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Abstract

Reasoning about the factors underlying habitat connectivity and the inter-habitat movement

of species is essential to many areas of biological inquiry. In order to better describe and

understand the ways in which the landscape may support species movement, an increasing

amount of research has focused on identification of paths or corridors that may be important

in providing connectivity among habitat. The least-cost path problem has proven to be an

instrumental analytical tool in this sense. A complicating aspect of such path identification

methods is how to best reconcile and integrate the array of criteria or objectives that species

may consider in traversal of a landscape. In cases where habitat connectivity is thought to

be influenced or guided by multiple objectives, numerous solutions to least-cost path prob-

lems can exist, representing tradeoffs between the objectives. In practice though, identifica-

tion of these solutions can be very challenging and as such, only a small proportion of them

are typically examined leading to a weak characterization of habitat connectivity. To address

this computational challenge, a multiobjective optimization framework is proposed. A gener-

alizable multiobjective least-cost path model is first detailed. A non-inferior set estimation

(MONISE) algorithm for identifying supported efficient solutions to the multiobjective least-

cost path model is then described. However, it is well known that unsupported efficient solu-

tions (which are equally important) can also exist, but are typically ignored given that they

are more difficult to identify. Thus, to enable the identification of the full set of efficient solu-

tions (supported and unsupported) to the multiobjective model, a multi-criteria labeling algo-

rithm is then proposed. The developed framework is applied to assess different

conceptualizations of habitat connectivity supporting amphibian movement in a wetland sys-

tem. The results highlight the range of tradeoffs in characterizations of connectivity that can

exist when multiple objectives are thought to contribute to movement decisions and that the

number of unsupported efficient solutions (which are typically ignored) can vastly outweigh

that of the supported efficient solutions.
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Author summary

Biological studies and experiments have provided many insights as to the complex nature

of the criteria (objectives) that species may evaluate in decisions regarding inter-habitat

landscape traversal. Those insights are often used to develop models for identifying paths

or corridors potentially supporting inter-habitat movement to characterize habitat con-

nectivity from the species’ perspective. However, typically only a small proportion of the

alternative paths that may also support species movement and be important to habitat

connectivity are identified. Thus, the computational challenge is to develop methods that

can more completely characterize the set of paths/corridors that may support habitat con-

nectivity. To address this challenge, a modeling framework that better integrates the

objectives thought to influence inter-habitat movement is outlined, facilitating the identi-

fication of a broader set of paths reflecting the tradeoffs among the objectives. Through an

application of the developed framework to model habitat connectivity for multiobjective

amphibian movement in a wetland system, it is demonstrated that an extensive and

diverse set of efficient inter-habitat paths can be identified. The capability to characterize

these additional dimensions of habitat connectivity supporting species movement can

provide researchers and practitioners with a means to develop more robust representa-

tions of complex biological systems.

This is a PLOS Computational Biology Methods paper.

Introduction

Research has widely reported changes in species persistence over the past 30 years [1,2].

Urbanization, infrastructure, and habitat transformation are frequently cited as among the

leading factors responsible for these changes [3,4]. Given the rapid pace of environmental and

landscape change, it is important to understand the factors and mechanisms that may influ-

ence habitat connectivity to address management and conservation concerns [5]. For example,

preserving or creating inter-habitat corridors that best meet the needs of species for dispersal

events (e.g., natal dispersal) as well as part their regular migration (e.g., mating, foraging, and

summer-winter habitat) is critical to the persistence of species, especially in human-dominated

landscapes [6,7].

Landscape connectivity and conservation of biodiversity

The extent to which the landscape supports species movement among habitats is often referred

to as landscape or habitat connectivity [8,9]. Connectivity in this sense is a complex function

of landscape and species-specific characteristics. As such, a wide array of metrics for quantify-

ing connectivity have been proposed, many of which are rooted in network theory given the

need to link the spatial structure of complex systems to prospects for movement therein

[10,11]. In network models of landscape systems, habitat areas (i.e., patches) are represented as

nodes and the direct linkages between the habitat nodes are represented as arcs. Connectivity

between a pair of habitat areas can therefore be modeled as the set of arcs a species traverses en

route from one habitat to another, often termed a path or corridor. In networked systems

though, a multitude of paths between a pair of nodes may exist. Therefore, decisions need to
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be made as to which paths are actually viable alternatives capable of supporting a particular

type of movement. For example, a common assumption in modeling movement is that travel

in a system involves costs and hence, efficient movements with respect to those costs are more

desirable. A frequently utilized measure of connectivity among habitats in this respect is the

shortest or least-cost path [12,13]. In this sense, the relative cost of movement associated with

traversing arcs connecting landscape features for a particular species is quantified based upon

how different landscape and ecological factors are thought to impede or facilitate movement

[14]. Once the cost of traversing arcs in the landscape system has been established, the most

efficient inter-habitat path(s) is then often sought as a measure of habitat connectivity [12].

That is, it is assumed that paths (or corridors) that have the lowest cumulative cost (i.e., resis-

tance or impedance) from a species’ perspective are more likely to be important in supporting

inter-habitat movements [15,16].

Modeling ecological networks – least-cost paths

The mathematical model used for identifying paths of minimal costs in a network is known as

the shortest path problem or more generally as the least-cost path problem. Methodologically,

least-cost path problems involve a network G with N nodes and A arcs, G(N,A) in which a path

between an origin node (o2N) and a destination node (d2N) is sought. In least-cost path prob-

lems, the decisions are to identify whether or not each arc (i,j)2A should be included as part of

the path. These decisions are typically modeled using binary-integer variables xij = {0,1} 8(i,j)2
A, where xij = 1 if an arc (i,j) is selected as part of the path and xij = 0, otherwise.

The objective (or criterion) to be optimized in least-cost path problems is usually some

function of the arc decision variables (xij) and their associated costs (cij), such as the product of

the arc cost and associated decision variable as in Eq (1) [17]. Feasible solutions to a least-cost

path problem are those that adhere to Constraints (2)-(3).

Minimize O ¼
X

ði;jÞ2A

cijxij ð1Þ

s.t.

