x_{j\ell }x_{jm}x_{k\ell }x_{km}-x_{jk}x_{jm}x_{k\ell }x_{\ell m}+x_{jk}x_{j\ell }x_{km}x_{\ell m}=0,\\&x_{km}x_{ik}x_{\ell m}x_{i\ell }-x_{k\ell }x_{ik}x_{\ell m}x_{im}+x_{k\ell }x_{km}x_{i\ell }x_{im}=0,\\&x_{i\ell }x_{j\ell }x_{im}x_{jm}-x_{\ell m}x_{j\ell }x_{im}x_{ij}+x_{\ell m}x_{i\ell }x_{jm}x_{ij}=0,\\&x_{jm}x_{km}x_{ij}x_{ik}-x_{im}x_{km}x_{ij}x_{jk}+x_{im}x_{jm}x_{ik}x_{jk}=0, \end{aligned} \end{aligned}$$]

 (15)

which is the system (7) after the transformation [image: $$x\mapsto x^{-1}$$] of fields (that is [image: $$ dKP ^{-}$$] on the corresponding black 4-ambo-simplex).

Proof
Consider a solution x of (4) that solves [image: $$E_{ij}=-1$$] and [image: $$E_{jk}=-1$$]. We set[image: $$\begin{aligned}&a_{ij}:=x_{\ell m}x_{ij}-x_{i\ell }x_{jm}+x_{j\ell }x_{im}, \end{aligned}$$]

 (16)


[image: $$\begin{aligned}&a_{ik}:=x_{k\ell }x_{im}-x_{km}x_{i\ell }+x_{ik}x_{\ell m}, \end{aligned}$$]

 (17)

and[image: $$\begin{aligned} a_{jk}:=x_{jk}x_{\ell m}-x_{j\ell }x_{km}+x_{jm}x_{k\ell }, \end{aligned}$$]

 (18)

and use these equations to substitute [image: $$x_{ij}$$], [image: $$x_{ik}$$] and [image: $$x_{jk}$$] in [image: $$E_{ij}=-1$$] and [image: $$E_{jk}=-1$$]. Writing down the result in polynomial form, we get[image: $$\begin{aligned} x_{\ell m}^{2}(a_{ij}+x_{i\ell }x_{jm}-x_{im}x_{j\ell })e_{ij}=0 \end{aligned}$$]


and[image: $$\begin{aligned} x_{\ell m}^{2}(a_{jk}+x_{j\ell }x_{km}-x_{jm}x_{k\ell })e_{jk}=0, \end{aligned}$$]


where [image: $$e_{ij}$$] and [image: $$e_{jk}$$] are certain polynomials. Since for every solutions of (4) all fields are non-zero this leads us to [image: $$e_{ij}=0$$] and [image: $$e_{jk}=0$$]. Computing the difference of the latter two equations we get[image: $$\begin{aligned} a_{ij}x_{k\ell }x_{km}(a_{ij}+x_{i\ell }x_{jm}-x_{im}x_{j\ell })-a_{jk}x_{i\ell }x_{im}(a_{jk}+x_{j\ell }x_{km}-x_{jm}x_{k\ell })=0 \end{aligned}$$]


and, with the use of (16) and (18),[image: $$\begin{aligned} x_{\ell m}(a_{ij}x_{ij}x_{k\ell }x_{km}-a_{jk}x_{jk}x_{i\ell }x_{im})=0, \end{aligned}$$]


which depends on seven independent fields, i.e., no subset of six fields belong to one octahedron. Then comparing coefficients leads to [image: $$a_{ij}=a_{jk}=0$$]. Substituting[image: $$\begin{aligned} x_{ij}=\frac{x_{i\ell }x_{jm}-x_{im}x_{j\ell }}{x_{\ell m}}\quad \text {and}\quad x_{jk}=\frac{x_{j\ell }x_{km}-x_{jm}x_{k\ell }}{x_{\ell m}} \end{aligned}$$]


into [image: $$E_{ij}=-1$$] and solving the resulting equation with respect to [image: $$x_{ik}$$], we get[image: $$\begin{aligned} x_{ik}=\frac{x_{i\ell }x_{km}-x_{im}x_{k\ell }}{x_{\ell m}}. \end{aligned}$$]


Substituting [image: $$x_{ij}$$], [image: $$x_{ik}$$] and [image: $$x_{jk}$$] in [image: $$E_{ik}$$] by using the last three equations, we get [image: $$E_{ik}=-1$$].
Analogously, one can prove that, for a solution x of (4) which solves [image: $$E_{ij}=-1$$] and [image: $$E_{ik}=-1$$], we have [image: $$E_{jk}=-1$$], and for a solution x of (4) which solves [image: $$E_{ik}=-1$$] and [image: $$E_{i\ell }=-1$$], we have [image: $$E_{k\ell }=-1$$]. Therefore, for every solution x of (4) and for every white triangle [image: $$\{x_{\alpha },x_{\beta },x_{\gamma }\}$$] on the black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$] we proved the following: if [image: $$E_{\alpha }=-1$$] and [image: $$E_{\beta }=-1$$] then [image: $$E_{\gamma }=-1$$], too.
On the other hand, one can easily see that x solves [image: $$E_{ij}=1$$] or [image: $$E_{jk}=1$$] if and only if [image: $$x^{-1}$$] solves [image: $$E_{ij}=-1$$] or [image: $$E_{ik}=-1$$], respectively. Therefore, we also know that, if [image: $$E_{\alpha }=1$$] and [image: $$E_{\beta }=1$$] then [image: $$E_{\gamma }=1$$], too.
Summarizing, we proved that every solution x of (4) solves either (13) and then also (7) or (14) and then also (15).
Consider a non-singular solution x of the system (7). Then[image: $$\begin{aligned}&E_{ij}=\frac{x_{ij}x_{k\ell }+x_{i\ell }x_{jk}}{x_{ij}x_{k\ell }-x_{ik}x_{j\ell }}\cdot \frac{x_{ij}x_{km}-x_{ik}x_{jm}}{x_{ij}x_{km}+x_{im}x_{jk}}\cdot \frac{x_{ij}x_{\ell m}+x_{im}x_{j\ell }}{x_{ij}x_{\ell m}-x_{i\ell }x_{jm}}\\&{E_{ij}}=\frac{x_{ik}x_{j\ell }}{-x_{i\ell }x_{jk}}\cdot \frac{-x_{im}x_{jk}}{x_{ik}x_{jm}}\cdot \frac{x_{i\ell }x_{jm}}{-x_{im}x_{j\ell }}=-1 \end{aligned}$$]


and[image: $$\begin{aligned}&E_{ik}=\frac{x_{ik}x_{j\ell }-x_{ij}x_{k\ell }}{x_{ik}x_{j\ell }-x_{i\ell }x_{jk}}\cdot \frac{x_{ik}x_{jm}-x_{im}x_{jk}}{x_{ik}x_{jm}-x_{ij}x_{km}}\cdot \frac{x_{ik}x_{\ell m}-x_{i\ell }x_{km}}{x_{ik}x_{\ell m}+x_{im}x_{k\ell }}\\&{E_{ik}}=\frac{x_{i\ell }x_{jk}}{x_{ij}x_{k\ell }}\cdot \frac{x_{ij}x_{km}}{x_{im}x_{jk}}\cdot \frac{x_{im}x_{k\ell }}{-x_{i\ell }x_{km}}=-1. \end{aligned}$$]


This proves the equivalence of (13) and (7) and also the equivalence of (14) and (15) since x solves [image: $$E_{ij}=-1$$] or (7) if and only if [image: $$x^{-1}$$] solves [image: $$E_{ij}=1$$] or (15), respectively.[image: $$\square $$]
        

We will present the closure relation which can be seen as a criterion of integrability:
Theorem 3.2
(Closure relation) There holds:[image: $$ \underline{S}^{ijk\ell m}\pm \frac{\pi ^{2}}{4}=0 $$]


on all solutions of (13) and (14), respectively. Therefore, one can redefine the 3-form [image: $$\mathscr {L}$$] as[image: $$ \tilde{\mathscr {L}}([ijk\ell ]):=\mathscr {L}([ijk\ell ])\pm \frac{\pi ^{2}}{4} $$]


in order to get [image: $$\underline{S}^{ijk\ell m}=0$$] on all solutions of (13) and (14), respectively.

Proof
The set of solutions [image: $$\mathscr {S}^{+}$$] of (13), as well as the set of solutions [image: $$\mathscr {S}^{-}$$] (14), is a connected seven-dimensional algebraic manifold which can be parametrized by the set of variables [image: $$\{x_{ij},x_{ik},x_{i\ell },x_{im},x_{jk},x_{j\ell },x_{jm}\}$$]. We want to show that the directional derivatives of [image: $$\underline{S}^{ijk\ell m}$$] along tangent vectors of [image: $$\mathscr {S}^{\pm }$$] vanish. It is easy to see that the stronger property [image: $$\text {grad}\underline{S}^{ijk\ell m}=0$$] on [image: $$\mathscr {S}^{\pm }$$], where we [image: $$\underline{S}^{ijk\ell m}$$] is considered as a function of ten variables [image: $$x_{ij}$$], is a consequence of (13), respectively (14). Therefore, the function [image: $$\underline{S}^{ijk\ell m}$$] is constant on [image: $$\mathscr {S}^{\pm }$$].
To determine the value of [image: $$\underline{S}^{ijk\ell m}$$] on solutions of (13), we consider the constant solution of (7)[image: $$\begin{aligned}&\!\begin{aligned}&x_{ij}=x_{jk}=x_{k\ell }=x_{\ell m}=x_{im}=a,\\&x_{ik}=x_{j\ell }=x_{km}=x_{i\ell }=x_{jm}=-1, \end{aligned} \end{aligned}$$]

 (19)

where[image: $$\begin{aligned} a:=\frac{1}{2}-\frac{\sqrt{5}}{2}. \end{aligned}$$]


(Indeed, for this point every equation from (7) looks like [image: $$a^{2}-1-a=0$$].) Therefore, this point satisfies (13), because (7) and (13) are equivalent.
Consider the dilogarithm as defined in (11) and suppose that [image: $$z>1$$]. According to [10], we derive:[image: $$\begin{aligned} \text {Li}_{2}(z)=-\text {Li}_{2}(z^{-1})-\frac{1}{2}\log ^{2}z+\frac{\pi ^{2}}{3}-i\pi \log z \end{aligned}$$]


and[image: $$\begin{aligned} \text {Re}\,\text {Li}_{2}(z)=&\text {Re}\,\text {Li}_{2}(ze^{i0})=-\frac{1}{2}\int _{0}^{z}\frac{\log (1-2x\cos 0+x^{2})}{x}dx\\ =&-\frac{1}{2}\int _{0}^{z}\frac{\log (1-x)^{2}}{x}dx=-\int _{0}^{z}\frac{\log |1-x|}{x}dx=\lambda (z), \end{aligned}$$]


where [image: $$\lambda (z)$$] is the same function as in (9). Therefore, we have[image: $$ \lambda (z)={\left\{ \begin{array}{ll} \text {Li}_{2}(z),&{}z\le 1,\\ -\text {Li}_{2}(z^{-1})-\dfrac{1}{2}\log ^{2}z+\dfrac{\pi ^{2}}{3},&{}z>1. \end{array}\right. } $$]


By using the following special values [10][image: $$\begin{aligned} \begin{array}{ll} \text {Li}_{2}(a^{2})=\frac{\pi ^{2}}{15}-\log ^{2}(-a),\quad &{}\text {Li}_{2}(-a)=\frac{\pi ^{2}}{10}-\log ^{2}(-a),\\ \text {Li}_{2}(a)=-\frac{\pi ^{2}}{15}+\frac{1}{2}\log ^{2}(-a),\quad &{} \text {Li}_{2}(a^{-1})=-\frac{\pi ^{2}}{10}-\log ^{2}(-a). \end{array} \end{aligned}$$]


a straightforward computation gives[image: $$\begin{aligned} \mathscr {L}([ijk\ell ])=&\mathscr {L}(-[ijkm])=\mathscr {L}([ij\ell m])=\mathscr {L}(-[ik\ell m])=\mathscr {L}([jk\ell m])\\ =&\frac{1}{2}(\varLambda (a^{2})+\varLambda (-a^{-1})+\varLambda (a^{-1}))=-\frac{\pi ^{2}}{20} \end{aligned}$$]


and[image: $$\begin{aligned} \underline{S}^{ijk\ell m}=&\mathscr {L}([ijk\ell ])+\mathscr {L}(-[ijkm])+\mathscr {L}([ij\ell m])+\mathscr {L}(-[ik\ell m])+\mathscr {L}([jk\ell m])\\ =&-\frac{\pi ^{2}}{4}. \end{aligned}$$]


This is, because the expression for [image: $$\mathscr {L}([ijk\ell ])$$] (see (9)) changes the sign under the cyclic permutation of indices [image: $$(ijk\ell )$$] and the solution is invariant under cyclic permutation of indices [image: $$(ijk\ell m)$$].
Let us now consider the second branch of solutions: one can easily see that[image: $$\begin{aligned}&\!\begin{aligned}&x_{ij}=x_{jk}=x_{k\ell }=x_{\ell m}=x_{im}=a^{-1},\\&x_{ik}=x_{j\ell }=x_{km}=x_{i\ell }=x_{jm}=-1 \end{aligned} \end{aligned}$$]

 (20)

with[image: $$\begin{aligned} a=\frac{1}{2}-\frac{\sqrt{5}}{2} \end{aligned}$$]


is a solution of (14) and (15), because (19) is a solution of (13) and (7). Therefore, on the solution (20) as well as on all other solutions of (14), we have[image: $$ \underline{S}^{ijk\ell m}=\frac{\pi ^{2}}{4}, $$]


where we used [image: $$\varLambda (z)=\lambda (z)-\lambda (z^{-1})$$], and, therefore, [image: $$\varLambda (z^{-1})=-\varLambda (z)$$].[image: $$\square $$]
        

Analogously, we get similar results for the white 4-ambo-simplex [image: $$\lceil ijk\ell m\rceil $$]. Here, the corner equations are:[image: $$\begin{aligned} \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ijk}}=\frac{\partial \mathscr {L}(T_{k}[ij\ell m])}{\partial x_{ijk}}+\frac{\partial \mathscr {L}(-T_{j}[ik\ell m])}{\partial x_{ijk}}+\frac{\partial \mathscr {L}(T_{i}[jk\ell m])}{\partial x_{ijk}}=0\end{aligned}$$]


and[image: $$\begin{aligned} \frac{\partial \bar{S}^{ijk\ell m}}{\partial x_{ij\ell }}=\frac{\partial \mathscr {L}(-T_{\ell }[ijkm])}{\partial x_{ij\ell }}+\frac{\partial \mathscr {L}(-T_{j}[ik\ell m])}{\partial x_{ij\ell }}+\frac{\partial \mathscr {L}(T_{i}[jk\ell m])}{\partial x_{ij\ell }}=0. \end{aligned}$$]


Explicitly, they read[image: $$\begin{aligned} \frac{1}{x_{ijk}}\log |E_{ijk}|=0\quad \text {and}\quad \frac{1}{x_{ij\ell }}\log |E_{ij\ell }|=0, \end{aligned}$$]

