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Recent progress in nonlinear optical materials and microresonators has brought quantum

computing with bulk optical nonlinearities into the realm of possibility. This platform is of

great interest, not only because photonics is an obvious choice for quantum networks, but

also as a promising route to quantum information processing at room temperature. We

propose an approach for reprogrammable room-temperature photonic quantum logic that

significantly simplifies the realization of various quantum circuits, and in particular, of error

correction. The key element is the programmable photonic multi-mode resonator that

implements reprogrammable bosonic quantum logic gates, while using only the bulk χ(2)

nonlinear susceptibility. We theoretically demonstrate that just two of these elements suffice

for a complete, compact error-correction circuit on a bosonic code, without the need for

measurement or feed-forward control. Encoding and logical operations on the code are also

easily achieved with these reprogrammable quantum photonic processors. An extrapolation

of current progress in nonlinear optical materials and photonic circuits indicates that such

circuitry should be achievable within the next decade.
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Any attempt to build coherent quantum hardware is met
with the relentless deleterious influence of the environ-
ment. To combat it, all of today’s nascent quantum

computers must be cooled to cryogenic temperatures. Super-
conducting quantum circuits require dilution refrigerators to
eliminate thermal noise1,2, and ion trap processors are cooled to
<10 K to reduce collisions with stray gas molecules3. This need for
cooling poses a problem for many potential applications of
quantum information processing; it greatly reduces the prospects
for portable devices, and significantly impacts the cost and
practicality of large-scale deployment as repeaters and routers for
communication networks. Even optical circuits that employ
single-site defects (e.g., color centers or rare-earth impurities)
require cryogenic temperatures to reduce thermal line broad-
ening4–6. So too do linear optics schemes that employ detectors as
their sole nonlinear element (in this case to avoid the overhead
incurred by inefficient detection)7,8.

At present, there are only a few platforms that appear to have
the potential for quantum processing at both room temperature
and pressure9–12. We explore photonic circuits that employ bulk
optical nonlinearities as their nonlinear element is a particularly
promising one. Bulk nonlinear elements not only do not suffer
from thermal excitation, but due to their size they are less affected
by thermal broadening. Until recently, the possibility of realizing
quantum devices with bulk nonlinearities seemed remote, due
both to the weakness of these nonlinearities and the problem of
wave-packet distortion13–18. Substantial progress in the effective
strength of the material nonlinearities, the introduction of ultra-
confining cavities19–21, and a relatively simple solution to wave-
packet distortions22–24 have changed that outlook.

Achieving the physical technology to implement nonlinear
photonic quantum circuits is not the only challenge to realizing
room-temperature quantum logic. For practicality, one must
implement this logic using the strongest available nonlinearity,
the leading-order χ(2) nonlinear susceptibility, and for efficient
room-temperature operation the logic and error correction cir-
cuits should avoid measurements or feed-forward control. Two
basic approaches to information processing with photons are
possible. The first is the use of single- or dual-rail encoding in
which each mode contains no more than one photon25. While
this has the advantage that all circuit constructions from the well-
developed qubit model can be employed, this leads to complex
circuits even for correcting the loss of a single photon. The
smallest code for this purpose uses five modes (ten for dual-rail
encoding)26,27. While there is little work on minimal circuits for
correcting the five-qubit code, from circuits for the seven-qubit
Steane code, we estimate that it requires a least nine additional
modes and >30 CNOT gates. The alternative is to use bosonic
codes that employ multiple photons per mode, but in this case it
is far from obvious what gates and circuits are required to
implement the error correction, let alone how to realize these
gates with a χ(2) interaction. While explicit error correction
procedures for bosonic codes have been elucidated28–32, they all
involve non-demolition or photon-number-resolving measure-
ments. It is not yet known how to construct the unitary multi-
photon operations required to replace such measurement using
only a χ(2) nonlinearity, or the complexity of doing so. The only
unitary circuit that has been explicitly constructed to date to
correct a bosonic code is in the form of a 40-layer neural network
using an idealized χ(3) medium33.

Here, we propose an approach for implementing all-unitary,
and thus room-temperature, quantum logic on multimode mul-
tiphoton states using only a fixed χ(2) nonlinearity. This para-
digm, which employs as its basic module a single triply-resonant
cavity with a time-dependent drive, significantly reduces the
complexity of the physical circuits required to implement

