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Quantum random numbers distinguish themselves from others by their intrinsic unpredict-

ability arising from the principles of quantum mechanics. As such they are extremely useful in

many scientific and real-world applications with considerable efforts going into their reali-

zations. Most demonstrations focus on high asymptotic generation rates. For this goal, a large

number of repeated trials are required to accumulate a significant store of certifiable ran-

domness, resulting in a high latency between the initial request and the delivery of the

requested random bits. Here we demonstrate low-latency real-time certifiable randomness

generation from measurements on photonic time-bin states. For this, we develop methods to

certify randomness taking into account adversarial imperfections in both the state prepara-

tion and the measurement apparatus. Every 0.12 s we generate a block of 8192 random bits

which are certifiable against all quantum adversaries with an error bounded by 2−64. Our

quantum random number generator is thus well suited for realizing a continuously-operating,

high-security and high-speed quantum randomness beacon.
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Quantum mechanics is well known to offer many oppor-
tunities for generating genuine randomness that is
unpredictable by any reference1–3. This unpredictability

can be proven based only on measurement observations and a few
assumptions. Therefore, the randomness generated according to
quantum mechanics is certifiable. The simplest example involves
measuring a two-level quantum system (a qubit) prepared in an
equal superposition of its two levels. However, its proper working
and certifiability rely on the trust of both the quantum state
prepared and the measurement performed. This scheme is thus
device-dependent2,3. On the other hand, there are also device-
independent schemes that do not require any trust on the inner
working of the employed quantum devices4,5. Unfortunately, it is
difficult to realize such a scheme for practical use with excellent
performance as it requires a loophole-free Bell test6–11. Conse-
quently, the randomness-generation rates achieved are extremely
low with a high latency from the beginning of the experiment to
the output of the certified random bits12–15. The natural question
then is whether we can reduce the trust required by the above
simple scheme while avoiding the difficulties inherent in the
device-independent approach.

In this work we explore a simple practical scheme for the rea-
lization of a low-latency real-time certifiable quantum random
number generator (QRNG). The simple scheme works ideally as
follows: At each trial a horizontally polarized single photon is
emitted from a source, and then measured randomly along either
the X-basis (diagonal/anti-diagonal polarization basis) to generate
a random bit or the Z-basis (horizontal/vertical polarization basis)
to verify the prepared state. This scheme is motivated by that for
entanglement-based quantum key distribution (QKD)16,17, where
one basis is used to generate secret keys and other bases are used
to estimate the prepared state. Random bits or secret keys can be
certified since measurement outcomes allow us to bound the
correlation between the prepared state and the side information of
an adversary known as Eve18.

The above ideal scheme has been well studied in the
literature19,20. However, in order to make the resulting QRNG
practical, we need to consider the imperfections in its imple-
mentations and show the robustness of randomness generation
against those imperfections. First, single-photon sources are not
easily accessible and as for QKD18, weak optical pulses are usually
employed. Even if a single-photon source is available, it is still
generally difficult to produce a particular quantum state with high
accuracy. Second, it is difficult in an experiment to perform
measurements precisely along both the X-basis and Z-basis, as one
basis tends to be more precise than the other. Third, the basis
choice at a trial is usually made by a pseudo or physical random
number generator. This means that the probabilities of selecting
the X-basis and Z-basis, denoted as PX and PZ, can only be
bounded but not exactly known. Furthermore, in the adversarial
scenario Eve could manipulate these imperfections. These adver-
sarial imperfections must be addressed together to reliably certify
randomness which currently has not been done.

Here we develop a method to guarantee the proper working and
security of our QRNG in the presence of those above adversarial
imperfections. For this, we require a lower bound q1,lb on the
single-photon probability in a practical photon source (such as a
weak laser pulse in the absence of a phase reference), an upper
bound δ on the misalignment angle between the X-basis and Z-
basis, and both a lower and an upper bounds on the imbalance
between the probabilities PX and PZ given by τ= (PX− PZ)/2. We
emphasize that except the above bounds which characterize the
adversarial imperfections, our method does not need any other
information about the state prepared or measurements performed.
In this sense, our QRNG works in a semi-device-independent way.
The values of the above imperfection bounds can be obtained by

calibrating the photon source and measurement apparatuses in
real time. We allow Eve to manipulate the state prepared or
measurements performed as long as these manipulations satisfy
the above imperfection bounds. Our method is of excellent finite-
data efficiency, thus enabling low-latency real-time randomness
generation. Specifically, we experimentally demonstrate that every
0.1 s a sufficient amount of entropy with respect to the quantum
(or classical) side information of Eve is certified such that a block
of 8192 (or 2 × 8192) random bits is generated with a certified
error bounded by 2−64 and with an extraction time of 0.02 s (or
0.04 s).