 (21)

where[image: $$\begin{aligned} E_{ijk}:=\frac{x_{ijk}x_{k\ell m}+x_{ikm}x_{jk\ell }}{x_{ijk}x_{k\ell m}-x_{ik\ell }x_{jkm}}\cdot \frac{x_{ijk}x_{j\ell m}-x_{ij\ell }x_{jkm}}{x_{ijk}x_{j\ell m}+x_{ijm}x_{jk\ell }}\cdot \frac{x_{ijk}x_{i\ell m}+x_{ijm}x_{ik\ell }}{x_{ijk}x_{i\ell m}-x_{ij\ell }x_{ikm}} \end{aligned}$$]


and[image: $$\begin{aligned} E_{ij\ell }:=\frac{x_{ij\ell }x_{k\ell m}-x_{ik\ell }x_{j\ell m}}{x_{ij\ell }x_{k\ell m}+x_{i\ell m}x_{jk\ell }}\cdot \frac{x_{ij\ell }x_{jkm}-x_{ijm}x_{jk\ell }}{x_{ij\ell }x_{jkm}-x_{ijk}x_{j\ell m}}\cdot \frac{x_{ij\ell }x_{ikm}-x_{ijk}x_{i\ell m}}{x_{ij\ell }x_{ikm}-x_{ijm}x_{ik\ell }}. \end{aligned}$$]


The analogue of Theorem 3.1 reads:
Theorem 3.3
Every solution of the system (5) solves either the system[image: $$\begin{aligned} \begin{aligned} E_{ijk}&=-1,\quad E_{ij\ell }=-1,\quad E_{ijm}=-1,\quad E_{ik\ell }=-1,\quad E_{ikm}=-1,\\ E_{i\ell m}&=-1,\quad E_{jk\ell }=-1,\quad E_{jkm}=-1,\quad E_{j\ell m}=-1,\quad E_{k\ell m}=-1 \end{aligned} \end{aligned}$$]

 (22)

or the system[image: $$\begin{aligned} \begin{aligned} E_{ijk}&=1,\quad E_{ij\ell }=1,\quad E_{ijm} =1,\quad E_{ik\ell } =1,\quad E_{ikm} =1,\\ E_{i\ell m}&=1,\quad E_{jk\ell } =1,\quad E_{jkm}=1,\quad E_{j\ell m}=1,\quad E_{k\ell m}=1. \end{aligned} \end{aligned}$$]

 (23)

Furthermore the system (22) is equivalent to the system (8) (that is dKP on the corresponding white 4-ambo-simplex). The system (23) is equivalent to the system[image: $$\begin{aligned} \begin{aligned}&x_{ikm}x_{i\ell m}x_{jkm}x_{j\ell m}-x_{ijm}x_{i\ell m}x_{jkm}x_{k\ell m}+x_{ijm}x_{ikm}x_{j\ell m}x_{k\ell m}=0,\\&x_{ij\ell }x_{ijm}x_{ik\ell }x_{ikm}-x_{ijk}x_{ijm}x_{ik\ell }x_{i\ell m}+x_{ijk}x_{ij\ell }x_{ik\ell }x_{i\ell m}=0,\\&x_{jkm}x_{ijk}x_{j\ell m}x_{ij\ell }-x_{jk\ell }x_{ijk}x_{j\ell m}x_{ijm}+x_{jk\ell }x_{jkm}x_{j\ell m}x_{ijm}=0,\\&x_{ik\ell }x_{jk\ell }x_{ikm}x_{jkm}-x_{k\ell m}x_{jk\ell }x_{ikm}x_{ijk}+x_{k\ell m}x_{ik\ell }x_{ikm}x_{ijk}=0,\\&x_{j\ell m}x_{k\ell m}x_{ij\ell }x_{ik\ell }-x_{i\ell m}x_{k\ell m}x_{ij\ell }x_{jk\ell }+x_{i\ell m}x_{j\ell m}x_{ij\ell }x_{jk\ell }=0, \end{aligned} \end{aligned}$$]

 (24)

which is the system (8) after the transformation [image: $$x\mapsto x^{-1}$$] of fields (that is [image: $$ dKP ^{-}$$] on the corresponding white 4-ambo-simplex).

The analogue of Theorem 3.2 reads:
Theorem 3.4
(Closure relation) There holds:[image: $$ \bar{S}^{ijk\ell m}\pm \frac{\pi ^{2}}{4}=0 $$]


on all solutions of (22) and (23), respectively. Therefore, one can redefine the 3-form [image: $$\mathscr {L}$$] as[image: $$ \tilde{\mathscr {L}}([ijk\ell ]):=\mathscr {L}([ijk\ell ])\pm \frac{\pi ^{2}}{4} $$]


in order to get [image: $$\bar{S}^{ijk\ell m}=0$$] on all solutions of (22) and (23), respectively.


4 The Cubic Lattice [image: $$\mathbb Z^{N}$$]
      
We will now consider the relation between the elementary cells of the root lattice [image: $$Q(A_{N})$$] and the cubic lattice [image: $$\mathbb Z^{N}$$]. The points of [image: $$Q(A_{N})$$] and of [image: $$\mathbb Z^{N}$$] are in a one-to-one correspondence via[image: $$\begin{aligned} P_{i}:Q(A_{N})\rightarrow \mathbb Z^{N},\quad x(n_{0},\ldots ,n_{i-1},n_{i},n_{i+1},\ldots ,n_{N})\mapsto x(n_{0},\ldots ,n_{i-1},n_{i+1},\ldots ,n_{N}). \end{aligned}$$]


In the present paper, we will always apply [image: $$P_{i}$$] with [image: $$i<j,k,\ell ,\ldots $$]
      
We denote by[image: $$ \{jk\ell \}:=\{x,x_{j},x_{k},x_{\ell },x_{jk},x_{j\ell },x_{k\ell },x_{jk\ell }\} $$]


the oriented 3D cubes of [image: $$\mathbb Z^{N}$$]. We say that the 3D cube [image: $$\{jk\ell \}$$] is positively oriented if [image: $$j<k<\ell $$]. Any permutation of two indices changes the orientation to the opposite one. Also in this case, we always write the letters in the brackets in increasing order, so, e.g., in writing [image: $$\{jk\ell \}$$] we assume that [image: $$j<k<\ell $$] and avoid the notation [image: $$\{kj\ell \}$$] or [image: $$\{j\ell k\}$$] for the negatively oriented 3D cube [image: $$-\{jk\ell \}$$].
The object in [image: $$Q(A_{N})$$] which corresponds to the 3D cube [image: $$\{jk\ell \}$$] is the sum of three adjacent 3-cells, namely	the black tetrahedron [image: $$-T_{i}\lfloor ijk\ell \rfloor $$] (see Fig. 2a),

	the octahedron [image: $$[ijk\ell ]$$] (see Fig. 2b),

	and the white tetrahedron [image: $$-T_{\bar{\imath }}\lceil ijk\ell \rceil $$] (see Fig. 2c).





It contains sixteen triangles and to every quadrilateral face of [image: $$\{jkl\}$$] there corresponds a pair of these triangles containing one black and one white triangle. Here, the map [image: $$P_{i}$$] reads as follows:[image: $$ x_{ii}\mapsto x,\quad x_{ij}\mapsto x_{j},\quad x_{jk}\mapsto x_{jk},\quad \text {and}\quad x_{\bar{\imath }jk\ell }\mapsto x_{jk\ell }. $$]



[image: A371662_1_En_12_Fig2_HTML.gif]
Fig. 2Three adjacent 3-cells of the lattice [image: $$Q(A_{N})$$]: a black tetrahedron [image: $$-T_{i}\lfloor ijk\ell \rfloor $$], b octahedron [image: $$[ijk\ell ]$$], c white tetrahedron [image: $$-T_{\bar{\imath }}\lceil ijk\ell \rceil $$]. The sum d of these 3-cells corresponds to a 3D cube e
              





As a four-dimensional elementary cell of [image: $$\mathbb Z^{N}$$], we consider an oriented 4D cube[image: $$\begin{aligned} \{jk\ell m\}:=\{x,x_{j},x_{k},x_{\ell },x_{m},x_{jk},x_{j\ell },x_{jm},x_{k\ell },x_{km},x_{\ell m},x_{jk\ell },x_{jkm},x_{j\ell m},x_{k\ell m},x_{jk\ell m}\}. \end{aligned}$$]


The 4D cube [image: $$\{jk\ell m\}$$] corresponds to the sum of four 4-cells in [image: $$Q(A_{N})$$]:	the black 4-simplex [image: $$-T_{i}\lfloor \!\!\lfloor ijk\ell m\rfloor \!\!\rfloor $$],

	the black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$],

	the white 4-ambo-simplex [image: $$-T_{\bar{\imath }}\lceil ijk\ell m\rceil $$], and

	the white 4-simplex [image: $$T_{\bar{\imath }}T_{\bar{\imath }}\lceil \!\!\lceil ijk\ell m\rceil \!\!\rceil $$]
            



(see Fig. 3). It contains sixteen tetrahedra (eight black and eight white ones) and eight octahedra. Here, the map [image: $$P_{i}$$] reads as follows:[image: $$ x_{ii}\mapsto x,\quad x_{ij}\mapsto x_{j},\quad x_{jk}\mapsto x_{jk},\quad x_{\bar{\imath }jk\ell }\mapsto x_{jk\ell },\quad \text {and}\quad x_{\bar{\imath }\bar{\imath }jk\ell m}\mapsto x_{jk\ell m}. $$]



[image: A371662_1_En_12_Fig3_HTML.gif]
Fig. 3The sum of the black 4-simplex [image: $$-T_{i}\lfloor \!\!\lfloor ijk\ell m\rfloor \!\!\rfloor $$], the adjacent black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$], the adjacent white 4-ambo-simplex [image: $$-T_{\bar{\imath }}\lceil ijk\ell m\rceil $$], and the adjacent white 4-simplex [image: $$T_{\bar{\imath }}T_{\bar{\imath }}\lceil \!\!\lceil ijk\ell m\rceil \!\!\rceil $$] corresponds to the 4D cube [image: $$\{jk\ell m\}$$]
              





Also in the cubic case there is an easy recipe to obtain the orientation of the facets of an (oriented) 4D cube: on every index between the brackets we put alternately a “[image: $$+$$]” and a “−” starting with a “[image: $$+$$]” on the last index. Then we get each facet by deleting one index and putting the corresponding sign in front of the bracket. For instance., the 4D cube[image: $$\begin{aligned} \begin{array}{cccccc} &{}-&{}+&{}-&{}+&{}\\ \{&{}j&{}k&{}\ell &{}m&{}\} \end{array} \end{aligned}$$]


has the eight 3D facets: [image: $$\{jk\ell \}$$], [image: $$-\{jkm\}$$], [image: $$\{j\ell m\}$$], [image: $$-\{k\ell m\}$$] and the opposite ones [image: $$-T_{m}\{jk\ell \}$$], [image: $$T_{\ell }\{jkm\}$$], [image: $$-T_{k}\{j\ell m\}$$], and [image: $$T_{j}\{k\ell m\}$$].
As a consequence of Definition 2.2, in each flower in [image: $$\mathbb Z^{N}$$], every 3D cube has exactly four adjacent 3D cubes.
We will now prove the analogue of Theorem 2.5. This proof is easier than the one for [image: $$Q(A_{N})$$], because of the simpler combinatorial structure.
Theorem 4.1
The flower at any interior vertex of any 3-manifold in [image: $$\mathbb Z^{N}$$] can be represented as a sum of 4D corners in [image: $$\mathbb Z^{N+1}$$].

Proof
Set [image: $$M:=N+1$$] and consider the flower of an interior vertex x of an arbitrary 3-manifold in [image: $$\mathbb Z^{N}$$]. Over each 3D corner [image: $$\{jk\ell \}$$] (petal) of the flower, we can build a 4D corner adjacent to x on the 4D cube [image: $$\{jk\ell M\}$$]. Then the vertical 3D cubes coming from two successive petals of the flower carry opposite orientations, so that all vertical squares cancel away from the sum of the 4D corners.[image: $$\square $$]
        

Let [image: $$\mathfrak {L}$$] be a discrete 3-form on [image: $$\mathbb Z^{N}$$]. The exterior derivative [image: $$d\mathfrak {L}$$] is a discrete 4-form whose value at any 4D cube in [image: $$\mathbb Z^{N}$$] is the action functional of [image: $$\mathfrak {L}$$] on the 3-manifold consisting of the facets of the 4D cube:[image: $$\begin{aligned} S^{jk\ell m}:=&d\mathfrak {L}(\{jk\ell m\})=\mathfrak {L}(\{jk\ell \})+\mathfrak {L}(-\{jkm\})+\mathfrak {L}(\{j\ell m\})+\mathfrak {L}(-\{k\ell m\})\\&\qquad +\mathfrak {L}(-T_{m}\{jk\ell \})+\mathfrak {L}(T_{\ell }\{jkm\})+\mathfrak {L}(-T_{k}\{j\ell m\})+\mathfrak {L}(T_{j} \{k\ell m\}). \end{aligned}$$]


Accordingly, the Euler-Lagrange equations on the 4D cube [image: $$\{jk\ell m\}$$] are given by[image: $$\begin{aligned} \frac{\partial S^{jk\ell m}}{\partial x}&=0,\nonumber \\ \frac{\partial S^{jk\ell m}}{\partial x_{j}}&=0, \frac{\partial S^{jk\ell m}}{\partial x_{k}}=0, \frac{\partial S^{jk\ell m}}{\partial x_{\ell }}=0, \frac{\partial S^{jk\ell m}}{\partial x_{m}}=0,\nonumber \\ \frac{\partial S^{jk\ell m}}{\partial x_{jk}}&=0, \frac{\partial S^{jk\ell m}}{\partial x_{j\ell }}=0, \frac{\partial S^{jk\ell m}}{\partial x_{jm}}=0, \frac{\partial S^{jk\ell m}}{\partial x_{k\ell }}=0, \frac{\partial S^{jk\ell m}}{\partial x_{km}}=0, \frac{\partial S^{jk\ell m}}{\partial x_{\ell m}}=0,\nonumber \\ \frac{\partial S^{jk\ell m}}{\partial x_{jk\ell }}&=0, \frac{\partial S^{jk\ell m}}{\partial x_{jkm}}=0, \frac{\partial S^{jk\ell m}}{\partial x_{j\ell m}}=0, \frac{\partial S^{jk\ell m}}{\partial x_{k\ell m}}=0,\nonumber \\ \frac{\partial S^{jk\ell m}}{\partial x_{jk\ell m}}&=0. \end{aligned}$$]

 (25)

They are called corner equations.
The following statement is an immediate consequence of Theorem 4.1:
Theorem 4.2
For every discrete 3-form on [image: $$\mathbb Z^{N}$$] and every 3-manifold in [image: $$\mathbb Z^{N}$$] all corresponding Euler-Lagrange equations can be written as a sum of corner equations.


