LETTER

Do we understand the solid-like elastic properties of confined liquids?

Luca Angelani^a, Taras Bryk^{b,c}, Simone Capaccioli^d, Matteo Paoluzzi^e, Giancarlo Ruocco^{f,g,1}, and Walter Schirmacher

liquids | confined liquids | rheology | amorphous materials

Recently, in polymeric liquids, unexpected solid-like shear elasticity has been discovered, which gave rise to a controversial discussion about its origin (1–3). The observed solid-like shear modulus G depends strongly on the distance L between the plates of the rheometer according to a power law $G \propto L^{-p}$ with a nonuniversal exponent ranging between p=2 and p=3.

Zaccone and Trachenko (4) have published an article in which they claim to explain these findings by a nonaffine contribution to the liquid shear modulus. The latter is represented as

$$\Delta G \propto -\sum_{\lambda=1.7} \frac{1}{V} \sum_{\mathbf{k}} \frac{\omega_{p,\lambda}^2(k)}{\omega_{p,\lambda}^2(k) - \omega^2 + i\omega\nu}, \quad [1]$$

where $\omega_{p,L}(k)$ and $\omega_{p,T}(k)$ are the longitudinal (L) and transverse (T) phonon dispersions, and ν is a sound attenuation coefficient.

From this, the authors (4) obtain a $\Delta G \propto L^{-3}$ behavior by 1) observing that, for small frequencies, the ω -dependent terms are negligible, and, consequently, the nominator cancels against the denominator, from which follows that the nonaffine contribution becomes just a mode sum MS = $\frac{1}{V}\sum_{\bf k} 1$; 2) converting the ${\bf k}$ sum $\frac{1}{V}\sum_{\bf k}$ to an integral over ${\bf k}$; and 3) representing the

confinement of the sample by restricting the \mathbf{k} integral to values $|\mathbf{k}| \ge L^{-1}$.

However, the authors (4) disregard the fact that the liquid is not confined inside a sphere of diameter L, but between two plates of the rheometer with gap distance L. This means that we are dealing with a slab geometry, in which the sample boundaries L_x and L_y in x and y directions are much larger than the confinement L in the z direction.

Let us assume periodic boundary conditions with respect to L_x , L_y and L. In the limit of $L_x = L_y \rightarrow \infty$, the \mathbf{k} sum for MS becomes

MS =
$$\frac{1}{L} \sum_{k_y} \int d^2(k_y, k_y) 1.$$
 [2]

The k_z sum runs over discrete values labeled as $k_z^{(n)} = 2\pi n/L$. One can now order the summation as n=0, ± 1 , ± 2 ... and convert the sum $\frac{1}{L} \sum_{k_z}$ for $n \neq 0$ into a k_z integral from $k_z^{(1)} = 2\pi/L$ to k_{\max} . This gives a ΔG contribution proportional to L^{-1} instead of L^{-3} .

Apart from the fact that the claimed L^{-3} prediction is at variance with the nonuniversal exponent p, we find that its derivation is in error. We feel that the origin of the observed solid-like properties of confined liquids is still elusive.

- 1 D. Collin, P. Martinoty, Dynamic macroscopic heterogeneities in a flexible linear polymer melt. *Phys. Stat. Mech. App.* 320, 235–248 (2003).
- 2 H. Mendil, P. Baroni, L. Noirez, Solid-like rheological response of non-entangled polymers in the molten state. Eur. Phys. J. E 19, 77–85 (2006).
- 3 D. Collin, P. Martinoty, Commentary on "Solid-like rheological response of non-entangled polymers in the molten state" by H. Mendil et al. Eur. Phys. J. E 19, 87–98 (2006).
- 4 A. Zaccone, K. Trachenko, Explaining the low-frequency shear elasticity of confined liquids. *Proc. Natl. Acad. Sci. U.S.A.* 117, 19653–19655 (2020).

Author contributions: L.A., T.B., S.C., M.P., G.R., and W.S. performed research; and G.R. and W.S. wrote the paper.

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

¹To whom correspondence may be addressed. Email: giancarlo.ruocco@roma1.infn.it.

Published February 22, 2021.

^aInstitute for Complex Systems, National Research Council of Italy, 00185 Rome, Italy; ^bInstitute for Condensed Matter Physics, National Academy of Sciences of Ukraine, UA-79011 Lviv, Ukraine; ^cInstitute of Applied Mathematics and Fundamental Sciences, Lviv National Polytechnic University, UA-79013 Lviv, Ukraine; ^dDipartimento di Fisica "Enrico Fermi," Universita' di Pisa, I-56127 Pisa, Italy; ^eDepartament de Fisica de la Materia Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; ^fCenter for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, I-00161, Roma, Italy; ^gDipartimento di Fisica, Universitat' di Roma "La Sapienza," I-00185, Roma, Italy; and ^hInstitut für Physik, Universität Mainz, D-55099 Mainz, Germany