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Abstract

Infection with Influenza A virus can lead to the development of encephalitis and subsequent
neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic par-
kinsonism has been reported in surviving patients of H1N1 infections, but not all cases of
encephalitic H1N1 infection present with these neurological symptoms, suggesting that
interactions with an environmental neurotoxin could promote more severe neurological
damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1
because excessive exposure early in life can induce long-lasting effects on neurological
function through inflammatory activation of glial cells. In the current study, we used a two-hit
model of neurotoxin-pathogen exposure to examine whether exposure to Mn during juvenile
development would induce a more severe neuropathological response following infection
with H1N1 in adulthood. To test this hypothesis, C57BL/6 mice were exposed to MnCl, in
drinking water (50 mg/kg/day) for 30 days from days 21-51 postnatal, then infected intrana-
sally with H1N1 three weeks later. Analyses of dopaminergic neurons, microglia and astro-
cytes in basal ganglia indicated that although there was no significant loss of dopaminergic
neurons within the substantia nigra pars compacta, there was more pronounced activation
of microglia and astrocytes in animals sequentially exposed to Mn and H1N1, as well as
altered patterns of histone acetylation. Whole transcriptome Next Generation Sequencing
(RNASeq) analysis was performed on the substantia nigra and revealed unique patterns of
gene expression in the dual-exposed group, including genes involved in antioxidant activa-
tion, mitophagy and neurodegeneration. Taken together, these results suggest that expo-
sure to elevated levels of Mn during juvenile development could sensitize glial cells to more
severe neuro-immune responses to influenza infection later in life through persistent epige-
netic changes.
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Introduction

Parkinson’s disease (PD) is characterized by the loss of voluntary motor control due to the
degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with
associated o-synuclein protein-aggregation, neuroinflammatory activation of glial cells, mito-
chondrial dysfunction and oxidative stress [1]. Although genome-wide association studies
(GWAS) have identified genetic variants in familial forms of the disease, these represent a very
small percentage of individuals with PD, with the majority of PD cases thought to be sporadic
or of an unknown etiology [2]. Epidemiological and experimental evidence suggests that envi-
ronmental neurotoxin exposure and viral infections are possible risk factors for sporadic PD.
Following the 1918 “Spanish Flu” pandemic, nearly every patient who had an acute episode of
encephalitis lethargica (EL) from the HINI infection went on to develop postencephalitic par-
kinsonism and individuals who were born between 1888 and 1924 had a two to three-fold
higher risk of developing Parkinson’s disease later in life than those born outside of that range
[3-6].

Our lab and others have recently shown that exposure to certain classes of enveloped RNA
viruses, Western equine encephalitis virus (WEEV) and H5N1 (strain, A/VN/1203/04) via
intranasal infection can induce loss of dopaminergic neurons in the SNpc [7, 8]. Infection with
viruses such as H5N1 avian influenza virus, WEEV and HIN1 induce neuronal loss in part
through the activation of microglia and astrocytes and subsequent release of glial-derived neu-
rotoxic inflammatory mediators [7-9]. Microglia and astrocytes express a variety of damage-
associated molecular patterns (DAMPs) that promote inflammation and disease progression
in postencephalitic parkinsonism [10]. Reactive microglia and astrocytes have increasingly
become the focus of studies examining the pathophysiology of PD, suggesting that neuroin-
flammation may be a link between viral encephalitis and the development of parkinsonian
neurological symptoms [11]. Additionally, astrocytes and microglia have innate immunologi-
cal memory in the brain to facilitate a rapid inflammatory response to recurrent inflammatory
stressors, and it has been postulated that this acute and exacerbated inflammatory response
from glia may have the capacity to exacerbate neuronal injury following secondary insults
[12].

How encephalitic infections from non-neurotropic HIN1 virus cause neurological dysfunc-
tion and neurodegeneration in certain individuals is not entirely clear but may be related to
the severity of the neuroinflammatory response [7, 8, 13-17]. This could be due to prior expo-
sure to environmental neurotoxins that activate innate immune inflammatory signaling in
microglia and/or astrocytes, thereby sensitizing the tissue environment of the brain to greater
inflammatory activation of glial cells during an encephalitic infection. Data from recent studies
examining innate immune memory in microglia support this possibility, where multiple injec-
tions of LPS in mice resulted in immune training that amplified activation of microglia and
astrocytes as well as levels of inflammatory cytokines upon later immunological challenge [12].
Similarly, mice infected with HIN1 prior to treatment with the neurotoxin, 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) had significantly greater activation of microglia and
loss of dopamine neurons in the SNpc that mice treated only with MPTP [14]. Elevated levels
of Mn during juvenile development in mice can exacerbate neuroinflammatory activation of
glia and increase the production of reactive oxygen and nitrogen species and inflammatory
cytokines following a subsequent exposure to Mn [18]. Rats exposed to Mn during juvenile
development at concentrations comparable to low environmental exposure levels did not have
overt neurotoxicity but showed evidence of deficits in mitochondrial respiration, as well as oxi-
dative stress and chronic neuroinflammation [19]. Both Mn and viral infection induce inflam-
matory activation of microglia and astrocytes and mitochondrial stress in PD-relevant brain
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regions, suggesting that neuroinflammatory responses to Mn and encephalitic infections may
evoke common pathophysiological signaling mechanisms in glial cells leading to altered innate
immune responses in the brain [18, 20, 21].

Previous work suggests that glial inflammatory responses to Mn can exacerbate neuronal
injury following secondary neurotoxic insults [10, 18, 22-25] but whether Mn can also
enhance the severity of neurological damage from encephalitic viral infections with HIN1 is
unknown. In the current study we investigated whether elevated levels of an Mn during juve-
nile development could enhance neuroinflammatory damage to dopaminergic neurons after
infection with HINTI influenza virus and increase one’s risk of developing neurological disease
later in life. We tested this hypothesis by exposing juvenile C57BL/6 mice to MnCl, in drinking
water (50 mg/kg/day) for 30 days from days 21-51 PN, followed by intranasal infection with
HIN1 at PN72. Control mice received only drinking water followed by either mock infection
or infection with HINI. Stereological counts of dopaminergic neurons and microglia in the
SNpc were performed. We noted pronounced microglia activation following dual treatment
with Mn and HINI relative to either treatment alone, as well as marked astrogliosis and
increased in the number of reactive Al astrocytes. RNA sequencing (RNAseq) analysis
revealed activation of multiple stress response pathways involved in antioxidant activity, mito-
phagy, anti-viral activity and neurodegeneration in mice treated with Mn and subsequently
exposed to HINT1. Collectively, these findings suggest that exposure to elevated levels of Mn
during juvenile development increases neuroinflammatory activation of glia following enceph-
alitic infection with HIN1 influenza virus later in life, likely through epigenetic modification
of histones that increases secondary innate immune responses in microglia and astrocytes.

