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Abstract

Purpose

To adapt and validate a previously developed decision tree for youth to identify bedrest for

use in preschool children.

Methods

Parents of healthy preschool (3-6-year-old) children (n = 610; 294 males) were asked to

help them to wear an accelerometer for 7 to 10 days and 24 hours/day on their waist. Chil-

dren with�3 nights of valid recordings were randomly allocated to the development (n =

200) and validation (n = 200) groups. Wear periods from accelerometer recordings were

identified minute-by-minute as bedrest or wake using visual identification by two indepen-

dent raters. To automate visual identification, chosen decision tree (DT) parameters (block

length, threshold, bedrest-start trigger, and bedrest-end trigger) were optimized in the devel-

opment group using a Nelder-Mead simplex optimization method, which maximized the

accuracy of DT-identified bedrest in 1-min epochs against synchronized visually identified

bedrest (n = 4,730,734). DT’s performance with optimized parameters was compared with

the visual identification, commonly used Sadeh’s sleep detection algorithm, DT for youth

(10-18-years-old), and parental survey of sleep duration in the validation group.

Results

On average, children wore an accelerometer for 8.3 days and 20.8 hours/day. Comparing

the DT-identified bedrest with visual identification in the validation group yielded sensitivity =

0.941, specificity = 0.974, and accuracy = 0.956. The optimal block length was 36 min, the

threshold 230 counts/min, the bedrest-start trigger 305 counts/min, and the bedrest-end trig-

ger 1,129 counts/min. In the validation group, DT identified bedrest with greater accuracy

than Sadeh’s algorithm (0.956 and 0.902) and DT for youth (0.956 and 0.861) (both

P<0.001). Both DT (564±77 min/day) and Sadeh’s algorithm (604±80 min/day) identified

significantly less bedrest/sleep than parental survey (650±81 min/day) (both P<0.001).
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Conclusions

The DT-based algorithm initially developed for youth was adapted for preschool children to

identify time spent in bedrest with high accuracy. The DT is available as a package for the R

open-source software environment (“PhysActBedRest”).

Introduction

Sleep is fundamental for optimal children’s health and wellbeing [1–3]. Low sleep quality in

preschool children is associated with delayed growth, a decline in daytime physical activity,

body weight abnormalities, and learning and behavioral difficulties [4,5]. Young children

require increased sleep duration to ensure healthy growth and development [6], and yet, there

are no available methods to measure sleep reliably and conveniently in natural environments.

The current clinical gold standard for assessing sleep in children is polysomnography (PSG),

which uses advanced laboratory-based technology to assess brain, cardiovascular, and respira-

tory activity during nighttime sleep [7–9]. PSG yields several sleep metrics, including sleep

onset and offset sleep stages. Some sleep metrics can be approximated through other means,

including accelerometers [10].

Recently, accelerometry, also known as actigraphy, has been used to assess habitual sleep-

wake patterns in children, both healthy and with sleep disorders [11–13], using relatively non-

intrusive research-grade triaxial accelerometers worn for several days or weeks [14]. Although

accelerometry does not provide detailed information on sleep that PSG does, it has the advan-

tages of portability, tolerability, and the ability to identify and differentiate between nighttime

and daytime sleep and non-sleep sedentary behaviors and physical activity measured for sev-

eral days or weeks [15]. The primary signal used by accelerometers to identify sleep is a lack of

body movement confounded by slight movements during sleep and lack of body movement

during wake episodes [14,16]. The results may not necessarily result in the same sleep period

(s) s identified by PSG or a parental report.

Field-based sleep assessments in preschool children also frequently rely on parent-report

methodologies, often not providing sufficiently valid or reliable sleep estimates [12,17,18].

Combining PSG, accelerometry, and parental or self-reports could help balance the limitations

of each. Because this is often not feasible in both research and clinical studies, accelerometry is

frequently used as a method of choice [19].

In children, accelerometry is 80 to 90% concordant with PSG during night rest [20–22]. A

significant challenge in preschool children is to capture time spent in nighttime sleep and day-

time naps over several days in a natural environment, without additional information from a

parental report [23]. The majority of automated algorithms for assessing sleep were validated

in 10-18-yr-old children [24], no. Belanger et al. [9] developed two algorithms for the wrist-

worn and ankle-worn single-axis Actiwatch accelerometer using data from 2–5 years old chil-

dren (n = 12) during nighttime sleep. However, no triaxial accelerometer’s-based algorithm

validation studies in healthy preschool children have been reported to our knowledge. The

present study aims to fill a gap in the literature by identifying periods of bedrest that include

nighttime sleep and daytime naps with a high degree of accuracy using accelerometer record-

ings collected for several days.

We previously developed and implemented as an R software program a decision tree (DT)

that uses an automated series of decision rules with user-modifiable parameters to identify the

time in bedrest in healthy 10-18-year-old children (DT-Youth) with good accuracy [25].
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and https://figshare.com/articles/dataset/Test_

Files/12904127.
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However, its validity cannot be assumed for younger children with different personal charac-

teristics, physical activity levels, and sleep habits.

