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ABSTRACT: In the field of phononics, periodic patterning Phononic bandgap
Defect mode (%)

controls vibrations and thereby the flow of heat and sound in
matter. Bandgaps arising in such phononic crystals (PnCs) realize
low-dissipation vibrational modes and enable applications toward
mechanical qubits, efficient waveguides, and state-of-the-art sensing.
Here, we combine phononics and two-dimensional materials and
explore tuning of PnCs via applied mechanical pressure. To this
end, we fabricate the thinnest possible PnC from monolayer
graphene and simulate its vibrational properties. We find a bandgap
in the megahertz regime within which we localize a defect mode
with a small effective mass of 0.72 ag = 0.002 my ;.- We exploit
graphene’s flexibility and simulate mechanical tuning of a finite size
PnC. Under electrostatic pressure up to 30 kPa, we observe an
upshift in frequency of the entire phononic system by ~350%. At
the same time, the defect mode stays within the bandgap and remains localized, suggesting a high-quality, dynamically tunable
mechanical system.
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B INTRODUCTION resonantly couple to an external optical or mechanical
excitation and thus realize sensing applications with mechan-
ical qubits and studies on quantum entanglement.”* Yet, the
mechanical resonances in PnCs are determined by material
constants and the crystal geometry.””****"** In principle, the
mode frequencies can be controlled by changing the

A phononic crystal (PnC) is an artificially manufactured
structure with a periodic variation of material properties, for
example, stiffness, mass, or stress." This periodic perturbation
creates a meta-crystallographic order in the system leading to a
vibrational band structure hosting acoustic Bloch waves in

) ) o1 e 29,30 . 3,32 s
analogy to the electronic band structure in solids.” Designing temperature or by an external magnetic field. This,
the lattice parameters of the meta-structure allows one to however, only provides limited tunability and necessitates
directly manipulate phonons at various length scales.”™* This heating the system or inclusion of magnetic materials. While
can be used to guide5_7 and focus phononss’g or to open a SiN, as well as other conventional low-loss materials, is very
vibrational bandgap."'~"* stiff and allows only limited mechanical tunability,”*** strain

Phononic bandgaps in periodic structures suppress radiation has been used to adjust the frequency response of elastic
losses and allow for highly localized modes (of frequency f) on polydimethylsiloxane (PDMS).”® Unfortunately, low crystal-
artificial irregularities.'*'* The quality factors (Q = i ) of line quality of that material led to limited tunability and very

_ o gA{ p small Qs for mechanical modes.
these so-called defect modes are especially high. ™ In Recently, PnCs made from two-dimensional (2D) materials

particular, resonances with Q > 8 X 10° have been observed
at room temperature in silicon nitride (SiN) PnCs.””~"" In
these devices, the quality factor exceeds the empirical Q ~ m'/3
rule,'’”~"” and the vibrational periods overcome the thermal
decoherence time limit of 7 = hQ/ksT."'” This, in turn,
enables the study of quantum effects in resonators of Received:  December 18, 2020
macroscopic size, all at room temperature.””*" Revised:  February 7, 2021
Frequency tunability in PnCs could add an unprecedented Published: February 23, 2021
knob to control a broad range of phononic application and
thereby provides access to new regimes of guiding, filtering,
and focusing phonons.”*~** It would furthermore allow one to

have been considered.”*” Such materials feature intrinsically
low mass, high fundamental frequency, and easily accessible
displacement nonlinearity. Most importantly, their high tensile
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Figure 1. Graphene phononic crystals and tension redistribution. (A,B) Helium ion micrographs of prototype monolayer graphene phononic
crystal devices with lattice constants 350 nm and 2 ym, respectively. Scale bar length is 2 ym. The phononic pattern, a honeycomb lattice of holes
with a defect in its center, allows us to localize a vibrational defect mode. The ringlike features around the holes in (B) are due to incomplete
removal of graphene most likely caused by contamination (details in Supporting Information). (C) Intensity map of the Raman-active 2D mode of
graphene for the device shown in (B). The periodic pattern is clearly visible. (D) Raman 2D-mode position along a line cut (dashed line in (C)) for
a PnC (blue) and reference membrane (red). The PnC shows a periodic variations of much larger amplitude compared to the fluctuation in the
reference sample. (E) Comparison of the relative tension extracted from Raman measurements (blue) to the simulated tension distribution
(yellow) confirming the redistribution of tension upon pattering. The simulation includes spatial broadening due to the finite size of the laser spot.

strength and monolayer character allows the ability to
mechanically strain them up to 10%.°° That invites
consideration of mechanically controllable 2D-material based
PnCs. Specifically, we expect the entire acoustic band structure
of such a PnC to be highly tunable by applying mechanical
pressure. Nevertheless, tunability of 2D phononic systems as
well as localized defect modes in them have not been studied
yet.