5 The dKP Equation on [image: $$\mathbb Z^{N}$$]
      
On the 3D cube [image: $$\{jk\ell \}$$] in [image: $$\mathbb Z^{3}$$] ([image: $$j<k<\ell $$]) we put the equation[image: $$\begin{aligned} x_{j}x_{k\ell }-x_{k}x_{j\ell }+x_{\ell }x_{jk}=0. \end{aligned}$$]

 (26)

We can extend this system in a consistent way (see [1]) to the four-dimensional cubic lattice [image: $$\mathbb Z^{4}$$] and its higher-dimensional analogues, such that the eight facets [image: $$\{jk\ell \}$$], [image: $$-\{jkm\}$$], [image: $$\{j\ell m\}$$], [image: $$-\{k\ell m\}$$], [image: $$-T_{m}\{jk\ell \}$$], [image: $$T_{\ell }\{jkm\}$$], [image: $$-T_{k}\{j\ell m\}$$], [image: $$T_{j} \{k\ell m\}$$] of a 4D cube [image: $$\{jk\ell m\}$$] carry the equations[image: $$\begin{aligned} \begin{alignedat}{2}&x_{j}x_{k\ell }-x_{k}x_{j\ell }+x_{\ell }x_{jk}=0,&\qquad&x_{jm}x_{k\ell m}-x_{km}x_{j\ell m}+x_{\ell m}x_{jkm}=0,\\&x_{j}x_{km}-x_{k}x_{jm}+x_{m}x_{jk}=0,&\qquad&x_{jk}x_{k\ell m}-x_{k\ell }x_{jkm}+x_{km}x_{jk\ell }=0,\\&x_{j}x_{\ell m}-x_{\ell }x_{jm}+x_{m}x_{j\ell }=0,&\qquad&x_{j\ell }x_{k\ell m}-x_{k\ell }x_{j\ell m}+x_{\ell m}x_{jk\ell }=0,\\&x_{k}x_{\ell m}-x_{\ell }x_{km}+x_{m}x_{k\ell }=0,&\qquad&x_{jk}x_{j\ell m}-x_{j\ell }x_{jkm}+x_{jm}x_{jk\ell }=0. \end{alignedat} \end{aligned}$$]

 (27)

Note that, in the four equations in the left column, the fields with one index always appear with increasing order of indices. The equations in the right column are shifted copies of the ones in the left column. One can derive the system (27) from the system of dKP equations (7) on the black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$] and the system of dKP equations (8) on the white 4-ambo-simplex [image: $$T_{\bar{\imath }}\lceil ijkm\ell \rceil $$], by removing the equations on the octahedra [image: $$[jk\ell m]$$] and [image: $$[jkm\ell ]$$], respectively, from both systems and applying the transformation [image: $$P_{i}$$] to the fields in the remaining eight equations.
We propose the discrete 3-form [image: $$\mathfrak {L}$$] defined as[image: $$ \mathfrak {L}:=(P_{i})_{\star }\mathscr {L}, $$]


where [image: $$\mathscr {L}$$] is the discrete 3-form on the root lattice [image: $$Q(A_{N})$$] (see (9)). Therefore, [image: $$\mathfrak {L}$$] evaluated at the 3D cube [image: $$\{jk\ell \}$$] reads as[image: $$\begin{aligned} \mathfrak {L}(\{jk\ell \})&=((P_{i})_{\star }\mathscr {L})(P_{i}(-T_{i}\lfloor ijk\ell \rfloor +[ijk\ell ]-T_{\bar{\imath }}\lceil ijk\ell \rceil ))\\&=(P_{i})_{\star }(\underbrace{\mathscr {L}(-T_{i}\lfloor ijk\ell \rfloor )}_{=0}+\mathscr {L}([ijk\ell ])-\underbrace{\mathscr {L}(-T_{\bar{\imath }}\lceil ijk\ell \rceil )}_{=0})=(P_{i})_{\star }\mathscr {L}([ijk\ell ]). \end{aligned}$$]


For this discrete 3-form, there are no corner equations on the 4D cube [image: $$\{jk\ell m\}$$] centered at x and [image: $$x_{jk\ell m}$$] since [image: $$S^{jk\ell m}$$] does not depend on these two variables. The remaining corner equations from (25) are given by[image: $$\begin{aligned} \frac{\partial S^{jk\ell m}}{\partial x_{j}}=&\frac{\partial \mathfrak {L}(\{jk\ell \})}{\partial x_{j}}+\frac{\partial \mathfrak {L}(-\{jkm\})}{\partial x_{j}}+\frac{\partial \mathfrak {L}(\{j\ell m\})}{\partial x_{j}}+\underbrace{\frac{\partial \mathfrak {L}(T_{j} \{k\ell m\})}{\partial x_{j}}}_{\equiv 0}\nonumber \\ =&(P_{i})_{\star }\left( \frac{\partial \mathscr {L}([ijk\ell ])}{\partial x_{ij}}+\frac{\partial \mathscr {L}(-[ijkm])}{\partial x_{ij}}+\frac{\partial \mathscr {L}([ij\ell m])}{\partial x_{ij}}\right) =\frac{1}{x_{j}}\log |\mathscr {E}_{j}|=0,\nonumber \\ \frac{\partial S^{jk\ell m}}{\partial x_{jk}}=&\frac{\partial \mathfrak {L}(\{jk\ell \})}{\partial x_{jk}}+\frac{\partial \mathfrak {L}(-\{jkm\})}{\partial x_{jk}}+\frac{\partial \mathfrak {L}(-T_{k}\{j\ell m\})}{\partial x_{jk}}+\frac{\partial \mathfrak {L}(T_{j}\{k\ell m\})}{\partial x_{jk}}\nonumber \\ =&(P_{i})_{\star }\left( \frac{\partial \mathscr {L}([ijk\ell ])}{\partial x_{jk}}+\frac{\partial \mathscr {L}(-[ijkm])}{\partial x_{jk}}+\frac{\partial \mathscr {L}(-T_{\bar{\imath }}T_{k}[ij\ell m])}{\partial x_{jk}}\right. \nonumber \\&\qquad \left. +\frac{\partial \mathscr {L}(T_{\bar{\imath }}T_{j}[ik\ell m])}{\partial x_{jk}}\right) \nonumber \\ =&\frac{1}{x_{jk}}\log \left| \frac{\underline{\mathscr {E}}_{jk}}{\bar{\mathscr {E}}_{jk}}\right| =0,\nonumber \\ \frac{\partial S^{jk\ell m}}{\partial x_{jk\ell }}=&\underbrace{\frac{\partial \mathfrak {L}(\{jk\ell \})}{\partial x_{jk\ell }}}_{\equiv 0}+\frac{\partial \mathfrak {L}(T_{\ell }\{jkm\})}{\partial x_{jk\ell }}+\frac{\partial \mathfrak {L}(-T_{k}\{j\ell m\})}{\partial x_{jk\ell }}+\frac{\partial \mathfrak {L}(T_{j} \{k\ell m\})}{\partial x_{jk\ell }}\nonumber \\ =&(P_{i})_{\star }\left( \frac{\partial \mathscr {L}(T_{\bar{\imath }}T_{\ell }[ijkm])}{\partial x_{\bar{\imath }jk\ell }}+\frac{\partial \mathscr {L}(-T_{\bar{\imath }}T_{k}[ij\ell m])}{\partial x_{\bar{\imath }jk\ell }}+\frac{\partial \mathscr {L}(T_{\bar{\imath }}T_{j}[ik\ell m])}{\partial x_{\bar{\imath }jk\ell }}\right) \nonumber \\ =&\frac{1}{x_{jk\ell }}\log \left| \frac{1}{\mathscr {E}_{jk\ell }}\right| =0, \end{aligned}$$]

 (28)

where[image: $$\mathscr {E}_{j}:=(P_{i})_{\star }E_{ij},\quad \underline{\mathscr {E}}_{jk}:=(P_{i})_{\star }E_{jk},\quad \bar{\mathscr {E}}_{jk}:=(P_{i})_{\star }E_{ijk},\quad \text {and}\quad \mathscr {E}_{jk\ell }:=(P_{i})_{\star }E_{jk\ell }.$$]


Hereafter, we only consider solutions, where all fields are non-zero (we call these solutions non-singular). As in the case of the root lattice [image: $$Q(A_{N})$$] every corner equation has two classes of solutions.
Theorem 5.1
Every solution of the system (25) solves either the system[image: $$\begin{aligned} \mathscr {E}_{j}&=-1,\quad \mathscr {E}_{k}=-1,\quad \mathscr {E}_{\ell }=-1,\quad \mathscr {E}_{m}=-1,\nonumber \\ \underline{\mathscr {E}}_{jk}&=-1,\quad \underline{\mathscr {E}}_{j\ell }=-1,\quad \underline{\mathscr {E}}_{jm}=-1,\quad \underline{\mathscr {E}}_{k\ell }=-1,\quad \underline{\mathscr {E}}_{km}=-1,\quad \underline{\mathscr {E}}_{\ell m}=-1,\nonumber \\ \bar{\mathscr {E}}_{jk}&=-1,\quad \bar{\mathscr {E}}_{j\ell }=-1,\quad \bar{\mathscr {E}}_{jm}=-1,\quad \bar{\mathscr {E}}_{k\ell }=-1,\quad \bar{\mathscr {E}}_{km}=-1,\quad \bar{\mathscr {E}}_{\ell m}=-1,\nonumber \\ \mathscr {E}_{jk\ell }&=-1,\quad \mathscr {E}_{jkm}=-1,\quad \mathscr {E}_{j\ell m}=-1,\quad \mathscr {E}_{k\ell m}=-1 \end{aligned}$$]

 (29)

or the system[image: $$\begin{aligned} \mathscr {E}_{j}&=1,\quad \mathscr {E}_{k}=1,\quad \mathscr {E}_{\ell }=1,\quad \mathscr {E}_{m}=1,\nonumber \\ \underline{\mathscr {E}}_{jk}&=1,\quad \underline{\mathscr {E}}_{j\ell }=1,\quad \underline{\mathscr {E}}_{jm}=1,\quad \underline{\mathscr {E}}_{k\ell }=1,\quad \underline{\mathscr {E}}_{km}=1,\quad \underline{\mathscr {E}}_{\ell m}=1,\nonumber \\ \bar{\mathscr {E}}_{jk}&=1,\quad \bar{\mathscr {E}}_{j\ell }=1,\quad \bar{\mathscr {E}}_{jm}=1,\quad \bar{\mathscr {E}}_{k\ell }=1,\quad \bar{\mathscr {E}}_{km}=1,\quad \bar{\mathscr {E}}_{\ell m}=1,\nonumber \\ \mathscr {E}_{jk\ell }&=1,\quad \mathscr {E}_{jkm}=1,\quad \mathscr {E}_{j\ell m}=1,\quad \mathscr {E}_{k\ell m}=1. \end{aligned}$$]

 (30)

Furthermore the system (29) is equivalent to the system (27) (this is dKP on the corresponding 4D cube). The system (30) is equivalent to the system[image: $$\begin{aligned} \begin{aligned}&x_{k}x_{\ell }x_{jk}x_{j\ell }-x_{j}x_{\ell }x_{jk}x_{k\ell }+x_{j}x_{k}x_{j\ell }x_{k\ell }=0,\\&x_{k}x_{m}x_{jk}x_{jm}-x_{j}x_{m}x_{jk}x_{km}+x_{j}x_{k}x_{jm}x_{km}=0,\\&x_{\ell }x_{m}x_{j\ell }x_{jm}-x_{j}x_{m}x_{j\ell }x_{\ell m}+x_{j}x_{\ell }x_{jm}x_{\ell m}=0,\\&x_{\ell }x_{m}x_{k\ell }x_{km}-x_{k}x_{m}x_{k\ell }x_{\ell m}+x_{k}x_{\ell }x_{km}x_{\ell m}=0,\\&x_{km}x_{\ell m}x_{jkm}x_{j\ell m}-x_{jm}x_{\ell m}x_{jkm}x_{k\ell m}+x_{jm}x_{km}x_{j\ell m}x_{k\ell m}=0,\\&x_{k\ell }x_{\ell m}x_{jk\ell }x_{j\ell m}-x_{j\ell }x_{\ell m}x_{jk\ell }x_{k\ell m}+x_{j\ell }x_{k\ell }x_{j\ell m}x_{k\ell m}=0,\\&x_{k\ell }x_{km}x_{jk\ell }x_{jkm}-x_{jk}x_{km}x_{jk\ell }x_{k\ell m}+x_{jk}x_{k\ell }x_{jkm}x_{k\ell m}=0,\\&x_{j\ell }x_{jm}x_{jk\ell }x_{jkm}-x_{jk}x_{jm}x_{jk\ell }x_{j\ell m}+x_{jk}x_{j\ell }x_{jkm}x_{j\ell m}=0, \end{aligned} \end{aligned}$$]

 (31)

which is the system (27) after the transformation [image: $$x\mapsto x^{-1}$$] of fields (this is [image: $$ dKP ^{-}$$] on the corresponding 4D cube).

Proof
Let x be a solution of the system (25) such that [image: $$\mathscr {E}_{j}=-1$$] and [image: $$\mathscr {E}_{k}=-1$$]. Then we know from the proof of Theorem 3.1 that[image: $$\begin{aligned} \mathscr {E}_{j}&=-1,\quad \mathscr {E}_{k}=-1,\quad \mathscr {E}_{\ell }=-1,\quad \mathscr {E}_{m}=-1,\\ \underline{\mathscr {E}}_{jk}&=-1,\quad \underline{\mathscr {E}}_{j\ell }=-1,\quad \underline{\mathscr {E}}_{jm}=-1,\quad \underline{\mathscr {E}}_{k\ell }=-1,\quad \underline{\mathscr {E}}_{km}=-1,\quad \underline{\mathscr {E}}_{\ell m}=-1 \end{aligned}$$]


and that the latter system is equivalent to[image: $$\begin{aligned}&x_{j}x_{k\ell }-x_{k}x_{j\ell }+x_{\ell }x_{jk}=0,\\&x_{j}x_{km}-x_{k}x_{jm}+x_{m}x_{jk}=0,\\&x_{j}x_{\ell m}-x_{\ell }x_{jm}+x_{m}x_{j\ell }=0,\\&x_{k}x_{\ell m}-x_{\ell }x_{km}+x_{m}x_{k\ell }=0,\\&x_{jk}x_{\ell m}-x_{j\ell }x_{km}+x_{jm}x_{k\ell }=0. \end{aligned}$$]


On the other hand, if we consider a solution x of (25) such that [image: $$\mathscr {E}_{j}=1$$] and [image: $$\mathscr {E}_{k}=1$$], we know from the proof of Theorem 3.1 that[image: $$\begin{aligned} \mathscr {E}_{j}&=1,\quad \mathscr {E}_{k}=1,\quad \mathscr {E}_{\ell }=1,\quad \mathscr {E}_{m}=1,\\ \underline{\mathscr {E}}_{jk}&=1,\quad \underline{\mathscr {E}}_{j\ell }=1,\quad \underline{\mathscr {E}}_{jm}=1,\quad \underline{\mathscr {E}}_{k\ell }=1,\quad \underline{\mathscr {E}}_{km}=1,\quad \underline{\mathscr {E}}_{\ell m}=1 \end{aligned}$$]


and that the latter system is equivalent to[image: $$\begin{aligned}&x_{k}x_{\ell }x_{jk}x_{j\ell }-x_{j}x_{\ell }x_{jk}x_{k\ell }+x_{j}x_{k}x_{j\ell }x_{k\ell }=0,\\&x_{k}x_{m}x_{jk}x_{jm}-x_{j}x_{m}x_{jk}x_{km}+x_{j}x_{k}x_{jm}x_{km}=0,\\&x_{\ell }x_{m}x_{j\ell }x_{jm}-x_{j}x_{m}x_{j\ell }x_{\ell m}+x_{j}x_{\ell }x_{jm}x_{\ell m}=0,\\&x_{\ell }x_{m}x_{k\ell }x_{km}-x_{k}x_{m}x_{k\ell }x_{\ell m}+x_{k}x_{\ell }x_{km}x_{\ell m}=0,\\&x_{j\ell }x_{jm}x_{k\ell }x_{km}-x_{jk}x_{jm}x_{k\ell }x_{\ell m}+x_{jk}x_{j\ell }x_{km}x_{\ell m}=0. \end{aligned}$$]