Results
Outline. In what follows, we first introduce the setup of the
problem and the main idea of our method for certifying ran-
domness with the adversarial imperfections discussed above. Our
method works in the presence of both the classical and quantum
side information of Eve. We then illustrate the performance of
our method with simulations, showing the advantage of Eve with
an access to quantum side information. Finally, we present our
experimental realization of a simple low-latency real-time QRNG
enabled by our method.

Setup of the problem. To generate random bits, we consider an
experiment with a sequence of n repeated trials. These trials are
not necessarily independent or identical. We denote the input
(basis choice) and the output (measurement outcome) at the k’th
trial by the random variables Ik and Ok, respectively. The inputs
and outputs of the experiment are then In ¼ ðIkÞnk¼1 and
On ¼ ðOkÞnk¼1. The amount of randomness in the outputs relative
to both the inputs and Eve is quantified by the smooth condi-
tional min-entropy Hϵs

minðOnjIn; Eve Þ, where ϵs is the smoothness
error21. We consider two alternative smooth conditional min-
entropies Hϵs

min; c ðOnjIn; Eve Þ and Hϵs
min; q ðOnjIn; Eve Þ in the

presence of the classical and quantum side information of
Eve, respectively. The ability of Eve to access quantum side
information (which is stored in a quantum system E) as com-
pared with classical side information (which is stored in a clas-
sical, random variable E) allows attacks that can take advantage of
long-term quantum memories22,23 correlated in a quantum
manner with the quantum devices used for the state preparation
in the experiment. Our goal is to bound the smooth conditional
min-entropies Hϵs

min; c ðOnjIn; Eve Þ and Hϵs
min; q ðOnjIn; Eve Þ

from below.
For certifying the randomness in the outputs On relative to the

inputs In and Eve, we must assume that the outputs On are kept
private and not accessible to Eve. We allow Eve to hold classical
or quantum side information about the state prepared at a trial.
At the same time, we allow Eve to manipulate the distribution of
the possible inputs and the specific forms of the associated
measurements at the trial, as long as these manipulations satisfy
the prespecified imperfection bounds. We assume that by
manipulations Eve can access classical side information but not
quantum side information about the measurement performed.
The method to be presented allows classical correlations between
Eve’s side information about the state prepared and Eve’s partial
knowledge of the input and measurement used at each trial. That
is, the state prepared can be classically correlated with the input
selected or the measurement performed. We emphasize that our
method cannot be applied in the case where at each trial Eve’s
side information about the state is correlated in a quantum
manner with Eve’s partial knowledge of the input and measure-
ment. Moreover, although we allow Eve to manipulate the input
distribution, we assume that before a trial Eve has no perfect
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knowledge of which specific input to be selected at the trial. This
assumption is required for security analysis; otherwise, Eve can
deterministically forecast the output of the trial, and it would be
therefore impossible to certify randomness24.

Main idea of our method. For certifying randomness with respect
to classical and quantum side information, we construct probability
estimation factors (PEFs)25,26 and quantum estimation factors
(QEFs)27,28, respectively. Both a PEF and a QEF are non-negative
functions of the input I and output O of a trial, denoted by Fc(I,O)
and Fq(I,O). The key observation is that the smooth conditional
min-entropies Hϵs

min; c ðOnjIn; Eve Þ and Hϵs
min; q ðOnjIn; Eve Þ can be

bounded from below, once we know the respective productsQn
k¼1 Fcðik; okÞ and

Qn
k¼1 Fqðik; okÞ. Here, ik and ok are the

observed values of the input and output at the k’th trial. This key
observation can be formalized by Theorem 1 and Theorem 2 in the
“Methods” section. We emphasize that PEFs and QEFs can use the
result of each trial for both verifying and accumulating randomness.
Both PEFs and QEFs have been constructed for certifying device-
independent randomness15,25–28. In this work, we develop methods
to construct PEFs and QEFs for the scenario of our interest. In
particular, the PEFs and QEFs constructed are adapted to the
adversarial imperfections in both the state source and the mea-
surement apparatus. Both PEFs and QEFs have the advantage that
significantly less data is required in order to certify a fixed amount
of randomness. Details for constructing PEFs and QEFs are dis-
cussed in the “Methods” section.

After certifying the amount of randomness, we run the
randomness extractor developed in ref. 29 with extractor error
ϵx= ϵ− ϵs in order to generate random bits which are within
distance of ϵ > ϵs from uniform. The distance ϵ is termed
the soundness error. For the results presented in this work, we set
the smoothness error and the extractor error to be ϵs= 0.8ϵ and
ϵx= 0.2ϵ.