multiphoton quantum logic in general, and error correction in
particular. The joint operation performed on the three modes by
the module is controlled by the time-dependent drive. In this way,
the module is able to perform a wide range of three-mode mul-
tiphoton gates. We demonstrate the power of this approach by
explicitly constructing a measurement-free error-correcting cir-
cuit for a two-mode bosonic code. This circuit requires just two of
our three-mode modules, along with some controllable linear
elements. Our compact unitary circuits do not employ any
measurements or feed-forward control, which makes them par-
ticularly useful for fast quantum routers and repeaters. However,
measurements will certainly be required to read out a message or
the results of a computation. Fortunately, it is straightforward to
use unitary circuits in general, and our processor in particular, to
enable high-fidelity measurements at room temperature, even
when only inefficient detectors are available. To do so, it is
enough to use a unitary circuit to map a single photon to a
sufficiently large number of photons that can then be detected.
This amplification can be implemented rapidly using a doubling
process. First a χ(2) nonlinearity is used to convert one photon in
one mode 1 to two photons in a second mode via down-
conversion. Second, a frequency conversion process (which
employs a χ(2) and a classical pump) is then used to transfer each
of the two photons back to the first mode. Repeating this photon-
doubling cycle provides exponentially fast amplification. Since
measurements are only to be used at the end of a computation,
the additional overhead for amplification remains small. Thus,
while we do not analyze this measurement method in detail here,
it is clear that the lack of efficient photon detectors is not an
obstacle to room-temperature quantum information processing.

In the next section, we describe the control Hamiltonian rea-
lized by the driven triply-resonant cavity that forms our basic
processing module and give examples of important gates that can
be implemented by the module. Then we show how a full error
correction process can be built from a small number of these
multiphoton gates. Lastly, we discuss the materials science and
fabrication challenges that must be addressed, in order to realize
our loss-correction circuit. By extrapolating the rate of progress in
these areas over the past decade, we estimate a timeline for
demonstrating this circuit.

Results
A controllable three-mode cavity. We consider three resonant
modes of a cavity in a χ(2) medium, with respective mode
operators â, b̂, and ĉ, and frequencies ωa, ωb, and ωc. We neglect
any dissipative dynamics until later sections, where we discuss
hardware implementations. The cavity is driven by a coherent
classical pump with frequency ωp. We depict it in Fig. 1, in which
the pump may be a microwave frequency electric field or an
optical drive. By choosing the frequencies to satisfy

ωa ¼ 2ωb; ð1Þ

ωc þ ωp ¼ ωb; ð2Þ
the χ(2) medium couples the modes via the Hamiltonian

ĤnlðtÞ ¼ _ χâb̂
y2 þ gðtÞb̂yĉþH:c:

h i
; ð3Þ

in which χ is the coupling rate of the χ(2) nonlinearity, g(t) is the
coherent amplitude of the classical pump, and we have moved to
the rotating frame of the oscillators. Since Schrödinger’s equation
contains H/ℏ, it is the rates χ and g(t) that determine the
dynamics. If we measure time in units of 1/χ then all rates are
divided by χ, and the dynamics is determined by

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20417-4

2 NATURE COMMUNICATIONS |          (2021) 12:191 | https://doi.org/10.1038/s41467-020-20417-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ĤnlðtÞ
_χ

¼ âb̂
y2 þ pðtÞb̂yĉþH:c:; ð4Þ

in which we have defined p(t)= g(t)/χ. Thus up to a scaling of
time, the dynamics is entirely determined by the rate parameter p
(t). We will not have to introduce any additional rate parameters
(and thus any additional timescales) until we consider loss in the
section on hardware considerations. In that section, we will
express our rate parameters in terms of the physical parameters of
realistic devices.

Note that the second term in ĤnlðtÞ, which is controlled via the
amplitude of the pump, is merely a linear coupling between
modes b̂ and ĉ. This interaction cannot by itself generate a
universal set of quantum gates34,35. It turns out, however, that it
can do so when combined with the time-independent frequency-
doubling interaction.

We denote the number of photons in the three modes
respectively by na, nb, and nc, and the corresponding operators for
the photon number by n̂a, n̂b, and n̂c. Since the Hamiltonian
commutes with 2n̂a þ n̂b þ n̂c, the value of that observable is
preserved. The Hamiltonian cannot, therefore, mix subspaces
defined by different integer values of 2na+ nb+ nc. Nevertheless,
it does provide complete control within each subspace by virtue

of the fact that the repeated commutators of âb̂
y2
and b̂

y
ĉ generate

a complete Lie algebra for all such subspaces28,36–38. It is this fact
that provides the power of our processing unit.

In general, to implement quantum gates between the three
modes, we will need to generate a set of distinct evolutions, one
for each of the 2n̂a þ n̂b þ n̂c ¼ const subspaces. We can do that
with a single control pulse, as for each subspace, there are many
choices for p(t) that generate the same unitary operation. We can

use numerical search methods to find a control function p(t) that
simultaneously generates the required evolution for each of the
set of subspaces. Naturally, we wish to find the control that
implements a given gate in the shortest time, a challenge solved as
described below.

Lastly, the modes of this quantum processor will need to be
actively coupled to the waveguides that carry the quantum states
to be processed. Otherwise, the process of capturing the content
of the waveguides will be too slow due to the necessarily high
quality factor of the modes of the processor. To actively couple
the cavity modes to the waveguides, we envision using the
method given in Heuck et al.23.