Materials and methods
Exposure protocol with manganese and HIN1

All procedures were approved by Colorado State University and St. Jude Children’s hospital
Institutional Animal Care and Use Committee (IACUC) and were conducted in compliance
of the National Institute of Health guidelines. Dosing was performed as previously published
[26]. C57Bl/6 mice were obtained from the Jackson Laboratory and housed in a temperature-
controlled room (maintained at 22-24°C on a 12 hr light/dark cycle) with ad libitum access to
standard chow. At day P21, male and female C57BL/6 mice were administered MnCl, (50mg/
kg/day; Sigma) or normal drinking water. The dose of MnCl, was calculated by monitoring
water intake and weight gain for thirty days, with the concentration in drinking water adjusted
to deliver 50 mg/Kg/day according to water consumption. At P51, Mn-treated mice were
placed back on regular drinking water for a period of one month. Mice were then intranasally
infected with A/California/04/2009 (CA/09) HIN1 or mock-infected with saline. Infection
with HIN1 was performed as described previously [27]. Briefly, for infections, mice were
lightly anesthetized with isofluorane and intranasally inoculated with either 10> TCIDs, of
CA/09 in 25pl of phosphate-buffered saline (PBS) or PBS alone and monitored daily for 21
days post-infection by assessing any possible neurobehavioral abnormalities or clinical signs of
illness. A clinical scoring system was used to identify any animals with untoward morbidity,
the treatments performed did not produce any overt morbidity and all animals maintained
normal body weight and feeding behavior, relative to untreated/mock-infected controls. Clini-
cal scoring was performed by laboratory staff and was supported by daily observation from
dedicated laboratory animal veterinary personnel. After 21 days, infected or mock-infected
control mice were euthanized for tissue collection. Euthanasia was performed under deep iso-
fluorane anesthesia.
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Preparation of A/California/04/2009 (CA/09) HIN1 inoculum

A detailed description of inoculum preparation and administration has been previously
reported by our group [27]. In brief, A/California/04/2009 (CA/09) HINI virus was passaged
in the allantoic cavity of 10-day-old specific pathogen-free embryonated chicken eggs. At 48 to
72 hours post-infection, allantoic fluid was harvested, clarified by centrifugation, and stored at
—70°C. Tissue culture infectious dose 50% (T'CIDsy) titers were determined using Madin-
Darby canine kidney (MDCK) cells and evaluated by the method of Reed and Muench [28].

Tissue processing for immunohistochemistry and immunofluorescence

Mice were anesthetized with Avertin and transcardially perfused with 4% paraformaldehyde in
PBS. Brains were dissected and processed for paraffin embedding. Brains were then sectioned
on the microtome at 10pum thickness and mounted on polyionic slides (Superfrost-plus, Fisher
Scientific). Deparaffinized SN sections were incubated with primary antibody for identification
of dopaminergic neurons [mouse monoclonal anti-tyrosine hydroxylase (TH; Sigma-Aldrich;
1:500), microglia [rabbit polyclonal anti-IBA1 (Wako Chemicals; 1:500), astrocytes [rabbit
polyclonal anti-S100beta (Abcam; 1:500)], complement C3 [rat monoclonal anti-C3 (Abcam;
1:100)], SerpinA3 [mouse monoclonal anti-SerpinA3 (thermos; 1:250)], IP-10 [mouse mono-
clonal anti-IP-10 (Santa Cruz; 1:500)], IP-10/Cxcl10 [mouse monoclonal anti-cxcl10 (Santa
Cruz; 1:250)], CCL2 [mouse monoclonal anti-Ccl2 (Millipore; 1:500)], and acetylated Lysine
residues [rabbit polyclonal anti-acetylated lysine (Cell Signaling; 1:500)]. For immunohisto-
chemical analysis, the secondary antibodies included biotinylated mouse IgG (for TH, 1:1000)
or biotinylated rabbit IgG (for IBA1, 1:1000). Diaminobenzidine (DAB) or a VIP kit (Vector
labs) reaction was used to yield a brown (TH) or a purple (IBA1) color, respectively. For
immunofluorescence, anti-mouse, anti-rabbit or anti-rat IgG alexa flour 555, alexa flour 488,
or alexa flour 647 were diluted in TBS (2% Triton) at 1:500. Sections were washed 5X (5 min)
and stained with DAPI in the final wash after an hour incubation period in the secondary anti-
body. Sections were then mounted with medium, coverslipped and stored at 4°C until imaged.

Quantification of TH+ dopaminergic neurons and Ibal+ microglia in the
substantia nigra pars compacta

Quantitation of neurons and glial cells was performed as previously reported [27]. In brief, TH

+ dopaminergic neurons and IBA1+ microglia in the SNpc were estimated using standard
model-based stereological methods [16, 29]. Counts of total dopaminergic neurons and activated
microglia were estimated using Microbrightfield Stereolnvestigator (MBF Biosciences, Williston,
VT) and the optical fractionator method using an Olympus BX-51 microscope and 100X objec-
tive [30, 31]. The identification of resting and activated microglia was based on defined morpho-
logical criteria, as previously reported [16, 30]. Resting microglia were defined as having a small,
oval IBA1+ cell body that averaged 3 microns in diameter with long slender processes, while
microglia were classified as activated when the cell body was slightly increased in size compared
to resting microglia and had an irregular shape, with shorter and thickener processes. The inves-
tigator was blinded from all experimental groups during imaging and cell quantitation.