Advantage of quantum adversaries over classical adversaries.
We illustrate with simulations the performance of our method in
the asymptotic limit, so that one can see the expected behavior of
our QRNG scheme. When the trials are identical and n approa-
ches infinity, the amount of randomness certified by our method
increases linearly with n. The increasing rate (per trial) is called
the asymptotic randomness-generation rate. The rates in the
presence of classical and quantum side information, Rc and Rq,
certified by our method are optimal (see refs. 25,27 for general
proofs). We can quantify Rc and Rq as functions of the depolar-
ization noise d (as defined in the caption of Fig. 1). The results
presented in Fig. 1 clearly indicate that Eve’s access to quantum
side information as compared with classical side information
results in a reduction of the randomness-generation rate. Such a
reduction is an important yet unquantified advantage to Eve.

Experimental realization of a simple low-latency real-time
QRNG. To realize a QRNG, we perform measurements on
photonic time-bin states, where the quantum information is
encoded into the superposition of two different temporal posi-
tions (time bins) of an optical pulse. The two time bins are usually
called the early and late time bins denoted by te and tl. Time-bin
encoding has been widely used especially in fiber-based quantum
communication systems30. The advantage of time-bin encoding
lies in that both the state source and the measurement apparatus
required are easily packaged onto a chip, which is an important
factor to consider for practical QRNG use.

To produce randomness, at each trial we attempt to prepare
the time-bin qubit state j1tei � j0tl i, where jt

�� �
represents the

j-photon state located at the time bin t∈ {te, tl}. After passing it
through an unbalanced Mach–Zehnder interferometer (MZI), we
measure the time-bin qubit, as depicted in Fig. 2. The difference
in photon transit time between the two unbalanced paths of the
MZI matches the separation between te and tl. Therefore, a
photon can come out from the MZI at the early, middle and late
time bins denoted by t0e, t

0
m and t0l , respectively. If the photon

comes out at t0e or t
0
l , then the Z-basis (time-bin basis) is passively

selected. In this case, the arrival time indicates the measurement
outcome. If the photon comes out at t0m, then the X-basis
(superposition basis) is passively selected. In this case, the two
output ports of the MZI indicate which measurement outcomes
are observed. Note that if the first beam splitter in the MZI has
the 50:50 splitting ratio, the two measurement bases are
uniformly randomly selected. In this sense, the first beam splitter
in the MZI acts effectively as a physical but uncertified random
number generator31.

In practice, the source emits zero photon with a non-zero
probability at each trial, and threshold detectors (which cannot
resolve photon number) of finite efficiency are employed.
Moreover, a photon can be lost over the transmission from the
source to the detectors. Therefore, not all trials have detector
clicks. For security analysis, we assume that the trials with
detector clicks are a fair sample of all trials. Accordingly, no-click
events do not affect the security analysis of randomness
generation but only the rate and latency achieved in practice.

Now for certifying randomness, we must take into account the
adversarial imperfections in our setup. Neither of the two beam
splitters, BS1 and BS2, in the MZI has the ideal 50:50 splitting
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Fig. 1 Asymptotic randomness-generation rates Rc and Rq as functions of
the depolarization noise d. For illustration purpose, here we simulate the
result at a trial according to either the X-basis or Z-basis measurement on
the depolarized single-photon state ð1� d=2Þ 0j i 0h j þ d=2 1j i 1h j, where 0j i
and 1j i are the two eigenstates (in the single-photon subspace) of the Z-
basis measurement and d quantifies the depolarization noise. At each trial
the X-basis measurement is selected with probability PX= 0.9999, and so
the imbalance τ= (PX− PZ)/2 is exactly known. Our method can certify
randomness without assuming that the state and measurements are fully
characterized. Instead, our method requires only an upper bound δ on the
misalignment angle between the two measurement bases and a lower
bound q1,lb on the probability of a single photon in a practical photon source.
For the ideal case (the red curves), we set q1,lb= 1 and δ= 0, while for the
practical case (the blue curves), we set q1,lb= 0.95 and δ= 5∘.
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ratio. In addition, the two detectors at the output ports a and b
may have different efficiencies ηa and ηb. These facts induce not
only an imbalance between the probabilities PX and PZ of
selecting the X-basis and Z-basis but also a misalignment between
the two bases. Based on a calibration of our measurement
apparatus, we found that the splitting ratios of BS1 and BS2 are
53.8:46.2 and 46.9:53.1, respectively, and that the ratio ηa: ηb is
1.024:1. Consequently, the imbalance τ= (PX− PZ)/2 and mis-
alignment δ satisfy the conditions ∣τ∣ ≤ 0.041 and δ ≤ 3.565∘.
Moreover, we estimated that the single-photon component of the
optical pulse contributes at least 99.3% of all click events. More
details behind the above characterizations are available in
Supplementary Note 3. Accordingly, we conservatively assume
that ∣τ∣ ≤ 0.06, δ ≤ 6∘, and q1,lb= 0.98 in our security analysis,
specifically, for constructing PEFs and QEFs to guarantee
certifiable randomness generation.