The goal of this study was to adapt DT-Youth to identify bedrest periods in preschool chil-

dren using a large group of 3-6-year-old children living in their homes and wearing waist-

worn triaxial accelerometers. The adapted DT algorithm’s performance was compared to that

of Sadeh’s automated sleep scoring algorithm, which is frequently used in pediatric research

for sleep assessment from accelerometer recordings [26], to previously validated DT-Youth,

and to the parental survey of child sleep duration. We posited that the new adapted DT would

better identify bedrest in preschool children than Sadeh’s algorithm, DT-Youth, and parental

survey.

Methods

Participants

The study included a subset of 610 healthy 3-6-yr-old children, 294 males, BMI percentile

�50th and <95th recruited to The Growing Right Onto Wellness (GROW), a 36-month behav-

ior change intervention trial focused on childhood obesity prevention among preschool-aged

children from underserved communities in Nashville, Tennessee and registered with Clinical-

Trials.gov (NCT03268577) [27]. All applicable institutional and governmental regulations con-

cerning human volunteers’ ethical use followed the Helsinki-II Declaration’s ethical principles.

The Institutional Review Board of Vanderbilt University approved the study protocol and con-

sent form (IRB No. 120643). Written informed consent was obtained before the study. Study

data were collected from 2012 to 2017, and current analyses were performed in 2019 and 2020.

Anthropometric and demographic data

Standing height (to the nearest 0.1 cm) and weight (to the nearest 0.1 kg) were measured using

wall-mounted stadiometers and research-grade scales using a rigorous protocol [28]. Body

mass index (BMI) was calculated as a ratio of weight (kg) and height (m2). BMI percentiles

were calculated using the Centers for Disease Control (CDC) age- and sex-specific growth ref-

erences. Chronological age was determined from birth dates and the accelerometer wearing

start date.

Accelerometry recordings

Parents were asked to help their children wear an ActiGraph GT3X+ triaxial accelerometer

(ActiGraph, Pensacola, FL) on the waist for at least 7 days, including sleeping and napping.

Data were collected at baseline and after 12, 24, and 36 months of the trial. The accelerometers

collected recordings at 40 Hz chosen at the beginning of the study to allow data collection for

up to 14 days. The records were integrated into 60-s epochs, and vector magnitude (VM) data

were calculated as a square root of the sum of squared recordings from the accelerometer’s

three axes. Non-wear periods in accelerometer recordings were identified using Choi’s algo-

rithm using the PhysicalActivity package in R [29] and excluded to eliminate the possibility of

identifying them as bedrest.

Selection criteria

To be included in the analysis, a recording required�3 valid nights with�2 weeknights and

�1 weekend night. A valid night required� 6 hours of an accelerometer wearing between

10:00 pm and 6:59 am on the next day. Data collected after 48 hours of nonwear were dis-

carded. To obtain a study sample with a uniform age distribution, 100 eligible recordings were
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randomly selected from each time point of data collection, producing 400 eligible recordings.

Each recording came from a different child to minimize non-independence or clustering

within the dataset.

Visual identification of bedrest and wake periods

Although it is a slow and time-consuming process, visual identification is recommended as the

best referent heuristic method for identifying bedrest/sleep and wake time using accelerometry

data [2,3]. This study used two trained raters’ visual identification as the benchmark for com-

paring the other bedrest identification methods. In this study, we used the terms bedrest and

wake to define sustained periods below or above the optimal threshold of body movements

(i.e., counts per min). In the current pediatric literature, terms used for similarly defined and

assessed sleep-related periods of absent or minimal activity include “bedrest”[25,30], “sleep”

[10,16], “sleep-period time”, “nocturnal sleep” [2], and “in-bed time” [3].

Visually identified bedrest was defined as prolonged periods (>30min) below or equal to

the threshold of 100 counts/min. Each record was viewed using a labeling software developed

for this study (available at https://github.com/shi-xin/actigraph_labeler) with two independent

raters being able to see each day’s accelerometer recordings as VM counts on the vertical axis

and time of day in 1-min increments on the horizontal axis. The software enabled the rates to

discard data at the beginning and end of each Actigraph file. Raters were trained on heuristics,

guiding the visual identification process to estimate each bedrest period’s start and end. The

guidelines illustrated in Fig 1 were similar to those used in other studies [3,16] and our previ-

ous experience.

Development of DT for bedrest and wake identification

The DT algorithm was developed to automate the process of identifying bedrest and wake peri-

ods from accelerometer recordings. It finds periods with minimal activity (i.e., below a thresh-

old) and then adjusts the periods’ beginning and endpoints. This study adapted an automated

DT-Youth previously developed for 10-18-yr-old children [25] using a Nelder-Mead method

[31] to optimize four DT parameters, named block length, threshold, bedrest-end trigger, and
bedrest-start trigger. The block length is defined as the number of epochs over which an average

number of counts per epoch is calculated (e.g., an epoch is 1 min, and a block has 60 epochs,

then block length is 60 min). Threshold (VM counts/min) is the number of counts/block when

searching for transition time points from bedrest to wake or from wake to bedrest. Bedrest-start
trigger is the maximum number of VM courts/min needed for a transition from wake to bedr-
est or bedrest to start. Bedrest-end trigger is a minimum number of VM counts/min needed for

wake to start.

DT description

The DT has four steps, illustrated in Fig 2. In Step 1, DT divides the data from the accelerome-

ter recordings into blocks (e.g., 60 min), calculates the average counts per epoch in each block.