Compiling unitary operations. To find the control pulse p(t)
required to implement a given unitary operation, we employ
numerical search methods, an approach often referred to as
optimal control39–41. We introduce a parameterization for p(t) as
a piecewise-constant signal in which the duration of each interval
is variable. This parameterization is essential because the always-
on frequency-doubling component of the Hamiltonian necessi-
tates optimizing the length of the pulse. In order to avoid
unphysical pulses, we constrain both the duration and amplitude
of each interval by the use of sigmoid functions. The full
expression for the resulting unitary operation is

ÛðvÞ ¼
Ys
l¼1

exp �i fðXl; PlÞb̂
y
ĉþ σðTlÞâb̂

y2 þH:c:
h in o

; ð5Þ

where

fðXl; PlÞ ¼ arctanðXlÞ þ i arctanðPlÞ; ð6Þ

σðTlÞ ¼
Δτ

1þ expð�TlÞ
; ð7Þ

and v= {Xl, Pl, Tl: l= 1, …, N} is the set of parameters that
defines the pulse. The parameters fXl : Xl 2 Rg and fPl : Pl 2
Rg are related to the quadrature of the pulse, which is con-
strained to the interval [−1, 1] by arctan, while the fTl : Tl 2 Rg
are related to the duration of each segment, which is constrained
to the interval [0, Δτ]. We fix the number of piecewise-constant
intervals, s, as well as the relative unitless time scale Δτ.

Consistently good performance is obtained even with s < 60.
This permits the use of standard automatic differentiation tools,
without the need for approximations, such as GRAPE40. Our
parameterization also has the advantage that it does not allow for
pathological pulses. Once we have obtained a piecewise constant
control function for a given gate, we use GRAPE and standard
regularization techniques to smooth out the pulse, ensuring it has
both reasonable bandwidth and power. Throughout the optimi-
zation, the robustness of the control to calibration errors is
verified. The time scale Δτ is shortened until a threshhold is
reached at which the control pulse is no longer robust. The above
approach to generating control functions, together with a number
of symbolic optimizations, will be presented in detail in a related
tutorial39.

Examples of programmable gates. Through the use of our
implicitly constrained optimal control method, we can perform
with high fidelity any gate that keeps 2na+ nb+ nc constant. If
the length of the control pulse is unconstrained, and dissipation
is neglected, we can achieve fidelities arbitrary close to unity.
For gates reported here, we constrain the duration of the control
pulses as much as possible before reaching unitary fidelities
<0.999. In later sections considering hardware implementations,
we also describe the effects of dissipation. Here, we describe
a number of important unitary operations that fulfill that

Fig. 1 The triply-resonant nonlinear cavity. The χ(2) medium enables the
joint control of three modes. We denote the mode operators respectively
by â, b̂, and ĉ. The χ(2) medium enables frequency doubling from b̂ to â, and
a three-way interaction between modes b̂, ĉ, and the control field. The
control field is either a a classical microwave drive, Ep(t), or b a classical
optical drive of envelope p(t). This three-way interaction is effectively a
linear interaction between modes b̂ and ĉ that is controlled by the classical
drive. The combination of the fixed frequency-doubling interaction and the
controlled linear interaction allows extensive control of the joint nonlinear
evolution. This evolution conserves the quantity 2na+ nb+ nc, in which na,
nb, and nc are the occupation numbers of the respective modes. We also
depict the relative values of the frequencies of the three modes; in a, the
frequencies of modes b̂ and ĉ are separated by the much smaller frequency
of the microwave drive.
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constraint, some of which are also depicted in Fig. 2. More
general unitary operations can be performed by reshuffling the
modes of the three-mode processors, as seen in later sections.
Given the long cavity lifetimes requires for these operations,
reshuffling necessitates rapid catch, and release of photons from
and into the connected waveguides, e.g., by using active control as
done in Heuck et al.23.

Throughout the following paragraphs, we will use the notation
nanbncj i to denote a Fock state with na, nb, and nc photons in
modes â, b̂, and ĉ, respectively.

We begin with the Toffoli Gate, which is a three-qubit non-
Clifford gate, distinguished by the fact that together with just
the single-qubit Hadamard gate it enables universal quantum
circuits42,43. Of particular relevance for our purposes is the fact
that it usually requires six two-qubit CNOT gates to
implement44,45, while our realization requires only a single
application of the three-mode processor. We realize the gate in
the Hadamard basis (i.e., our gate is a phase gate with two control
qubits) for photonic qubits encoded in a single- or dual-rail
configuration. In this basis, the Toffoli unitary maps all joint Fock
states to themselves except for the state 111j i to which it applies a
π phase.