Here, we investigate mechanical tunability in a realistic
graphene PnC. We fabricate a suspended micron-sized
monolayer graphene PnC via focused helium ion beam milling
(FIB) and characterize it spectroscopically. We then use
experimentally established parameters to calculate the
phononic band structure of the resulting PnC. We find a
phononic bandgap from 48.8 to 56.5 MHz inside of which we
localize a defect mode with an effective mass of 0.72 ag. Finally,
we computationally investigate the mechanical tunability of the
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PnC under pressure induced by a local electrostatic gate.39’40

The applied pressure smears out the phononic bandgap as the
out-of-plane displacement breaks the symmetry and causes
perturbations of the artificial lattice, yet the mode shape of the
defect mode remains highly localized. Overall, we can tune the
resonance frequency of the defect mode by more than 350%
and access new regimes of strain engineering.

B RESULTS

Designing a Tunable Phononic Crystal. Our device
design of a tunable, two-dimensional PnC consists of the
following key elements. First, the PnC material must be
freestanding to allow out-of-plane displacement. Second, it is
necessary to use an electrically conductive material. In that
case, an electrostatic gate electrode can be used to apply
pressure and to induce tension as the membrane is pulled
toward the gate. Third, the material needs to be flexible to

https://dx.doi.org/10.1021/acs.nanolett.0c04986
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Figure 2. Band structure calculations of an infinite graphene phononic crystal. (A) Unit cell of the honeycomb lattice with redistributed tension
(top) and the corresponding first Brillouin zone (bottom). (B) Phononic band structure for the unit cell shown in (A). In-plane modes are shown
as dashed lines, out-of-plane modes as solid lines, and the corresponding quasi-bandgap region as the red-shaded area. (C) Top (red) and bottom
(blue) of the bandgap versus lattice constant. The blue arrows indicate the lattice constant of the devices from Figure 1.

allow large mechanical tunability with small pressures.
Monolayer $raphene with its high carrier mobilitzf >200 000
em?/(V s)*" and large breaking strength >10%° perfectly
fulfils these requirements. By using large area CVD graphene,
we can fabricate many devices on a single chip. Finally, the
device needs to host a large enough number of unit cells with
sufficient periodicity to form a well-defined PnC. While this
task is simple in thick SiN, it is much more challenging for
fragile freestanding monolayer graphene. To overcome this, we
choose a much smaller unit cell compared to typical SiN-PnCs
(~100 pm size) and use helium FIB-milling to pattern the
PnC.*” This direct lithography allows one to pattern grezphene
down to 10 nm features,™ while causing little damage. S A
patterned prototype monolayer graphene PnC is shown in
Figure 1A. It consists of a honeycomb lattice of holes (lattice
constant a = 350 nm, hole diameter d = 105 nm) around a
central region. Within its 10 #m diameter, the two-dimensional
PnC contains more than 30 unit cells. The honeycomb lattice
inspired by Tsaturayn et al."> exhibits a robust bandgap'>'**°
while retaining a relatively large fraction of material to ensure a
stable device. Additional PnC with various patterning sizes are
shown in Figures S1—S3.

Next, we map the tension within the produced structures
using Raman spectroscopy. We expect tension hot spots in the
thin ribbons and relaxation in the centers of the hexagons.*’
Such tension redistribution should affect the vibrational
properties of our PnC. To this end, we fabricate another
prototype device (Figure 1B) with lattice constant a = 2 ym
and spatial features comparable to the size of a focused laser
spot. The intensity map of the 2D-Raman mode of graphene
for this device is shown in Figure 1C. The intensity of the 2D-
mode corresponds to the amount of material while its spectral
position depends on the tension in the material."** In the
pizza-like image, one can clearly see the removed material from
the drop in intensity and identify the honeycomb lattice. In
Figure 1D, we compare the spectral position of the Raman 2D-
mode for a graphene PnC (blue) along the dashed line shown
in Figure 1C to an unpatterend graphene membrane (red).
The quasi-periodic variations in the PnC device that are absent
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in the unpatterned reference correspond to the redistributed
tension. In Figure 1E, we compare the extracted relative
tension (blue) to a simulation (yellow) and find the expected
signatures of tension redistribution, that is, higher tension
between the holes and lower tension in the middle of the
hexagons (details in Supporting Information).