Next, DT determines if the counts/min average in the first block (e.g., 60 min) is lower, equal

to, or higher than the tested threshold (VM counts/min) to determine its initial status (i.e.,

bedrest or wake) of this block and whether to proceed to Step 2 or Step 3. Although categoriza-

tion is not made by the block, implicitly, blocks with averages below the threshold are identi-

fied as bedrest, while those with averages above are identified as wake. Blocks near transitions

may be identified as part bedrest and part wake.
The DT proceeds to Step 2 if the first block is identified as wake in Step 1 or after identifying

bedrest-start in Step 3. Step 2 identifies bedrest-start. First, DT searches through the next
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block’s remaining data with an average value below the threshold. Next, DT searches within

the identified block and the preceding block for the last two consecutive epochs with VM

counts higher than the bedrest-start trigger parameter. The epoch after these two epochs is

marked bedrest-start.

The DT proceeds to Step 3 if the first block is categorized as bedrest in Step 1, or after identi-

fying bedrest-start in Step 2. Step 3 identifies the bedrest-end and follows a similar logic to

Step 2. DT searches the remaining blocks for a block with an average above the threshold.

Fig 1. Graphical presentation of heuristic guidelines for visual identification of accelerometer recordings to estimate each bedrest period’s start and end. The

smallest period to be considered a separate episode was 30 min for bedrest and 10 min for awake. Identification guidelines for marking bedrest-start required: (i) 10

consecutive minutes with�100 counts/min; (ii) followed by a 20-min period with consistent readings with�100 counts/min, but allowing for two minutes>100

counts/min. The first minute with�100 counts/min, identified in (i), was marked bedrest-start. Bedrest-end identification required: (i) identifying a minute with�500

counts/min; (ii) followed by 5 out of the next 9 minutes with�500 counts/min. The minute preceding the first minute with�500 counts/min, identified in (i), was

marked bedrest-end. The period between bedrest-start and the next bedrest-end was marked bedrest, and the period between bedrest-end and the next bedrest-start was

marked wake. The agreement between raters was assessed using kappa-statistics. To handle a disagreement between the raters in identifying 1-min epochs as bedrest or

wake, we generated two separate sets of data named True1 and True2, respectively, for both the development and the validation group. In True1, the epochs in which

there was disagreement were assumed to be truly wake, and in True2, they were assumed to be truly bedrest. Separate analyses were conducted for both True1 and True2.

We report the True2 analysis as the algorithm was less accurate relative to True1. Thus, we report the more conservative estimate of identifying bedrest.

https://doi.org/10.1371/journal.pone.0246055.g001

Fig 2. Simplified decision tree (DT) to identify triaxial accelerometer recordings (counts/epoch) as bedrest or

wake. The plots contain ~48 h data from a representative child (4-year-old, male) before (Step 1—left panel), during

(Step 1 –right panel, Step 2, and Step 3), and after (Step 4) bedrest marking by the DT. The DT uses four algorithm

parameter values (block length, threshold, bedrest-start trigger, and bedrest-end trigger) and has a four-step process to

run through the data.

https://doi.org/10.1371/journal.pone.0246055.g002
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Then, DT searches within the identified block and the block proceeding for the epoch that

ends bedrest using the bedrest-end trigger parameter. The identified blocks are searched for the

first two consecutive epochs with VM counts above the trigger. The epoch immediately before

these epochs is marked bedrest-end.

Step 4 disregards any bedrest period shorter than a user-specified minimum bedrest dura-

tion (e.g., 60 min). The DT algorithm cycles between Step 2 identifying bedrest-start and Step

3 identifying bedrest-end until all epochs are marked as either bedrest or wake. Epochs after

the last identified change from bedrest to wake or wake to bedrest are marked accordingly.

Testing DT parameters

An automated Nelder-Mead Simplex Optimization procedure [31] was used to construct and

test DT parameter combinations to find combinations that maximized accuracy for True1 in

the development group and another combination that maximized accuracy for True2 files.

The Nelder-Mead algorithm finds the minimum of a real n-dimensional function by generat-

ing a simplex with (n+1) vertices. For a two-dimensional function, the simplex would be a tri-

angle, and for three-dimensional, a tetrahedron. The algorithm then adapts the simplex to the

local landscape of the function, eventually contracting to a minimum. The algorithm requires

four scalar parameters for reflection (ρ), expansion (χ), contraction (γ) and shrinkage (α) of

the simplex and standard values were used for each; 1, 2, 0.5, and 0.5, respectively. The proce-

dure was initialized with four sets of four parameter values (see S1 Table). Initial testing

showed that the procedure took around 80 iterations to converge on a minimum point; there-

fore, the algorithm was allowed to proceed for 100 iterations in all the subsequent runs to

allow space for error. A graphic summary of the optimization process is in S1 Fig, and selected

performance parameters for each iteration are in S2 Table.

For each combination of parameters and each participant, every epoch (1 min) in the moni-

toring wear period was classified by DT as bedrest or wake and compared to the time-synchro-

nized bedrest or wake classification from the visual identification. To calculate sensitivity,

specificity, and accuracy, every epoch (n = 4,730,734) was placed into one of four categories:

(i) true positive (TP), DT, and visual identification agreed on bedrest; (ii) a true negative (TN),

DT and visual identification agreed on wake; (iii) a false positive (FP), DT identified as bedrest

and visual identification classified as wake; and (iv) a false negative (FN), DT identified as

wake and visual identification classified as bedrest [30].