Based on a set of calibration data, we estimated the expected
number, kexp, of random bits certifiable every 0.1 s runtime at a
soundness error ϵ varying from 10−5 to 10−30. The dependence
of kexp on ϵ in the presence of either quantum or classical side
information is illustrated in Fig. 3. As expected fewer number of
random bits can be certified with respect to quantum side

information than with respect to classical side information.
However, the number of certifiable bits in each situation is not
significantly affected by the soundness error in the range
considered.

We finally consider a request for a block of 8192 (or 2 × 8192)
random bits in the presence of quantum (or classical) side information
and with soundness error bounded by 2−64≈ 5.42 × 10−20. The
results in Fig. 3 strongly suggest that our QRNG can successfully
fulfill the request every 0.1 s runtime. Indeed, the success
probability is estimated to be at least 1− 2−380 (or 1− 2−478) in
the presence of quantum (or classical) side information (see
Supplementary Note 4 for details). We further demonstrate this
repeated fulfillment in experiment. For this, before the
experiment we fixed the PEF and QEF used, as well as several
other parameters used in our security analysis, based on the
above calibration data (see Supplementary Note 4). Then we ran
the experiment for 420 s and processed the data block obtained
every 0.1 s runtime successively. For each data block, we
certified a lower bound on the number of random bits
extractable with soundness error 2−64 and with respect to
either quantum or classical side information. If the certified
lower bound exceeds the request threshold, the instance of our
QRNG succeeds. Conditional on success, we run the random-
ness extractor developed in29 to generate the final random bits.
The randomness extractor is seed-efficient and requires an
additional processing time: for extracting 8192 (or 2 × 8192)
random bits it takes 0.02 s (or 0.04 s), respectively. Totally we
ran 4200 instances of our QRNG. The analysis results
summarized in Fig. 4 show the success of each instance.

Discussion
In conclusion, we demonstrate a simple low-latency real-time
certifiable quantum random number generator (QRNG). The
generator is based on the measurement of a weak optical pulse
with an unbalanced Mach-Zehnder interferometer. By developing
an efficient security-analysis method, genuine randomness can be
certified and then generated with a low latency from every short
block of experimental data even at an extremely high security
level and even considering adversarial imperfections in our
experimental setup. Further, the implementation of randomness
extraction allows real-time performance to be achieved. Our
QRNG is thus well suited for realizing a continuously-operating,
high-security, and high-speed quantum randomness beacon.

Fig. 2 Schematic diagram of our experimental setup. First, the time-bin state j1te i � j0tl
i, where there is a single photon at the early time bin te and no

photon at the late time bin tl, is prepared in the ideal case. Second, after passing over an unbalanced Mach–Zehnder interferometer (MZI), the optical pulse
is detected by two superconducting nanowire single-photon detectors (SSPDs). The MZI is composed of two beam splitters, BS1 and BS2, and has two
output ports a and b. In the diagram the abbreviations have the following meanings. EDFA: erbium-doped fiber amplifier, BPF: band-pass filter, PC:
polarization controller, IM: intensity modulator, ATT: optical attenuator, PPG: pulse pattern generator, TIA: time-interval analyzer. See the “Methods”
section for details.
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Fig. 3 Trade-off between the soundness error ϵ and the expected number
of random bits certifiable from the measurement outcomes observed
every 0.1 s runtime. The results in the presence of classical and quantum
side information are shown as the blue and red curves, respectively.
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Our security analysis considers both quantum and classical side
information. Our security certificate is resistant to the adversarial
imperfections in both the state source and the measurement
apparatus, in contrast to those certificates achieved in previous
works20,32–34 where either the adversarial imperfections in the
source or those in the measurement apparatus are considered.
Moreover, our method exhibits unsurpassed finite-data efficiency.
As certifying smooth conditional min-entropies is also the central
task for quantum key distribution (QKD), we envision that our
method can be extended to improve the finite-data efficiency of
QKD. In the future work, we will address the details required for
this extension.