X

jjði;jÞ2A

xij �
X

jjðj;iÞ2A

xji ¼

1 for i ¼ o

0 8i; i 6¼ o; d

� 1 for i ¼ d

ð2Þ

8
><

>:

xij ¼ f0; 1g 8ði; jÞ 2 A ð3Þ

More specifically, Constraints (2) are conservation of flow conditions and ensure that: a) an

arc that exits the origin node is selected, b) an arc that enters the destination node is selected,

and c) for all nodes other than the origin and destination, if a selected arc enters a node, an arc

that exits the node must also be selected. Constraints (3) stipulate that all arc decision variables

are binary-integer, though it is known that relaxing the binary-integer restriction (0�xij�1)

will also result in a binary-integer solution [17]. Exact solutions to many forms of least-cost

path problems can be readily obtained using well-known algorithms, such as that of Dijkstra

[18]. Given that these types of algorithms are not computationally burdensome and are very

accessible, they have been widely implemented in open-source and commercial software prod-

ucts [19,20] and are commonly applied in ecological research.

In order to derive a least-cost path, the cost of moving among habitats (i.e., nodes) through

the intervening landscape (i.e., the arcs) must first be quantified. In many ecological
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applications, the landscape is partitioned into a set of analysis areas (e.g., raster cells or poly-

gons). Each area is assigned a cost reflecting the relative resistance it presents to movement.

The cost of traversing an analysis area is usually derived based on the assumed contribution of

different landscape characteristics present within the area. For example, combinations of land-

scape characteristics such as forest canopy, land use and land cover, habitat quality, elevation,

road density and proximity to water are frequently used in deriving landscape traversal cost

[12,21–23]. After each analysis area has been assigned a cost, a network can be constructed in

which the nodes represent the analysis areas to be traversed with the arcs representing the spa-

tial connection between neighboring areas. The arcs can then be attributed with the cost values

from the corresponding analysis areas and the least-cost path model can be applied, yielding a

single optimal path between an origin and destination node.

While least-cost paths based on composite measures of cost have been widely explored,

such cost representations have been viewed as lacking a robust biological or empirical founda-

tion [13]. While there is evidence that species utilize some sort of decision-making framework

when navigating the landscape, the exact nature of the framework and the combination of fac-

tors upon which it is premised has not been well established. For example, there are many

objectives that have been postulated regarding the amphibian decision-making processes in

seeking new habitat, such as: minimizing distance, minimizing elevation change, maximizing

exposure to moist environments, and maximizing likelihood of successful traversal [24–27].

Further, the exact combination(s) of objectives that may underlie movement decisions is

unknown.

Measurement of the objectives can also present challenges as even small differences in how

costs are quantified for arcs can influence the location and characteristics of the resulting least-

cost paths [28]. Given that the cost of traversing arcs is often derived based on a combination

of factors, the way in which the factors are combined can be a major source of uncertainty in

the representation of an ecological system [15]. Further, the fact that there are essentially an

infinite number of ways in which costs representing different objectives can be weighted and

combined perhaps remains one of the most challenging obstacles to application of multiobjec-

tive least-cost path problems and interpretation thereof. As is described next, a myriad of

Pareto-optimal or efficient solutions can exist for a multiobjective least-cost path problem.

However, the efficient solutions that are usually identified in practice, likely represent only a

very small sample of those that exist given the solution methodologies that are commonly

employed. Measures of habitat connectivity premised upon a limited set of solutions are there-

fore also likely to only represent weak estimates of connectivity.

Multiobjective optimization

Multiobjective approaches serve to integrate a broader set of criteria into analysis/planning

problems. Unlike with single objective optimization models (e.g., the least-cost path problem),

in multiobjective models, there can be many solutions, each optimal with respect to some mix

of the objectives considered (termed Pareto-optimal solutions). Eq (4) is a generic multiobjec-

tive least-cost path problem in which there are a set of l2L objectives. Each objective l repre-

sents some function of the arc decision variables and their associated cost components ðcl
ijÞ.

The multiple objectives are subject to Constraints (2) and (3) as in the single objective least-

cost path problem.

Minimize ððf1ðc
1

ijxijÞjði; jÞ 2 AÞ; . . .; ðfjLjðc
jLj
ij xijÞjði; jÞ 2 AÞÞ ð4Þ

Consider a set of feasible solutions (those that do not violate the constraints) S to a multiob-

jective optimization problem. Given a feasible solution s2S, if there is no other feasible
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solution s2S in which flðcl
ijx

s
ijÞ � flðcl

ijx
s�
ij Þ, s

� is considered to be an efficient or Pareto-optimal
solution and the corresponding Pareto-frontier flðcl

ijx
s�
ij Þ is termed non-dominated [29]. Thus,

in the full set of Pareto-optimal solutions S�, each solution is better than (efficient) all others

with respect to at least one criterion.

Within the set of efficient solutions, some exist on the convex boundary of the solution

space. These solutions are termed supported and can be found by techniques such as the

weighting method, NISE, and MONISE. In the weighting method, the objectives are combined

into a single minimization problem in which each objective l2L is assigned a weight (wi), such

that w1+w2,. . .,+w|L| = 1.0 [30]. For example, given two objectives O1 and O2, one weighting

scheme might be to set both objective weights to 0.5 (e.g., Minimize 0.5O1+0.5O2). The result-

ing model has the same form as the single-objective least cost path problem and can therefore

be solved as such. Once solved, the result is a single supported efficient solution and associated

non-dominated path. In order to identify other efficient supported solutions, different combi-

nations of weights can be applied and the resulting models solved in order to search for other

supported efficient solutions to approximate the supported efficient set. For example, another

weighting scheme might involve weighting one objective by 0.8 and the other by 0.2 (e.g., Min-
imize 0.8O1+0.2O2). This is by far the most common approach for addressing multi-criteria

least-cost paths in ecological studies [12,15,31–33]. Although the weighting method is straight-

forward to apply, its utility for identifying all supported efficient solutions is typically very lim-

ited. In cases in which two objective are to be optimized, the non-inferior set estimation

(NISE) method can be applied to estimate the set of efficient solutions [34]. This process

involves evaluating the solution space between pairs of supported efficient solutions to detect

the presence of another supported efficient solution. When new supported efficient solutions

are found, the solution space between them and their neighboring supporting solutions is in

turn evaluated for the presence of additional supported efficient solutions. Therefore, NISE

provides a means for identifying all supported efficient solutions in biobjective optimization

problems. In the case that more than two objectives are to be considered, the NISE approach

becomes more complicated [35,36]. In order to cope with these complexities, multiple objec-

tive non-inferior set estimation (MONISE) techniques have been proposed to extend the NISE

concept to characterize the supported efficient frontier when more than two criteria are

involved [37–39].

