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Abstract

Risk in finance may come from (negative) asset returns whilst payment loss is a typical risk
in insurance. It is often that we encounter several risks, in practice, instead of single risk. In
this paper, we construct a dependence modeling for financial risks and form a portfolio risk
of cryptocurrencies. The marginal risk model is assumed to follow a heteroscedastic pro-
cess of GARCH(1,1) model. The dependence structure is presented through vine copula.
We carry out numerical analysis of cryptocurrencies returns and compute Value-at-Risk
(VaR) forecast along with its accuracy assessed through different backtesting methods. Itis
found that the VaR forecast of returns, by considering vine copula-based dependence
among different returns, has higher forecast accuracy than that of returns under prefect
dependence assumption as benchmark. In addition, through vine copula, the aggregate
VaR forecast has not only lower value but also higher accuracy than the simple sum of indi-
vidual VaR forecasts. This shows that vine copula-based forecasting procedure not only
performs better but also provides a well-diversified portfolio.

Introduction

In finance and insurance, one of the major and challenging issues is managing quantitative
risk, specifically forecasting future risk. Risk forecast is not only important for reserving capital
but also for anticipating the worse risk. Risk in finance may come from (negative) asset returns
whilst, in insurance, a typical risk is a payment loss. It is often that we encounter several
(dependent) risks, in practice, instead of a single risk. Dependent random risks or losses occur
in many applications and have challenging statistical features, see e.g. Embrechts et al. [1, 2],
Griler et al. [3], McNeil et al. [4], Naifar [5], Patton [6], Trabelsi [7], Usman et al. [8] and
Zhang et al. [9].

There are several interesting topics that relate to dependent risks. The first one is construc-
tion of dependent risks either as an aggregate risk model or a multivariate risk model, see e.g.
Kim and Kim [10]. The second topic lies on the fact that dependent risks have a technical
problem with regard to finding an exact form of distribution function (cdf) or probability
function (pdf). Both topics above eventually bring us to learn and employ a more sophisticated
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method in dependent risks namely copula. Copula is a system that does not only accommodate
either non normal or unidentical marginal distributions into a uniform distribution but also
simplify number of parameters of a joint distribution. Meanwhile, a more step method than a
copula is vine copula. It is also a system that constructs pair-copula with high flexibility when
decomposing conditional distribution, e.g. Aas etal. [11] and Trucios et al. [12]. Furthermore,
vine copula provides us informative and complete dependence structure. It is well known that
understanding dependence is an important step to make strategy on diversification.

Modeling dependence through vine copula approach is basically aimed to broaden flexibil-
ity of dependence structure among random risks, compared to classical dependence measures
of Pearson’s p and Kendall’s 7 or even copula. The recent use of vine copula modeling may be
found in (energy) economic and finance applications. For instance, Mejdoub and Ghorbel
[13] investigated conditional dependence between oil price and renewable energy stock prices
and considered threshold Generalized Autoregressive Conditional Heteroscedastic (GARCH)
model, see also Trabelsi [7] for tail risk dependence between oil and stocks of oil-exporting
countries. Kumar et al. [14] examined conditional dependence among not only energy com-
modities but also agricultural and precious metals commodities. Furthermore, Cekin et al. [15]
studied dependence structure among economic policy uncertainty (EPU) of Latin American
countries. Meanwhile, Hernandez et al. [16] compared risk of portfolio: Gulf Cooperation
Council (GCC) Islamic and conventional bank indices. They studied tail asymmetric depen-
dence among Islamic banks’ relationship. In addition, Usman et al. [8] explored dependence
modeling between Islamic and conventional stocks through copula whilst Naifar [5] employed
Archimedean copulas to model tail dependence structure between Islamic bonds and stock
market.

This paper considers risk in finance defined as (negative) asset returns. In particular, we
construct a dependence modeling for financial risks and form a portfolio risk. Whilst marginal
risk is assumed to follow a Generalized Autoregressive Conditional Heteroscedastic (GARCH)
model of order one, forecasting future risk is carried out by risk measure of Value-at-Risk
(VaR). VaR, along with Conditional VaR, has be applied to both single risk and dependent
risks to make use in practice, see e.g. Nieto and Ruiz [17] for latest review on VaR and its back-
testing. Basically, VaR is a maximum tolerated risk or loss for either single or aggregate risk at
a given level of confidence. VaR forecast is crucial for assessing the performance of financial
institution. Embrechts et al. [1, 2] emphasized that VaR is the industry and regulatory standard
for risk capital calculation in both banking and insurance.