Quantification of astrocyte-specific inflammatory markers in the
substantia nigra pars compacta
Formalin-fixed, paraffin-embedded 10 pm brain sections were immunofluorescently-labeled

using a Leica Bond RXM automated robotic staining system. Sections were immunohisto-
chemically stained on a Leica Bond-III IHC automated stainer. Antigen retrieval was
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performed with Bond Epitope Retrieval Solution 2 for 20 minutes. Sections were then incu-
bated with primary antibodies for S1008+ (Abcam; rabbit, 1:500), complement C3 (Abcam;
rat monoclonal, 1:100), SerpinA3 (Thermos; mouse monoclonal, 1:250), IP-10/CXCL10
(Santa Cruz; mouse monoclonal, 1:250) and CCL2 (Millipore; mouse monoclonal, 1:500).
Secondary antibodies included AlexaFluor anti-rabbit IgG AlexaFluor 488, anti-rat IgG
AlexaFluor 555 and anti-mouse AlexaFluor 647. Whole-brain immunofluorescence montage
images of labeled tissue sections were imaged using an automated Olympus BX51 fluores-
cence microscope equipped with a Hamamatsu ORCA-flash 4.0 LT CCD camera and col-
lected using Olympus Cellsens software (v 1.15). Quantitative analysis was performed on
dual- or triple-labeled fluorescent images generated by montage imaging of an entire coronal
mouse brain section compiled from individual images acquired using an Olympus Plan
Apochromat 20X air objective (0.40 N.A.). All slides were scanned under the same condi-
tions for acquisition time, magnification, exposure time, lamp intensity and camera gain.
The substantia nigra was delineated by neuroanatomical landmarks and referenced to the
Allen brain atlas, following application of an adaptive threshold with shape factor and area
(um?) object filters for automatic S100B+ astrocyte cell detection. The number of cells was
divided over the area (um?) of the region. To measure expression of inflammatory proteins
within S100B+ astrocytes, mean intensities of complement C3, serpinA3, IP-10/CXCL10 and
CCL2 were measured by generating automated individual ROIs around all S100B+ astrocytes
within the SNpc. We assessed the presence of the inflammatory molecules on two coronal
sections per animal that were 10 um in thickness, spaced at 200 pm intervals within the
SNpc, with an N = 6-8 mice for each treatment group. The investigator was blinded from all
experimental groups during imaging and cell quantitation.

Quantification of histone acetylation in dopaminergic neurons, microglia
and astrocytes in the substantia nigra par compacta

Formalin-fixed, paraffin-embedded 10 pm brain sections were immunofluorescently-labeled as
described above using a Leica Bond RXM automated robotic staining system. Sections were
then incubated with primary antibodies for tyrosine hydroxylase (WAKO; goat, 1:500), S10083
(Abcam; rabbit, 1:500), IBA1 (Abcam; goat, 1:100) and lycine-acetylated histones (Cell Signal-
ing; rabbit, 1:500). Secondary antibodies included anti-goat IgG AlexaFluor 647, anti-mouse
IgG AlexaFluor 488, and anti-rabbit IgG AlexaFluor 555. To measure total lysine acetylation in
dopaminergic neurons, astrocytes and microglia in the SNpc, labeled tissue sections were
imaged using a Olympus Plan Apochromat 20X air objective (0.40 N.A.) and an automated
Olympus BX51 fluorescence microscope equipped with a Hamamatsu ORCA-flash 4.0 LT CCD
camera and collected using Olympus Cellsens software (v 1.15). Quantitative analysis was per-
formed as described above based on triple-labeled fluorescent images montage images of an
entire coronal mouse brain section. All slides were scanned under the same conditions for
acquisition time, magnification, exposure time, lamp intensity and camera gain. The substantia
nigra was delineated by neuroanatomical landmarks and referenced to the Allen brain atlas, fol-
lowing application of an adaptive threshold with shape factor and area (um?) object filters for
automatic TH+ dopaminergic neurons, IBA1+ microglia, and S100B+ astrocyte cell detection.
Mean intensities of acetylated lysine residues were measured within TH+ dopaminergic neu-
rons, IBA1+ microglia, and S100B+ astrocytes in the SNpc by generating automated ROIs
around each cell type. We assessed total lysine histone acetylation in dopaminergic neurons,
astrocytes and microglia in two coronal sections per animal that were 10 pm in thickness, spaced
at 200 um intervals within the SNpc, with an N = 6-8 mice for each treatment group. The inves-
tigator was blinded from all experimental groups during imaging and cell quantitation.
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RNA sequencing of the substantia nigra

This method was adapted from a previous protocol [32]. A systems-based transcriptional anal-
ysis of substantia nigra brain tissues from each treatment group was performed, and the treat-
ment conditions included control, HIN1, and Mn+HI1NI. Tissue was anatomically dissected
from the basal midbrain and included the substantia nigra but not the ventral tegmental area.
Isolated tissue was immediately flash frozen in liquid nitrogen and later homogenized in Trizol
reagent (Thermo Fisher) for purification. Samples were then treated with DNAse (Fermentas,
Burlington, Ontario) for 30 minutes and purified by phenol/chloroform/isoamyl alcohol
(25:24:1) (Fisher Scientific, Pitts- burgh, PA) extraction and ammonium acetate precipitation.
Quality and integrity of total RNA was assessed using the 4200 Agilent Tapestation, and sam-
ples were confirmed to have RIN scores of >7. RNA [transcripts & non-coding RNA] was iso-
lated from total host RNA followed by library construction and template preparation with the
Ion Total RNA-Seq kit and Ion Chef system kit. Sample libraries were prepared using the Ion
Total RNA-Seq kit v2 (Life Technologies) and multiplexed on a P1 chip using Ionxpress
RNA-Seq 1-16 kit (Life Technologies). Whole mouse transcriptome sequencing was then per-
formed using the Ion Proton Next Generation Sequencer (Life Technologies) through the core
facility at the Infectious Disease Research Complex (IDRC) at Colorado State University. Fol-
lowing Next Generation RNA-seq, we used read count coverage (RPKM or FPKM values) to
compare the differential gene expression between groups. Advanced RNA-seq analysis was
done using the Tuxedo package in Linux command line, including alignments using Bowtie2
and differential gene expression analysis using Cufflinks. Local realignment and base quality
score recalibration (BQSR) methods were used as needed to reduce false-positive base calls
and improve alignments.