Now, let x be a solution of the system (25) such that [image: $$\mathscr {E}_{jk\ell }=-1$$] and [image: $$\mathscr {E}_{jkm}=-1$$]. Then we know from the proof of Theorem 3.3 that[image: $$\begin{aligned} \bar{\mathscr {E}}_{jk}&=1,\quad \bar{\mathscr {E}}_{j\ell }=1,\quad \bar{\mathscr {E}}_{jm}=1,\quad \bar{\mathscr {E}}_{k\ell }=1,\quad \bar{\mathscr {E}}_{km}=1,\quad \bar{\mathscr {E}}_{\ell m}=1,\\ \mathscr {E}_{jk\ell }&=1,\quad \mathscr {E}_{jkm}=1,\quad \mathscr {E}_{j\ell m}=1,\quad \mathscr {E}_{k\ell m}=1 \end{aligned}$$]


and that the latter system is equivalent to[image: $$\begin{aligned}&x_{\ell m}x_{jkm}-x_{km}x_{j\ell m}+x_{jm}x_{k\ell m}=0,\\&x_{km}x_{jk\ell }-x_{k\ell }x_{jkm}+x_{jk}x_{k\ell m}=0,\\&x_{\ell m}x_{jk\ell }-x_{k\ell }x_{j\ell m}+x_{j\ell }x_{k\ell m}=0,\\&x_{jm}x_{jk\ell }-x_{j\ell }x_{jkm}+x_{jk}x_{j\ell m}=0,\\&x_{jk}x_{\ell m}-x_{j\ell }x_{km}+x_{jm}x_{k\ell }=0. \end{aligned}$$]


On the other hand, if we consider a solution x of (25) such that [image: $$\mathscr {E}_{j}=1$$] and [image: $$\mathscr {E}_{k}=1$$], we know from the proof of Theorem 3.3 that[image: $$\begin{aligned} \bar{\mathscr {E}}_{jk}&=1,\quad \bar{\mathscr {E}}_{j\ell }=1,\quad \bar{\mathscr {E}}_{jm}=1,\quad \bar{\mathscr {E}}_{k\ell }=1,\quad \bar{\mathscr {E}}_{km}=1,\quad \bar{\mathscr {E}}_{\ell m}=1,\\ \mathscr {E}_{jk\ell }&=1,\quad \mathscr {E}_{jkm}=1,\quad \mathscr {E}_{j\ell m}=1,\quad \mathscr {E}_{k\ell m}=1 \end{aligned}$$]


and that the latter system is equivalent to[image: $$\begin{aligned}&x_{km}x_{\ell m}x_{jkm}x_{j\ell m}-x_{jm}x_{\ell m}x_{jkm}x_{k\ell m}+x_{jm}x_{km}x_{j\ell m}x_{k\ell m}=0,\\&x_{k\ell }x_{\ell m}x_{jk\ell }x_{j\ell m}-x_{j\ell }x_{\ell m}x_{jk\ell }x_{k\ell m}+x_{j\ell }x_{k\ell }x_{j\ell m}x_{k\ell m}=0,\\&x_{k\ell }x_{km}x_{jk\ell }x_{jkm}-x_{jk}x_{km}x_{jk\ell }x_{k\ell m}+x_{jk}x_{k\ell }x_{jkm}x_{k\ell m}=0,\\&x_{j\ell }x_{jm}x_{jk\ell }x_{jkm}-x_{jk}x_{jm}x_{jk\ell }x_{j\ell m}+x_{jk}x_{j\ell }x_{jkm}x_{j\ell m}=0,\\&x_{j\ell }x_{jm}x_{k\ell }x_{km}-x_{jk}x_{jm}x_{k\ell }x_{\ell m}+x_{jk}x_{j\ell }x_{km}x_{\ell m}=0. \end{aligned}$$]


Since a solution x of (25) cannot solve[image: $$\begin{aligned} x_{jk}x_{\ell m}-x_{j\ell }x_{km}+x_{jm}x_{k\ell }=0 \end{aligned}$$]


and[image: $$\begin{aligned} x_{j\ell }x_{jm}x_{k\ell }x_{km}-x_{jk}x_{jm}x_{k\ell }x_{\ell m}+x_{jk}x_{j\ell }x_{km}x_{\ell m}=0 \end{aligned}$$]


at the same time, this proves the theorem.[image: $$\square $$]
        

Theorem 5.2
(Closure relation) There holds [image: $$S^{jk\ell m}=0$$] on all solutions of (25).

Proof
Let x be a solution of (29) or (30). Then[image: $$\begin{aligned} S^{jk\ell m}&=d\mathfrak {L}(\{jk\ell \})=(P_{i})_{\star }(d\mathscr {L}(\lfloor ijk\ell m\rfloor )+d\mathscr {L}(-\lceil ijk\ell m\rceil ))=\underline{S}^{ijk\ell m}-\bar{S}^{ijk\ell m}\\&=\pm \frac{\pi ^{2}}{4}\mp \frac{\pi ^{2}}{4}=0 \end{aligned}$$]


due to Theorems 3.2 and 3.4 since every solution of (29) solves (13) and (22) after the transformation [image: $$P_{i}$$] of variables and every solution of (30) solves (14) and (23) after the transformation [image: $$P_{i}$$] of variables.[image: $$\square $$]
        


6 Conclusion
The fact that the three-dimensional (hyperbolic) dKP equation is, in a sense, equivalent to the Euler-Lagrange equations of the corresponding action is rather surprising since for the two-dimensional (hyperbolic) quad-equations an analogous statement is not true (see [4, 6] for more details). On the other hand, in the continuous situation there is an example of a 2-form whose Euler-Lagrange equations are equivalent to the set of equations consisting of the (hyperbolic) sine-Gordon equation and the (evolutionary) modified Korteweg-de Vries equation (see [16] for more details). So, the general picture remains unclear.
In particular, the variational formulation for the other equations of octahedron type in the classification of [1] is still an open problem.
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Appendix 1: Facets of N-Cells of the Root Lattice [image: $$Q(A_{N})$$]
        
Facets of 3-cells:

              [image: $${\begin{array}{ll} \text {Black tetrahedra} \lfloor ijk\ell \rfloor {:}&{} \text {four black triangles} \lfloor ijk\rfloor , -\lfloor ij\ell \rfloor , \lfloor ik\ell \rfloor , \text {and} -\lfloor jk\ell \rfloor ;\\ \text {Octahedra} [ijk\ell ]{:}&{} \text {four black triangles} T_{\ell }\lfloor ijk\rfloor , -T_{k}\lfloor ij\ell \rfloor , T_{j}\lfloor ik\ell \rfloor ,\\ &{} \text {and} -T_{i}\lfloor jk\ell \rfloor ,\\ &{} \text {four white triangles} \lceil ijk\rceil , -\lceil ij\ell \rceil , \lceil ik\ell \rceil , \text {and} -\lceil jk\ell \rceil ;\\ \text {White tetrahedra} \lceil ijk\ell \rceil {:}&{} \text {four white triangles} T_{\ell }\lceil ijk\rceil , -T_{k}\lceil ij\ell \rceil , T_{j}\lceil ik\ell \rceil ,\\ &{} \text {and} -T_{i}\lceil jk\ell \rceil ; \end{array}}$$]
            
Facets of 4-cells:

              [image: $${\begin{array}{ll} \text {Black 4-simplices} \lfloor \!\!\lfloor ijk\ell m\rfloor \!\!\rfloor {:}&{} five black tetrahedra \lfloor ijk\ell \rfloor , -\lfloor ijkm\rfloor , \lfloor ij\ell m\rfloor ,\\ &{} -\lfloor ik\ell m\rfloor , \text {and} \lfloor jk\ell m\rfloor ;\\ \text {Black 4-ambo-simplices} \lfloor ijk\ell m\rfloor {:}&{} \text {five black tetrahedra} T_{m}\lfloor ijk\ell \rfloor , -T_{\ell }\lfloor ijkm\rfloor ,\\ &{} T_{k}\lfloor ij\ell m\rfloor , -T_{j}\lfloor ik\ell m\rfloor , \text {and} T_{i}\lfloor jk\ell m\rfloor ,\\ &{} \text {and five octahedra} [ijk\ell ], -[ijkm], [ij\ell m],\\ &{} -[ik\ell m], \text {and} [jk\ell m]; \\ \text {White 4-ambo-simplices} \lceil ijk\ell m\rceil {:}&{} \text {five octahedra} T_{m}[ijk\ell ], -T_{\ell }[ijkm], T_{k}[ij\ell m],\\ &{} -T_{j}[ik\ell m], \text {and} T_{i}[jk\ell m],\\ &{} \text {and five white tetrahedra} \lceil ijk\ell \rceil , -\lceil ijkm\rceil ,\\ &{} \lceil ij\ell m\rceil , -\lceil ik\ell m\rceil , \text {and} \lceil jk\ell m\rceil ; \\ \text {White 4-simplices} \lceil \!\!\lceil ijk\ell m\rceil \!\!\rceil {:}&{} \text {five white tetrahedra} T_{m}\lceil ijk\ell \rceil , -T_{\ell }\lceil ijkm\rceil ,\\ &{} T_{k}\lceil ij\ell m\rceil , -T_{j}\lceil ik\ell m\rceil , \text {and} T_{i}\lceil jk\ell m\rceil . \end{array}}$$]
            


Appendix 2: 4D Corners on 4-Cells of the Root Lattice [image: $$Q(A_{N})$$]
        
Black 4-simplex [image: $$\lfloor \!\!\lfloor ijk\ell m\rfloor \!\!\rfloor $$]:
The 4D corner with center vertex [image: $$x_{i}$$] contains	the four black tetrahedra [image: $$\lfloor ijk\ell \rfloor $$], [image: $$-\lfloor ijkm\rfloor $$], [image: $$\lfloor ij\ell m\rfloor $$], and [image: $$-\lfloor ik\ell m\rfloor $$];





Black 4-ambo-simplex [image: $$\lfloor ijk\ell m\rfloor $$]:
The 4D corner with center vertex [image: $$x_{ij}$$] contains	the two black tetrahedra [image: $$-T_{j}\lfloor ik\ell m\rfloor $$], and [image: $$T_{i}\lfloor jk\ell m\rfloor $$],

	and the three octahedra [image: $$[ijk\ell ]$$], [image: $$-[ijkm]$$], and [image: $$[ij\ell m]$$];





White 4-ambo-simplex [image: $$\lceil ijk\ell m\rceil $$]:
The 4D corner with center vertex [image: $$x_{ijk}$$] contains	the three octahedra [image: $$T_{k}[ij\ell m]$$], [image: $$-T_{j}[ik\ell m]$$], and [image: $$T_{i}[jk\ell m]$$],

	and the two white tetrahedra [image: $$\lceil ijk\ell \rceil $$], and [image: $$-\lceil ijkm\rceil $$];





White 4-simplex [image: $$\lceil \!\!\lceil ijk\ell m\rceil \!\!\rceil $$]:
The 4D corner with center vertex [image: $$x_{ijk\ell }$$] contains	the four white tetrahedra [image: $$-T_{\ell }\lceil ijkm\rceil $$], [image: $$T_{k}\lceil ij\ell m\rceil $$], [image: $$-T_{j}\lceil ik\ell m\rceil $$], and [image: $$T_{i}\lceil jk\ell m\rceil $$].







Appendix 3: Proof of Theorem 2.4
        
Set [image: $$M:=N+1$$] and [image: $$L:=N+2$$]. Then, for the construction of the sum [image: $$\varSigma $$] of 4D corners representing the flower [image: $$\sigma $$] centered in X, we use the following algorithm:	(i)For every black tetrahedron [image: $$\pm \lfloor ijk\ell \rfloor \in \sigma $$] at the interior vertex X we add the 4D corner with center vertex X on the black 4-simplex [image: $$\pm \lfloor \!\!\lfloor ijk\ell M\rfloor \!\!\rfloor $$] to [image: $$\varSigma $$].


 

	(ii)For every octahedron [image: $$\pm [ijk\ell ]\in \sigma $$] we add the 4D corner with center vertex X on the black 4-ambo-simplex [image: $$\pm \lfloor ijk\ell M\rfloor $$] to [image: $$\varSigma $$].


 

	(iii)For every white tetrahedron [image: $$\pm \lceil ijk\ell \rceil \in \sigma $$] we add the 4D corner with center vertex X on the white 4-ambo-simplex [image: $$\pm \lceil ijk\ell M\rceil $$] to [image: $$\varSigma $$].


 

	(iv)For every white tetrahedron [image: $$\pm \lceil ijkM\rceil \in \varSigma \setminus \sigma $$] which appeared in [image: $$\varSigma $$] during the previous step we add the 4D corner with center vertex X on the white 4-simplex [image: A371662_1_En_12_IEq380_HTML.gif] to [image: $$\varSigma $$].


 