Phononic Crystal Simulations. Having experimentally
established the feasibility of a suspended graphene PnC, we use
our findings to simulate its phononic properties in two
independent approaches. First, we calculate the phononic band
structure for an infinitely repeated unit cell (“infinite model”).
This model is well-accepted and fast."*~"” However, due to the
size limits of suspended graphene, our devices are smaller than
typical SiN-PnCs (mm size)'*~"” and contain fewer unit cells.
Furthermore, we want to apply pressure to the entire system
and investigate localized modes in the bandgap. Therefore, we
also simulate a more realistic system of finite size (“finite
model”). For both models, we use the honeycomb lattice with
feasible parameters and account for tension redistribution
upon fabrication (Figure 1D,E). We choose a lattice constant a
= 1 pm, a filling factor of d/a = 0.5 (slightly larger than in
Figure 1), and an initial tension of Ty = 0.01 N/m, which is a
realistic value for clean monolayer graphene.*”>’

Infinite Model. By applying periodic boundary conditions
to the unit cell (Figure 2A), we calculate the band structure for
an infinite honeycomb lattice (Figure 2B). We find a mixture
of in-plane (dashed lines) and out-of-plane modes (solid
lines). From the slope of the out-of-plane modes in Figure 2B,

Z—f= 83 m/s. In the
range from 48.8 to 56.5 MHz (red shaded area), we find a
bandgap for out-of-plane modes. This quasi-bandgap (in-plane
modes are still present) has a gap-to-midgap ratio of 14.6%.
The in-plane modes do not couple to out-of-plane modes’"
and therefore do not hinder radiation shielding. The bandgap
originates from Bragg scattering, with each hole acting as a
scatterer for out-of-plane oscillations. Upon negative interfer-
ence conditions, directional Bragg bandgaps open at the high
symmetry points. Where these gaps overlap, radiation shielding

we determine the speed of sound v, =

https://dx.doi.org/10.1021/acs.nanolett.0c04986
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Figure 3. Finite size model of a graphene phononic crystal. (A) Device geometry for the finite system simulations (scale bar is S ym). A central
“defect” region is designed to localize one vibrational mode and decouple it from its environment. (B) The first 1500 simulated eigenfrequencies
versus mode number for a PnC device (blue) and a circular membrane without patterning (green). The bandgap region from the infinite model is
shown in blue. (C) Effective mass for each mode. The modes within the bandgap (blue) show a more than a 100-fold decrease in effective mass
compared to the fundamental mode. (D) Band structure calculated from the finite model via mode-shape analysis (blue) along with the band
structure from the infinite model (red). The low-energy acoustic branches fit well, and the bandgap regions coincide with the simulated results from
the infinite model (red). (E—H) Exemplary mode shapes in real (top) and reciprocal space (bottom) for (E) a mode below the bandgap (I), (F)
the defect mode (II), (G) another highly localized mode in the bandgap (III), and (H) a mode above the gap (IV).

becomes possible, as wave propagation is isotropically hexagonal defect,”> as sketched in Figure 3A. Freestanding
forbidden." The bandgap position depends reciprocally on a. graphene devices of that size have been fabricated®” and the
With our fabrication schema, we can tailor the bandgap center central defect area is large enough to measure resonances
from 350 to 26 MHz by varying a from 0.175 to 2 um (Figure interferometrically.”>** Next, we simulate the first 1500
2C, devices in Figures S2 and S3). Overall, the simulations in eigenfrequencies and the corresponding spatial mode shape.
the infinite model suggest the possibility of a large quasi- In Figure 3B, we plot the frequencies f versus mode number N
bandgap, which we will next use to control phonons. for the PnC (blue) and compare it to an unpatterned graphene
Finite Model. To study a realistic device of finite size under membrane as reference (green). The graph for the PnC shows
electrostatic pressure and to implement a defect into the signs of a bandgap, as we observe an initial flattening of the
phononic pattern, we conduct a second independent curve followed by a sudden increase. This region of reduced
simulation (“finite model”). In this model, we consider a mode density coincides exactly with the bandgap from our
finite number of unit cells of the honeycomb lattice (same g, infinite model (blue area) and stands in contrast to the
d/a, and T, as before) and employ fixed boundary conditions unpatterned membrane for which the frequencies gradually
along the PnC’s perimeter. We choose a circular device as such increase with mode number. The second indication of the
a geometry allows uniform suspension and minimizes edge bandgap is evident when we examine the effective mass of the