While solution techniques such as the weighting method, NISE and MONISE can assist

with providing an estimate of the efficient set (the supported efficient solutions), other efficient

solutions can also exist between supported solutions along non-convex portions of the solution

space. These unsupported efficient solutions are more challenging to identify, but can represent

sizable portions of the Pareto-optimal solution set, the number of which can increase exponen-

tially with the size of the optimization problem [40]. The complete set of efficient solutions

(supported and unsupported) to a multiobjective least-cost path model can be identified using

a class of solution algorithms known as exact multi-criteria labeling algorithms [41,42]. Multi-

criteria labeling algorithms start by first examining an origin node, iteratively visiting neigh-

boring nodes, and assigning labels representing traversal cost for the tentative paths connect-

ing the origin node to other nodes. Every time a new non-dominated path is found, a node’s

label is updated, and this process continues until all nodes are labeled, at which point all effi-

cient (supported and unsupported) paths between the origin and destination node are found.

While labeling algorithms are very effective solution methods, they can be applied only if the

path cost is separable among its component arcs and if the monotonicity of the cost functions

can be guaranteed [43]. In cases where those conditions cannot be satisfied, a subset of the effi-

cient solutions can be heuristically identified by imposing a threshold constraint on one of the
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objectives, enumerating all paths that meet the threshold constraint, and then applying a filter-

ing technique to retrieve those that are efficient [44].

While the applicability of multiobjective least-cost path approaches to biological and eco-

logical problems has been demonstrated in literature, the tendency has been to utilize solution

methods that yield a limited number of supported efficient solutions. As such, there are likely

many other valid, important, solutions to these problems that are not being evaluated and ana-

lyzed that could provide fruitful insights. The other supported and unsupported efficient solu-

tions to multiobjective least-cost path problems can provide more insight on the nuanced

tradeoffs between the characteristics of the paths potentially supporting habitat connectivity

for a species. In particular, consideration of the unsupported efficient solutions is especially

important given the fact that they can often constitute a major proportion the solutions in the

efficient set. To this end, a general multiobjective framework for modeling paths/corridors

supporting habitat connectivity is described. A MONISE algorithm is then detailed for identi-

fying supported efficient solutions to the multiobjective problem. An exact multi-criteria label-

ing approach for identifying all efficient solutions (supported and unsupported) to the

multiobjective problem is then described. An application of the multiobjective model (and

solution techniques) to connectivity in amphibian habitat systems is then provided to highlight

the utility of the proposed approach.

Materials and methods

Multiobjective habitat connectivity problem

A multiobjective habitat connectivity problem (MOHCP) is proposed for accounting for a gen-

eral set of objectives that could be modeled in a least-cost path framework. In particular, three

objectives assumed to influence the inter-habitat movement of a species are integrated in the

model: a) minimize the total risk associated with movement [9,45], b) minimize the total dis-

tance traveled [22,46], and c) minimize change in environmental conditions encountered dur-

ing movement [26,27]. To model these objectives, each arc (i,j) in the network is associated

with attributes reflective of environmental change (zij), travel distance (cij), and risk associated

with landscape traversal (πij). For each origin-destination (o,d2N) habitat pair in the network,

the MOHCP can be formulated as follows:

Minimize Ood
1
¼ 1 � Pði;jÞ2Að1 � pijÞ

xij ð5Þ

Minimize Ood
2
¼
X

ði;jÞ2A

cijxij ð6Þ

Minimize Ood
3
¼
X

ði;jÞ2A

zijxij ð7Þ

s.t. (2) & (3)

Objective (5) minimizes the risk (πij = [0,1]) of traversal failure. This objective is analogous

to maximizing the likelihood of successful traversal. Objective (6) minimizes the total distance

traveled. Objective (7) minimizes the total change in environmental conditions encountered.

Constraints (2) and (3) are applied as in the regular least-cost path problem.

Given that the probability of successful traversal of each arc is (1−πij) = [0,1], Objective (5)

is monotonically increasing, a sufficient condition for Bellman’s principal of optimality [43].

Thus, all sub-paths of a Pareto-optimal path with respect to Objective (5) are also Pareto-opti-

mal. Objectives (6) and (7) are also monotonic, therefore, all sub-paths of Pareto-optimal

PLOS COMPUTATIONAL BIOLOGY Modeling habitat connectivity in support of multiobjective species movement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008540 December 28, 2020 6 / 23

https://doi.org/10.1371/journal.pcbi.1008540


solutions with respect to these objectives are Pareto-optimal as well. While Objective (5) is

nonlinear and non-additive, it can be re-stated in an additive and linear form by modifying

the log transformation function proposed by Reinhardt and Pisinger [47] as in Eq (8).

Minimize Ood
1
¼
X

ði;jÞ2A

xijln
1

1� pij

 !

ð8Þ

Solution methodologies

As discussed earlier, the weighting method is commonly used to identify some of the sup-

ported efficient solutions to problems like the MOHCP. However, the extent to which those

supported efficient solutions represent the complete set of efficient solutions cannot be deter-

mined. Thus, alternative methods for characterizing the efficient set should be explored. In

this spirit, a MONISE routine is described for identifying the set of supported efficient solu-

tions and an exact multi-criteria labeling routine is detailed for identifying the complete set of

efficient solutions to the MOHCP (Eqs (5)–(7) & (2)-(3)).

MONISE for MOHCP. To identify the supported efficient solutions for the MOHCP, a

MONISE algorithm for identifying supported non-dominated least-cost paths is now outlined

in Fig 1. The MONISE Supported Nondominated Least-cost Paths algorithm requires a net-

work, attributes for each arc that can be used to measure the objectives (e.g., traversal risk, dis-

tance traveled, environmental change) and a pair of origin and destination habitat nodes (o,d)

as input. In Stage A, lists for vectors of objective weights to be applied ð �WÞ, vectors of the

objectives comprising the Pareto frontier for each solution (Y�), vectors tracking sets of Pareto

frontiers (U�), as well as storing the arcs comprising the non-dominated paths associated with

efficient solutions are initialized. MONISE works by identifying weights for the objectives that

will give rise to supported efficient solutions. That is, Objectives (5)–(7) are combined into a

single weighted objective (Eq 9) where each weight (wl) has a value [0,1] such that w1+w2+w3

=1.0 as is done in the regular weighting method approach described earlier.