Therefore, we have to prove that [image: $$\varSigma =\sigma $$].
Assume that [image: $$X=x_{i}$$]. Then for each black tetrahedron [image: $$\pm \lfloor ijk\ell \rfloor \in \sigma $$] we added the three black tetrahedra [image: A371662_1_En_12_IEq385_HTML.gif], [image: $$\pm \lfloor ij\ell M\rfloor $$], and [image: A371662_1_En_12_IEq387_HTML.gif] to [image: $$\varSigma $$] which do not belong to [image: $$\sigma $$]. Moreover, [image: $$\pm \lfloor ijk\ell \rfloor $$] has three black triangular facets adjacent to [image: $$x_{i}$$], namely [image: $$\pm \lfloor ijk\rfloor $$], which is the common triangle with [image: A371662_1_En_12_IEq393_HTML.gif] (up to orientation), [image: A371662_1_En_12_IEq394_HTML.gif], which is the common triangle with [image: $$\pm \lfloor ij\ell M\rfloor $$], and [image: $$\pm \lfloor ik\ell \rfloor $$], which is the common triangle with [image: A371662_1_En_12_IEq397_HTML.gif]. Therefore, each of these black tetrahedra has to cancel away with the corresponding black tetrahedra from the 4D corner which is coming from the 3-cell adjacent to [image: $$\pm \lfloor ijk\ell \rfloor $$] via the corresponding black triangle.
Assume that [image: $$X=x_{ij}$$]. Then for each octahedron [image: $$\pm [ijk\ell ]\in \sigma $$] we added the two black tetrahedra [image: A371662_1_En_12_IEq401_HTML.gif] and [image: $$\pm T_{i}\lfloor jk\ell M\rfloor $$] as well as the two octahedra [image: A371662_1_En_12_IEq403_HTML.gif] and [image: $$\pm [ij\ell M]$$] to [image: $$\varSigma $$] which do not belong to [image: $$\sigma $$]. Moreover, [image: $$\pm [ijk\ell ]$$] has two black tetrahedral facets adjacent to [image: $$x_{ij}$$], namely [image: $$\pm \lfloor ijk\rfloor $$], which is the common triangle with [image: A371662_1_En_12_IEq410_HTML.gif], and [image: A371662_1_En_12_IEq411_HTML.gif], which is the common triangle with [image: $$\pm T_{i}\lfloor jk\ell M$$], as well as two white tetrahedral facets adjacent to [image: $$x_{ij}$$], namely [image: $$\pm T_{j}\lceil ik\ell \rceil $$], which is the common triangle with [image: A371662_1_En_12_IEq415_HTML.gif] and [image: $$\pm [ij\ell M]$$], and [image: A371662_1_En_12_IEq417_HTML.gif], which is the common triangle with [image: $$\pm [ij\ell M]$$]. Therefore, each of the black tetrahedra [image: A371662_1_En_12_IEq419_HTML.gif] and [image: $$\pm T_{i}\lfloor jk\ell M$$] has to cancel away with the corresponding black tetrahedron from the 4D corner which is coming from the 3-cell adjacent to[image: $$\pm [ijk\ell ]$$] via the corresponding black triangle, and each of the octahedra [image: A371662_1_En_12_IEq422_HTML.gif] and [image: $$\pm [ij\ell M]$$] has to cancel away with the corresponding octahedron coming the 4D corner which is coming from the 3-cell adjacent to [image: $$\pm [ijk\ell ]$$] via the corresponding white triangle.
Assume that [image: $$X=x_{ijk}$$]. Then for each white tetrahedron [image: $$\pm \lceil ijk\ell \rceil \in \sigma $$] we added the three octahedra [image: $$\pm T_{k}[ij\ell M]$$], [image: A371662_1_En_12_IEq428_HTML.gif], and [image: $$\pm T_{i}[jk\ell M]$$] as well as the white tetrahedron [image: A371662_1_En_12_IEq430_HTML.gif] to [image: $$\varSigma $$] which do not belong to [image: $$\sigma $$]. Moreover, [image: $$\pm \lceil ijk\ell \rceil $$] has three white triangular facets adjacent to [image: $$x_{ijk}$$], namely [image: A371662_1_En_12_IEq435_HTML.gif], which is the common triangle with [image: $$\pm T_{k}[ij\ell M]$$], [image: $$\pm T_{j}\lceil ik\ell \rceil $$], which is the common triangle with [image: A371662_1_En_12_IEq438_HTML.gif], and [image: A371662_1_En_12_IEq439_HTML.gif], which is the common triangle with [image: $$\pm T_{i}[jk\ell M]$$]. Therefore, each of these octahedra has to cancel away with the corresponding octahedron from the 4D corner which is coming from the 3-cell adjacent to [image: $$\pm \lceil ijk\ell \rceil $$] via the corresponding white triangle.
Consider two 3-cells [image: $$\Omega ,\bar{\Omega }\in \sigma $$] adjacent via the black triangle [image: $$\lfloor ijk\rfloor $$], say [image: $$\lfloor ijk\rfloor $$] belongs to [image: $$\Omega $$] and [image: $$-\lfloor ijk\rfloor $$] belongs to [image: $$\bar{\Omega }$$]. Then the 4D corner corresponding to [image: $$\Omega $$] contributes the black tetrahedron [image: $$-\lfloor ijkM\rfloor $$] to [image: $$\varSigma $$], whereas the 4D corner corresponding to [image: $$\bar{\Omega }$$] contributes the black tetrahedron [image: $$\lfloor ijkM\rfloor $$] to [image: $$\varSigma $$]. Therefore, the latter two black tetrahedra cancel out.
Consider two 3-cells [image: $$\Omega ,\bar{\Omega }\in \sigma $$] adjacent via the white triangle [image: $$\lceil ijk\rceil $$], say [image: $$\lceil ijk\rceil $$] belongs to [image: $$\Omega $$] and [image: $$-\lceil ijk\rceil $$] belongs to [image: $$\bar{\Omega }$$]. Then the 4D corner corresponding to [image: $$\Omega $$] contributes the octahedron [image: $$-[ijkM]$$] to [image: $$\varSigma $$], whereas the 4D corner corresponding to [image: $$\bar{\Omega }$$] contributes the octahedron [ijkM] to [image: $$\varSigma $$]. Therefore, the latter two octahedra cancel out.
Up to now we proved that all black tetrahedra and all octahedra in [image: $$\varSigma \setminus \sigma $$] cancel out. We will now consider with the white tetrahedra in [image: $$\varSigma \setminus \sigma $$].
Lemma 6.1
The white tetrahedra [image: $$\lfloor ijk M\rfloor $$] arising in the third step of the algorithm build flowers which only contain white tetrahedra.

Proof
We have two prove that each of these white tetrahedra has exactly three adjacent white tetrahedra in the flowers, one via each white triangle adjacent to X. They are not adjacent to the 3-cells in [image: $$\sigma $$], but each of them has three common neighbors adjacent to X with the corresponding white tetrahedron in [image: $$\sigma $$]. These common neighbors are octahedra which cancel out in the previous steps of the algorithm.
Consider now two white tetrahedra [image: $$T,\bar{T}\in \varSigma \setminus \sigma $$] after the third step of the algorithm, where the corresponding white tetrahedra in [image: $$\sigma $$] are adjacent, i.e., there is a pair of octahedra with the same set of points and different orientation, one adjacent to T and the other adjacent to [image: $$\bar{T}$$]. Therefore, T and [image: $$\bar{T}$$] share a common white triangle (up to orientation), i.e., they are adjacent.
Consider the 4D corner which we add to [image: $$\varSigma $$] for an octahedron. Its two octahedra which do not belong to [image: $$\sigma $$] share a common white triangle (up to orientation) which does no lie in [image: $$\sigma $$]. Furthermore, consider a sequence of adjacent octahedra in [image: $$\sigma $$], where the common triangles are all white triangles. Then the octahedra in the corresponding 4D corners which are not in [image: $$\sigma $$] all share a common white triangle (up to orientation).
Consider now two white tetrahedra [image: $$T,\bar{T}\in \varSigma \setminus \sigma $$] after the third step of the algorithm, where the corresponding tetrahedra in [image: $$\sigma $$] are connected by a sequence of octahedra adjacent via white triangles. Then, there is a pair of octahedra, one of them adjacent to T and the other one adjacent to [image: $$\bar{T}$$], which share a common white triangle (up to orientation). This triangle does not belong to any 3-cell in [image: $$\sigma $$] and, therefore, is a common triangle of T and [image: $$\bar{T}$$], i.e., T and [image: $$\bar{T}$$] are adjacent.[image: $$\square $$]
          

Now we continue with the proof of Theorem 2.4. We already proved that a flower containing only black tetrahedra can be written as a sum of 3D corners on black 4-simplices (see proof of step 1). Analogously, one can write every flower containing only white tetrahedra as a sum of 3D corners on white 4-simplices. So we write for each of the flowers of white tetrahedra in [image: $$\varSigma \setminus \sigma $$] after the third step of the algorithm the flower of opposite orientation as a sum of 3D corners on white 4-simplices and add this sums to [image: $$\varSigma $$]. Then [image: $$\varSigma =\sigma $$].
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Abstract
We discuss six topics related to inscribable polytopes, both in dimension 3 (where the topic was started with a problem posed by Steiner in 1832) and in higher dimensions.

Jakob Steiner ended his 1832 geometry book Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander [41] with a list of 85 open problems. Problem 77 reads as follows:

          77) Wenn irgend ein convexes Polyeder gegeben ist läßt sich dann immer (oder in welchen Fällen nur) irgend ein anderes, welches mit ihm in Hinsicht der Art und der Zusammensetzung der Grenzflächen übereinstimmt (oder von gleicher Gattung ist), in oder um eine Kugelfläche, oder in oder um irgend eine andere Fläche zweiten Grades beschreiben (d.h. daß seine Ecken alle in dieser Fläche liegen oder seine Grenzflächen alle diese Fläche berühren)?


        
It asks whether every (3-dimensional) polytope is inscribable; that is, whether for every 3-polytope there is a combinatorially equivalent polytope with all the vertices on the sphere. And if not, which are the cases of 3-polytopes that do have such a realization? He also asks the same question for circumscribable polytopes, those that have a realization with all the facets tangent to the sphere, as well as for other surfaces of degree 2.
There was no progress on this question until 1928, when Ernst Steinitz showed that inscribability and circumscribability are polar concepts and presented the first examples of polytopes that cannot be inscribed/circumscribed. Since then, the interest on inscribability of polytopes has soared, partially because of tight relations with Delaunay subdivisions and hyperbolic geometry. It was in the context of the latter that, more than 50 years after Steinitz’s results, Igor Rivin finally found a characterization of 3-dimensional inscribable polytopes [34]: A 3-connected planar graph describes an inscribable polytope if and only if a certain inequality system has a solution.
What about other quadric surfaces? First of all, since these are not necessarily convex, one has to decide to either consider realizations with the vertices on the surface, or realizations whose intersection with the surface are only the vertices. The weakly inscribable spherical polytopes considered in [8] belong to the first category. For the second version of the definition, Danciger et al. have very recently extended Rivin’s results to arbitrary quadrics in [image: $$\mathbb R^3$$] [9]: A 3-polytope is inscribable in the hyperboloid or the cylinder if and only if it is inscribable in the sphere and its graph is Hamiltonian.
So, is the inscribability problem completely solved? We do not think so: Many fundamental questions in this area remain still wide open. In particular, very little is known about inscribability for higher dimensional polytopes. Here we present some intriguing open questions and problems motivated by some recent (and not so recent) results on inscribable polytopes.
1 Inscribability of 3-Polytopes
Incribability and circumscribability are polar concepts: A polytope is inscribable if and only if its polar is circumscribable. Steinitz [42] (cf. [17, Thm. 13.5.2]) constructed non-circumscribable polytopes using the following simple fact. Paint some of the facets of a 3-polytope P black in such a way that there are no two neighboring black facets (just like on a soccer ball). If you can paint more than half of the facets black, then P is not circumscribable (unlike the soccer ball).
His argument was the following. Observe that each facet F has a point of contact with the sphere [image: $$p_F$$]. We associate to each edge e of F the angle with which we see e from [image: $$p_F$$]. A reflection about the plane spanned by e and the center of the sphere shows that this angle is the same for the two facets incident to e. Now, if we add all these angles for the edges incident to black facets, we get [image: $$2\pi $$] for each black facet. No two of these share an edge, so if we count the contributions for the white facets we should get at least the same value. However, we get at most [image: $$2\pi $$] times the number of white facets, which is smaller than the number of black facets by hypothesis.[image: $$\square $$]
      
The same argument also works if exactly half of the facets are black as long as there is at least one edge between two white facets. This provides us with our first example of a non-circumscribable polytope: Take a simplex and truncate all its vertices. The facets arising from the truncation do not share an edge, so painting them black shows non-circumscribability.
The polar argument says that if the graph of a 3-polytope has an independent set (a subset of vertices no two of which are connected by an edge) of more than half of the vertices (or exactly half of them but not incident to every edge), then the polytope is not inscribable. For example, the triakis tetrahedron, a convex polytope obtained by stacking a tetrahedron onto each facet of a tetrahedron, is not inscribable.
Steinitz’s condition was later subsumed by results by Dillencourt [10] and by Dillencourt together with Smith [11]. In [10] it is shown that the graph of any inscribed polytope is 1-tough, which means that for any k, removing k vertices splits the graph into at most k connected components.
This proves non-inscribability for polytopes with an independent set that contains more than half of the vertices, by removing the other vertices. For independent sets that collect exactly half the vertices, we need a slight improvement from [11]: the graph of an inscribable 3-polytope is either bipartite (with both sides of the same size) or 1-supertough, which means that for any [image: $$k\geqslant 2$$], the removal of k vertices splits the graph into less than k components.
Toughness is a necessary combinatorial condition for inscribability that is easy to check, but it is not sufficient.
Besides the mentioned necessary conditions, Dillencourt and Smith also found some sufficient combinatorial conditions [12], which they summarize as: “If a polyhedron has a sufficiently rich collection of Hamiltonian subgraphs, then it is of inscribable type.” For example, this implies that 3-polytopes whose graphs are 4-connected, or where all the vertex degrees are between 4 and 6, are always inscribable.
So, how can we decide whether a given polytope is incribable? Fundamental results on hyperbolic polyhedra by Rivin [34] provided an easy way to decide inscribability/circumscribability of 3-polytopes by linear programming [19] (see also [32, 33, 35]). If one identifies the ball with the Klein model of the hyperbolic space, then an inscribed polytope is an ideal hyperbolic polyhedron. Rivin showed that the dihedral angles at the edges completely characterize these polyhedra.
Theorem 1.1
([19, Thm. 1]) A 3-polytope P is circumscribable if and only if there exist numbers [image: $$\omega (e)$$] associated to the edges e of P such that:	
                [image: $$0<\omega (e)<\pi $$],

	
                [image: $$\sum _{e\in F} \omega (e) =2\pi $$] for each facet F of P, and

	
                [image: $$\sum _{e\in C} \omega (e) >2\pi $$] for each simple circuit C that does not bound a facet.






Using this result, inscribability and circumscribability can be efficiently checked. Yet, the characterization depends on a linear programming type feasibility computation. As Dillencourt and Smith pointed out in [11], it is an outstanding open problem to find a graph-theoretical characterization of inscribable 3-polytopes. For simple polytopes, they found such a characterization [11]: A simple 3-polytope is inscribable if and only if its graph is either bipartite and has a 4-connected dual or it is 1-supertough.
Question 1.2
(Dillencourt and Smith [11]) Is there a purely combinatorial characterization of the graphs of inscribable 3-polytopes?


2 A Characterization in Higher Dimensions
It is not likely that there is a characterization as nice and simple as Rivin’s for higher-dimensional inscribable polytopes. To start with, 4-dimensional polytopes already present universality in the sense of Mnëv: This is a very strong statement whose history took off with groundbreaking results in Nikolai Mnëv’s Ph.D. thesis [25, 26], and that we discuss a little further in Sect. 5 (see also [30]). It has several implications, among them that it is already very hard to decide whether a given face lattice corresponds to a 4-polytope. And as we will see later, higher-dimensional inscribable polytopes also present universality features, so one should not expect to be able to decide inscribability in higher dimensions easily or quickly.
A more realistic goal would hence be to look for strong necessary conditions for inscribability in higher dimensions as well as for good (that is, weak) sufficient conditions. A set of necessary conditions is available, since Steinitz’s proof carries over directly to higher dimensions, as Grünbaum and Jucovič have observed already in 1974 [18]. Let’s see how.
Theorem 2.1
Let P be a d-polytope with graph G. If G has an independent set that contains more than half of all the vertices, or exactly half the vertices when G is not bipartite, then P is not inscribable.

Proof
Again, we prove the polar statement. Assume that [image: $$P^\circ $$] is circumscribed. Each facet F touches the ball in a single point [image: $$p_F$$]. To each of the facets of F, which are ridges of [image: $$P^\circ $$], we can intersect the cone with apex [image: $$p_F$$] spanned by the ridge with a small ball centered at [image: $$p_F$$]. The (normalized) solid angle associated to the ridge is the ratio of the volume of this intersection to the volume of the ball. Again, a reflection shows that the solid angle associated to each ridge does not depend on which of the two incident facets we take the apex from.
Now assume that the facets of [image: $$P^\circ $$] are painted in black and white, in such a way that there are no two neighboring black facets. If we add the contributions of the angles of the ridges associated to black facets, it should be at most (or less than if the dual graph is not bipartite) the sum of the contributions for the white facets. Since the sum along each facet is 1, the number of black facets cannot exceed the number of white facets, and they also cannot be the same if there are two adjacent white facets. [image: $$\square $$]
        

The more general necessary conditions by Dillencourt, such as 1-toughness, have however not yet been generalized to higher dimensions, as far as we know; neither have the sufficient conditions of Dillencourt and Smith. Is it true that if the graph of a d-polytope has a rich enough structure of Hamiltonian subgraphs then the corresponding polytope is inscribable? This could explain the phenomena observed in the next section.
Question 2.2
Find strong necessary and sufficient conditions for inscribability of higher-dimensional polytopes.