effects. In the center of the 30.6 ym device, we create a 1.9 ym modes
2177 https://dx.doi.org/10.1021/acs.nanolett.0c04986

Nano Lett. 2021, 21, 2174-2182


http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c04986/suppl_file/nl0c04986_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04986?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04986?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04986?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04986?fig=fig3&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c04986?ref=pdf

Nano Letters pubs.acs.org/NanoLett

B

900
—~ @
N
S
I =
= : 5 600
> - 5
2 40 | 3
I Lo 5
g |7 . 5300
& 20p] | 8
H t @
: E
0 1 1 O 1 1 1 1 1 1
r X M r 00 02 04 06 08 1.0
Wave vector k Initial tension T, (N/m)

0.8
300} ~ ol
-~ = g
S5 ; £
E", <200 % e 0.4
» T qC) ;5'3 0.2
kS 2150 € N
S > o F “0 10 20 30
‘2 8 8 Pressure (kPa)
S S 100 5
2 o 2
g G’__) 'O 30 kPa
(O] w - BG from band structure IS >k
()] = BG from DOS ) \ f S iba
10kPa = 30kPa 50 * Defect mode z _:/\ f\/v:
50 100 150 200 250 0 10 20 30 -R -R/2 0 R/2 R
Frequency (MHz) Pressure (kPa) Position

Figure 4. Mechanically tunable graphene phononic crystal. (A) Band structure for initial tension values T = 0.010 N/m (red) and T, = 0.012 N/m
(orange). The entire out-of-plane branch scales strongly with tension. The position and width of the bandgap are equally tension-dependent. (B)
Speed of sound for the out-of-plane modes extracted from (A) versus tension. (C) Density of states calculated from the finite model as a function of
pressure applied to the suspended PnC (T, = 0.010 N/m). (D) Pressure dependence of resonance frequency of the central defect mode (stars), of
the bandgap from infinite model (red shaded), and of the bandgap extracted from the density of states (blue squares). The defect mode remains
within the bandgap even at high pressures. (E) Line cut for the spatial profile of the defect mode at different pressures (vertically offset for clarity).
Even at large applied loads, the mode shape remains localized, and the effective mass (inset) stays constant.

22 (bottom) plots of exemplary modes. Mode I (20.2 MHz,

Meft = Pap [/ 22 dx dy Figure 3E) is below the bandgap and resembles a higher order
max Bessel mode in real space, which transforms to a near-uniform

where p,p, is the areal density of graphene and z (z,,,,) is the circle in 'momentum‘spa‘ce. A higher frequency mode IV (60.7
(maximum) vibration amplitude in z-direction. For the MHz, Figure 3H) is 51tuated_ above the bandgap. For this
fundamental mode we obtain m.s = 80.9 ag = 0.252 My e mode, we observe zone foldmg as t.he mode reaches out
which roughly matches the literature value for the mode shape beyond the 1.BZ (dashed line). Analyzing all 1500 modes lets
of a uniform, circular membrane of m g = 0.269 mphysical'SS We us restore the dispersion relation beyond the 1.BZ (Figure 3D,
observe a pronounced drop of m in the bandgap region blue), which almost perfectly matches the band structure from
(Figure 3C). This observation is consistent with localized the infinite model (red). From our observations of reduced

modes inside the bandgap, which typically show a small mode density (Figure 3B), drop in effective mass (Figure 3C),
average displacement resulting in a reduced effective mass.'” and mode shape-analysis (Figure 3D), we confirm the presence