Minimize w1O
od
1
þ w2O

od
2
þ w3O

od
3

ð9Þ

In Stage B, a set of initial weights are given to the objectives in (Eq 9) to find the three indi-

vidual minima (i.e., Minimize Ood
1

, Minimize Ood
2

, and Minimize Ood
3

) known as anchor points

[48]. In practice, this equates to applying a large weight to the objective to be optimized and a

small, near-zero weight (e.g., δ = 0.0001) to the other objectives (step 5) (e.g., w1 = 0.9998, w2 =

0.0001, w3 = 0.0001; in the case of optimizing O
od
1

) to ensure the anchor points are not domi-

nated. Objective (9) subject to Constraints (2)-(3) can then be solved (step 6) with the arcs

associated with the solution (s�) stored in the list of supported efficient paths SEP (step 7) and

the Pareto frontier (y�k) stored in list Y� (step 8). The Utopia plane defined by the initial three

solutions (y�1,y�2,y�3) is then stored in list U� (step 9). In Stage C, the Utopia plane can then be

used to derive a new set of objective weights (n1,n2,n3) (steps 10–12) which are stored in list �W
(step 13). Now that a new set of objective weights has been found, they can be used in Stage D

in an iterative routine (step 15) to generate and solve a new model (step 16–17). The solution

to the new model is then evaluated to see whether or not it has already been found (step 18). If

it isn’t present in the set of identified supported efficient paths, it is added to that set (step 19)

and its Pareto frontier is recorded (step 20). Next, the Pareto frontier of the new solution is

then iteratively swapped into the plane of solutions used to derive the weights used in the

model to construct three new planes to add to list U� (steps 23–24). Each of those planes in

turn are used to derive three new weighting schemes (steps 26–27) which are added to the list
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of objective weights to consider (step 28). Any new objective weightings that are found are like-

wise used to generate and solve additional models (steps 16–17), find new supported efficient

solutions (steps 18–20), and generate new weighting schemes to consider until all supported effi-

cient solutions and associated non-dominated paths have been found (step 30). For comparative

purposes, the NISE approach for biobjective least-cost paths is outlined in S1 Text.

 

MONISE Supported Non-dominated Least-cost Paths ( ( , )G N A , l L∈ , ,o N d N∈ ∈ , 0.0001,  0kδ = = ) 

A: Initialization 
1.  () list of criteria weight vectorsW =  

2.  * () list of vectors of Pareto frontiersY =  

3.  *  () list of vectors of | | Pareto frontiersU L=  

4.  () list of arcs for non-dominated pathSEP =  
B: Identify anchor points and Utopia plane 
5.  for each criterion  in :v L  

for each criterion  in :
          if :  ;  else: (1 2 )

          1

     

l l

l L
v l w w

k k

δ δ≠ = = −

= +

 

6.     * *   s.t. (2) and (3)k od
l l

l L

s y Min w
∈

⇔ = Ω∑  

7.     * ).insert ({( , ) | 1}s
ijSEP i j x =  

8.   * *.insert( )kY y  

9.  * *1 *2 *.insert((   ... ))kU y y y  

C: Identify new weighting vector 
10.  (0, 0), 1R i= =  

* * *

* * *

* * * *

for  =1 to | |:
     if ( 1) :

          [| |][ ]

          [| |][1]

    [ ]

    1

h

l

l h h l

h L
h

y U U h

y U U

R i y y y y
i i

≠

=

=

= = −

= +

������
 

11.  [1] [2]m R R= ×
�

 

12.  1 2 | |(   ... )
| |L

m
n n n

m
=
�
�  

13.  1 2 | |.insert((   ... ))LW n n n  
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Fig 1. MONISE algorithm for the MOHCP.

https://doi.org/10.1371/journal.pcbi.1008540.g001

PLOS COMPUTATIONAL BIOLOGY Modeling habitat connectivity in support of multiobjective species movement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008540 December 28, 2020 8 / 23

https://doi.org/10.1371/journal.pcbi.1008540.g001
https://doi.org/10.1371/journal.pcbi.1008540


Multi-Criteria labeling algorithm for MOHCP. The multi-criteria labeling algorithm of

Martins [41] can be adapted to accommodate the three objectives in the MOHCP problem to

retrieve the full set of efficient solutions (supported and unsupported) from one origin to all

destination nodes (Fig 2). The Multi-criteria All Non-dominated Least-cost Paths algorithm for

MOHCP requires a graph, G(N,A), with arcs attributed with the measures needed to evaluate

the objectives ðe:g:; a1
ij; a

2
ij; a

3
ijÞ, as well as an origin node and a set of destination nodes. In Stage

A, empty list Q is initialized that tracks nodes that have been labeled and need to be reconsid-

ered later in the solution procedure. The origin node is then labeled with a set of initial values,

a 5-tuple in which the first three elements reflect objective values when traveling from origin

node to the labeled node and the last two referencing the index of the preceding node and an

id for the label, respectively. These initial values are to assist with computing objective values

at the first move when departing the origin node toward an adjacent node. The labeled origin

node is then added Q (step 1). In Stage B, for each labeled node i in Q (step 3), the objective

values of the neighboring nodes Ni = {j|(i,j)2A} (step 4) are re-computed as accessed through

node i (steps 5–9), with their labels updated accordingly. A filtering technique is applied to

drop dominated paths that may be encountered whenever a set of labels is updated or changed

(steps 10–13). Whenever a new node (j2Ni) is visited, its label set is evaluated to check if the

set of non-dominated paths from origin node to that node have changed or not. Should a

node’s label be updated, it is added to Q for reconsideration (steps 14–15). Finally, the incum-

bent node i is removed from Q (step 16) and the process continues until all nodes are visited

and labeled. In Stage C, the supported and unsupported non-dominated paths are retrieved by

tracking labels, from each destination node back to the origin node using the reference index

to the predecessor node embedded in each label (steps 18–27) and placed into the list AEP.

Application to amphibian habitat connectivity

The MOHCP is now applied to model paths/corridors that could support amphibian habitat

connectivity to illustrate the applicability of the multiobjective optimization framework and

solution approaches.