Analysis of next-generation sequencing data

Data analysis was performed as previously published [32]. In brief, FASTQ files were analyzed
using Galaxy for quality trimming, with minimum PHRED quality threshold set at 20 and all
read length greater than 20bp. Trimmed reads were then aligned to Mus musculus mm9 using
Bowtie2 and gene expression determined using Cufflinks. Expression output was normalized
in FPKM format (fragments per kilobase of exon per million reads). Replicate mean values
were calculated, and the data was further reduced to FPKM values greater than two. Venn dia-
grams and Pie chats were generated by comparing the reduced FPKM transcript totals for
each treatment group. PANTHER (Protein Analysis Through Evolutionary Relations) Classifi-
cation System (http://pantherdb.org/publications.jsp#HowToCitePANTHER) was used to
ascertain functional pathways driving differences in gene expression by analyzing the complete
gene lists within each treatment group for their corresponding annotations, accessed from the
Gene Ontology (GO) Consortium. Secondarily, the PANTHER statistical overrepresentation
test enabled a comparison of those GO annotations across each treatment group to identify
functionally related genes relevant to neurodegeneration. The PANTHER gene list analysis
was used to perform a functional classification of all the GO-annotated transcripts within each
treatment group. This process employed the GO Term of Molecular Function and GO-slim
annotation data sets to analyze the expression profiles of each gene list. We charted any differ-
ences between treatment groups as the number of gene hits (the % of gene hits for a GO term
/total number of annotated genes in that category). The only GO Term categories shown are
those with demonstrable differences in the number of gene hits between the treatment groups.
The exact genes returned within each GO classification were analyzed in Excel using MATCH
function and dual comparisons to find the specific transcripts unique to each treatment cate-
gory. To further classify RNAseq transcripts according to function, gene lists were analyzed
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using the PANTHER overrepresentation test. This yielded statistically over or under-repre-
sented annotations among gene lists relative to the GO Biological Process and Molecular Func-
tion Mus musculus datasets. Complete gene lists for each treatment group were imported into
the analysis tool. Fisher’s Exact test for significance was used with FDR multiple test correc-
tion. Resulting GO Terms with an enrichment score >1.5 and a FDR<0.05 were considered
significant. Genes relevant to neurodegeneration were selected from significant GO Term
gene lists. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used
to create a network diagram of functional associations between protein products of unique
genes within the HIN1+Mn treatment group. Each protein-protein association is weighted
according to evidence channels delineated by differing colors. The confidence cutoff was set
to 0.4.

Statistical analysis

All data was presented as mean +/- SEM, unless otherwise noted. Experimental values from
each mean were analyzed with a Grubb’s (o = 0.05) test for exclusion of significant outliers.
Differences between each experimental group were analyzed by a one-way ANOVA following
a Tukey post hoc multiple comparisons test. Significance was identified as *"P < 0.01,

*P < 0.05,"*P < 0.01, ***P < 0.001, ****P < 0.0001. All statistical analysis was conducted
using Prism (version 6.0; Graph Pad Software, San Diego, CA).

Results

Juvenile manganese exposure increases the number of activated microglial
following encephalitic infection with HIN1 in the SNpc

To assess if Mn exposure during juvenile development would enhance the neurological effects
of infection with HINT1 in the substania nigra, three week old C57BL/6 mice were adminis-
tered MnCl, (50mg/kg/day) or normal drinking water for a total of 30 days and then
intranasally infected with HIN1 or mock-infected with saline at 3 months of age (Fig 1A). Ste-
reological determination of TH+ dopaminergic neurons and morphological analysis of Ibal

+ microglia at 21 DPI revealed that pre-treatment with MnCl, during juvenile development
induced persistent morphological changes in microglia consistent with an activated phenotype
and increased their reactivity to a subsequent infection with HINI1, characterized by retraction
of cytoplasmic processes and adoption of an amoeboid phenotype (Fig 1B-1I). We did not
observe significant changes in the number of dopaminergic neurons, a-synuclein protein
aggregation, or the total number of resting microglia in the SNpc at 21 DPI (Fig 1F and 1G).

Juvenile manganese exposure increases neuroinflammatory activation of
astrocytes following encephalitic infection with HIN1 in the SNpc

Given the increased number of reactive microglia in the substantia nigra and previous work
showing that astrocytes play a significant role in microglial activation through glial-glial com-
munication [7, 22, 23, 33, 34], we examined the extent and severity of astrocyte activation in
the basal ganglia following treatment with MnCl, (50mg/kg/day) and intranasal infection with
HINT1 at 21 DPI (Fig 2). To determine if dual treatment with Mn enhanced the inflammatory
phenotype of astrocytes and increased the number of Al neurotoxic astrocytes in the SNpc, we
measured the level of astrogliosis (Fig 2A-2E), as well as the expression of Al-specific astrocyte
inflammatory markers (C3, SerpinA3, IP10, CCL2) in S100B+ astrocytes with immunofluores-
cence co-localization (Fig 2F-2Y). At 21 DPI, there was a significant increase in S100B+ astro-
cytes in the SNpc with dual treatment compared to control and Mn treatment alone (Fig 2E).
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Fig 2. Pre-treatment with manganese induces proliferation and inflammatory activation in astrocytes in the substantia nigra
following infection with HIN1. (A-D) IF labeling of astrocytes (s100B). Groups: Control, Mn, HIN1, HIN1+ MnClL. (E) Cell counts
of the s100B+ astrocytes in the substantia nigra pars compacta (SNpc). (F-I) IF colocalization of astrocytes (s100p) with complement
C3 (C3). (J) C3 mean intensity measurements in s100B+ astrocytes in the SNpc. (K-N) IF colocalization of astrocytes (s100B) with
SerpinA3. (O) SerpinA3 mean intensity measurements in S100B+ astrocytes in the SNpc. (P-S) IF colocalization of astrocytes (s1008)
with complement IP-10/Cxcl10 (IP-10). (T) IP-10 mean intensity measurements in s100B+ astrocytes in the SNpc. (U-X) IF
colocalization of astrocytes (s1008) with complement Ccl2. (J) Ccl2 mean intensity measurements in s100B+ astrocytes in the SNpc.
*P<0.05 **P<0.01 ***P<0.001****P<0.0001. n = 6 mice/group.

https://doi.org/10.1371/journal.pone.0245171.9002
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Additionally, complement C3 and SerpinA3 were significantly increased following pre-treat-
ment with Mn and HIN1 infection compared to control, Mn and HINI1 treatment alone (Fig
2J-2Y). Dual treatment did not induce any differences in expression of Interferon gamma-
induced protein 10 (IP-10) or monocyte chemotactic protein (CCL2) (Fig 2P-2Y).