Sensitivity was defined as the proportion of bedrest epochs correctly identified as bedrest by

the DT (TP/(TP+FN)), and specificity was defined as the proportion of wake epochs correctly

identified as wake by the DT (TN/(TN+FP)). Accuracy was defined as the proportion of all

epochs correctly identified as bedrest or wake by the DT ((TP + TN)/(TP + TN + FN + FP)).

Specificity and sensitivity were considered equally important. For each combination of block
lengths, threshold, bedrest-start trigger, and bedrest-end trigger, means of sensitivity, specificity,

and accuracy were calculated for True1 and True2 datasets. To obtain conservative validity

estimates, the optimal algorithm parameters for the least accurate approach, True2, were

recorded and tested on the validation group.

Assessing DT performance

The DT performance in the validation group was assessed by comparing its accuracy to the

mentioned earlier DT-Youth [25] and the automated Sadeh’s sleep detection algorithm [26] in

ActiLife software (ActiGraph, Pensacola, FL). We used DT-Youth to compare it head-to-head

to determine the impact of new parameters on preschool children’s DT performance.
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We used Sadeh’s algorithm because no validated algorithm is available to identify bedrest

or sleep for preschool children. Sadeh’s algorithm was initially developed in 10-16-yr-old chil-

dren and 20-25-yr-old adults for wrist-worn accelerometers, but it has been validated for

waist-worn accelerometers in 10-18-yr-old children [2,13]. DT and Sadeh’s algorithm’s signifi-

cant difference is that DT allows a user-specified minimum period to be identified as bedrest

(e.g., 30 min). Sadeh’s algorithm classifies each 1-min epoch, either sleep or wake and summa-

rizes sleep epochs to assess the total period of sleep. As recommended by others [2,32,33], DT

classification (bedrest and wake) was synchronized minute-by-minute and compared with

visual identification (bedrest or wake), DT-Youth (bedrest or wake), and Sadeh’s classification

(sleep or wake).

Bedrest and wake periods classification

In the validation group, bedrest periods lasting <30 min were classified as wake, periods last-

ing from�30 to�90 min were classified as naps, and periods lasting >90 min were classified

as bedrest. Naps frequency and duration were calculated as an average number and total dura-

tion of naps per day and included in the total bedrest analyses. The 30-min lower threshold for

bedrest was selected by assuming that children are typically in bed for more than 30 min for

their daytime naps. The 90-min upper threshold for naps was selected by assuming that bedr-

est longer than 90 min and following or preceding a wake period should be classified as a dis-

tinct bedrest episode. Awakenings during bedrest were defined as wake periods lasting from

�5 to�15 min (e.g., to visit the bathroom) during bedrest lasting >90 min and are presented

as an average number and total duration of awakenings per day.

Parent-reported sleep survey

The parent-reported sleep survey conducted at the start of the accelerometer wearing period

was used to obtain the usual child’s bedtime and wake time and the frequency and duration of

daytime naps. Survey sleep time was calculated as the sum of reported nap duration and the

elapsed time between the reported bedtime and wake time. It was compared with DT and

Sadeh’s algorithm assessment of bedrest or sleep duration, respectively.

Statistical analysis

From the group of selected participant recordings (n = 400), 200 were randomly allocated to

the development and 200 to validation groups using the random sampling function in R. The

development group was used to optimize DT algorithm parameters values (block length,

threshold, bedrest-start trigger, and bedrest-end trigger). The differences between the groups in

age and anthropometric measures were compared using the independent sample t-test and

chi-square, respectively. The agreement between raters in the visual identification of bedrest

was calculated using a weighted Cohen’s Kappa coefficient [34].

The sensitivity, specificity, and accuracy of the DT algorithm were compared for agreement

with the visual identification. The differences in sensitivity, specificity, and accuracy between

the development and validation groups were compared using independent samples t-test. In

the validation group, differences between DT and Sadeh’s algorithm, between DT and parental

survey, between Sadeh’s algorithm and parental survey, between DT bedrest identification.

For these calculations, we used the VM counts data. Since Sadeh’s algorithm uses a single (ver-

tical) axis data from an accelerometer, we also compared the difference between Sadeh’s algo-

rithm and DT using recordings from the vertical axis using paired samples t-test. Bedrest

characteristics were performed after epochs (minutes) of not-wearing and discarded in visual

identification were removed. The agreement between the parental survey and other methods
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in the validation group was assessed using overlap coefficients calculated for bedrest identified

by DT and parental survey, Sadeh’s and parental survey, and DT and Sadeh’s algorithm. Over-

lap was defined as the time both methods agreed on bedrest/sleep identification divided by the

shortest time of total sleep/bedrest identified by either method. Therefore, if the sleep period

identified by one method was a subset of that identified by the other method, the overlap coef-

ficient would be equal to 1.0. Overlap coefficients were calculated for each child in the valida-

tion group, and the average is reported.

All results are presented as means, standard deviations (SD), ranges, and statistical signifi-

cance set at P< 0.05. The programming language R version 3.6.1 was used to develop DT and

perform statistical analyses.