We also define a conditional routing gate as one that swaps the
state of two modes depending on the state of a third mode. This
class of gates is useful for breaking down conditional multi-qudit
operations into smaller units. We first route the target mode to a
particular waveguide, based on the state of the control mode, and
we perform the appropriate single-mode quantum operation in
the new physical location of the target mode. Such routing is
indispensable, if our goal is to avoid measurements in error-

correcting circuits, as measurements usually require hardware at
cryogenic temperatures. Typically, a non-demolition measure-
ment is performed by entangling the required information with
an ancilla, and performing a demolition measurement on the
ancilla. The result, a classical bit, is then fed forward through a
classical computer that decides what quantum operation to
perform next. We avoid the measurement and classical decisions
through coherent quantum feedback46,47, where we simply
perform a multimode quantum gate conditioned on the ancilla.
The realization for the routing gate suggested below is what we
use in our bosonic error-correcting circuit, but other setups are
feasible as well. Below nanbncj i denotes a Fock state with na, nb,
and nc photons in modes â, b̂, and ĉ, respectively. The ĉ mode is
the control, the b̂ mode is the input, and â and b̂ are the possible
outputs:

040j i7! 200j i; ð8Þ

020j i7! 100j i; ð9Þ

041j i7! 041j i; ð10Þ

021j i7! 021j i; ð11Þ

001j i7! 001j i: ð12Þ
When used in the error-correcting circuits described in later

sections, mode ĉ will contain an ancillary photon on which
routing will be conditioned, while mode b̂ will contain one of the

Fig. 2 The control pulses implementing the three gates that are used to build our error correction circuit. The top row shows the real and imaginary
parts of the control pulses for each gate. The following rows show how the populations of the modes evolve under each gate for a given initial state. The
optimizer produces pulses p(t) such that each of the desired transformations leads to constructive interference at the exact same time. Shorter pulses are
possible, at the expense of higher power and bandwidth requirements39, up to a point at which the pulse is too short to perform even a single complete
oscillation in a subspace defined by an integer value of 2na+ nb+ nc.
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two modes of our multimode bosonic code. A second processor
will be used for other modes.

Focusing further on the error-correcting functionality, we need
a gate that can correct for photon loss in a codeword. For the
code we employ, we require the gate to preserve the states 001j i,
021j i, and 041j i, and accomplish the mapping

031j i7! 040j i; ð13Þ

011j i7! 020j i: ð14Þ
This operation is necessary for reverting photon loss in the

code mode stored in b̂, while storing information about the
occurrence of that loss in mode ĉ. Again, we will need two three-
mode processors, each acting on one of the modes making up our
error-correcting code. Each of the physical modes of the code will
be stored in the corresponding b̂ oscillators.

To complete our error correction circuit, we use a gate that
entangles two modes. We require this operation because one of
the code words is an entangled state, and the loss of a photon
breaks this entanglement. This gate provides the mapping

011j i7! 011j i; ð15Þ

020j i7! 020j i þ 002j iffiffiffi
2

p : ð16Þ

This gate is also a symmetrizing operation for the state of the
modes b̂ and ĉ. It is these two oscillators b̂ and ĉ that will contain
the two modes of our error-correcting code.

The above gates are only a few of the many operations that the
triply-resonant cavity processor can perform. Among these gates
are those important for the processing of unprotected single-
photon states, and operations that enable unitary modification

and number-resolved measurements on modes with more than
one photons, including bosonic codes. Importantly, these
operations are performed with a single use of the triply-
resonant cavity, while otherwise they would require complete
circuits with multiple discrete operations. This leads to drastically
simpler overall circuits, at the expense of requiring this more
sophisticated and difficult to fabricate triply-resonant optical
resonator.

Measurement-free error correction. We demonstrate the ver-
satility of our control protocol by constructing an error-
correcting circuit around the three-mode processor. The circuit
we obtain is not only simple and short, but it also does not
require any measurement operations or classical feed-forward
control.

We choose the following code, encoding a single qubit in two
separate (spatial) bosonic modes, whose logical states are given by

1j iL ¼ 22j i; ð17Þ

0j iL ¼
40j i þ 04j iffiffiffi

2
p : ð18Þ

This two-mode code allows correction for the loss of a single
photon from either mode. For a channel that has a 10%
probability of a single-photon loss for each mode this implies an
81% chance of transmission without error, 18% chance of
transmission with a correctable error, and a 1% chance of
transmission with an uncorrectable error. We choose this code
because it is possible to perform the correction process with
operations that conserve the quantity 2na+ nb+ nc, so long as
one is judicious in choosing these operations.