Dual treatment with Mn and HINT1 alters of histone acetylation in the
substantia nigra

To examine the basis for the heightened innate immune inflammatory response observed in
glial cells in the basal ganglia following the two-hit exposure model with Mn and HIN1, we
assessed histone acetylation in glia and neurons in the substantia nigra. To quantitate the level
of cell type-specific histone acetylation in the basal midbrain, brain sections were stained for
total acetylated histone lysine residues in TH+ dopaminergic neurons (Fig 3A-3E), S100B"
astrocytes (Fig 3F-3]), and IBA1+ microglia in the SNpc (Fig 3K-30). Infection with HIN1
alone or following Mn pre-treatment significantly decreased histone lysine acetylation in
dopaminergic neurons in the SNpc (Fig 3A-3E). Minimal differences were noted in histone
acetylation in astrocytes (Fig 3F-3]) In contrast, mice infected with HIN1 alone or following
pre-treatment with Mn had significantly increased histone acetylation in IBA1+ microglia in
the SNpc (Fig 3F-30), consistent with previous findings in human PD brains [35].

Dual treatment with Mn and HIN1 induces a unique transcriptional
signature in the substantia nigra consistent with a neurodegenerative

phenotype

Given the differences in patterns of histone acetylation in the SNpc following treatment with
Mn and HIN1, we performed Next Generation RNA sequencing (RNAseq) of brain tissue
from the SN to assess global transcriptional patterns in control mice and those infected with
HINT1 as adults with and without Mn pre-treatment during juvenile development (Fig 3).
Given our previous findings showing minimal neuropathology in adult mice following treat-
ment with Mn during juvenile development [18, 24, 25], we directly compared HIN1 infected
mice to those infected with HIN1 + Mn in the RNA-seq analysis, with both groups referenced
to untreated control mice receiving only mock viral infection. Thus, the strategy was to deter-
mine how pretreatment with Mn would modulate the severity of infection with HIN1 with
respect to changes in gene expression in the SN. RNA was isolated from the SN at 21 DPI for
sequencing. The resulting FASTQ files were analyzed using Galaxy for quality trimming, with
minimum PHRED quality threshold set at 20 and all read length greater than 20 bp. Trimmed
reads were then aligned to the mouse genome using Bowtie2 and gene expression determined
using Cufflinks. Local realignment and base quality score recalibration (BQSR) methods were
used as needed to reduce false-positive base calls and improve alignments. The expression out-
put was normalized in FPKM format. The replicate mean values were calculated, and the data
was further reduced to FPKM values greater than two.

This unbiased global analysis of the transcriptional profile between Control, HIN1 and
HIN1+Mn treatment groups revealed that of the 13,168 transcripts annotated from the SN,
351 where unique to control, 290 were unique to HIN1 and 951 transcripts were unique to the
dual treatment group (Fig 4A). The complete list of annotated transcripts is provided in S1
Table. To assess whether the increased inflammatory phenotype of microglia and astrocytes in
the dual treatment group was a gain of function or loss of function, we next determined the
major biological pathways that were altered in each treatment group by using the Gene Ontol-
ogy (GO) Consortium and PANTHER Classification System pathway and overrepresentation
analyses. Resulting transcript annotations were quantitatively different between treatment
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Fig 3. Dual treatment with MnCl, and H1N1 alters histone acetylation in dopaminergic neurons, microglia, and astrocytes
in the SNpc. (A-D) Immunofluorescence co-localization of dopaminergic neurons (TH) and total acetylated lysine residues (AL).
Groups: Control, Mn, HIN1, HIN1+ MnCl,. (E) AL mean intensity measurements in TH+ dopaminergic neurons in the
substantia nigra pars compacta (SNpc). (F-G) IF colocalization of astrocytes (s1008) with AL. (J) AL mean intensity
measurements in s100B+ astrocytes in SNpc. (K-N) IF colocalization of microglia (Ibal) with AL. (O) AL mean intensity
measurements in Ibal+ microglia in the SNpc. *P<0.05 **P<0.01 ***P<0.001****P<0.0001. # = 6 mice/group.

https://doi.org/10.1371/journal.pone.0245171.9003
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https://doi.org/10.1371/journal.pone.0245171.9g004

groups in the following four Molecular Function GO Term categories: antioxidant activity
(GO:0016209) (Fig 4A and 4B), catalytic hydrolase activity (GO:0016788,G0:0016462,
G0:0003924) (Fig 4C), catalytic transferase activity (GO:0008168,G0:0016757,G0:0016301)
(Fig 4D), and G-protein coupled receptor activity (GO:0004930) (Fig 4E). The exact genes
returned within each GO Term classification were further analyzed to find the specific tran-
scripts unique to each treatment type. Unique transcripts are listed in Fig 4B-4E. Of note, the
dual-treatment group active transcript list includes Interferon-inducible GTPasel, Dynein
heavy chain, homeobox protein, mitochondrial hydrodoxymethylglutaryl-CoA synthase (Fig
4B-4E), as well as DJ-1/Park 7, other interferon regulatory proteins, autophagy related pro-
teins (Atg), amyloid-beta precursor bindings proteins, NF«kB related inflammatory proteins
and histone acetyltransferases (52 Table). Additionally, control and HIN1 treated mice
uniquely expressed glutathione peroxidase 8, Oasl3, glutathione-s-transferase, thioredoxin
and colony-stimulating factor receptor 1 (CSF1R) (Fig 4B-4E), suggesting that specific stress
response pathways are activated and protective mechanisms are lost following dual treatment
with Mn and HIN1 when compared to Control and HIN1 treatment alone.