Firsching recently achieved a complete enumeration of the simplicial 4-polytopes with 10 vertices [13]: There are exactly [image: $$162\,004$$] combinatorial types. Firsching also managed to decide inscribability for all but 13 of these polytopes: The remaining [image: $$161\,991$$] are divided into [image: $$161\,978$$] inscribable and 13 non-inscribable. So, most simplicial 4-polytopes with 10 vertices are inscribable. Moreover, the very few that are not inscribable have very few facets and edges. More precisely, every non-inscribable simplicial 4-polytope with 10 vertices has less than 27 facets and less than 37 edges, but [image: $$146\ 104$$] out of the [image: $$162\ 004$$] simplicial 4-polytopes with 10 vertices do have at least 27 facets and 37 edges. This seems indicate that there might be combinatorial sufficient conditions for inscribability based only on the f-vector.
Question 2.3
Is it true that most simplicial 4-polytopes on n vertices are inscribable, for [image: $$n\rightarrow \infty $$]?

In 1991 Smith [40] proved that although there are exponentially many inscribable and circumscribable 3-polytopes with n vertices (because there are many that are 4-connected), most simplicial 3-polytopes with n vertices are neither inscribable nor circumscribable. The proof consists in showing that the probability of finding a fixed non-inscribable subgraph in a random 3-connected planar triangulations tends to 1 as [image: $$n\rightarrow \infty $$]. The same argument can be used on random 3-connected planar graphs, see [6, Thm. 2 and Cor. 1], which shows that most combinatorial types of 3-polytopes on a given large number of edges are not inscribable/circumscribable. This contrasts with what happens with simplicial 3-polytopes with few vertices. In the same paper [40], Smith classified these according to their inscribability and circumscribility, and most turned out to be both inscribable and circumscribable. The referee for this paper suggested to use the strategy for 3-polytopes in higher dimension: To show that a large random simplicial d-polytope is likely to contain a fixed non-inscribable subcomplex.

3 Neighborly Polytopes
What is the maximal number of faces that a d-dimensional polytope with n vertices can have? The answer to this fundamental question in the combinatorial theory of polytopes was not established until 1970, by McMullen [22], although Motzkin had already guessed the answer, as we know from a 1957 abstract [27]. And the answer is that the cyclic d
        -polytopes with n vertices have the maximal number of k-faces among all d
        -polytopes with n vertices (for all k!). This is the polytope one obtains when taking the convex hull of n points on the moment curve given by [image: $$\gamma (t):=(t,t^2, t^3,\dots , t^d)$$].
The cyclic polytopes owe their name to Gale [14], one of several (re-) inventors (cf. [17, Sec. 7.4]), although they were essentially already known to Constantin Carathéodory in 1911 [7], who had studied the convex hull of the trigonometric moment curve [image: $$(\sin t, \cos t, \sin 2t, \cos 2t, \dots , \sin kt, \cos kt)$$]. The representation on the trigonometric moment curve, which is projectively equivalent to the monomial one [45, pp. 75/76], shows that in even dimensions, the cyclic polytopes are inscribable. Since then, several inscribed realizations of the cyclic polytope have been found (also in odd dimensions), see [17, p. 67], [39, p. 521] and [16, Prop. 17]. Thus the upper bound theorem is established for inscribed polytopes too.
The next natural question asks for all the polytopes that have this many facets. McMullen also provided the answer to this: This characterizes the simplicial neighborly polytopes. These are the simplicial polytopes with a complete [image: $$\left\lfloor {\frac{d}{2}}\right\rfloor $$]-skeleton. (All even-dimensional neighborly polytopes are simplicial, but not in general the odd-dimensional ones. In particular, not all odd-dimensional neighborly polytopes have the maximal number of facets, only those that are simplicial.) Even if Motzkin claimed that the cyclic polytopes are the only neighborly polytopes (in the same 1957 abstract [27] mentioned above), there are actually plenty. The number of neighborly d-polytopes with n vertices grows at least as [image: $$n^{\left\lfloor d/2 \right\rfloor n(1-o(1))}$$] for fixed d [29]. Compare this to the number of d-polytopes with n vertices, which is not larger than [image: $$n^{d^2n(1+o(1))}$$] [3]. As it turns out, each one of the neighborly polytopes used to provide this lower bound is also inscribable [15] (for [image: $$d\geqslant 4$$]). And even more, as we discuss in the next section, they are inscribable in any strictly convex body! This surprising behavior let Gonska and Padrol [15] to ask:
Question 3.1
(Gonska and Padrol [15]) Is every (even-dimensional) neighborly polytope inscribable?

Firsching [13] undertook a quest to find a counterexample. He successfully used non-linear optimization techniques to find polytope realizations. In particular, he tried to inscribe the neighborly polytopes enumerated in [24]. The results are surprising: Every neighborly 4-polytope with [image: $$n\leqslant 11$$] vertices, every simplicial neighborly 5-polytope with [image: $$n\leqslant 10$$] vertices, every neighborly 6-polytope with [image: $$n\leqslant 11$$] vertices, and every simplicial neighborly 7-polytope with [image: $$n\leqslant 11$$] vertices is inscribable! Even more, every simplicial 2-neighborly 6-polytope with [image: $$n\leqslant 10$$] vertices is also inscribable. This lead Firsching to ask whether the even stronger statement that all 2-neighborly polytopes are inscribable might be true [13, Conj. 1]. This may be a very brave conjecture, for which not much evidence is available yet. However, recall that the graph of a 2-neighborly polytope is complete, and hence has the richest possible structure of Hamiltonian subgraphs ...
Question 3.2
(Firsching [13]) Is every (simplicial) 2-neighborly polytope inscribable?

We can also ask the polar question: What about circumscribability of neighborly polytopes? The results are completely opposite. Chen and Padrol proved that, for any [image: $$d\geqslant 4$$], no cyclic d-polytope on sufficiently many vertices is circumscribable [8]. (The proof will be sketched below in the last section.) They even conjecture that this holds in more generality for neighborly polytopes [8, Conj. 7.4]. Notice that, since neighborliness can be read on the f-vector, this would imply that there is an f-vector of a convex polytope that does not belong to any inscribable polytope, namely that of the polar of a neighborly 4-polytope with sufficiently many vertices. No example of such an f-vector has been established so far. Actually, what is known points into the other direction: Every f-vector of a 3-dimensional polytope is inscribable [16]. However, f-vectors that are not k-scribable are known for [image: $$d\geqslant 4$$] and [image: $$1\leqslant k\leqslant d-2$$] [8]. (A polytope is k-scribable if it has a realization with all its k-faces tangent to the sphere.)
Question 3.3
(Gonska and Ziegler [16]) Is there an f-vector that is not inscribable?


4 Universally Inscribable
As we just mentioned, the proof of inscribability for cyclic and many more neighborly polytopes given in [15] still works when we replace the unit ball by any other smooth strictly convex body. (This is what Oded Schramm called an egg in his celebrated paper “How to cage an egg?” [37].) Here smoothness is not very important, but strict convexity is. For example, the pigeonhole principle tells us that no simplicial d-polytope with more than [image: $$d(d+1)$$] vertices can be inscribed on the boundary of a d-simplex.
Hence many neighborly polytopes (among them all cyclic polytopes) are universally inscribable: They can be inscribed into any egg. Other examples of such polytopes are the stacked d-polytopes arising as a join of a path with a [image: $$(d-2)$$]-simplex; and also Lawrence polytopes [15].
Question 4.1
(Gonska and Padrol [15]) Which polytopes are inscribable into the boundary of every (smooth) strictly convex body?

An observation of Karim Adiprasito [15] shows that being inscribable on the sphere is not sufficient for being universally inscribable. (The proof uses projectively unique polytopes [2].) We thank the anonymous reviewer for suggesting the following opposite question. (The reviewer’s conjectured answer is yes.)
Question 4.2
Are there polytopes that are inscribable in every egg other than the ellipsoid?

The celebrated Koebe–Andreev–Thurston Theorem states that every 3-polytope has a realization with all its edges tangent to the sphere. This amazing result has a long history. It seems that it was first proved by Paul Koebe, but only for simple and simplicial polytopes [21]. Thurston later realized [44] that it followed from results of Andreev on hyperbolic polyhedra [4, 5]. Since then, several proofs have been found (see [46, Sect. 1.3] and references therein). Schramm went even further and proved that every 3-polytope has a realization with all its edges tangent to any given egg [37].
Theorem 4.3
(Schramm [37]) For every 3-polytope P, and every smooth strictly convex body K, there is a realization Q of P such that each edge of Q is tangent to K.

There is also the other side of universal inscribability, which would be to focus on the convex bodies. The mathoverflow user called Samsa asked [36]:Is there a convex body in [image: $$\mathbb R^d$$] such that every combinatorial type of a d-dimensional convex polytope can be realized with vertices on its surface?

We reproduce the beautiful affirmative answer by Ivanov [20]:Yes, there is such a body. Actually there is one very close to the standard unit ball and containing disjoint representatives of each combinatorial type (but these representatives are very small).
Indeed, every combinatorial type of a d-polytope has a realization which looks as follows: there is a “large” [image: $$(d-1)$$]-dimensional facet and the remaining surface is a graph over this facet. To construct such a realization, choose a [image: $$(d-1)$$]-facet, pick a hyperplane parallel to it and very close to it (but not intersecting the polytope), and apply a projective map which sends this hyperplane to infinity.
We can further “flatten” this realization so that it is very close to its large face. Choose a very small [image: $$\varepsilon > 0$$], apply a homothety such that the diameter of the polytope becomes less than [image: $$\varepsilon $$], and place the resulting tiny polytope so that it touches the sphere by a point on its “large” face. Then consider the convex hull of the sphere and the polytope. All vertices will be on the boundary of this convex hull if the polytope is sufficiently “flattened.” And the convex hull diverges from the ball only in a neighborhood of size [image: $$\sim \!\sqrt{\varepsilon }$$].
Now pick another combinatorial type of a polytope and repeat the procedure with a much smaller [image: $$\varepsilon $$] and a location on the sphere chosen so that the neighborhood affected by the second polytope does not interfere with the first one. And so on. Since there are only countably many combinatorial types, they all can be packed into the sphere, provided that [image: $$\varepsilon $$] goes to 0 sufficiently fast.




5 Universality
We move on to a slightly different topic, and a different notion of “universality.” Take an inscribable polytope P, and consider the set of all inscribed realizations of P. How does this set look like? To start off, it can be parametrized by the vertex coordinates. Moreover, since any Möbius transformation that preserves the unit sphere as well as its interior sends an inscribed polytope onto an inscribed polytope, we can safely mod out the action of this group. This defines [image: $$\mathscr {R}_{\text {ins}}(P)$$], the realization space of an inscribed polytope P (with n vertices in [image: $$\mathbb R^d$$]):[image: A371662_1_En_13_Equ1_HTML.gif]

 (1)

This concept is inspired by an analogue definition for general polytopes. In that setting, one considers [image: $$\mathscr {R}_{\text {pol}}(P)$$], the set of all realizations of P, up to affine transformation. From Steinitz’s proofs of Steinitz’s Theorem [43] we know that these sets are relatively nice when P is of dimension at most 3: They are contractible, contain rational points, etc.; see [30, 31]. For higher-dimensional polytopes, however, the behavior of realization spaces is much wilder. This was first observed by Mnëv, with his celebrated Universality Theorem [25, 26] for polytopes and oriented matroids. The polytopal version reads: For every primary basic [open] semi-algebraic set defined over [image: $$\mathbb Z$$] there is a [simplicial] polytope whose realization space is stably equivalent to it. This has many consequences, among them:	topological: [image: $$\mathscr {R}_{\text {pol}}(P)$$] can have the homotopy type of any arbitrary finite simplicial complex,

	algebraic: there are polytopes that cannot be realized with rational coordinates,

	algorithmic: it is ETR-hard to decide if a lattice is the face lattice of a polytope.





Mnëv’s proof provided polytopes with the desired realization spaces, but could not say anything about their dimensions. Another major step was done later by Jürgen Richter-Gebert, who proved that there is universality already for 4-dimensional polytopes [30].
The inscribed picture is similar. Up to dimension 3, inscribed realization spaces are reasonable. This follows from the results of Rivin that we have already mentioned [33], which imply that for a 3-polytope P, [image: $$\mathscr {R}_{\text {ins}}(P)$$] is homeomorphic to the polyhedron of angle structures (and hence are contractible). In contrast, results of Adiprasito and Padrol with Louis Theran show that, in arbitrarily high dimensions, there is again universality [1]. We have not found yet an appropriate notion of stable equivalence for this context, while a universality theorem for general polytopes without stable equivalence is neither available nor in sight. This forces us to separate the topological, algebraic and algorithmic statements:
Theorem 5.1
(Adiprasito et al. [1])	For every primary basic semi-algebraic set there is an inscribed polytope whose realization space is homotopy equivalent to it.

	For every finite field extension [image: $$F/\mathbb Q$$] of the rationals, there is an inscribed polytope that cannot be realized with coordinates in F.

	The problem of deciding if a poset is the face lattice of an inscribed [simplicial] polytope is polynomially equivalent to the existential theory of the reals (ETR). In particular, it is NP-hard.






In the last point we can even ask the polytopes to be simplicial. This follows from a weak universality theorem for inscribed simplicial polytopes, which also appears in [1]. In this case, we can only find polytopes whose realization space retracts onto the semi-algebraic set, instead of having homotopy equivalence as in the general case.
The inscribed analogue to Richter-Gebert’s result for 4-polytopes is still missing.
Question 5.2
(Adiprasito et al. [1]) Is there universality for inscribed polytopes in bounded dimension, say for 4-polytopes inscribed into [image: $$\mathbb S^{3}$$]?

The proof of Theorem 5.1 strongly relies on the results of Mnëv. The strategy is to start with certain polytopes with intricate realization spaces, and then to show that their inscribed realization spaces are equally involved. In particular, it does not prove that it is hard to decide inscribability once we already know that the face lattice corresponds to a polytope. However, inscribability is itself a complex condition, and hence one can expect that it increases the complexity of the corresponding realization spaces. This could lead to a proof of universality that is intrinsic to inscribed polytopes, and hopefully to advances in the previous question. A first step in this direction could be to find a polytope P such that [image: $$\mathscr {R}_{\text {ins}}(P)$$] is disconnected while [image: $$\mathscr {R}_{\text {pol}}(P)$$] is not.
Question 5.3
Is there universality for the realization spaces [image: $$\mathscr {R}_{\text {ins}}(P)$$] for a class of inscribable polytopes P whose general realization spaces [image: $$\mathscr {R}_{\text {pol}}(P)$$] are trivial (in particular, contractible)?