We must first consider the effect of a photon loss on the code.
The loss of a photon on the first mode is described by the action
of âÎ. This transforms the initial code state Cj i ¼ α 0j iL þ β 1j iL
into the error state E1j i ¼ α 12j i þ β 30j i. Similarly, the loss of a
photon from the second mode produces the error state
E2j i ¼ α 21j i þ β 03j i. For each of these two errors, we need to
perform a different correction procedure. Typically, this is
achieved by a non-demolition measurement that projects the
state of the system onto either the logical subspace or one of the
error subspaces, followed by a unitary correction operation
conditioned on the measurement result. We sidestep these
requirements by using coherent control. We employ two
quantum ancillas, initialized to contain single photons, on which
routing gates will be conditioned. Thus, our correction procedure
involves the following steps. First, we put the information about
the presence of an error in the ancillas by using two conditional
pumping gates acting in parallel (the code modes are each placed
in a b̂ mode, while the ancillary photons are in the corresponding
ĉ modes), resulting in the following transformation of the overall
ancillas-code state:

11j i � Cj i 7! 11j i � Cj i; ð19Þ

11j i � E1j i7! 01j i � F1j i; ð20Þ

11j i � E2j i7! 10j i � F2j i; ð21Þ
where F1j i ¼ α 22j i þ β 40j i and F2j i ¼ α 22j i þ β 04j i. The feed-
forward solution would have measured the ancillas and
performed different operations depending on the measurement,
but as already mentioned that would be slow and require
additional cooled hardware and classical decision circuitry.
Instead, we perform the following unitary operation (as before,
the left multiplier in the tensor product c1c2j i denotes the content
of the ancillary ĉ modes of each of the two processors, and Cj i

Fig. 3 Our minimal architecture for error correction of bosonic codes,
readily expandable to larger tasks. The circuit depicted can be used to
correct a single-photon loss using a two-mode bosonic code. The circuit
consists of two cavity processors, which for the most part process each
mode of the code separately, and a small network of reprogrammable beam
splitters and delay lines. These are used to reroute states between the
modes of processors as necessary. Each cavity processor is also capable of
performing many multi-qubit gates for single- and dual-rail encoded qubits,
as well as preparing and manipulating higher-number Fock states. The
network of programmable beam splitters between the processors and the
delay lines can also be expanded to a fully connected network, enabling
universal rerouting between the three modes of each processor for general-
purpose quantum computation. The programmable beam splitters can be
implemented as Mach–Zehnder interferometers (as shown in the inset)
with two 50/50 beam splitters and a programmable delay (the orange
medium in the diagram). Classical electronics will be necessary to ensure
the pacing of various operations in this device, but no feedback or decision
circuitry is necessary, as the approach is measurement free.
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denotes the two modes of the error-correcting code, stored in the
b̂ oscillators of the two processor):

11j i � Cj i 7! 11j i � Cj i; ð22Þ

01j i � F1j i7! 01j i � Cj i; ð23Þ

10j i � F2j i7! 10j i � Cj i: ð24Þ
Without the ancillas, this operation would be impossible as it
would break the bijectivity of the unitary operator by mapping
many states to one. The conditional routing gates are crucial for
the performance of this operation—depending on the ancillas,
they route the modes containing the code to different spatial
modes that perform F1j i7! Cj i and F2j i7! Cj i independently and
in parallel. The conditional routing gates then ensure that all
three paths end up in the same spatial modes at the end of the
circuit. The error-correcting circuit can be seen in Fig. 3 as a
suggested physical layout, and in Fig. 4 as a sequence of abstract
gates.

Encoding operation. Encoding a qubit in the two-mode code is
particularly simple using the three-mode processor. To do so we

have to perform the operation

00j i7! 22j i; ð25Þ

10j i7! 40j i þ 04j iffiffiffi
2

p : ð26Þ

Given that we already have access to the entangling gate,
encoding can be done by putting the unprotected photonic qubit
in cavity ĉ and putting ancilla photons in cavities â and b̂. Then,
we perform the partial encoding gate

111j i7! 200j i ð27Þ

110j i7! 110j i; ð28Þ
thus mapping the state α 1j i þ β 0j i in ĉ to the precursor of the
two-mode code α 11j i þ β 20j i in â and b̂. As before, here
nanbncj i denotes a Fock state with na, nb, and nc photons the
modes â, b̂, and ĉ of a single processor. Turning this into the
complete code state requires a simple application of the entan-
gling operation already discussed above. These two operations
preserve the constant of motion 2n̂a þ n̂b þ n̂c and as such can

Fig. 4 The error-correcting circuit, unrolled in time. The horizontal axis represents the flow of time, depicting how a pair of triply-resonant cavities is being
used. This circuit would be executed on the hardware depicted in Fig. 3. The main drawing is the sequence of operations that we need to perform in parallel
in the two triply-resonant cavities, in order to perform the error correction. After placing the code and ancilla modes in the appropriate cavity modes, we
accomplish the initial pumping and routing gates. After that, we need to shuffle the ancillary modes by releasing them in the appropriate waveguides. The
spatial modes into which the code states are moved depend on the state of the ancillas, thanks to the conditional routing gates. As the ancillas contain
information about the presence of photon-loss errors, this lets us perform operations conditioned on the loss of a photon, by performing the two
conditional branches in parallel in different physical locations of the circuit. The conditional routing gates then act in reverse, ensuring that all spatial modes
end in the same location, without breaking the bijectivity required for any quantum circuit. The various spatial modes employed can be seen in the bottom
insets of the figure. Supplementary Figure 1 provides a more detailed rendition. Importantly, as seen in Fig. 3, we do not need 12 triply-resonant cavities as
depicted above, rather only 2 cavities with a network of waveguides and programmable beam splitters72 that can route the spatial modes as necessary, so
that each cavity can be used repeatedly. The gate pictographs are taken from the Font Awesome icon set.
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be compiled to a single control pulse performed in a single triply-
resonant cavity.