GO PANTHER analyses were used to further classify and compare transcript lists according
to functional pathways. To understand system-level changes in cellular processes induced by
pre-exposure to Mn, we interrogated the protein-protein interaction networks in the dual
treatment group using the Search Tool for the Retrieval of Interacting Genes database
(STRING) (Fig 5A) [36, 37], wherein network nodes represent proteins and lines represent
functional associations between those proteins. The color of each line represents the origin
and/or type of evidence supporting that protein-protein interaction and the weights of each
line correspond to a confidence score for that evidence type (Fig 5A). From a functional per-
spective, an association can mean direct physical binding, but STRING evaluates each pro-
tein-protein interaction according to evidence from seven different classification channels:
neighborhood, co-occurrence, co-expression, experiments, textmining, database and fusion.
The neighborhood category is related by conserved and co-transcribed operons; the co-ocur-
rence category is related by phylogenetic distribution of orthologs of all proteins in a given
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Fig 5. Transcriptional connectome of dual treatment group with associated gene products. (A) Search Tool for the
Retrieval of Interacting Genes database (STRING) diagram of functional associations between protein products of
unique genes within the HIN1+Mn treatment group. Nodes represent proteins and edges correspond to functional
interactions. Edge colors differ according to a scored confidence scale based on the extent and type of evidence
supporting that particular association. Evidence channels: Green Line: Neighborhood, Navy Line: Co-occurrence,
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https://doi.org/10.1371/journal.pone.0245171.9005

organism; the co-expression category is related by predicted association between genes based
on observed patterns of simultaneous expression of genes; the experiments category is related
by known experimental interactions; the textmining category conducts statistical co-citation
analysis across a large number of scientific texts, including all PubMed abstracts and OMIM;
the database category is expertly curated and imported from pathway databases; and the
fusion category is related by proteins that are fused in some genomes and are most likely to
be functionally linked [2, 36, 37]. The more lines shown between each protein-protein inter-
action represents a more likely biological interaction. The most highly represented interac-
tions in the current study were centralized around Lingo 2, Paké, Tbpll and Ctnnbl1 (Fig
5A). Analyzing the RNAseq data using STRING methods, we identified a list of genes unique
to the HIN1+Mn treatment group that are relevant to neurodegeneration (Table 1). Notable
pathways include those contributing to multiple stress responses such as neuroinflammation,
oxidative stress, protein misfolding and neurodegeneration. These included anti-oxidant
genes such as Kelch-like ECH-associated protein 1 (Keap1), the familial PD gene, Park7, and
mitogen activated protein kinase 4k4 (Map4k4), which is involved in the response to envi-
ronmental stressors and inflammatory cytokines. Other genes at highly interactive nodes
unique to the HIN1 + Mn group included Sox11 and 13, which are involved in neurogenesis,
and the eukaryotic translation initiation factor 2C1 (Eif2c1), which is involved in protein
synthesis and stress responses through post-trasncriptional silencing and damage repair
pathways.
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Table 1.

Genes
Park7

Lingo2

Pak6

Eif2cl

Keap1

Sox11

Sox13

Tigp1

Camkl

Slc30a4

Atg9a

Perl
Gabra2

Gabra5

Ildr2

Tcf3

Map4k4

HIN1+Mn unique genes relevant to neurodegeneration.

Protein Product description

Parkinson disease (autosomal recessive, early onset) 7; Protein deglycase that repairs methylglyoxal-
and glyoxal-glycated amino acids and proteins and releases repaired proteins and lactate or glycolate,
respectively.

Leucine rich repeat and Ig domain containing 2. Genetic polymorphisms in LINGO1 and LINGO2
associated with increased risk of developing essential tremor and Parkinson Disease (PD). Lingo (1,2) is
an axonal inhibitor.

Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase
activity is induced by various effectors including AR or MAP2K6/MAPKK6. May protect cells from
apoptosis through phosphorylation of BAD.

Eukaryotic translation initiation factor 2C1; Required for RNA-mediated gene silencing (RNAi). Binds
to short RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), and represses the
translation of mRNAs which are complementary to them. Recent evidence indicates that small RNAs
participate in transcriptional regulation in addition to post-transcriptional silencing and damage repair.

Kelch-like ECH-associated protein 1; Acts as a substrate adapter protein for the E3 ubiquitin ligase
complex formed by CUL3 and RBX1 and targets NFE2L2/NRF2 for ubiquitination and degradation by
the proteasome, resulting in the suppression of its transcriptional activity and the repression of
antioxidant response element-mediated detoxifying enzyme gene expression. Retains NFE2L2/NRF2
and may also retain BPTF in the cytosol. Targets PGAMS5 for ubiquitination and degradation by the
proteasome.

Transcriptional factor involved in the embryonic neurogenesis. May also have a role in tissue modeling
during development.

Member of SOX family of transcription factors.

Activity regulated cytoskeletal-associated protein; Plays a role in the regulation of cell morphology and
cytoskeletal organization. Required in the stress fiber dynamics, cell migration, consolidation of
synaptic plasticity and formation of long-term memory.

GTPase with low activity. Has higher affinity for GDP than for GTP. Plays a role in resistance to
intracellular pathogens. Mediates resistance to infection by targeting bacterial inclusions to
autophagosomes for subsequent lysosomal destruction.

Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1
signaling cascade and, upon calcium influx, regulates transcription activators activity, cell cycle,
hormone production, cell differentiation, actin filament organization and neurite outgrowth.

Likely involved in zinc transport out of the cytoplasm, perhaps be by sequestration into an intracellular
compartment.

Involved in autophagy and cytoplasm to vacuole transport (Cvt) vesicle formation. Plays a key role in
the organization of the preautophagosomal structure/phagophore assembly site (PAS), the nucleating
site for formation of the sequestering vesicle.

Transcriptional repressor that forms a core component of the circadian clock.

Gamma-aminobutyric acid (GABA) A receptor, subunit alpha 2; GABA, the major inhibitory
neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/
benzodiazepine receptor and opening an integral chloride channel.

Gamma-aminobutyric acid (GABA) A receptor, subunit alpha 5; GABA, the major inhibitory
neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/
benzodiazepine receptor and opening an integral chloride channel.

Immunoglobulin-like domain containing receptor 2; May be involved in ER stress and lipid
homeostasis.

Transcription factor 3; Transcriptional regulator. Involved in the initiation of neuronal differentiation.
Heterodimers between TCF3 and tissue- specific basic helix-loop-helix (PHLH) proteins play major
roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell
differentiation.