Methods
Outline. Here we provide details of our experimental setup for realizing a simple
low-latency real-time certifiable quantum random number generator. We also
introduce the general framework of probability estimation (or quantum probability
estimation) for certifiable randomness generation in the presence of classical (or
quantum) side information. Further, we discuss the details of implementing these
general frameworks in the presence of the adversarial imperfections considered in
both the state source and the measurement apparatus.

Experimental implementation. Our experimental setup is shown in Fig. 2. To
generate time-bin states, amplified spontaneous emission from an erbium-doped
fiber amplifier (EDFA), which has a broad spectrum and thus can be regarded as
inherently dephased, is used as a light source. After reducing its bandwidth by a
band-pass filter (BPF1) of 1551.1 ± 1.2 nm, the light from the EDFA is sent into an
intensity modulator (IM) to generate (in the ideal case) the time-bin qubit state
consisting of the single-photon pulse j1te i and the vacuum pulse j0tl i. A pulse
pattern generator (PPG) is used to modulate the IM at a repetition rate of 500MHz
using a pulse of width approximately 100 ps. The same modulation signal is also
sent to the time-interval analyzer (TIA), to synchronize the IM and TIA. A BPF2 of
1551.1 ± 0.44 nm is then used to further surpress the noise outside of the band-
width. With the help of an optical attenuator (ATT), we then adjust the average
photon number per pulse to a value of approximately 0.0035. Finally, we launch the
time-bin pulse into an unbalanced Mach–Zehnder interferometer (MZI), which is
fabricated using planar lightwave circuit technologies35. The path difference of the
unbalanced MZI is 500 ps, the same as the time separation between the early and
late time bins. The insertion loss of the MZI is approximately 2.0 dB. The photons
from the output ports of the MZI are detected by two superconducting nanowire
single-photon detectors (SSPDs), where the detection events are recorded by the
TIA. The system detection efficiency of each SSPD is about 59%, and the dark
count rate of each SSPD is less than 40 s−1. A few polarization controllers (PCs) are
inserted before the IM and SSPDs in order to adjust the polarization of photons.
We measure that roughly 470,000 trials with detector clicks are generated
per second.

Certifiable randomness generation in the presence of classical side infor-
mation. To certify randomness with respect to the classical side information of Eve,
we apply the framework of probability estimation as developed in refs. 25,26. For
this, we need to characterize each trial of the experiment by a classical model. In the
scenario of our interest, the model is adapted to the adversarial imperfections
considered. Given the model, we construct probability estimation factors (PEFs)
which can certify randomness with respect to classical side information. Below we
first introduce the concepts of classical models and PEFs, and then present the
main result of probability estimation for randomness generation.

Let us focus on a generic trial in the experiment with an input I and an output
O. We omit the trial index for generic trials. As is conventional, we denote a
random variable and its possible value by an upper-case letter in regular math font
and the corresponding lower-case letter. The classical side information E of Eve can
be correlated with the trial input I and trial output O. This correlation is described
by a joint probability distribution PðI;O; EÞ. However, in practice we cannot
access the classical side information E held by Eve. Therefore, we can characterize
only the distribution of I and O conditional on each possible value e of E, denoted
by PðI;OjE ¼ eÞ. The set of conditional distributions PðI;OjE ¼ eÞ, for all
possible e, achievable at a trial is defined to be the classical model C for the trial. For
simplicity we make the condition on Eve’s classical side information implicit in the
rest of the paper, and so the classical model C specifies the set of probability
distributions PðI;OÞ achievable at a trial. To certify randomness in the output O
conditional on the input I and on the classical side information E, we consider a
class of non-negative functions Fc: (i, o)↦ Fc(i, o), called PEFs for the classical trial
model C. A PEF with a positive power βc is a non-negative function Fc: (i, o)↦ Fc(i,
o) which satisfies the PEF inequality

X
i;o

PðI ¼ i;O ¼ oÞFcði; oÞPðO ¼ ojI ¼ iÞβc ≤ 1 ð1Þ

at each probability distribution PðI;OÞ in the classical trial model C. We have two
remarks on the constructions of the classical trial model and the corresponding
PEFs as follows: First, when Eve’s classical side information about the state is
classically correlated with Eve’s partial knowledge of the input and measurement at
a trial, the classical trial model will become the convex closure of the model C as
introduced above. Second, according to Lemma 14 of ref. 26, a PEF with power βc
for the model C is also a PEF with the same power for the convex closure of C. In
view of the above two remarks, probability estimation automatically handles the
classical correlation between Eve’s classical side information about the state and
Eve’s partial knowledge of the input and measurement at a trial.