Two-qubit logical operations. Single-qubit rotations in the logical
space of the two-mode code can be realized by using our three-
mode processors, as such rotations do preserve 2na+ nb+ nc.
Moreover, two-qubit logical operations can also be performed. For
instance, consider a CPHASE gate, which together with the single-
qubit rotations form a universal set. We need to perform the
operation

22j i � 22j i7! � 22j i � 22j i; ð29Þ

while mapping all other combinations of 22j i; 40j iþ 04j iffiffi
2

p
n o�2

to

themselves. Our three-mode processor can perform this opera-
tion by acting on just two of the four modes making up the two
logical qubits. If we index each mode as, e.g., j2i2ji � j2k2li, we
need to act only on modes j and k, by first transferring them to
modes b and c of the cavity, and designing a pulse to perform the
operation

022j i7! � 022j i; ð30Þ
while mapping all of 000j i, 002j i, 020j i, 004j i, 040j i, 024j i, 042j i,
and 044j i to themselves. The overall CPHASE operation on the
four physical modes forming the two logical qubits takes the
form,

22j i � 22j i7! � 22j i � 22j i; ð31Þ

40j i þ 04j iffiffiffi
2

p � 22j i7! 40j i þ 04j iffiffiffi
2

p � 22j i; ð32Þ

22j i � 40j i þ 04j iffiffiffi
2

p 7! 22j i � 40j i þ 04j iffiffiffi
2

p ; ð33Þ

40j i þ 04j iffiffiffi
2

p � 40j i þ 04j iffiffiffi
2

p 7! 40j i þ 04j iffiffiffi
2

p � 40j i þ 04j iffiffiffi
2

p ; ð34Þ

where the underlined modes are the ones that are manipulated
inside of a three-mode processor. Notice that a phase is gained
only in the first row, where both of the modes in the processor
(the underlined modes) have two photons. Such an operation can
be performed directly by our processors or, if shorter and simpler
control pulses are desired, by first using the χ(2) interaction to
upconvert them to lower photon numbers.

Comparison with other approaches. Comparisons with other
codes and types of hardware require care because the various
systems have significant differences. Nevertheless, we eluci-
date how our control protocol substantially reduces the depth
of a typical circuit and removes the need for entire classes of
expensive operations. As discussed in the introduction, error
correction procedures have been proposed for bosonic codes,
but these require non-demolition or photon-number-
resolving measurements, and it has not yet been described
how such measurements can be replaced by unitary operations
generated by a χ(2) nonlinearity. We can however, compare
our circuit to the explicit correction circuit presented in
Steinbrecher et al.33.

One way to compare the efficiency of circuits is to examine
how long each takes relative to the characteristic unit of time for
the given hardware. The circuit we have constructed above
requires six gates, for a total of 40 units of time (relative to the χ(2)

coupling strength), and four transfers in and out of cavities. The
correction circuit employing the quantum optical neural network
(QONN) architecture33, which is the closest analog of our

hardware, requires 40 layers, resulting also in 40 units of time, but
since it uses a χ(3) rather than a χ(2) medium, the nonlinearity is
significantly weaker, so that the circuit takes longer in real time.
Furthermore, the QONN circuit requires 40 transfers in and out
of the nonlinear cavities (one for each layer), ten times more than
our architecture.

One can instead implement photonic quantum logic by using
only the vacuum and one-photon Fock states to encode qubits
(i.e., a single- or dual-rail encoding). The smallest error-
correcting code in this setting requires five physical qubits26.
The logic required to determine the error syndrome for this code
requires 16 CNOT gates and 4 auxiliary qubits27. The auxiliary
qubits can either be measured, in which case the error can be
determined using a classical computer, or a unitary circuit could
process the auxiliary qubits and perform the correction48–52. For
each of the 16 different values of the four-bit syndrome, a unitary
correction circuit would need to perform a different correction
operation. This requires quite a large number of ancillas and
CNOT gates, as discussed in the introduction. Our room-
temperature design thus represents a dramatic reduction in
circuit size and duration. We also emphasize that using all-
unitary processes, which is the approach we take here, provides a
practical advantage; doing so avoids the need to introduce
additional amplification and classical feedback circuitry.

Competing with “active” gate-based approaches to
measurement-fee error correction, is the use of continuous
autonomous QEC53–57. In that family of protocols, one needs to
design an exotic dissipator, usually through reservoir engineering,
which provides an irreversible evolution from the error-space
back the code space.