6 (i, j)-Scribability
We have already referred to the Koebe–Andreev–Thurston Theorem. One is tempted to ask if similar behaviors might also appear in higher dimensions. The answer is no. Egon Schulte used an inductive argument over non-inscribable/non-circumscribable 3-polytopes to show that, for every [image: $$d\geqslant 4$$], and every [image: $$0 \leqslant k\leqslant d-1$$], there are d-polytopes that cannot be realized with all their k-faces tangent to the sphere [38]. Of course, this opens the door to ask for a characterization of k-scribable polytopes. There are almost no results in this direction, which is definitely an interesting research topic.
We will, however, consider a different problem. If we take an edge-scribed realization of a 3-polytope, it has also the following property: All the vertices are outside the ball while all the facets cut the ball. This kind of realizations are studied in [8]. Here a polytope is said to be (i, j)-scribed if all its i-faces “avoid” the sphere while all the j-faces “cut” it. The definitions for cutting and avoiding that seem to work better say that a face F cuts the ball if there is a point of the unit ball in its relative interior, and that it avoids the ball if there is a hyperplane H, supporting for F, which completely contains P and the ball in one of the closed halfspaces it defines. (This somehow involved definition is needed if we want a self-dual concept that reduces to classical k-scribability when [image: $$i=j=k$$].)
The weakest condition occurs when [image: $$i=0$$] and [image: $$j=d-1$$]:
Question 6.1
Does every polytope have a realization where every vertex avoids the ball and every facet cuts the ball?

The answer is most probably no, but so far no proof has been given (although Karim Adiprasito has suggested that one should be able to obtain counterexamples from gluing some of the large projectively unique polytopes from [2]). There are some results in the opposite direction: For [image: $$d=3$$], the edge-scribed realization is also [image: $$(0,d-1)$$]-scribed. Every inscribable polytope has directly a [image: $$(0,d-1)$$]-scribed realization too. So, in particular, cyclic polytopes and many (all?) neighborly polytopes have such realizations. And obviously, circumscribable polytopes also have such a realization. This includes stacked polytopes, which are always circumscribable [8].
What about other values of i and j? The best offenders found in [8] are even-dimensional cyclic polytopes (and their duals):
Theorem 6.2
(Chen and Padrol [8]) If an even-dimensional cyclic polytope has sufficiently many vertices, then it is not [image: $$(1,d-1)$$]-scribable, which in particular implies that it is not circumscribable.

Proof
(Sketch) The first step is to associate to each vertex of a [image: $$(1,d-1)$$]-scribed cyclic polytope the spherical cap consisting of the points of [image: $$\mathbb S^{d-1}$$] visible from it. This yields a configuration of spherical caps on [image: $$\mathbb S^{d-1}$$]. These are said to form a k-ply system if no point of [image: $$\mathbb S^{d-1}$$] is contained in the interior of more than k caps.
Now the Sphere Separator Theorem of Miller et al. [23] states that the intersection graph of a k-ply system on [image: $$\mathbb S^{d-1}$$] has a separator of size [image: $$O(k^{{1}/{(d-1)}}n^{1-{1}/({d-1})})$$]. The proof is astonishingly simple and beautiful (cf. [28, Thm. 8.5]): With a Möbius transformation, we can assume that the origin is a center-point of the centers of the caps. The next step is to compute the probability that a random linear hyperplane intersects a cap, which depends only on the area covered by the cap. Since our system is k-ply, we can estimate the sum of these volumes because we know the surface area of the sphere. This is used to show that a random linear hyperplane hits very few caps, whose removal separates the graph.
So how do we tie this in with cyclic polytopes? The key observation is that a set of points induce a k-ply system if and only if the convex hull of every k-set intersects the sphere. A k-set is a subset of k points that can be separated from the others with a hyperplane. Even-dimensional cyclic polytopes have a lot of nice properties, among them oriented matroid rigidity. This allows us to show that every k-set with [image: $$k\geqslant \frac{3}{2}d - 1$$] contains a facet. If the realization was [image: $$(0,d-1)$$]-scribed, this facet would intersect the sphere, and hence the cyclic polytope induces a k-ply set. But in this case, the intersection graph consists of the edges of the polytope avoiding the sphere. If all the edges avoided the sphere, this would be a complete graph, which obviously does not have a small separator.[image: $$\square $$]
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Abstract
We describe a project, called the DGD Gallery, whose goal is to store geometric data and to make it publicly available. The DGD Gallery offers an online web service for the storage, sharing, and publication of digital research data.

1 Introduction
Software produces data. Mathematical software produces scientific data, and this is often worth keeping. One reason for this can be the vast amount of CPU time spent on a specific experiment. Another reason can be that the output is obtained only via a complex interaction process between the software and its user. That latter situation is typical in mathematical visualization, where producing a satisfying or even beautiful picture of a geometric object is a form of art. The purpose of this text is to describe a new project, called the “Discretization in Geometry and Dynamics Gallery”, or DGD Gallery for short, whose goal is to store geometric data and to make it publicly available. The URL of the web-site is
                http://​gallery.​discretization.​de
              

Today it is safe to say that finally mathematical software has reached every branch of mathematics. While computers have played a role in mathematical applications for a long time, it took considerably longer for software to be appreciated fully in parts of mathematics traditionally considered as “pure”. The array of tools at our fingertips now includes solvers for linear programs and partial differential equations, but also software for dealing with real algebraic sets [1] or delicate constructions in sheaf theory [2]. To get an idea of how rich the mathematical software landscape has become, see, e.g., [3]. The success of each single software system raises the question of how the respective data produced should be stored. With an increasing number of relevant mathematical results relying on non-trivial computations in an essential way (see, e.g., the Flyspeck project [4]) it becomes more and more crucial to publish such results in a way such that they can be scrutinized (and used) by the mathematical community.
The mathematical data we have in mind for the DGD Gallery are the geometric objects that occur naturally on the border between differential geometry and geometric combinatorics. This includes various classes of surfaces (embedded or immersed) in 3-space, convex polytopes and polyhedral fans of various dimensions, circle patterns, and many more. Yet, we believe that several of our design decisions and architecture ingredients will be useful for other collections of mathematical data. Key features include the following:	structured storage of research data,

	review process for increased reliability,

	migration process for sustainability,

	licensing scheme.





To further stress the relevance of our endeavor, it is worth noting that scientific funding agencies have begun to add requirements concerning the preservation of scientific data to their regulations. For instance, in a recent announcement [5] of Deutsche Forschungsgemeinschaft (DFG) says1:The documentation of research data according to standards depending on the subject and their long-term archival are relevant for controlling the quality of scientific work. Further, these data are the basic requirements for the subsequent use of research results.

The DGD Gallery evolved as a project within the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”. Its usage is currently restricted to the members of the center. However, it is intended that future versions allow other researchers to contribute their work, too.
The paper is organized as follows. First we compare our design to existing collections of geometric data (Sect. 2). Then, in Sect. 3, we exhibit some examples already published on the gallery. This should give a good idea of what kind of collection we have in mind. At the same time this also shows some of the technical features and capabilities. The core is Sect. 4, where we elaborate on the architecture and the design decisions. The key concept is the model, which is our technical realization of a geometric object. Some aspects of the implementation are covered in Sect. 5. For instance, we explain how we use the XML document database BaseX [6] and meet current standards of web technology.

2 Comparison with Previous Work
To store geometric data digitally and make it accessible through a web-site is clearly not a new idea. On the contrary, since the early days of the Internet people have set up numerous web-sites with all kinds of information on geometric objects, e.g.: The Geometry Center’s “Geometry Reference Archive” [7], “The Scientific Graphics Project”of MSRI [8], or David Eppstein’s “Geometry Junkyard” [9], to name a few prominent examples. Clearly, all of the above still contain lots of interesting information. However, there are some shortcomings. In the case of the archive of The Geometry Center we have a static collection of data that will not see any updates or additions. Yet there is the advantage that all data is available from one source, and so it cannot degenerate over time (except for eventually outdated file formats). Not so with the “Geometry Junkyard”. This is a collection of links to other interesting resources on the web. Many of the links are dead already. This is mainly due to a discontinued provider service or simply a change of position of the person who provided the data. The “Scientific Graphics Project” is mainly a collection of surfaces and differential geometry related publications. The DGD Gallery wants to cover geometric objects from a much wider collection.
A more recent project is the “GeometrieWerkstatt” [10] maintained by a group of geometers at Tübingen University. It contains visualizations of mostly smooth constant mean curvature surfaces. Surfaces are visualized using videos, images, and interactive 3D viewers. The main difference to the DGD Gallery is that there is no geometric data that can be accessed via the web-site. On the other hand, how to provide the data for smooth surfaces is far from obvious and cannot be separated from the mathematical methods. For the DGD Gallery we propose to include a discretization of a smooth surface in a reasonable resolution.
“IMAGINARY—open mathematics”is a platform [11] which has a strong educational focus. It features images and mathematical software for a broad audience such as exhibitions, high school education, and museums. As an essential feature, IMAGINARY is open for the public to contribute material by cross-linking to other web-sites. In this way it works like a collection of collections.
The focus of the SymbolicData project [12] is on developing concepts and tools for profiling, testing and benchmarking Computer Algebra Software. This includes storing scientific data from various sources, but visualization does not play a role.
The project that is most similar in spirit to our DGD Gallery is “Electronic Geometry Models” [13, 14], which is a refereed online journal for digital geometry models on the web. It features XML file formats, visualization separated from descriptions, and a reviewing process. All of these are also implemented in the DGD Gallery.
However, our technical realization substantially differs from “Electronic Geometry Models”. The DGD Gallery employs modern web technology for the user interface and a standard data base implementation for storing. One advantage of this is the possibility to work in teams. Each team member can contribute to a model if he/she is a registered user with the suitable permissions. Permissions can be granted by owners of content; for details see Fig. 7 below. Moreover, the entire work flow from the submission, through reviewing and revising, to the final publication has one consistent setup through a common front end. Most importantly, the overall design is highly modularized. For instance, the DGD Gallery features a variety of media renderers with different visualization strengths to accommodate for heterogeneous hard- and software environments at the users’ end. This is also relevant for being able to preserve the data over a long period.
Another difference to “Electronic Geometry Models” is that the DGD Gallery aims at a broader outreach and therefore seeks to include more models of purely educational value. This results in a different set of criteria for accepting a model for publication. Moreover, the DGD Gallery allows for changes to a model after publication.

3 Examples
In this section we present some selected models from the early contributions to the DGD Gallery. They are intended as guidelines and inspiration for future models to be submitted.[image: A371662_1_En_14_Fig1_HTML.gif]
Fig. 1Screenshot of two media objects contained in the “Discrete S-Conical Catenoid and Helicoid” model as presented by a modern web browser. Left Discrete s-conical catenoid. Right Associated family animation between s-conical catenoid and its conjugate, the discrete helicoid





3.1 Discrete S–Conical Catenoid and Helicoid
Authors: Alexander Bobenko, Tim Hoffmann, Benno König, and Stefan Sechelmann (Fig. 1)
catenoid and the helicoid, which are classical minimal surfaces [15]. The smooth versions are among the first classical minimal surfaces ever investigated. Their s-conical counterparts are quadrilateral polyhedral surfaces with the property that at each vertex the adjacent faces are tangent to a cone of revolution. The theory of these discrete minimal surfaces is closely related to the theory of orthogonal circle patterns and Koebe polyhedra; see Sect. 3.3 below. Its features and constructions are similar to the theory of s-isothermic surfaces. A minimal surface is (Christoffel) dual to its Gauss map. This property is preserved in the discrete setup, and so discrete minimal surfaces are constructed from Koebe polyhedra. The associate family of minimal surfaces is contained in the discrete theory as well.
The model features images of the catenoid and helicoid using representations with discrete curvature line parameterizations as well as discrete asymptotic line parameterizations in the associate family. It contains a video with an animation of the associate family animating the angle parameter. Geometric data is given as OBJ files and corresponding preview images.[image: A371662_1_En_14_Fig2_HTML.gif]
Fig. 2Screenshot of the interactive element of the “[image: $$z^a$$]
                  circle pattern” model. A user can adjust the number of circles in a row as well as the overall scale of the drawing. The angle [image: $$\alpha $$] is entered by moving the axes with the mouse






3.2 
          [image: $$z^a$$] Circle Pattern
Authors: Jan Techter and Jürgen Richter-Gebert (Fig. 2)
                  http://​gallery.​discretization.​de/​models/​zalpha_​circle_​pattern
                



The representation of discrete holomorphic functions by circle patterns with square-grid combinatorics was first studied by Schramm [16].
This model shows the Schramm type circle pattern corresponding to the holomorphic map [image: $$z \mapsto z^a$$] for [image: $$0< a < 2$$] in the first quadrant of the complex plane. Taking the centers and intersections of the circles as complex fields on the first quadrant of [image: $$\mathbb {Z}^2$$], the discrete map was introduced in [17] as a special isomonodromic solution of the cross-ratio equation (cross-ratio equal to [image: $$-1$$] on each elementary quadrilateral). The numerics of these discrete maps is studied in [18].
The model features an interactive Cinderella [19] application where the user can adjust the exponent a and the number of circles, see also Sect. 5.3.

3.3 Koebe Polyhedra
Author: Stefan Sechelmann (Fig. 3)
                  http://​gallery.​discretization.​de/​models/​koebe_​polyhedra
                


[image: A371662_1_En_14_Fig3_HTML.gif]
Fig. 3Screenshot of two media objects of the “Koebe Polyhedra” model. The two images show the two corresponding Koebe polyhedra for a given circle pattern
                





A Koebe polyhedron is a 3-dimensional convex polytope whose edges are tangent to the unit sphere. Koebe polyhedra have a strong connection to the theory of circle patterns, see [20]. The theory of discrete minimal surfaces of s-isothermic and s-conical type is based on Koebe polyhedra. Each combinatorial type of 3-polytope admits a representation as Koebe polyhedron, which is unique up to Möbius transformation.
The first step for the construction of a Koebe polyhedron is to create an orthogonal circle pattern corresponding to the desired polytopal cell decomposition of the sphere. This is generally done by finding critical points of a functional expressed in the the variables [image: $$\rho _i=\log \tan \frac{r_i}{2}$$] given by the spherical radii [image: $$r_i$$]. Once the radii are known the circles can be layed out. The still remaining freedom of applying a Möbius transformation can be fixed (up to a simple rotation) by requiring the center of mass to be at the sphere center. The vertices of the circumscribed Koebe polyhedron that corresponds to the circle pattern can now easily be found by inverting the euclidean centers of the circles in [image: $$\mathbb {S}^2$$] (the cone tips are the points polar to the planes containing the circles). Here we have the freedom to choose one of the two orthogonal families of circles to become vertices of the Koebe polyhedron, and the other family to become faces.
The online model features a selection of Koebe polyhedra. Each one with an OBJ geometry file and a PNG image file.

3.4 Lawson’s Surface Uniformization
Authors: Stefan Sechelmann, Alexander Bobenko, and Boris Springborn (Fig. 4)
                  http://​gallery.​discretization.​de/​models/​lawsons_​surface_​uniformization
                


[image: A371662_1_En_14_Fig4_HTML.gif]
Fig. 4
                  Left The Lawson surface in [image: $$\mathbb R^3$$], the boundary curves of the fundamental domain of the uniformizing group in the right picture are shown in red. Blue curves correspond to simple closed geodesics corresponding to the axes of generators of the group. Right The uniformization of the Lawson surface in the Poincaré model of hyperbolic space with a canonical fundamental domain (red) and axes of the hyperbolic generators of the uniformizing group





Fuchsian uniformizations of the Riemann surface of Lawson’s genus 2 minimal surface in [image: $$\mathbb S^3$$] [21] are presented in this model. The results were created in [22] using the discrete uniformization theory. Three different conformally equivalent representations of the surface and of the corresponding hyperbolic tilings are presented.
Lawson’s minimal surface in [image: $$\mathbb S^3$$] is conformally equivalent to the hyperelliptic curve [image: $$\mu ^2=\lambda ^6-1$$]. The branch points [image: $$\lambda _1,\ldots ,\lambda _6$$] are the 6th roots of unity.
An embedding of Lawson’s surface in [image: $$\mathbb R^3$$], see Fig. 4, is obtained via stereographic projection from [image: $$\mathbb S^3$$] [23]. For this surface the hyperelliptic involution of the Riemann surface is realized as a rotation by [image: $$180^\circ $$]. The axis meets the surface in six points, which are the branch points of the hyperelliptic curve.
The third realization of the Riemann surface is made of squares identified along suitable edges. The fundamental domain is identified with the two others.
The model features the data of the discrete uniformizations in XML format. It contains the combinatorial data, the coordinates of the points, and the uniformizing groups data. PDF vector graphics and PNG images provide 2D renderings of objects in 3D space.