Factors affecting amphibian habitat connectivity. The persistence of amphibians

depend on aquatic and terrestrial habitat, and the ability to successfully migrate and disperse

[49,50]. There is some doubt as to the amphibians’ ability to accurately orient themselves with

respect to prospective new habitat [6,51]. However, there is evidence that movements toward

and away from breeding sites are nonrandom. For instance, Walston and Mullin [52] report

that the initial orientation of juveniles from breeding ponds may be influenced by the width of

surrounding forested habitat. There is an increasing body of research that has noted the effects

that different types of landscape conditions may have on the ability of amphibians to traverse

the landscape. For example, Lowe et al. [26] report slope between habitat having a negative

effect on gene flow and dispersal. In another study, Giordano, Ridenhour, and Storfer [27]

report limited gene flow between high-altitude and low-altitude sites, highlighting the negative

impact of elevation change on dispersal. Amphibian movement is known to be influenced by

changes in moisture conditions, perhaps in attempts to minimize risk of desiccation and

depredation [25]. Traversal distance, the total distance covered in moving from one habitat to

another, has also been reported as a factor affecting the movement of amphibians [53] and is

viewed as an important factor when modeling cost and likelihood of successful dispersal over

the landscape [24]. Therefore, three objectives that may be relevant to amphibian habitat con-

nectivity that fit into the general MOHCP framework are: a) minimize traversal risks associ-

ated with land use/land cover types, b) minimize distance and deviation from ideal moisture
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Multi-Criteria All Non-dominated Least-cost Paths 
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2. while :Q ≠ ∅  
3.      [1]i Q=  
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13.                      2drop ( ) g  
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15.            .insert ( )Q j  
16.     .remove ( )Q i  
C: Identify all efficient paths 
17. ()AEP =  
18. For  in :d D  
19.     For  in ( ):g Label d  
20.         ()path =  
21.         .insert ( )path d  
22.          =  [4]gθ  
23.         while :oθ ≠  
24.               .insert ( )path θ  
25.                = ( )[5]Labelη θ  
26.                = ( )[ ][4]Labelθ θ η  
27.         .insert ( )path o  
28.         .insert ( )AEP path  
29.  Return AEP  

 
Fig 2. Multi-criteria all non-dominated least-cost paths labeling algorithm for the MOHCP.

https://doi.org/10.1371/journal.pcbi.1008540.g002
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conditions, and c) minimize change in elevation, which relate to Objectives (5)-(7) in the

MOHCP respectively.

Study area and experimental design. The MOHCP and solution methodologies outlined

earlier are applied to model landscape paths supporting amphibian habitat connectivity in a

portion of Pershing State Park, located in the state of Missouri, USA (Fig 3). This area hosts a

variety of wetland types and other landscape features including woody-dominated wetland,

deciduous forest, deciduous woody, grassland, cropland, open water and impervious surface

[54]. The study site contains 12 wetlands which are considered to be viable origin and destina-

tion amphibian habitats.

While many studies of habitat connectivity utilize a raster-based model of the landscape as

a basis for the network, vector-based models can be used as well [55], especially when the land-

scape characteristics exhibit homogeneity over larger areas as is the case with the current study

site. Wetland polygons [56] were used to represent amphibian habitat within the region. To

represent the landscape to be traversed, each wetland polygon was rendered as a network

node. The areas intervening the wetlands were also rendered as nodes located to represent the

spatial variation in land use/ land cover in the region and arcs were added between neighbor-

ing nodes. Nodes were then added at locations where the network arcs intersected land use/

land cover polygon boundaries to ensure each arc only traverses one land use/ land cover cate-

gory. A total of 909 nodes and 1,277 arcs were involved in the resulting network representation

of this system (Fig 4).

The arc attributes needed to assess Objectives (5), (6) and (7) were then derived from sup-

plementary layers of geographic data. The elevation of each node was extracted from a digital

elevation model (DEM) [54] (Fig 5A). The effects of elevation change were calculated for each

arc by subtracting elevation of the end nodes ej from that of starting nodes ei. Elevation change

was classified as either uphill or downhill where uphill movements were weighted twice as

Fig 3. Study site.

https://doi.org/10.1371/journal.pcbi.1008540.g003
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high as downhill movements based on their perceived negative impact to movement as in Eq

(10) to compute zij.

zij ¼
wpðej � eiÞ; if ej � ei

wnðei � ejÞ; if ej < ei

8ði; jÞ 2 A ð10Þ

(

Surface moisture was estimated using the topographic wetness index (TWI) index of Beven

and Kirkby [57]. The TWI is formulated as TWI = ln(α/tan(β)), where α is the drainage area

and β is local slope. Drainage area (α) and local slope (β) were derived from the DEM. When

calculating the TWI index, locations having zero slope and a non-zero drainage area were

given the maximum meaningful TWI value (TWI = 21.77) over the study area, and locations

having zero slope and zero drainage area were given the lowest meaningful value (TWI =

−0.66). TWI for the study region is shown in Fig 5B. The cost weighted deviation of the soil

moisture (mij) along an arc (as measured using TWI) from ideal surface moisture conditions

for amphibians (M) was then computed as ((M−mij+1)cij). That is, when soil moisture is low

relative to the ideal level, the greater the deviation and associated cost to traversal. Land use/

land cover was used as a basis for characterizing traversal risk (Fig 5C). First, each arc was asso-

ciated with its underlying land use/ land cover [54]. Land use/land cover categories were

!(!( !(
!(

!(

!(!( !(

!(

!( !( !(
!(

!(
!(

!(!(
!(

!(

!(!(

!(

!(

!(!(
!( !(

!(

!(

!(!(!(

!(

!(!(

!(!(

!(
!(

!(!(!(

!(
!(

!(!(
!(

!( !( !(!(

!(

!(

!(
!(

!(!(!( !( !(
!(

!(

!(

!( !(!(

!(!(
!(

!(

!(

!(
!(!(

!( !(

!(

!(

!(

!(
!(
!(

!(!(

!(!(

!(!(!(

!(
!(

!(!(

!(

!(!(

!( !( !( !(

!(

!(

!(

!(!(

!(
!(

!(

!(!(!(
!(

!(

!(
!(

!(

!(

!(

!(!(
!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(!(
!(

!(
!(

!(

!(
!(!(

!(

!(

!(

!(

!(
!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!( !(!( !(

!(

!(

!(!(

!(

!(

!(

!(!(

!(!( !(

!(

!(

!(

!(

!(

!(
!(

!(!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(
!(
!(

!(

!(

!(

!(

!(
!(

!(

!(
!(

!(!(
!(

!(

!(!(

!(

!( !(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(!(!( !( !(!(

!(

!(

!(

!( !(!(
!(

!(

!(!(

!(

!(!(!(!(
!(!(

!(

!(
!(

!(
!(
!(

!(

!(

!(

!(

!(

!(!(

!(
!(

!(

!(
!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(
!(
!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(
!(!(