Serine/threonine kinase that may play a role in the response to environmental stress and cytokines such
as TNF-alpha. Appears to act upstream of the JUN N-terminal pathway. Phosphorylates SMAD1 on
Thr-322.

Pathway of Interest

SUMOylation of transcription cofactors

Axonal growth inhibition (RHOA activation)

Activation of RAC1

Regulation of pTEN mRNA translation

Ub-specific processing proteases

Binding of chemokine receptors
Binding of chemokine receptors
Trafficking of AMPA receptors

Resistance to infection.

Transcriptional activation of mitochondrial
biogenesis.

Zinc efflux

Macroautophagy

Circadian clock

Neurotransmitter receptors and postsynaptic

signal transmission

Neurotransmitter receptors and postsynaptic
signal transmission

ER stress pathway

CDO (cell-adhesion-molecule/downregulated
by oncogenes) in myogenesis

Oxidative stress induced senescence
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[64-66]

[67-76]

[77-80]

[81-84]
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PANTHER overrepresentation analysis was used to more narrowly identify unique genes relevant to neurodegeneration. Results with FDR<0.05 and an enrichment

score >1.5 were considered significant. From among statistically significant GO Terms, genes annotated to those categories were selected according to relevance to

neurodegeneration.
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Discussion

Although the majority of PD cases are sporadic and of unknown etiology, there is increasing
evidence that environmental stressors such as neurotoxic chemicals and encephalitic infec-
tions can increase susceptibility to this and other neurological diseases [4, 38, 39]. Chronic
inflammatory activation of glia in the nigro-striatal pathway is a well-established feature of
both sporadic PD and post-encephalitic parkinsonism and could represent a cellular mecha-
nism linking environmental exposures early to potentiation of neurodegeneration following
subsequent insults. Using a two-hit model with HIN1 and MPTP, it was recently shown that
influenza infections can enhance innate immune responses of microglia in the SNpc following
exposure to the parkinsonian agent, MPTP [16]. It is not known whether chronic exposure to
environmental metals such as Mn have a similar capacity to enhance neurological injury from
viral infection. However, earlier studies in mice reported that a single dose of Mn or Cd
enhanced the neurovirulence of infection with several alphaviruses and increased the severity
of symptoms, neuroinflammation and mortality [40]. To test if exposure to Mn during juvenile
development could similarly prime glial cells in the SNpc for a more severe neuroinflamma-
tory response following encephalitic infection with HIN1, we utilized a two-hit exposure
model with Mn and HINI and examined whether there were epigenetic and transcriptomic
changes in the SNpc that could explain the heightened innate immune response to viral infec-
tion in microglia and astrocytes.

Our results suggest that Mn exposure during juvenile development induces lasting neuroin-
flammatory and epigenetic alterations in glia that exacerbate the neuroinflammatory response
to HIN1 compared to mice that did not receive excess Mn as juveniles. Although we did not
observe overt loss of dopaminergic neurons or protein aggregation of a-synuclein at 21 DPI in
any treatment group (Fig 1), there was a marked increase in activation of microglia that corre-
lated with a downward trend in the number of dopaminergic neurons that would likely accel-
erate with aging, thus predisposing to neurological dysfunction. Therefore, these pathological
findings may reflect early neuropathological changes corresponding the prodromal stage of
PD or viral parkinsonism. This highlights the importance of neurotoxic environmental expo-
sures that promote a reactive inflammatory phenotype in microglia that could predispose to
injury within the nigro-striatal dopamine system. Recent studies support a critical role for Mn
in modulating innate immunity in response to viral infection through enhancing the sensitiv-
ity of pattern recognition receptors that then stimulate anti-viral gene expression [41]. Release
of Mn into the cytosol during infection with dsDNA viruses increases activation of the
cGAS-STING pathway by elevating production of cGAMP that stimulates NFkB-dependent
expression of the anti-viral interferon response. This is consistent with previous data from our
laboratory demonstrating that Mn directly stimulates soluble guanylate cyclase and thereby
enhances NFxB-induced expression of inflammatory genes through increases in cGMP [25].

Chronic neuroinflammatory activation of microglia and astrocytes is a central feature of
aging, viral encephalitis and neurodegenerative disease. Increasing evidence implicates micro-
glia-astrocyte signaling in neuroinflammatory responses that enhance neurodegeneration [42-
45]. Our lab and others have demonstrated that microgliosis precedes astrogliosis and neuro-
nal loss in models of PD [22, 46, 47], indicating that cytokine and chemokine signaling from
neuroinflammatory activation of microglia likely plays a critical role in inflammatory activa-
tion of astrocytes in the SNpc. Given that dual treatment with Mn and HIN1 potentiated
inflammatory activation of the A1l astrocyte markers, SerpinA3 and C3 (Fig 2), and also
increased the number of reactive microglia (Fig 1), these results provide additional evidence
that innate immune signaling in activated microglia plays a critical role in inflammatory acti-
vation of astrocytes. Mn directly stimulates expression of TNF in microglia that can enhance
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the production of inflammatory cytokines and chemokines in astrocytes [22], including CCL2,
that promote neuronal injury [33]. Thus, inflammatory ‘priming’ of microglia during juvenile
exposure to Mn could enhance activation of astrocytes into a neurotoxic Al phenotype during
subsequent exposure to HIN1. The data reported in the current study supports this model,
with marked increases in expression of the Al proteins SerpinA3 and C3 in reactive astrocytes
in dual-treated mice (Fig 3). However, Mn pre-exposure did not increase levels of IP10 and
CCL2 in astrocytes following HIN1 infection, suggesting that individual neurotoxic exposures
or pathogens likely have a unique molecular signature associated with distinct inflammatory
phenotypes in astrocytes.