The number of near-uniform random bits extractable from the outputs On

given the inputs In and the classical side information E of Eve is quantified by the
classical smooth conditional min-entropy Hϵs

min; c ðOnjIn; Eve Þ21. Here, the
smoothness error ϵs measures the total-variation distance between the actual
distribution and an ideal distribution of In, On and E (see Definition 9 of ref. 26).
Suppose that each trial of an experiment is characterized by the classical model C.
Denote the PEF with power βc at the k’th trial by Fc,k, which is a function of Ik and
Ok, and let the variable Tc,n be the product of PEFs up to the n’th trial, that is,
Tc;n ¼ Qn

k¼1 Fc;k . In practice, the input at a trial is independent of the outputs of
the previous trials conditionally on the classical side information E and the inputs
of the previous trials. Under this conditional-independence condition, probability
estimation can certify randomness with respect to classical side information
according to the following theorem:

Number of certifiable random bits (kbits)
16 18 20 22 24

N
um

be
r 

of
 in

st
an

ce
s

0

100

200

300

400

500

600

700

against classical adversary                                                                                             

experimental results

success threshold

Number of certifiable random bits (kbits)
8 10 12 14 16

N
um

be
r 

of
 in

st
an

ce
s

0

100

200

300

400

500

600

700

  against quantum adversary

experimental results
success threshold

Fig. 4 Histogram of the numbers of random bits certifiable with soundness error 2−64 from 4200 instances of our QRNG: the left and right panels are
for certifying randomness with respect to classical and quantum side information, respectively. Each instance of our QRNG uses a data block obtained
in 0.1 s runtime. In each panel, the experimental results are shown as blue bars, while the success threshold is shown as the red line.
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Theorem 1 (Theorem 1 of ref. 26): Let 1 ≥ κ, ϵs > 0 and 1 ≥ p ≥ 1/∣Rng(On)∣,
where ∣Rng(On)∣ is the number of possible outputs after n trials. Define Φ to be the
event that Tc,n≥ 1/(pβc ϵs). For each joint probability distribution PðIn;On;EÞ,
either the probability of the event Φ is less than κ or the classical smooth
conditional min-entropy, when the event Φ happens, satisfies

Hϵs
min; c ðOnjIn; Eve ;ΦÞ≥ � log 2ðpÞ þ

1þ βc
βc

log 2ðκÞ: ð2Þ
The event Φ can be interpreted as the event that the experiment succeeds.

When the experiment succeeds, we compose the classical smooth conditional min-
entropy bound in Eq. (2) with a classical-proof strong extractor of error ϵx (in total-
variation distance), in order to obtain random bits which are within soundness
error (in total-variation distance) ϵ= ϵs+ ϵx from uniform in the presence of
classical side information. See Sect. IV C of ref. 25 for the details of the end-to-end
randomness generation. Note that an extractor is strong if the joint of its output
and the seed is nearly uniform, while an extractor is classical-proof if it works in
the presence of classical side information. In our experiment, we used Trevisan’s
extractor36 as implemented by Mauerer, Portmann, and Scholz29, which we refer to
as the TMPS extractor. The TMPS extractor is an efficient classical-proof strong
extractor that requires few seed bits29,36. The way of running the TMPS extractor
for our case is the same as for the case of device-independent randomness
generation with respect to classical side information studied in refs. 13,25.

Certifiable randomness generation in the presence of quantum side infor-
mation. To certify randomness with respect to the quantum side information of
Eve, we apply the framework of quantum probability estimation as developed in
refs. 27,28. For this, we need to characterize each trial of the experiment by a
quantum model. In the scenario of our interest, the model is adapted to the
adversarial imperfections considered. Given the model, we construct quantum
estimation factors (QEFs) which can certify randomness with respect to quantum
side information. Below we first introduce the concepts of quantum models and
QEFs, and then present the main result of quantum probability estimation for
randomness generation.

Consider a generic experimental trial which has a classical input I and a classical
output O. Suppose that Eve holds a quantum system E, which carries the quantum
side information about the experiment. So, the quantum system E is correlated
with the trial input I and trial output O. The correlation between E and (I,O) can
be described by a classical-quantum state

ρIOE ¼
X
i;o

i; oj i i; oh j � ρEði; oÞ; ð3Þ

where ρE(i, o) is the sub-normalized state of E conditional on I= i and O= o. The
trace Tr ρEði; oÞ

� �
is the probability of observing that I= i and O= o at a trial.