Results

Participants’ characteristics

The study population (n = 400, 51.5% male) included Hispanic/Latino (n = 361, 90.3%), non-

Hispanic black (n = 24, 6.0%), non-Hispanic white (n = 9, 2.3%), and non-Hispanic multi-

racial (n = 6, 1.5%) children. Of the eligible children, 250 (62.5%) were normal weight (<85th

BMI percentile), 111 (27.8%) were overweight (�85th to<95th BMI percentile), and 39 (9.8%)

were obese (�95th BMI percentile). Among parents, 246 (61.5%) had less than a high school

degree or equivalent. The average child age was 5.03 ± 1.14 years, weight was 19.68 ± 3.69 kg,

height was 107.90 ± 8.64 cm, and BMI was 16.78 ± 1.12 kg/m2 (see Table 1). There were no sig-

nificant differences in personal characteristics between participants in the development and

validation groups (all P>0.05).

Agreement between raters in visual bedrest identification

The inter-rater agreement was very good (mean sensitivity, specificity, and accuracy were>

0.98 and κ (kappa) = 0.99).

DT algorithm optimal parameters

Within the development group, the optimal block length was 36 min, the threshold was 230

counts/min, the bedrest-start trigger was 305 counts/min, and the bedrest-end trigger was 1,129

counts/min. These parameter values are default in the PhysActBedRest package, but the end-

Table 1. Characteristics of study participants.

All Participants (n = 400) Development Group (n = 200) Validation Group (n = 200) P-value

Male | Female, n (%) 206 | 194 (51.50 | 48.50) 108 | 92 (54.00 | 46.00) 98 | 102 (49.00 | 51.00) 0.317a

Age (years) 5.03 ± 1.14 (3.01, 6.98) 5.00 ± 1.11 (3.01, 6.98) 5.05 ± 1.18 (3.01, 6.94) 0.707b

Height (cm) 107.90 ± 8.64 (88.80, 129.40) 107.82 ± 8.63 (90.45, 128.65) 107.90 ± 8.66 (88.80, 129.40) 0.933b

Weight (kg) 19.68 ± 3.69 (13.00, 40.40) 19.61 ± 3.66 (13.30, 31.80) 19.74 ± 3.74 (13.00, 40.40) 0.718b

Body Mass Index (kg/m2)c 16.78 ± 1.12 (14.19, 24.11) 16.73 ± 1.07 (14.19, 21.02) 16.83 ± 1.16 (14.44, 24.11) 0.387b

Accelerometer wear (days) 8.32 ± 1.74 (4.00, 20.00) 8.31 ± 1.89 (4.00, 20.00) 8.34 ± 1.60 (5.00, 15.00) 0.841b

Accelerometer wear (hours/day) 20.86 ± 2.37 (10.92, 23.99) 21.09 ± 2.23 (12.67, 23.97) 20.72 ± 2.51 (10.92, 23.99) 0.250b

Values are mean ± standard deviation and values in parentheses are ranges.
a Pearson’s chi-square test between development and validation groups.
b independent samples t-test between development and validation groups.
c body mass index (BMI).

https://doi.org/10.1371/journal.pone.0246055.t001
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user can easily change them if they wish (e.g., for use in preschool children with sleep

disturbances).

DT performance

Using visual identification as the benchmark, differences between the development and valida-

tion groups were not statistically significant for sensitivity, specificity, and accuracy (all

P>0.05, see Table 2).

In the validation group, DT performed better at identifying bedrest than DT-Youth and

Sadeh’s algorithm measured by sensitivity, specificity, and accuracy for VM counts data

(P<0.001; see Table 3).

The DT performed better when using VM than single-axis (vertical) recordings from accel-

erometers (P<0.001, see S3 Table). Also, DT performed better than Sadeh’s algorithm when

both were using data from single-axis (vertical) data (P<0.001, see S4 Table).

Bedrest characteristics in the validation group

As identified by DT and shown in Table 4, the average daily bedrest time was over 9 hours

(502 ± 62 min/day), ranging from almost 5 hours (294 min/day) to over 10 hours (652 min/

day). Mean sleep duration obtained from the parental survey was significantly longer than

bedrest identified by DT (650 and 502 min/day; P<0.001), Sadeh’s algorithm (650 and 604

min/day; P<0.001), and visual identification (650 and 502 min/day; P<0.001).

On average, the wake time identified by DT was over 11 hours (734 min/day) and was lon-

ger than Sadeh’s algorithm (693 min/day),. The number of children taking naps reported in

the parental survey (n = 45) was lower than the DT identified (n = 134). Naps were identified

by DT in 67% of the children at least once during the monitoring period. In children whose

parents reported taking daytime naps daily (23%), the naps frequency was higher than those

identified by DT (1.05 ± 0.27 and 0.25 ± 0.24). The parental survey’s average naps length dura-

tion was approximately 25 min longer than that assessed by DT. The average number of

Table 2. DT performance in the development and validation groups.

Development group (n = 200) Validation group (n = 200) P-valuea

Sensitivity 0.948 ± 0.058 (0.501, 0.998) 0.941 ± 0.056 (0.618, 0.999) 0.258

Specificity 0.976 ± 0.028 (0.798, 0.998) 0.974 ± 0.038 (0.566, 0.999) 0.414

Accuracy 0.961 ± 0.042 (0.626, 0.995) 0.956 ± 0.043 (0.654, 0.994) 0.305

Values are mean ± standard deviation and values in parentheses are ranges.
a independent samples t-test between development and validation groups.

https://doi.org/10.1371/journal.pone.0246055.t002

Table 3. Performance of DT, DT-Youth, and Sadeh’s algorithm in the validation group.