The neurotoxic effects of Mn are mediated both through direct toxic effects in neurons, as
well as through activation of inflammatory signaling pathways which further injure neurons
through overproduction of reactive oxygen and nitrogen species and inflammatory cytokines
[19]. Thus, the capacity of environmental exposure to sensitize neural tissue to additional
damage from subsequent HIN1 encephalitic infection may involve persistent inflammatory
changes in glial cells [14]. It has previously been shown that juvenile exposure to Mn can
induce lasting effects on the neuroinflammatory status of astrocytes and microglia which con-
tinues into adulthood and this likely contributes increased susceptibility to secondary environ-
mental insults and infections [18, 24, 25, 48, 49]. However, the mechanisms regulating this
sustained inflammatory state after environmental insults in microglia and astrocytes are
unclear. Previous studies have reported that manganese can alter histone acetylation and gene
expression, chromatin remodeling, cell cycle progression, DNA repair and apoptosis in neu-
rons and glia [12, 50]. Glial cells possess innate immune memory to environmental stimuli
through histone acetylation that alters subsequent inflammatory responses [12]. Histone
acetylation is also altered in PD, likely associated with microglial activation in the SNpc that
increases dopaminergic neurodegeneration [35, 51, 52]. Additionally, decreased acetylation in
TH neurons has been noted in clinical PD cases, and histone acetylation is thought to be mod-
ulated in glia following exposure to other environmental insults associated with PD [35, 51-
53]. Here we observed that juvenile exposure to Mn followed by adult infection with HIN1
causes changes in histone acetylation in dopaminergic neurons, microglia and astrocytes in
the SNpc, relative to infection with HIN1 alone (Fig 3). Also, dual treatment with Mn and
HIN1 decreased histone acetylation in dopaminergic neurons, corresponding with data in
clinical cases of PD [35, 51-53]. We surmise that these epigenetic changes in glia likely play a
role in their increased inflammatory activation to infection with HIN1. However, whether
these epigenetic changes persist throughout aging remains to be determined.

It is still unclear whether neuroinflammatory activation of glia increases susceptibility to
neurodegeneration primarily through decreased release of neurotrophic factors or from exces-
sive synthesis of neurotoxic inflammatory mediators [47, 54]. Glial activation is regulated
through multiple pathways including mitogen-activated protein kinases (MAPKs), activator
protein-1 (AP-1), Janus kinase (JAK)/signal transducer and activator of transcription (STAT),
interferon regulatory factor families (IFN), as well as through the nuclear factor kappa B
(NFkB) pathway. To address this question, we performed Next Generation RNA-sequencing
to examine gene networks regulated by Mn that could predispose neurons in the substantia
nigra to injury following infection with HIN1. We found that pre-treatment with Mn prior to
infection with HIN1 increased the number of unique transcripts and significantly altered the
global transcriptional profile in the SNpc compared to HINI treatment alone (Fig 4). Amongst
unique transcripts in the dual treatment group, STRING analysis revealed an overrepresenta-
tion of Interferon-inducible GTPasel, dynein heavy chain, homeobox protein, mitochondrial
hydrodoxymethylglutaryl-CoA synthase (Fig 4B-4E), as well as DJ-1/Park 7, other interferon
regulatory proteins, autophagy-related proteins (Atg), amyloid-beta precursor binding
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proteins, NFkB related inflammatory proteins and histone acetyltransferases (52 Table). Park7
(DJ1) is linked to the preservation of mitochondrial function in PD, and the unique activation
of DJ-1, Atg and interferon regulatory protein in the dual treatment group likely represents
the activation of the antioxidant activation and autophagy stress response pathways [55], possi-
bly in reponse to underrepresented transcripts involved in antioxidant activity, such as gluta-
thione peroxidase (Fig 4A). These data suggest that increased inflammatory activation of glia
in the SNpc in the Mn + HIN1 group was associated with stress reponses in this brain region
consistent with inflammation and innate immune function, as well as oxidative stress and
mitophagy. Moreover, given that viral infections can inhibit mitochondrial bioenergetics by
depressing cellular ATP content and induce oxidative stress in neurons and glia, these data
suggest that juvenile exposure to Mn could reduce glutathione-dependent anti-oxidant protec-
tion through a reduction of glutathione peroxidase that exacerbates oxidative stress during
subsequent infection with HIN1 [42].

Analysis of RNA sequencing data also identified unique patterns of gene expression within
each treatment group. Annotated of genes to specific molecular function and biological pro-
cesses (Fig 4) enabled us to generate a network summarizing predicted associations between
gene products to attain a better systems-level understanding of cellular processes in the dual
treatment group (Fig 5). Dj-1/Park7, Lingo2, Keap1, Eif2c1, and Paké were all unique genes
identified using overrepresentation analysis that are relevant to etiology and/or progression of
PD (Table 1). Interestingly, LINGO2 is a member of LRR gene family that, along with LRRK2,
has been linked to Essential tremor (ET) and PD and has even become a promising therapeutic
target in multiple sclerosis (MS) and PD [56-58]. Taken together, these findings support the
involvement of distinct proteins and pathways in the neurologically deleterious effects caused
by successive environmental challenge with Mn and HIN1. Although there was not significant
loss of dopaminergic neurons at the relatively early timepoint evaluated, the unique protein-
protein interactions in dual treated animals could represent an early pre-symptomatic stage of
neuronal dysfunction corresponding to prodromal disease.

The present studies used a two-hit model of successive exposure to Mn and HIN1 influenza
virus to identify mechanisms by which multiple environmental insults and microbial infection
could act in concert to increase susceptibility to PD and related neurodegenerative diseases.
Exposure to Mn from PN 21-51 did not result in significant loss of dopaminergic neurons in
the SNpc but markedly increased neuroinflammatory activation of microglia and astrocytes
that could represent a form of innate immune memory in the brain that predisposes glia cells
to a neurotoxic reactive phenotype during aging. This is consistent with the patterns of gene
expression noted in RNA-Seq studies that revealed transciptional signatures consistent with a
neurodegenerative phenotype, particularly for genes related to oxidative stress, mitophagy,
protein processing, and immune function. The unique patterns of gene expression noted in
animals exposed to both Mn and HIN1 suggests that the mechanism by which multiple envi-
ronmental exposures modulate neurotoxic injury seen in certain cases of sporadic and post-
encephalitic PD may involve epigenetic changes that favor expression of genes associated with
inflammation and protein misfolding in astrocytes and microglia.

Supporting information

S1 Table. Complete list of expressed transcripts in each experimental group. The complete
list of annotated transcripts from unbiased global analysis of the transcriptional profile of Con-
trol, HIN1 and HIN1+Mn treatment groups is presented in S1 Table.
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