Since the system E is inaccessible by us, we consider the set of all the possible
classical-quantum states that can occur at the end of the trial. This set is defined to
be the quantum model Q for the trial. We characterize the unpredictability of an
output c given both an input i and the quantum side information in E by the
sandwiched Rényi power Rαq

ρEði; oÞjρEðiÞ
� �

expressed as

Tr ρEðiÞ�βq=2αqρEði; oÞρEðiÞ�βq=2αq
� �αq

� �
; ð4Þ

where βq > 0 is a free parameter, αq= 1+ βq, and ρE(i)= ∑oρE(i, o). To certify
randomness in the output O conditional on the input I and on the quantum side
information in E, we consider a class of non-negative functions Fq: (i, o)↦ Fq(i, o),
called QEFs for the quantum trial model Q. A QEF with a positive power βq is a
non-negative function Fq: (i, o)↦ Fq(i, o) which satisfies the QEF inequality

X
i;o

Fqði; oÞRαq
ðρEði; oÞjρEðiÞÞ≤ 1 ð5Þ

at all states ρIOE in the quantum trial model Q. We have two remarks on the
constructions of the quantum trial model and the corresponding QEFs as follows:
First, when Eve’s quantum side information about the state is classically correlated
with Eve’s partial knowledge of the input and measurement at a trial, the quantum
trial model will become the convex closure of the model Q as introduced above.
Second, according to Property 2 of ref. 28, a QEF with power βq for the model Q is
also a QEF with the same power for the convex closure of Q. In view of the above
two remarks, quantum probability estimation automatically handles the classical
correlation between Eve’s quantum side information about the state and Eve’s
partial knowledge of the input and measurement at a trial.

The number of near-uniform random bits extractable from the outputs On

given the inputs In and the quantum side information carried by the system E of
Eve is quantified by the quantum smooth conditional min-entropy
Hϵs

min; q ðOnjIn; Eve Þ21. Here, the smoothness error ϵs measures the purified
distance between the actual state and an ideal state of In, On and E (see Sect. IV of
ref. 28). Suppose that each trial of an experiment is characterized by the quantum
model Q. Denote the QEF with power βq at the k’th trial by Fq,k, which is a
function of Ik and Ok, and let the variable Tq,n be the product of QEFs up to the n’th
trial, that is, Tq;n ¼ Qn

k¼1 Fq;k . In practice, the input at a trial is independent of the
outputs of the previous trials given the quantum side information in E and the
inputs of the previous trials. Under this conditional-independence condition,

quantum probability estimation can certify randomness with respect to quantum
side information according to the following theorem:

Theorem 2 (Theorem 3 of ref. 28): Let 1≥κ, ϵs, p > 0. Define Φ to be the event
that Tq;n ≥ 1=ðpβq ðϵ2s =2ÞÞ. For each classical-quantum state ρInOnE

, either the
probability of the event Φ is less than κ or the quantum smooth conditional min-
entropy, when the event Φ happens, satisfies

Hϵs
min; q ðOnjIn; Eve ;ΦÞ≥ � log 2ðpÞ þ

1þ βq
βq

log 2ðκÞ: ð6Þ

The event Φ can be interpreted as the event that the experiment succeeds.
When the experiment succeeds, we compose the quantum smooth conditional
min-entropy bound in Eq. (6) with a quantum-proof strong extractor of error ϵx
(in trace distance), in order to obtain random bits which are within soundness
error (in trace distance) ϵ= ϵs+ ϵx from uniform in the presence of quantum side
information. See Sect. V of ref. 28 for the details of the end-to-end randomness
generation. Note that an extractor is quantum-proof if it works in the presence of
quantum side information. As the TMPS extractor29,36 is a quantum-proof strong
extractor37, we use this extractor for randomness extraction. The way of running
the TMPS extractor for our case is the same as for the case of device-independent
randomness generation with respect to quantum side information studied in
refs. 15,27,28.

Constructions of PEFs and QEFs with adversarial imperfections. Both prob-
ability estimation and quantum probability estimation are general frameworks for
certifying randomness; however, their implementations are case-dependent as both
the classical and quantum models for a trial depend on the case of interest. For the
case of device-independent randomness generation, both frameworks have been
implemented, see refs. 15,25–28. In this work we would like to apply probability
estimation and quantum probability estimation for randomness generation with
partially characterized quantum devices. For this, we need to first construct the
classical model C and the quantum model Q for an experimental trial in the
scenario of our interest, and then construct the corresponding PEFs and QEFs.
Below we provide an overview of our constructions. Details are presented in
Supplementary Notes 1 and 2.

To construct the models C and Q for the scenario of our interest, we observe
that although the measurements along the X-basis and Z-basis are difficult to be
precisely characterized, both of them are block-diagonal with respect to various
photon-number subspaces. Therefore, the model C (or Q) can be expressed as a
convex combination (or a direct sum) of sub-models Cj (or Qj), where the sub-
models Cj and Qj are the classical and quantum models conditional on the number
of photons j emitted from the source. So, we need only to construct the sub-models
Cj and Qj individually, which is discussed in the next two paragraphs.