!(

!(

!(

!(

!(!(!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(
!(!(

!(
!(

!(

!(
!(

!( !( !(!(!(
!( !(

!(!(

!(!(
!(!(

!(
!(
!(

!(
!(
!(

!(

!(
!(

!(

!(

!(

!(

!( !(

!(
!(

!(
!(

!(

!(

!(
!(
!(

!(

!(

!(

!(

!(

!(

!( !(!(!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(!(
!(

!(
!(
!( !( !( !(

!(!( !(!( !(

!(
!(

!(
!(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(
!(

!(!(

!(

!(

!(

!(

!(!(
!(

!(

!(

!(!(!(

!(
!(

!(

!(

!(

!(

!(!( !(
!(

!(

!(

!(

!(

!(
!( !(

!(

!(
!(!(

!(

!(

!(

!(

!(!(

!( !( !(!(!(

!(!(!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(!(

!(!(

!( !(

!(
!( !( !(!(

!(!(!(

!(
!(

!(!(

!(

!(

!(

!(

!(
!(
!(

!(

!(

!(!(

!(!(

!(

!(!(

!(

!(

!(!(

!(

!(

!(

!(

!(!(
!(

!( !(!(!(

!(

!(
!(
!(!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(
!(

!(
!(

!(!( !(

!(!(!( !(!(
!(

!(

!(
!(
!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!( !(

!(

!(
!(

!(

!(

!(
!(
!(

!(
!(

!(

!(

!(

!(

!(!(
!(

!(

!(

!(
!(

!(

!(
!(

!(

!(

!(

!(!(!(

!(

!(!(!(!(

!(!(

!(!(!(

!(!(

!(

!(

!(

!(

!(
!(

!(

!(

!(!(

!(
!(

!(!(

!(

!(

!(!(

!(

!(

!(

!(

!( !(
!(
!(
!(!(

!(

!(

!(!(

!(

!(

!(
!(

!(

!(

!(
!(

!(!(

!(

!(

!(

!(
!(

!(

!( !(

!(!(

!(

!(

!(

!(!(!(

!(

!(

!(

!(!(
!(

!(
!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(
!(

!(
!(

!(

!(
!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(
!( !(

!(

!(
!(

!(

!(!(

!( !(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!( !(

!(!(

!(

!(

!(

!(!(

!( !(

!(

!(
!(

!(

!(

!(

!(

!(

!

!

!!!

!
!

!

!
!
!

!

!

!

!
!

!
!

!
!!

!!
!

! !
!!!

!!
! !

!!
!!

!
!!
!!

!!
!
!

!
!

!!!
!!!

!!
!

!!!
!

!

! !!

!
!
!
! !

!
!! !
!
!

!!

!
!!

!

!

!

!
!

!

!!!!!!
!

!!

#

#

#

#
#

#

#

#

# #
#

#

Legend
# Origins/Destinations

! Entrance/Exit nodes

!( Nodes

Arcs

Wetlands ±
0 0.25 0.5

Kilometers
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assigned a base level of risk (πb) (Table 1). Since longer arcs pose higher exposure to a risk cate-

gory, an adjustment function was applied (πij = πb+cijπb/2cmax) such that the base risk level is

increased up to 50.0% based on the length of an arc (cij) relative to the longest arc (cmax) in the

network. Finally, arcs within wetland polygons were attributed with zero costs given that charac-

teristics within each wetland were assumed to be homogenous. Should significant variations exist

within a habitat area, the habitat would best be represented as multiple polygons/nodes. A sum-

mary of the arc attributes used to represent the three objectives is provided in Table 2 and the

complete network dataset can be accessed at: https://doi.org/10.6084/m9.figshare.12609404.v1.

Results and discussion

Solving the MOHCP

Both the MONISE Supported Non-dominated Least-cost Paths algorithm and the Multi-Criteria
All Non-dominated Least-cost Paths algorithm were applied to solve the MOHCP for the

Fig 5. Elevation, TWI, and relative risk.

https://doi.org/10.1371/journal.pcbi.1008540.g005

Table 1. Relative risk associated with traversal of categories of land use/land cover.

Land use/land cover class Relative risk (πb) Area (sq. km)

Woody-dominated wetland 0.060 0.183

Deciduous forest 0.065 0.531

Deciduous woody/Herbaceous 0.070 0.095

Grassland 0.075 0.572

Open water (river) 0.085 0.085

Cropland 0.090 0.428

Impervious surface 0.095 0.035

Total = 1.929

https://doi.org/10.1371/journal.pcbi.1008540.t001
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landscape network representing prospects for amphibian movement in the study site. The

algorithms were implemented using Python 3.6.6 on a Windows 10 64-bit with five 1.80 GHz

processors and 16.0 GB RAM. The optimization solver Gurobi 9.0 was used to find the optimal

solution to weighted models in the MONISE routine (steps 6 and 17 in Fig 1). Example imple-

mentations of these algorithms can be accessed at: https://doi.org/10.6084/m9.figshare.

12609404.v1.

The MONISE Supported Non-dominated Least-cost Paths algorithm was executed 132

times, once for each origin-destination pair, identifying all 620 supported efficient solutions in

13.40 minutes. The Multi-Criteria All Non-dominated Least-cost Paths routine was executed 12

times, once for each origin, identifying all 3,550 efficient solutions and associated non-domi-

nated paths (supported and unsupported) in 34.46 minutes (solutions can be accessed at:

https://doi.org/10.6084/m9.figshare.12609404.v1). Therefore, it is easy to see that the unsup-

ported paths constitute more than 82% of the non-dominated paths, paths that would be

ignored in other estimation procedures such as the weighting method and MONISE. For indi-

vidual origin-destination pairs of wetlands, the number of supported non-dominated paths

range from 1–25, while the number of all non-dominated paths (both supported and unsup-

ported) range between 1–183. One explanation for the relatively high proportion of unsup-

ported non-dominated paths is that in even networks of moderate size, a wide variety of

diverse paths can exist and hence, there are many complex tradeoffs among the objectives that

can manifest.

Solution characteristics

The number of non-dominated paths originating from and destined to each wetland are

reported in Table 3. In general, wetlands with a larger number of supported non-dominated

paths also tend to have a larger number of unsupported non-dominated paths. The number of

arcs entering each wetland vary based on their size, shape, and relationship with other land

use/ land cover areas. The smallest wetland (perimeter = 70.8 m) has only three entrance/exit

nodes while the largest wetland (perimeter = 957.2 m) has 14 entrance/exit nodes. As such,

some wetlands are going to have more prospective paths given that more opportunities for

entrance/exit may exist.