Finally, we directly extract the band structure from the of a bandgap for out-of-plane modes in a realistic system of

results of the finite model and compare it to that of the infinite finite size.
model. To accomplish this, we analyze the mode shape of each Next, we examine the modes located within the bandgap and
resonance following ref 56. Specifically, we take the spatial FFT identify the defect mode. In Figure 3G, we show a typical
of each mode shape to find its representation in reciprocal bandgap mode in real (top) and k-space (bottom). As most
space and to assign a wave vector k to each mode. In Figure modes in the bandgap, this mode is localized at the edges of
3E—H, we show real space (top) and reciprocal space the PnC in the real space. However, one mode at frequency
2178 https://dx.doi.org/10.1021/acs.nanolett.0c04986
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49.9 MHz is localized at the central defect (Figure 3F) and
surrounded by the phononic pattern. We therefore identify it
as our defect mode of special interest. The m g of the mode is
0.724 ag, which is more than a factor of 100 smaller than the
fundamental mode of the system and orders of magnitude
lower than for any reported SiN defect mode.'>~"” Overall, our
model confirms the vibrational bandgap for a system of finite
size and a localized defect mode within that bandgap.
Phononic Crystal Tuning. We now show the key
advantage of our graphene PnC: dynamic and rapid frequency
tuning of the bandgap and of the defect mode. To demonstrate
this, we model our graphene PnC under pressure, which is
applied by an electrostatic gate. The pressure causes displace-
ment of the suspended membrane and increases the in-plane
tension. We initially approximate this effect in first order in our
infinite model by neglecting out-of-plane displacement and
simply increasing the in-plane tension. In Figure 4A, we plot
the band structure for T, = 0.010 and 0.012 N/m. We observe
a frequency increase of the out-of-plane modes and thus an
upshift of the quasi-bandgap by 10%. The speed of sound v,
rises from 83 to 830 m/s in the range of tension from 0.01 to 1
N/m (Figure 4B). The system (finite and infinite) behaves like
a thin membrane under tension, and the frequencies of the

PnC scale directly with tension: f o 55 This scaling
pZD

makes our system highly sensitive to tension and in
combination with graphene’s mechanical flexibility allows for
broad frequency tuning.

Having demonstrated the overall tunability of our system,
we now simulate the effect of electrostatic pressure on the
phononic system and the defect mode in a realistic device. To
do so, we switch to the finite model and apply pressure in
negative z-direction. In our simulations, we stick to
experimentally reported pressure values and apply a maximum
of 30 kPa.”’ To investigate the influence of pressure on the
bandgap, we compute the phononic density of states, DOS =
dN/df, and plot it versus pressure (Figure 4C). In this plot, the
bandgap is distinguished by a reduced DOS. While at zero
pressure the bandgap region is obvious, for higher pressures
the drop becomes less pronounced (Figure 4C). We attribute
this smearing to a breaking of symmetry, perturbation of the
PnC as it deforms under pressure (inset Figure 4C), and rising
nonuniformity in the tension distribution (Figure S6E).
Nevertheless, we estimate the top and bottom of the bandgap,
Figure 4D (blue). A bandgap tuning by more than 300% is
evident. We verify the bandgap tuning by an independent
approach based on averaging the induced tension (red
markers, details in Supporting Information).

Next, we investigate tunability of the defect mode. Upon
applying 30 kPa pressure to a device with an initial tension of
0.01 N/m, the resonance frequency of the defect mode
upshifts from 49.9 to 217.5 MHz (black stars Figure 4D).
Because the bandgap is smeared under pressure (Figure 4C), it
is important to check the localization of the defect mode.
Hence, we inspect a line cut through the center of the device
and plot the normalized mode shape versus pressure in Figure
4E. The shape as well as the effective mass (inset Figure 4E) of
the mode remains virtually unchanged and the mode retains its
localization. Summarizing, we have shown a tunable speed of
sound and realized an upshift of the defect mode resonance
under pressure, while maintaining its localization. Such a more
than 4-fold frequency increase is unprecedented and remains
elusive in any other phononic systems.”*™>>
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B DISCUSSION