Hardware prospects. We will introduce a less abstract model of
our triply-resonant cavity design, in order to better describe the
materials science and fabrication challenges it faces. This model
also lets us give physical values for the unitless durations we have
found above for our control pulses. We will start by describing

the physical realization for the âb̂
y2

and pðtÞb̂yĉ terms in the
Hamiltonian. Naturally, these terms requires the presence of
eigenmodes â, b̂, and ĉ. The corresponding field operators would
be (e.g., for the â mode)

B̂aðrÞ ¼
ffiffiffiffiffiffiffiffi
_ωa

2

r
âbaðrÞ þH:c:; ð35Þ

D̂aðrÞ ¼
ffiffiffiffiffiffiffiffi
_ωa

2

r
âdaðrÞ þH:c:; ð36Þ

where we used the magnetic field and the electric displacement in
order to keep the quantization consistent in the nonlinear
regime58–60. The b(r) and d(r) eigenmodes can be computed
from classical electromagnetism and are normalized toR
μ�1
0 jbj2dr ¼ 1 and

R
ε�1
0 n�2jdj2dr ¼ 1. The overall Hamilto-

nian of the system will be

Ĥ ¼
Z

dr
B̂
2

2μo
þ D̂

2

2ε0n2
� χð2ÞD̂

3

3ε20n6

 !
; ð37Þ

where n is the index of refraction (consult60 for its complete
treatment as a tensor with dispersion). The field operators are
the sum of field operators for the modes â, b̂, and ĉ, as well as
the field from the classical laser pulse p(t). The first two terms
from the Hamiltonian simply give us the harmonic oscillator
terms, which we eliminate by moving to the corresponding
rotating reference frames. The last term provides the nonlinear
interactions in which we are interested. For simplicity, we first
consider the undriven case, i.e., p(t)= 0. The driven case is
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discussed in Supplementary Note 3. Expanding the nonlinear
term and eliminating the nonresonant terms leaves us with

Ĥnl ¼ � χð2Þffiffiffiffi
ε0

p
n3

ffiffiffiffiffiffiffiffiffi
V shg

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_3ωaω

2
b

8

s
âb̂

y2 þH:c:; ð38Þ

1ffiffiffiffiffiffiffiffiffi
V shg

p ¼
R
nld

i
ad

j�
b d

k�
b drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR jdbj2dr� �2 R jdaj2dr

q ; ð39Þ

where ∫nl denotes integration only over the nonlinear medium and
i, j, and k denote the appropriate field components to integrate,
depending on the nonlinear material being employed. Thus, Vshg

is the mode volume considered in second-harmonic generation
(SHG) experiments. For simplicity, we are not acknowledging
frequency and space dependencies in the refractive index n, and
we are not specifying the components of the χ(2) tensor being
employed. This does not change the result we are pursuing.

The coupling rate in this nonlinear Hamiltonian imposes the
units of time for the control pulses described in the previous
section. This characteristic time needs to be compared to the
cavity lifetimes, typically expressed through the Q factor as
τ ¼ 2Q

ωa
. This lets us introduce the following figure of merit for the

characteristic number of operations before the environment
destroys our quantum state

N ¼
ffiffiffiffiffiffiffi
_

8ε0

s ffiffiffiffiffi
ωa

p
n3

Qχð2Þffiffiffiffiffiffiffiffiffi
V shg

p : ð40Þ

Considering some recent SHG on-chip experiments (a Q ~ 107

in refs. 61,62 and a V shg � 800 μm3 � 2000 λ3

n3 with a 70 μm-radius
micro-ring in refs. 63,64, at λa ≈ 750 nm) in a typical nonlinear
optics material like lithium niobate (χð2Þ � 31 pm

V ), we obtain
values N ~ 0.03, which is still too low for practical use. With Q
factors and mode overlaps in SHG experiments following a
Moore’s law (the recent progress is explored in Supplementary
Note 4) and new designs lowering mode volumes by orders of
magnitude19–21,65, N—the number of elementary quantum
operations within the cavity lifetime—could very well grow by
orders of magnitude and reach tens to hundreds over the next
decade. N is related to a typical figure of merit in SHG

experiments—the conversion efficiency66 η ¼ Pout

P2
in
/ Q3ðχð2ÞÞ2

V shg
,

which has seen impressive improvements in the last decade (see
Supplementary Note 4). With a Q ~ 2 × 108, which is achievable
in principle67, a mode volume of V � 10�3 λ3

n3, (see refs. 20,68 for
progress in mode confinement), and χð2Þ � 100 pm

V , which is
between the values for lithium niobate and gallium arsenide, we
achieve N ~ 2000 which is enough for error correction. Moreover,
new fabrication techniques for thin-film materials enable much
stronger effective nonlinearities than what has otherwise been
achieved on-chip. While such techniques have not been explored
extensively in the optical regime, these results are an encouraging
indication that similar progress may well be possible for
nonlinear optical materials.