For supported non-dominated paths, the average objective values with respect to likelihood

of successful traversal, deviation from ideal soil moisture weighted distance (cost and moisture

level shown separately), and elevation change are detailed in Table 4. In aggregate, the sup-

ported non-dominated paths tend to have better average objective values with respect to all

modeled objectives than the unsupported paths. One reason for this is that there are many

more unsupported paths between distant wetlands given more diverse opportunities for rout-

ing exist. As discussed earlier, the supported non-dominated paths are only a subset of the full

Table 2. Summary of arc attributes.

Variable Mean SD Min Max

πij
� 0.080 0.012 0.060 0.135

mij
�� 3.31 3.77 - 0.66 21.77

zij
��� 1.645 1.906 0.0 13.293

cij��� 49.879 49.043 0.006 305.195

� % likelihood

�� TWI
��� meters.

https://doi.org/10.1371/journal.pcbi.1008540.t002
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non-dominated set. While the computational time required to identify the supported set using

the MONISE algorithm is approximately 37% of that needed to identify the complete set of

non-dominated paths, the supported non-dominated solutions only constitute 17% of the full

set of non-dominated paths (supported and unsupported). Considering the smaller size of sup-

ported non-dominated set and larger standard deviation among the routing objectives in those

solutions, it is clear that analysis and decision-making based upon only consideration of the

supported efficient solutions (or a subset thereof) is rather limiting given those solutions repre-

sent such a small proportion of the efficient set.

Each panel in Fig 6 depicts the Pareto frontier for paths from one origin wetland to six of

the destination wetlands (wetland ids correspond with those in Fig 3). The circles represent

supported non-dominated paths while the squares represent unsupported non-dominated

paths. For example, Fig 6A shows the frontier for paths originating at wetland 7 destined to

wetlands 1 through 6. There is only one non-dominated path (which is a supported path)

between wetland 7 and 4 and it has the lowest weighted distance, lowest elevation change, and

Table 3. Number of supported and unsupported non-dominated paths identified for each wetland.

Wetland ID Perimeter (m) # entrance/exit nodes # supported # unsupported # all

Incoming Outgoing Incoming Outgoing Incoming Outgoing

1 214.8 9 34 27 139 128 173 155

2 166.5 6 43 43 154 122 197 165

3 117.4 5 43 41 163 162 206 203

4 194.4 8 52 48 158 166 210 214

5 113.7 8 54 56 204 173 258 229

6 524.1 9 50 46 194 204 244 250

7 181.9 7 32 34 203 250 235 284

8 70.8 3 38 35 216 257 254 292

9 190.3 5 45 50 262 280 307 330

10 116.2 6 67 84 305 263 372 347

11 172.8 5 74 70 293 296 367 366

12 957.2 14 88 86 639 629 727 715

Sum 3020.1 85 620 620 2930 2930 3550 3550

https://doi.org/10.1371/journal.pcbi.1008540.t003

Table 4. Summary of movement objectives for supported and unsupported non-dominated paths.

Path attribute Supported non-dominated paths

Mean SD Min Max

1−πij
� 0.24 0.16 0.02 0.91

mij
�� 23404.05 9455.75 1096.88 46028.09

zij
��� 42.74 21.91 0.52 110.42

cij��� 1329.47 551.45 50.31 2401.98

Unsupported non-dominated paths

1−πij
� 0.14 0.09 0.02 0.70

mij
�� 29215.34 7585.58 5318.42 47667.66

zij
��� 53.47 19.86 5.25 115.59

cij��� 1641.89 443.12 278.58 2693.71

� % likelihood

�� TWI
��� meters

https://doi.org/10.1371/journal.pcbi.1008540.t004
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A B

C D

E F

A B

C D

E F

Fig 6. The Pareto frontier for paths destined to wetlands 1, 2, 3, 4, 5, and 6 from: A) wetland 7, B) wetland 8, C) wetland 9, D) wetland 10, E) wetland 11,

and F) wetland 12.

https://doi.org/10.1371/journal.pcbi.1008540.g006
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highest probability of successful traversal. That is reasonable given that the wetlands are

extremely close together. Wetland 7 is a little further from wetlands 6 and 1 and there are two

supported and two unsupported non-dominated paths connecting it to both. Again, without

using the label correcting approach, 50% of the non-dominated paths would have been missed.

In cases in which wetlands are separated by greater distance and more diverse network struc-

ture, options for movement can exhibit much more variation. For example, wetlands 7 and 5

are both relatively small and far apart. However, there are many more non-dominated paths, 3

of which are supported with the other 15 being unsupported. All of these paths have relatively

low probabilities of traversal success (0.11–0.21%), but have quite a bit of variation in elevation

change (24.6–59.8m) and a small amount of variation in their weighted distance (25,391–

30,962). Fig 6F shows the frontier for paths originating at wetland 12 destined to wetlands 1

through 6. Wetland 12 is relatively large and has multiple entrance/exit nodes. As such, there

are more opportunities for finding competitive combinations of objectives. A majority of the

non-dominated paths in this case are unsupported and the diverse nature of the tradeoffs

between the objectives can be seen. Consider for instance the frontier for paths between wet-

lands 12 and 1. In this case, there are three supported and 79 unsupported non-dominated

paths. So again, if one were to only identify the supported non-dominated paths in this exam-

ple, more than 96% of the other non-dominated paths would be ignored. Among these paths,

the probability of successful traversal ranges from 0.02–0.19%, with elevation change ranging

from 50.4 to 111.2m and weighted distance ranging from 28,790–44,815.

Fig 7 classifies each arc by the number of supported non-dominated paths traversing it in

the anchor point solutions (those optimizing each individual objective as in steps 5–6 in Fig 1).

In this sense, there are 132 non-dominated paths for each objective (one path between each

pair of wetlands). When optimizing the probability of successful traversal (Fig 7A) only 293 of

the 1,277 network arcs (22.9%) are traversed by a non-dominated path. The majority of those

(162) are traversed by 6 or less paths with only 13 being traversed by 19 or more paths. When

optimizing weighted distance (Fig 7B) 37.7% of the network arcs are traversed by a non-domi-

nated path, indicating that more arcs are favorable in some way toward that objective. A

majority of those (344) are still traversed by 6 or less paths. Fig 7C shows the non-dominated

paths resulting from optimizing the elevation change objective. In this case, only 22% of the

arcs are traversed by a path and there are more arcs (52) that are traversed by 19 or more paths

indicating greater consolidation of utility among the wetlands. It should be noted that for any

of the three objectives (Fig 7A, 7B and 7C), there are instances in which arcs traversed by non-

dominated paths according to that objective are not utilized at all by paths non-dominated

with respect to one or both of the other objectives.