3.5 Tropical Grassmannian TropGr(2,6)
Authors: Michael Joswig and Benjamin Schröter (Fig. 5)
                  http://​gallery.​discretization.​de/​models/​tropical_​grassmannian_​gr26
                


[image: A371662_1_En_14_Fig5_HTML.gif]
Fig. 5Screenshots of two images contained in the “Tropical Grassmannian TropGr(2,6)” model





Tropical geometry studies piecewise linear images of classical algebraic varieties. Many interesting properties remain visible in the tropicalization. Additionally, this method reveals relations between geometry and optimization. One outcome are combinatorial algorithms for dealing with classical objects.
The tropical Grassmannian TropGr(d, n) is the tropicalization of the classical Grassmannian Gr(d, n), defined over some field. It parameterizes the tropical d-planes in the tropical [image: $$(n-1)$$]-torus; see [24, §4.3]. For [image: $$d=2$$] the tropical Grassmannian coincides with the corresponding Dressian, which arises as the subfan of the secondary fan of the hypersimplex [image: $$\Delta (d,n)$$] corresponding to those regular decompositions whose cells are matroid polytopes [25].
How to properly visualize TropGr(2, 6) is far from obvious, since (modulo its lineality space and intersected with the corresponding unit sphere) this is a 2-dimensional spherical simplicial complex naturally embedded in the 8-sphere. It has 25 vertices, 105 edges and 105 triangles. The approach here employs a fixed copy of smaller tropical Grassmannian TropGr(2, 5), obtained by deletion, as a frame of reference and uses projections. The deletion of a matroid as a smaller matroid which is induced on fewer elements, and this notion carries over matroid decompositions.
The media objects associated with this model are a polymake [26] description and pictures of various projections, in PNG format.


4 Architecture
In this section we describe the structure of a model and the organization of data within the DGD Gallery. It is also explained how users create, edit, and interact with models using model permissions. Finally, we give details on the submission system and the review process.
4.1 What Is a Model?
The architecture of the DGD Gallery is built around the definition of the Model, see Fig. 6. The teletype font is used to indicate that a word is the name of an abstract data type, one of its attributes, or an admissible value. From a high level perspective a model is a collection of files together with a description. The description contains fields for the title, authors, a description text, keywords, literature references, and the creation date. The data files associated with a model are bundled into media objects. A media object is a set of files together with a title and a description text. These files may be images, videos or data for specific software systems. While some file formats are more common (and more reasonable) than others, conceptually we allow for any file format to become part of a media object. In this way our design is very flexible and thus could be applied in other contexts.[image: A371662_1_En_14_Fig6_HTML.gif]
Fig. 6The structure of a model. A model is a collection of media objects together with a description





The data type Model has a key, a version number, a status field, and an edited-by username. The model key is a unique identifier that is used, e.g., to assemble the permanent link of the model on the web. The version number is assigned automatically for keeping track of a model’s history. Throughout the following the word “model” refers both to a specific version and to the entire history of a model. The standard representative of a model is given by its latest version. The edited-by field contains the username of the author of a particular model version. Hence, in a database a model can be uniquely identified by its key, a model version is identified by its key and version number.
The status of a model can take the values edit, pending, rejected, or approved. See Sect. 4.5 for a detailed description of the model status and the submission process for models in the gallery.
The model description is a collection of the following information that is provided by the editor of a model. While this somehow resembles the structure of a traditional research paper, there are some notable differences.

              	The Title of the model.

	A sorted list of Authors. Since this is a frequent source of misunderstanding, it is worth explaining. The authors of the model are those who create the content that is presented online. Like for a research paper all the scientific work that leads to the model must be properly acknowledged in the references. However, clearly, the set of authors cannot comprise all the authors who contributed something to the entire history of a mathematical idea. For instance, suppose that Alice first describes a new type of surface in a traditional research paper, and Bob afterwards produces a model from Alices description (without Alice’s help). Then Bob is the only author, who must cite Alice’s paper.

	The description Text, which can contain any valid LaTeX source code that can be compiled using the MathJax library, see [27]. References to the literature or to media objects can be cited via the \cite{.} command. Previews of media objects can be included with the \media{.} command.

	A set of keywords can be assigned to the model. The keywords are used on the web-site to, e.g., improve search features.

	A set of references each of which consitsts of a reference key that is to be used in \cite commands and a set of key value pairs. The user interface of the gallery maps Bib
                [image: $${\text {T}_{\text {E}}}$$]X entries to model references. Conversely a model reference is rendered and referenced using common Bib
                [image: $${\text {T}_{\text {E}}}$$]X styles.

	The date field of the description contains the creation date of the particular version of the model.




            
A model contains a number of media objects for visualization and use in other software systems. This concept will be explained below.

4.2 Media Objects and Data Files
A media object is a collection of files that describe the same set of data associated with the model. For instance, several media objects might correspond to various views of the same model; e.g., see the tropical Grassmanian in Example in Sect. 3.5. A different use case for several media objects for the same model is displayed for the discrete catenoid and helicoid model in Example in Sect. 3.1. One media object shows a catenoid, whereas the other media object contains a dynamic rendering of the transformation from the catenoid to the helicoid.
The various file formats for one media object are meant to display one view of the model on several backends. For instance, the discrete catenoid media object comes with a PNG file to be displayed in a standard web browser and with an OBJ file which allows 3-dimensional interactive visualization with a suitable viewer software. The data files comprising the media objects are stored in the file system separately from the model database. The media objects of a model contain links to those data files, see Sect. 4.1.
In principle, we do not restrict the file formats for data files of any media objects. This makes the DGD Gallery very flexible, but this also creates potential trouble with file formats that are uncommon. We support the direct visualization of a few well chosen standard file formats. So far these include the following: PNG and JPG (for raster image data), SVG and PDF (for vector graphics), OBJ (for 3-dimensional geometric data), MOV, MP4, and OGV (for video content), POLY (for polymake data), and others. Interactive content is not excluded, see Sect. 5.3, but the danger of a particularly low stability over time should be well considered. We rely on the review process for a sound selection.

4.3 Versioning
The DGD Gallery tracks the history of each model via the version attribute, see Fig. 6. Editing a model amounts to adding a new version with modified content. If a model is deleted, all versions of the model and the data files linked are deleted from the database. A data file is kept in the file system as long as there exists a link to it from some version of a model.
The version system is particularly useful for models with several authors who can collaborate through our front end.
It is worth noting that we also allow published models to be edited further and resubmitted. Upon acceptance this new version will appear as the current version of the model on the web page. The previously published versions remain visible and can be compared. This way authors can keep their models up to date; see also Sect. 5.2 below which describes our migration process.

4.4 Users
The users of the DGD Gallery are represented by their usernames, i.e., their login names on the web-site. The access is password restricted, see also Sect. 5.1. In addition to the username and password we store the name and email address of the person that is associated with the user.
A user has a global user-role that can take the values admin, reviewer, or author. In addition to the global user-role we store model-roles for each model associated with a user. A user can be the owner or an editor of a model. The read and write access to models is restricted such that it is based on a combination of the global user-role, the model-role and the state of the model, Fig. 7. This implementation allows reviewers to act as model authors but prevents them from approving their own models.
A notable design decision is that a reviewer can modify a submitted model to correct obvious typos and other minor changes before approval. Each owner of a model can invite other users to become either owners or editors of that model.[image: A371662_1_En_14_Fig7_HTML.gif]
Fig. 7Read and write permissions during the life-cycle of a model. A user with global admin privileges can read and write on the model at any state (first row). The author of the model can edit his model if it is in edit state (second row). A reviewer can edit a model if it has been submitted (pending state, third row)






4.5 Submission Process
The DGD Gallery uses a submission system to publish models on the web-site. The idea is that a board of reviewers approves, sends back for revision, or rejects a submitted model. The review process should concern the quality of the content and address technical issues with the digital data. The review board has to work out and agree on some quality criteria for a model.
During its life-cycle a model has assigned a status value. A newly created model starts its life in edit state. It can be previewed and edited by the owners of the model, typically the creator of the model, and any additional user with the editor model-role, see Sect. 4.4.
A model can be submitted by a user with the owner model-role. The status of the model changes to pending. A model with pending status is read-only for the owner and all editors.
Reviewers can preview and edit pending models. A reviewer edits a model to resolve small issues such as typos. If the quality of a model is sufficiently high then a reviewer can accept a model. The status of the model is changed to approved. If the content has flaws or technical issues that can be resolved by the creator of the model, the reviewer sends the model back to edit state. Any action by a reviewer is accompanied by a review text, which is presented to the authors of the model.
If a model is sent back for revision, the authors can edit the model according to the review text and resubmit. If the model is rejected it can neither be edited nor resubmitted. A model will be rejected if it contains major flaws or its content is not appropriate for publication in the DGD Gallery.
Approved models become publicly available on the DGD Gallery web-site (see Sect. 4.6). To further improve public models, e.g. by correcting errors or replacing outdated file formats, a new version of an approved model can be created, which is back in edit state. To publish the new version it has to be submitted und undergo the revision process again.
The model submission system dispatches messages to the users of the DGD Gallery on every model status change. Reviewers are notified about submitted models. Model owners/editors are notified upon acceptance, rejection, or call for revision.
In principle any reviewer can accept, send back, or reject a model. We rely on a reasonable communication between the reviewers to organize the review process. Accepting a model is based on formal correctness, technical soundness, mathematical content and visualization quality.

4.6 Publication and Licensing
Content that has been approved by the board of reviewers is published on the DGD Gallery web page. The presentation of the content on this page is equivalent to the preview during edit state of the model. The key defines the permanent absolute URL of a model:
                  https://​gallery.​discretization.​de/​model/​
                



The content of the DGD Gallery is published under the Creative Commons Attribution-ShareAlike 4.0 International license, short CC BY-SA 4.0, see [28]. This means in particular that we allow for our data to be used commercially, enabling newspapers or commercial web blogs to include content from the gallery without further complications. Appropriate credit must be given if any content is reproduced or used, and this includes a link to the DGD Gallery.


5 Implementation
In this section we elaborate on the technical decisions that we made in order to implement the DGD gallery. It should give an impression of the system architecture, libraries, frameworks, and languages in use and their respective purposes.[image: A371662_1_En_14_Fig8_HTML.gif]
Fig. 8System architecture of the DGD Gallery. On the file system level we store XML model data and data files. A BaseX server manages the read/write access to the XML documents and data files. It maintains an instance of a document database to optimize access to the XML data. At the same time a BaseX servlet provides a REST API [29] to connect the HTML/Javascript web front end of the gallery. It runs inside an Apache Tomcat servlet container executed within an Apache HTTP web server. The front end uses AJAX techniques and XSLT to create an interactive application using the API provided by the application server





We imposed some a priori constraints on the implementation mainly to ensure reusability and persistence of the data over time.
 	
              Human readable data format (with enough structure to allow for easy validation and transformation): We chose XML for storage on the server and as the web server API data format. It fits the tree-like structure of our data and can be transformed to anything else, e.g. using XSLT. This allows for easy migrations which can range from changing the structure of the models to getting rid of XML itself (replacing it with some more sophisticated data format in the future). To ensure that all stored data, and in particular data entered by users of the system, agrees with our specifications we use the XML Schema concept [30]. This allows to validate all data on insert and during migration, see Sect. 5.2.

	
              Database framework agnostic storage (while still using a database): The XML and any binary data are stored and handled using the XML document database BaseX [6], see Sect. 5.1. This gives us low access times (for data cached in main memory) and a transparent mechanism for permanent storage on the server’s file system. The binary data files of the model’s media objects are stored next to the XML data and linked appropriately, see the file system section in Fig. 8.

	
              Separation of data and presentation: We separate our application into a back end (on the server for database management only) and a front end (creating a HTML representation on the client machine). The BaseX database already provides the means for a complete implementation of the back end via XQuery. This includes the specification of a REST API [29], which is a standard way to define the communication interface between server and client in the internet. The API returns XML or binary data in response to specified HTTP requests from the front end. XML is already close to HTML, while still not carrying explicit information on the visualization. This allows for the easy generation of multiple presentations from just one XML. In Sect. 5.3 we elaborate on the front end, which is based an XSLT, JavaScript and AJAX [31].



 
5.1 XML Based Backend and the XML Document Database BaseX
        
We use the established XML document database BaseX for storing our data. This automatically provides us with permissions, versioning, and life-cycle management for the models. BaseX runs on any Java application server. We use Apache Tomcat 7, see [32].

          BaseX allows for the implementation of (web) applications using the XML query language XQuery, see [33]. It combines the database access and application server logic implementation into one language. Additionally BaseX can be used to implement a REST API via RESTXQ, which is a set of XQuery annotations for handling HTTP requests and generating HTTP responses [34], see Listing 1.[image: A371662_1_En_14_Figa_HTML.gif]



Generally, all API calls to our back end have to be authenticated. Either a username and password pair, or a session-cookie has to be provided along each request. The front end implementation uses session-cookies, which are obtained by an authenticated call to the login API function. A user’s password is stored in the form of a salted bcrypt hash to provide protection against password recovery through an attacker in case of a server breach, see [35].

5.2 A Fail-Safe Release and Migration Process
While a project like the DGD Gallery evolves the precise technical requirements for the database are likely to change. This means that old versions will have to be migrated into new ones. We implemented a release process for new versions of the web application and its data using Apache ant [36]. We use XSLT 2.0 and XML Schema to define and validate database migrations [37].
In principle this allows for more general migrations than just XML to XML conversions between different schema versions of the database. We can envision scenarios in the future where XML may turn into a legacy format and will be replaced by a more general versatile format. With XSLT we can also convert our XML data into arbitrary text based formats allowing for a final conversion into file formats entirely different from XML.

5.3 A JavaScript Web Front End
The standard way to enter a new model into the DGD Gallery is through our web front end. This part of the application is completely separated from the back end, relying only on the REST API to BaseX for communication.
We use the AJAX scheme of web application development. The application, with its HTML, XSLT, and JavaScript components, is initially loaded from the server. The access to the database is organized as HTTP connections via JavaScript. Once XML model data has arrived from the server we process it with XSL Transformations [37] to provide dynamic HTML and JavaScript for each client. We use the SaxonCE XSLT JavaScript framework to execute XSLT 2.0 in the browser, see [38].
Media renderers are provided for several common media formats, see Sect. 4.2. In the case of images and videos we are relying on the standards built into HTML5. We have support for the web capabilities of Cinderella to allow for interactive content [19, 39]. For the web browser in particular we use CindyJS [40], an open source JavaScript variant of Cinderella that aims to be compatible with Cinderella.
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