To construct the sub-models C1 and Q1 when a single photon is emitted (i.e.,
j= 1), we take into account of the bounds on the adversarial misalignment and on
the adversarial imbalance between the X-basis and Z-basis, and consider all the
possible single-photon states which may be correlated with the side information of
Eve. We assume that the measurements in the single-photon subspace are
projective, although these measurements are not precisely characterized. So, the
misalignment and imbalance are sufficient for characterizing these imperfect
measurements. The above assumption can be relaxed to some degree as explained
in Supplementary Notes 1 and 2. When Eve can manipulate the misalignment or
imbalance depending on the auxiliary degrees of freedom of the single photon such
as spatial mode, frequency or polarization, we need to represent the single-photon
state and the associated measurement operators in a Hilbert space describing not
only the time-bin degree of freedom for information encoding but also the auxiliary
degrees of freedom manipulable by Eve. In this case, we take advantage of the
assumption that the coherent superposition of states for an auxiliary degree of
freedom manipulable by Eve does not play a role throughout the measurement
process. (Such assumption has been exploited for verifying entanglement38 and
further for proving the security of quantum key distribution39 in the presence of
side channels that can induce detection-efficiency mismatch.) This assumption can
be justified if in the setup for time-bin measurements there is no quantum
interference between any pair of states for the auxiliary degree of freedom
manipulable by Eve (which is true in practice as we think). In addition, the above
assumption is consistent with the assumption specified in the Results section that
by manipulations Eve can access classical side information but not quantum side
information about the measurement performed. Therefore, each measurement
operator on a single photon is block-diagonal with respect to various states for the
auxiliary degrees of freedom, where each block is described by a qubit
measurement. As a consequence, for constructing the sub-models C1 and Q1 the
single-photon state and the associated measurement operators can be treated
without loss of generality as living in a two-dimensional Hilbert space, even in the
general case where Eve’s manipulations can depend on the auxiliary degrees of
freedom of the single photon. We note that for security analysis in the above
general case, the bounds on the misalignment and on the imbalance between the X-
basis and Z-basis should be satisfied by the measurement operators in each two-
dimensional Hilbert space obtained by projecting onto each particular state for the
auxiliary degrees of freedom manipulable by Eve.
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On the other hand, when multiple photons are emitted (i.e., j > 1) we construct
the sub-models Cj and Qj in a device-independent way (i.e., without using any
information about the multiphoton state prepared or measurements performed).
By the device-independent constructions of sub-models Cj and Qj with j > 1, we
pessimistically allow Eve’s classical or quantum side information to be perfectly
correlated with the trial output O given the trial input I and j > 1. Consequently, we
choose to not certify the randomness contributed by the multiphoton events, and
so our security analysis is robust against photon-number splitting attacks. We
emphasize that even with the device-independent constructions of sub-models Cj
and Qj with j > 1, the resulting models C and Q still behave well for certifying
randomness as the probability of emitting a single photon at each trial is assumed
to be bounded from below no matter how Eve manipulates the photon-number
distribution.

Once the classical model C and the quantum model Q are constructed, we can
construct the corresponding PEFs and QEFs. Since the classical model (or the
quantum model) for each trial is the identical C (or Q), we can use the same PEF
Fc(I, O) (or the same QEF Fq(I, O)) for each trial. According to Theorem 1 (or
Theorem 2), the amount of classical (or quantum) ϵs-smooth min-entropy in the
outputs On certifiable conditionally on the inputs In and on the side information
E (or E) is determined by the product

Qn
k¼1 FcðIk;OkÞ (or

Qn
k¼1 FqðIk;OkÞ).

Before the experiment we need to choose a PEF (or a QEF) such that the
expected amount of certifiable classical (or quantum) ϵs-smooth min-entropy is
as large as possible. At the same time, a PEF (or a QEF) satisfies a set of linear
constraints imposed by each member of the model C (or Q). Therefore, we can
formulate the constructions of PEFs and QEFs as constrained optimization
problems. To solve these optimization problems, we provide effective outer-
approximations of the models C and Q. We note that the outer-approximations
of C and Q provided by us include the convex closures of C and Q, respectively.
Therefore, in view of the remarks below Eqs. (1) and (5), the constructed PEFs
and QEFs can certify randomness even when Eve’s side information about the
state is classically correlated with Eve’s partial knowledge of the input and
measurement at a trial.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The code that produces the results presented in this work is available from the
corresponding authors upon reasonable request.
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