DT (n = 200) DT -Youth (n = 200) Sadeh’s (n = 200) P-value a,b

Sensitivity 0.941 ± 0.056 (0.618, 0.999) 0.855 ± 0.086 (0.558, 0.999) 0.920 ± 0.041 (0.706, 0.979) < 0.001

Specificity 0.974 ± 0.038 (0.566, 0.999) 0.870 ± 0.079 (0.564, 0.999) 0.888 ± 0.064 (0.506, 0.984) < 0.001

Accuracy 0.956 ± 0.043 (0.654, 0.994) 0.861 ± 0.062 (0.588, 0.979) 0.902 ± 0.042 (0.599, 0.965) < 0.001

Values are mean ± standard deviation and values in parentheses are ranges.
a paired t-test between DT algorithm and Sadeh’s algorithm.
b paired t-test between DT algorithm and DT-Youth algorithm.

https://doi.org/10.1371/journal.pone.0246055.t003
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bedrest awakenings identified by DT was 1.8 per day, ranging from 0.4 to 4.4. The bedrest awa-

kenings duration was 8.3 min/day and ranged from 5 to 15 min/day.

The overlap coefficients for sleep duration between parental survey and DT and parental

survey and Sadeh’s algorithm were 0.860 and 0.843, respectively (see Table 5).

Discussion

In this study, a DT algorithm previously developed to identify bedrest periods using waist-

worn accelerometers recordings for youth (10-18-yr-old) [25] was adapted for use in preschool

children. The adapted DT provided very good sensitivity, specificity, and accuracy (all>0.95)

for identifying bedrest and wake when using a visual identification method as the benchmark.

This study did not attempt to assess physiological sleep, but rather the goal was to identify

periods of inactivity as bedrest, which most likely included nighttime sleep lasting > 90 min

and daytime naps lasting from 30 to 90 min. In the validation group, we compared the modi-

fied DT performance for preschool children with the DT with parameters established for

youth [25]. In a head-to-head comparison, we found that the modified DT performed better in

assessing bedrest than DT-Youth. The optimal algorithm parameters for preschool children

Table 4. Characteristics of bedrest and wake periods identified using DT, Sadeh’s algorithm, and parental survey, and visual identification in the validation group

(n = 200).

DT Sadeh’s algorithm Parental survey Visual identification P-value

Bedrest [min/day] 502 ± 62 (294, 652) 556 ± 73 (301, 847) 650 ± 81 (450, 960) 502 ± 63 (302, 664) <0.001a,b,d,e,f 0.859 c

Wake [min/day] 734 ± 101 (291, 898) 693 ± 88 (286, 850) - 733 ± 103 (292, 937) <0.001a,e 0.859 c

Children taking naps [n (%)] 134 (67.0) - 45 (22.5) - <0.001b

Nap frequency g [number/day] 0.25 ± 0.24 (0.00 h, 1.00) - 1.05 ± 0.27 (1.00, 3.00) - <0.001b

Nap duration g [min/day] 47 ± 34 (0 h, 84) - 72 ± 38 (15, 180) - <0.001b

Awakenings during bedrest i [number/day] 1.8 ± 0.8 (0.4, 4.4) - - -

Awakenings during bedrest [min/day] 8.3 ± 1.9 (5, 15) - - -

Values are mean ± standard deviation and values in parentheses are ranges.
a paired t-test between DT and Sadeh’s algorithm.
b paired t-test between DT and Parental survey.
c paired t-test between DT and Visual identification.
d paired t-test between Sadeh’s algorithm and Parental survey.
e paired t-test between Sadeh’s algorithm and Visual identification.
f paired t-test between Parental survey and Visual identification.
g nap: 30 min� bedrest� 90 min in children whose parents reported taking a nap (n = 45).
h naps were not identified by DT in all children whose parent reported taking naps (n = 14, min/day = 0).
i awakening: 5 min� wake� 15 min.

https://doi.org/10.1371/journal.pone.0246055.t004

Table 5. Overlap in sleep periods assessed from the parental survey, DT (decision tree) identification, and Sadeh’s

algorithm in the validation group (n = 191).

Overlap Coefficient P-valuea

Parental vs. DT 0.860 ± 0.071 (0.524, 0.993) < 0.001

Parental vs. Sadeh’s 0.843 ± 0.063 (0.547, 0.968) < 0.001

DT vs. Sadeh’s 0.930 ± 0.018 (0.876, 0.973) < 0.001

Values are mean ± standard deviation and values in parentheses are ranges.
a paired t-test between total sleep of sleep assessment method.

https://doi.org/10.1371/journal.pone.0246055.t005
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(3-6-year-old) differed from values for youth (10-18-yr-old), underscoring a need for age-spe-

cific algorithm parameters to identify bedrest and wake accurately.

In the past, several studies utilized automatic algorithms to separate sleep and wake based on

recordings from a single accelerometer axis [2,26,33]. The current study took advantage of tech-

nological advancements and used VM calculated from counts recorded by three distinct axes to

measure movement. We compared the DT performance to identify bedrest for VM and single-

axis (vertical) recordings in the validation group and found that both sensitivity and specificity

were higher for VM than single-axis data. We recommend that studies assessing bedrest/sleep

in preschool children using triaxial accelerometers utilize VM rather than single-axis data.