To explore how such future hardware may perform, we compare
the lifetime of an encoded (protected) photonic qubit to an
unprotected single-rail qubit living in the same hardware. The time
scale will be set by the Q factor of the cavities under consideration;
however, in order to present physical values for the parameters we
will set Q ~ 2 × 108 at λa ~ 750 nm, which is well within the
thermorefractive theoretical limit67. In Fig. 5, we compare the
performance of our error-correcting protocol to that of an
unprotected single-rail qubit, and see that the error-correcting
threshold is N ~ 2000, a very demanding value which we are

nonetheless optimistic about given the experimental results cited
earlier. Typically for non-asymptotic codes, to achieve fault
tolerance this lower-level code will have to be concatenated with
an asymptotically growing stabilizer code, akin to the surface code
or quantum LDPC codes and one of the many techniques for
achieving non-Clifford gates (e.g., through magic states) will have to
be employed. The versatility of our control protocol provides for a
system agnostic to these higher-level architectural decisions.

Lastly, we need to consider the implementation of the time-
dependent control pulses. In the electrical regime, the control pulse
can be modulated by standard microwave electronics in CMOS-
compatible hardware69. In the optical regime, the control pulse
would have to be modulated by wave shaping through expressing
the pulse in terms of its Fourier decomposition70. Intermediate
regimes are also possible, in which we can modulate a THz electric
field, by placing optically actuated Auston switches next to our
triply-resonant cavities71. Active control will be necessary for
loading and unloading photons from these long-lived cavities, e.g.,
by following methods proposed in Heuck et al.23.

It is important to note that one can balance the three
considerations discussed in this section: the duration, power, and
bandwidth of the control pulse. When the values of all these
quantities can be expressed in characteristic units close to unity,
the optimization problem is well conditioned and easier to solve.
Such are the control pulses we have shown (e.g., their amplitudes,
bandwidths, and durations are ≲10). However, if our hardware
requires short pulses (e.g., due to low Q factor), but permits high
power, we can nudge the solution in this direction by
reparameterizing the optimization problem39.

Discussion
It is accepted in the quantum computing community that any
prospective purely photonic architecture for quantum information

Fig. 5 Logical qubit lifetime at the “break even” regime where it begins to
outperform unprotected qubits. In blue, we see the decay of a single
photon, i.e., an unprotected single-rail qubit. In orange, we see the decay of
our two-mode code if we do not perform any correction operations—it
decays faster as it contains a higher number of photons. The green line
represents the decay of the encoded qubit in the presence of periodic
correction operations. The infidelity of the correction operations due to
photon loss that can happen during the operation is taken into account. The
figure represents a lower bound for the performance of our protocol, with
beneficial higher order effects being neglected in order to simplify the
simulation. The “break even” point is achieved at Vshg � 10�3 λ3

n3, Q ~ 2 × 108,
and χð2Þ � 100 pm

V for λa ~ 750 nm. Waveguide losses are neglected, as they
would be insignificant compared to the rest of the operations.
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processing would face significant challenges due to the weak
photon–photon interactions available even in the best materials and
resonators. Nonetheless, the present work, building upon more than
a decade of theory developments on cavity-enhanced optical non-
linear interactions, shows that the monumental hardware require-
ments have already been nearly achieved in disparate experiments.
It is an outstanding challenge to incorporate, in a single device, a
record-high Q-factor cavity, together with extremely confined mode
volumes, and fabrication-enhanced χ(2) materials. However, pro-
gress over the last decade—for example, the 108-fold improvement
in the efficiencies of SHG—inspires confidence that this herculean
task can very well be achieved within the next decade.

Moreover, our work, for the first time, shows that a single
elementary photonic device can be reprogrammed on the fly to
perform a set of diverse unitary operations, drastically lowering
circuit complexity and depth. We have shown its applicability for
typical single- and dual-rail encoded qubits, as well as its versa-
tility in processing multiphoton Fock states. We showcased the
flexibility of our control paradigm by devising an explicit error-
correcting circuit for a bosonic code and the application of multi-
qubit logic gates on top of that code. This is the first proposal for
photonic logical qubits that includes compact encoding and
correcting circuitry. Furthermore, the circuit we have designed
does not require any measurement operations or feed-forward
classical control, offering significant simplifications compared to a
typical small stabilizer code, and opening the door for extremely
fast, compact, room-temperature quantum repeaters.

Data availability
The digitized control-pulse examples in this manuscript can be readily reproduced in
most optimization toolkits (e.g., Qutip and Tensorflow under Python, or SciML and Flux
under Julia). Upon request, the authors can provide these waveforms and example scripts
under each of the aforementioned frameworks that produce equivalent waveforms.

Code availability
As mentioned in the data availability statement, standard optimization toolkits were used
for the creation of the control pulses and example scripts, using these frameworks can be
provided upon request or found in the documentation of the aforementioned
frameworks.
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