The spatial distribution of the supported and unsupported non-dominated paths is shown

in Fig 8. Fig 8A shows the number of supported paths that traversed each arc. In this case,

approximately 55% of the arcs are traversed by at least one supported path (unused arcs are

not shown). There are clearly some portions of the network that are much more utilized than

others. Fig 8B shows the number of unsupported paths traversing each arc. These unsupported

paths traverse approximately 75% of the arcs in the network, making use of 20% more of the

system than the supported paths. Many of the arcs that were heavily traversed by supported

paths are also heavily traversed by unsupported paths, emphasizing their role in the system.

However, there are also some arcs that were used to a lesser extent by the supported paths that

are used much more by the unsupported paths. For some additional perspective, Fig 8C shows

the spatial distribution of all the non-dominated paths (supported and unsupported) as well as

the arcs that are never traversed by a non-dominated path. These unused arcs account for 25%

of the network arcs, many of which occur near the periphery of the wetland system.
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Probability of 
successful traversal

2 - 6 (162)

7 - 18 (118)

19 - 32 (13)

Wetlands

Weighted distance
2 - 6 (344)

7 - 16 (121)

17 - 30 (17)

Elevation change
2 - 9 (171)

10 - 18 (58)

19 - 38 (52)

A

B

C

Fig 7. Number of non-dominated paths using arcs in anchor solutions with respect to A)O1 (probability of successful

traversal), B)O2 (moisture weighed distance), C)O3 (elevation change).

https://doi.org/10.1371/journal.pcbi.1008540.g007
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Supported paths
1 - 15 (390)

16 - 40 (207)

41 - 80 (87)

81 - 139 (17)

Wetlands

Unsupported paths
1 - 62 (523)

63 - 168 (281)

169 - 356 (100)

357 - 1061 (48)

All non-dominated
1 - 69 (512)

70 - 189 (285)

190 - 413 (113)

414 - 1194 (47)

unused arcs (320)

A

B

C

Fig 8. Non-dominated paths: A) supported, B) unsupported, and C) all.

https://doi.org/10.1371/journal.pcbi.1008540.g008
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Conclusions

Assessing prospects for habitat connectivity involves consideration of a complex mixture of

factors. A common approach in this respect is to construct a multiobjective least-cost path

model to reason about prospects for habitat connectivity. A major realization of many studies

is that while multiobjective least-cost paths do allow for the tradeoffs among unique combina-

tions of movement criteria to be evaluated, sometimes even minor changes in how the criteria

are combined can give rise to completely different solutions and interpretations of a landscape.

One reason for this is that multiobjective least-cost path problems may indeed have a tremen-

dous number of solutions that are best in some respect, known as Pareto optimal or efficient

solutions. There are two general categories of Pareto optimal solutions, known as supported

and unsupported efficient solutions. Most commonly used solution techniques for multiobjec-

tive least-cost path problems can identify the supported efficient solutions (or a portion

thereof). However, the number of supported efficient solutions can be very small relative to

the number of unsupported efficient solutions. Unfortunately though, most applications of

multiobjective least-cost path models only identify a very small proportion of the supported

efficient solutions given the solution methodologies that are typically employed. As a result,

the solutions that are used as a basis for analysis may only serve as a weak estimate of the con-

nectivity that may actually exist.

To address these issues, this article first provides an overview of the least-cost path problem

in the context of ecological research, the distinction between supported and unsupported effi-

cient solutions to least-cost path problems, and methods that can be used to identify each.

Next, a multiobjective least-cost path model that accounts for a general set of objectives that

are thought in some way to influence movement: a) minimizing risk, b) minimizing distance,

and c) minimizing change is formally described. Deriving solutions to a three objective model

such as this can be very challenging and as such, two alternative methods for deriving efficient

solutions to the model are detailed. The first solution method is a multiobjective non-inferior

set estimation (MONISE) algorithm for identifying all supported efficient solutions and associ-

ated non-dominated least-cost paths. While the MONISE approach can identify the supported

efficient solutions, it cannot identify the unsupported efficient solutions. As such, a multi-cri-

teria least-cost path labeling algorithm is extended to identify all efficient solutions (supported

and unsupported) to the multiobjective least-cost path model.

The developed multiobjective least-cost path model is then applied to evaluate prospects for

amphibian habitat connectivity in a wetland system to demonstrate the approach. In such

applications, the weighting method is typically used to integrate the modeling objectives,

resulting in the identification of a handful of supported efficient solutions. However, to illus-

trate the extensive and diverse set of solutions that can exist, the MONISE and multi-criteria

labeling algorithms are applied to more rigorously identify efficient solutions to the model. It

was found that the MONISE approach can quickly and efficiently identify all the supported

efficient solutions to the multiobjective model. The supported efficient solutions on their own,

provide only an estimate of the solutions in the efficient set. However, despite being a little

more computationally demanding, the multi-criteria labeling approach is able to identify all
supported efficient solutions as well as all unsupported efficient solutions to the model. Of par-

ticular note is that 82% of the efficient solutions were in fact unsupported. Therefore, simply

focusing on identification and analysis of supported efficient solutions (or small subset

therein) could risk overlooking a significant proportion of viable and potentially important

alternatives for habitat connectivity. Thus, analyst should be wary of interpretative problems

that may arise when basing analysis on a limited sample of the efficient solutions to multiob-

jective least-cost path problems.
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Modeling habitat connectivity is extremely challenging and can be subject to many uncer-

tainties. Reasoning about the exact mixture of factors that underlie movement involves both

field research as well as exploratory analysis. Multiobjective modeling approaches allow for the

tradeoffs among the wide variety of factors that could influence habitat connectivity to be bet-

ter evaluated. As shown in this research, in some instances these tradeoffs may be relatively

straightforward. However, in others they may be more complex and perhaps not very intuitive.

Regardless, providing environmental planners, managers, and decision makers with a com-

plete set of tradeoffs will allow for a better understanding as to how elements of the landscape

act to facilitate or impede habitat connectivity.
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