Other advantages of using the modified algorithm its ability to identify short naps (30–60 min)

usually occurring during the day and using data from several days of accelerometer recordings.

Using visual identification as the benchmark, a comparison of the DT to Sadeh’s algorithm

[26] demonstrated that the DT had higher sensitivity, specificity, and accuracy than Sadeh’s

algorithm both for VM and single-axis data. DT’s better performance than Sadeh’s algorithm

could be expected since Sadeh’s algorithm was developed in a different population and using a

different study protocol [26]. A more objective comparison of algorithms’ generalization

capacity would be achieved using an independent preschool-age children dataset. Another

plausible explanation could be that Sadeh’s algorithm classified short daytime periods of low

activity (e.g., sedentary behavior) as “sleep.” The DT protected against this problem by limiting

bedrest to inactivity lasting more than 30 minutes. However, while imposing this restriction

could cause misclassification of short daytime naps as wake, the risk is likely low in this sample,

as only 2 out of 45 parents reported naps <30 min. The R function developed in this study and

readily available to researchers allows the user to set the minimum bedrest period to balance

these concerns in their study populations.

We did not compare the DT to other currently available automated algorithms because

they were developed and validated in older children [2], used a different methodology [16], or

different accelerometers [8,9]. Among automated algorithms validated for waist-worn Acti-

graph accelerometers, the first was an algorithm developed by Tudor-Locke et al. [35] for 10-

18-yr-old children combining visual inspection to mark the onset and offset of nocturnal sleep

from accelerometer recorded with the sleep diary data. The newer version of this algorithm [2]

showed a moderately high correlation of nocturnal sleep (r = 0.61 to 0.74) with visual assess-

ment of accelerometry data and sleep diaries.

A parental survey was used to calculate the child’s average length of sleep/bedrest and nap

frequency and duration. Similar to other reports [17,23], this study found that sleep duration

assessed from the parental survey was significantly higher than bedrest and sleep assessed by

DT and Sadeh’s algorithm, respectively. On average, nighttime sleep reported by parents was

about an hour longer than bedrest identified by the DT, which can reflect the difference

between the time a child was put in bed and the time the child fell asleep. Notably, the bedrest

periods assessed by DT overlapped, approximately 86%, with the sleep periods derived from

the parental survey.

The frequency and duration of naps obtained from the survey were also different from

those identified by DT, with parents reporting longer nap time by an average of 12 minutes.

This finding emphasizes the importance of a quantitative approach to capturing bedrest/sleep

for young children, rather than relying on the parental report as the sole measure of sleep.

The study had several strengths. First, we used a relatively large (n = 400) and diverse group

regarding sex, age, and body mass indices [27]. Random selection of the development and vali-

dation groups allowed for the algorithm’s robust performance and the avoidance of overfitting

due to the small sample size. Second, the study was conducted in field conditions that

increased the DT’s generalizability compared to laboratory studies. The average time spent in
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bedrest ranged from over 5 to almost 12 hours/day, which is similar to the sleep time range

reported for a national sample of preschool children in the US [6]. Third, the DT was opti-

mized using objective accelerometer data rather than subjective sleep diary data. In the absence

of a practical reference standard criterion method that can be used with 3-6-yr-old children in

daily life, we consider the DT a potentially useful approach for separating nighttime sleep and

daytime naps from sedentary behaviors and physical activity. Future studies should be per-

formed in diverse populations to test and calibrate the DT against PSG and compare it with

other automatic algorithms that use different accelerometry data measures such as arm angle

or gravitational acceleration data expressed in grams [16]. Future research could also utilize

the DT or similar methodology when examining preschool-age children’s sleep patterns and

associations with learning and health outcomes and help inform clinical decision making [36].

The study had some limitations. First, this study used waist-worn monitors, which are pre-

ferred for measuring physical activity and sedentary behaviors, rather than non-dominant

wrist-worn monitors frequently used to assess sleep [19]. However, the evidence shows that

waist-worn accelerometers can accurately assess sleep duration in school-age children

[13,18,35]. Second, the study results are specific to 3–6 years old, healthy children. However,

we believe the set of parameters (block length, threshold, bedrest-start trigger, and bedrest-end

trigger) optimized in this study ensures very good DT performance in all preschool children.

The DT should also be validated in other studies with an independent sample of preschool-age

children and performed in a different environment. However, the DT allows users to adapt it

for bedrest identification in various populations and/or using different accelerometers. Third,

the DT algorithm validity was not tested in children with sleep disturbances and other clinical

pediatric populations and might require additional studies. Forth, accelerometer recordings

were collected at 40 Hz and not commonly used 30 Hz. A recent study found an error between

10–100 Hz frequency decreased with declining movement intensity, suggesting that the differ-

ence between 40 Hz and 30 Hz would have a small effect on bedrest identification in the cur-

rent study [37]. Nevertheless, future users of the algorithm should be aware of this limitation.

Conclusions

The DT-based algorithm originally developed for youth (10-18-year-old) children was adapted

for preschool children to identify time spent in nighttime bedrest and daytime naps using data

from waist-worn accelerometers with very good sensitivity, specificity, and accuracy. The auto-

mated bedrest/sleep detection DT algorithm is openly accessible as a package for the R soft-

ware environment (“PhysActBedRest”).

Supporting information

S1 Fig. Nelder-Mead simplex optimization progression for True 2 dataset.