We now discuss experimental signatures of this system. The
spatial features of the extended modes in our device (Figure
3E,H) are too fine to be resolved via diffraction-limited optics.
At the same time, the extent of the defect mode is in the size of
microns (Figure 3F) allowing the detection of that mode via
interferometric read-out (Figure $8).>*** This mode has a
nonzero net displacement and can be directly actuated via
electrostatic drive. It will be straightforward to distinguish the
defect mode from other modes by its localization in the center
of the device and its likely increased quality factor. Indeed, the
quality factor is defined by Q = 27E .4/ Ego Where Eg is the
dissipated energy per oscillation including all dissipation
mechanisms and E.q is the mode’s total energy. As the
mode shape shows zero displacement near the clamping
points, we expect strongly suppressed bending losses and thus
enhanced Q’s. Additionally, the phononic shield hinders
radiation losses into the substrate, which become especially
important at higher frequencies.'® While bending and radiation
losses may play a secondary role among the mechanisms
lowering Q in graphene resonators, our experiments never-
theless should determine the contribution of these mecha-
nisms. Finally, by applying pressure we increase the stiffness of
the resonator. This increases the energy stored in the system'’
and supposedly further enhances the quality factor. The
demonstrated level of strain control in our system invites
future studies on dissipation dilution via strain engineering
following the work of Ghadimi et al.'”

We also note that our results can be easily extended to the
entire family of two-dimensional materials. Currently, it is
challenging for us to experimentally achieve sufficient
uniformity in the graphene membrane in order to generate a
spatially uniform bandgap and localize the defect mode.
Monolayer graphene is rather sensitive to surface corruga-
tions’ and transferred CVD graphene is often covered by
fabrication residues, so using thin exfoliated graphene multi-
layers could be a solution for which we expect to find
experimental signatures. The increased uniformity in multilayer
graphene comes along with a decreased tunability, yet we
anticipate more than 100% relative tuning for up to ~35 layers
(Figure S9). For our graphene PnC, we do not expect to reach
Q’s comparable to SiN. Nevertheless, we estimate m g of our
defect mode to be at least 8 orders of magnitude lower than in
other 2D-SiN-PnCs."> This immensely increases the measure-
ment rate of quantum states I, ., &« 1/m.s and decreases
thermomechanical noise.'> The frequencies in our system are
controlled by simply adjusting a gate voltage, and we expect
the tuning to take place on time scales comparable to regular
graphene resonators and therefore achieve tuning bandwidths
>15 kHz.”’

B CONCLUSION

In summary, we have fabricated and simulated a tunable PnC
made from monolayer graphene. For an experimentally
informed honeycomb lattice structure, we find a robust
vibrational bandgap in the megahertz range. The bandgap
persists for a finite-size system, and we use it to localize a
defect mode and shield it from its surroundings. This defect
mode shows a very small effective mass of 0.724 ag, orders of
magnitude smaller compared to traditional PnCs. As our
central result, we demonstrate a frequency upshift of the defect
mode as well as the entire phononic system by more than
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350% by applying an experimentally feasible pressure of 30
kPa. While the bandgap smears out due to out-of-plane
displacement perturbing the lattice, the defect mode stays
within the bandgap and remains highly localized. We suggest
experimental signatures of the defect mode allowing its
differentiation from other modes in the system. Overall, our
design of a 2D-material-based PnC adds a new knob to
dynamically and rapidly tune frequencies in a broad range of
phononic applications. Our results invite future experiments as
our approach allows adjustable coupling of a PnC to external
systems and may lead to better understanding of the
dissipation mechanisms in graphene.

B METHODS

Device Fabrication. The pattering of the CVD grown
graphene membranes was carried out in a He-ion microscope
(Orion Nanofab). Supporting Information Section I provides a
detailed process description.

Raman Spectroscopy. Raman mapping was performed on
a Horiba Xplora Raman spectrometer using a 100X (NA 0.9)
objective and 532 nm excitation. Spectra were acquired with a
laser power of 0.5 mW and an integration time of 3 s. Tension
(via strain) values were derived from the 2D-mode position
following standard procedures, see Supporting Information
Section IV.

Simulations. For the finite element modeling we use
COMSOL Multiphysics (Version S$.5) and assume the
following material parameters for monolayer graphene:
Young’s modulus E,, = 1.0 TPa,*® Poisson’s ratio of v =

Pp

0.15, thickness of & = 0.335 nm, and a density of p = p
2260 kg/m3. The initial tension T, = 0.01 N/m thus

o . T
corresponds to an initial strain: €, = Ef“ ~ 0.003%.
2D

details see Supporting Information, Sections II and IIL
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