(TIF)

S1 Table. Parameters sets used to initialize DT (decision tree) algorithm optimization

using the Nelder-Mead simplex procedure.

(DOCX)

S2 Table. Progression of the optimization of decision tree (DT) algorithm parameters.

(DOCX)

S3 Table. Comparison of decision tree (DT) algorithm performance between vector magni-

tude (VM) and single-axis (vertical) recordings in the validation group (n = 200).

(DOCX)

PLOS ONE Bedrest assessment in preschool children

PLOS ONE | https://doi.org/10.1371/journal.pone.0246055 January 28, 2021 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246055.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246055.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246055.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246055.s004
https://doi.org/10.1371/journal.pone.0246055


S4 Table. Comparison between performance between decision tree (DT) and Sadeh’s algo-

rithm using recordings from the vertical axis in the validation group (n = 200).

(DOCX)

Acknowledgments

We like to thank Shi Xin for his programming work and participating in the visual data identi-

fication and Dr. Nina Martin and Eli Po’e for help with manuscript review and editing. We

also acknowledge the staff and community members’ work at the Coleman and Southeast

Community Centers in Nashville, Tennessee. With gratitude, we thank them for their commit-

ment to working with our team.

Author Contributions

Conceptualization: J. Dustin Tracy, Shari L. Barkin, Maciej S. Buchowski.

Data curation: Shari L. Barkin, Maciej S. Buchowski.

Formal analysis: Thomas Donnelly, Evan C. Sommer.

Funding acquisition: Shari L. Barkin, Maciej S. Buchowski.

Investigation: Evan C. Sommer, Shari L. Barkin, Maciej S. Buchowski.

Methodology: J. Dustin Tracy, Evan C. Sommer, Shari L. Barkin, Maciej S. Buchowski.

Project administration: Shari L. Barkin.

Resources: Shari L. Barkin, Maciej S. Buchowski.

Software: J. Dustin Tracy, Thomas Donnelly.

Supervision: Shari L. Barkin, Maciej S. Buchowski.

Validation: Maciej S. Buchowski.

Writing – original draft: J. Dustin Tracy, Evan C. Sommer, Maciej S. Buchowski.

Writing – review & editing: J. Dustin Tracy, Thomas Donnelly, Evan C. Sommer, William J.

Heerman, Shari L. Barkin, Maciej S. Buchowski.

References
1. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, et al. (2015) National Sleep Foundation’s sleep

time duration recommendations: methodology and results summary. Sleep Health 1: 40–43. https://

doi.org/10.1016/j.sleh.2014.12.010 PMID: 29073412

2. Barreira TV, Schuna JMJ, Mire EF, Katzmarzyk PT, Chaput J-P, et al. (2015) Identifying Children’s Noc-

turnal Sleep Using 24-h Waist Accelerometry. Med Sci Sport Exerc 47: 937–943. https://doi.org/10.

1249/MSS.0000000000000486 PMID: 25202840

3. McVeigh J, Winkler E, Healy G, Slater J, Eastwood P, et al. (2016) Validity of an automated algorithm to

identify waking and in-bed wear time in hip-worn accelerometer data collected with a 24 h wear protocol

in young adults. Physiol Meast 37: 1636. https://doi.org/10.1088/0967-3334/37/10/1636 PMID:

27652717

4. Gregory AM, Sadeh A (2012) Sleep, emotional and behavioral difficulties in children and adolescents.

Sleep Med Rev16: 129–136.

5. Vriend J, Davidson F, Rusak B, Corkum P (2015) Emotional and Cognitive Impact of Sleep Restriction

in Children. Sleep Med Clin 10: 107–115. https://doi.org/10.1016/j.jsmc.2015.02.009 PMID: 26055858

6. Bathory E, Tomopoulos S (2017) Sleep Regulation, Physiology and Development, Sleep Duration and

Patterns, and Sleep Hygiene in Infants, Toddlers, and Preschool-Age Children. CurrProbl PediatrAdo-

lesc Health Care 47: 29–42.

PLOS ONE Bedrest assessment in preschool children

PLOS ONE | https://doi.org/10.1371/journal.pone.0246055 January 28, 2021 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246055.s005
https://doi.org/10.1016/j.sleh.2014.12.010
https://doi.org/10.1016/j.sleh.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/29073412
https://doi.org/10.1249/MSS.0000000000000486
https://doi.org/10.1249/MSS.0000000000000486
http://www.ncbi.nlm.nih.gov/pubmed/25202840
https://doi.org/10.1088/0967-3334/37/10/1636
http://www.ncbi.nlm.nih.gov/pubmed/27652717
https://doi.org/10.1016/j.jsmc.2015.02.009
http://www.ncbi.nlm.nih.gov/pubmed/26055858
https://doi.org/10.1371/journal.pone.0246055


7. Toon E, Davey M, Hollis S, Nixon G, Horne R, et al. (2016) Comparison of commercial wrist-based and

smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. J

Clin Sleep Med 12: 343–350. https://doi.org/10.5664/jcsm.5580 PMID: 26446248

8. Meltzer LJ, Hiruma LS, Avis K, Montgomery-Downs H, Valentin J (2015) Comparison of a Commercial

Accelerometer with Polysomnography and Actigraphy in Children and Adolescents. Sleep 38: 1323–

1330. https://doi.org/10.5665/sleep.4918 PMID: 26118555
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