We pay particular attention to portfolio risk of cryptocurrencies returns; particularly, Bit-
coin (BTC), Ethereum (ETH) and Litecoin (LTC) are considered. Cryptocurrency has been
one of the major interests among financial practitioners, investors, academia even policy mak-
ers. Bitcoin, since introduced by Nakamoto [18], has shown a dramatic increasing value during
a year period of 2017 and 2018 for about one and a half times ([19]). It has been a prominent
digital asset ever since. However, there is still debate whether cryptocurrencies are defined as
currency, commodity or investment asset. Jiménez et al. [20] argued that Bitcoin is a digital
asset or investment as known before (bonds and equities). Their interests are on volatility clus-
tering and leptokurtosis which are typical in asset returns. However, we may observe an
extreme event on BTC that leads to greater market instability. There are some financial impli-
cations on cryptocurrencies due to uncontrolled monitoring by monetary regulator, see. e.g.
Corbet et al. [21] who recorded pricing bubbles in BTC and ETH. They also claimed that cryp-
tocurrencies may become source of financial instability.

Boako et al. [19] and Trucios et al. [12] are among authors recently used returns of crypto-
currencies to illustrate vine copula modeling and risk measures forecasting. It is interesting to
classify several areas done by authors. The first area is cryptocurrencies testing in order to have
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a clear position: as a currency, commodity or asset; see e.g. White et al. [22] and Kwon [23].
The related area to the first is pricing formation of cryptocurrencies and other possible mea-
surement such as ratio of gold to platinum (GP) prices forecast Bitcoin return, e.g. Huynh

et al. [24]. The second area lies on cryptocurrencies empirical facts like other returns along
with return-volatility correlation, volatility clustering or asymmetric volatility, see e.g. Bouri
etal. [25], Klein et al. [26], Boako et al. [19] and Wajdi et al. [27]. Such relationship may be
measured by what so called “volatility surprise” or unexpected volatility. It is the difference
between squared innovation and conditional volatility, see Bouri et al. [28]. Furthermore,
interdependence that accounts time and frequency and market interconnection among cryp-
tocurrencies may be explored through wavelet-based approaches CWT, continuous wavelet
transformation, and XWT, cross wavelet transform) as carried out by e.g. Qureshi et al. [29].
Interdependence may also be observed between cryptocurrency and energy or agricultural
commodities. Ji et al. [30], for instance, examined information spillovers via entropy-based
method among both cryptocurrencies and commodities. They found that, first, it changes over
time. Secondly, unlike the spillover of cryptocurrencies, energy commodities spillover contri-
bution to the system is dependent on their price dynamics. The third area is concerned about
economic or financial implication of cryptocurrencies, see e.g. Bouri et al. [31] who studied
global financial stress, whilst Trucios et al. [12] argued that it is a shelter against economic and
financial turmoil.

In this paper, we show the portfolio or aggregate VaR forecast by considering vine copula-
based dependence among individual returns. Different from the work of Boako et al. [19] and
Trucios et al. [12] who found VaR forecast by using classical historical simulation (HS)
method, our forecast calculation considers “estimative” VaR forecast as in Kabaila and Syu-
hada [32, 33] and Syuhada [34]. The aggregate VaR forecast is compared to the simple sum of
individual VaR forecasts that actually considers perfect dependence assumption. To evaluate
their performance, we assess their accuracy by adopting several backtesting methods as
recently used by Syuhada [34] and Jiménez et al. [20]. In addition, comparing the aggregate
VaR and the simple sum of individual VaRs also leads us to investigate and measure benefits
of the portfolio diversification.

Material and methods
Data

Cryptocurrencies data, Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC), are obtained
from Coin Market Cap (coinmarketcap.com) for period 1 January 2017 till 31 December 2018
(730 days).

Returns and marginal risk model

The marginal risk is (negative) returns of three cryptocurrencies defined as below

p? PE Pt
X=-In({=-), YV,=—In(=), Z=-In(=], (1)
Pil Pil P%—l

where PP, P¥ and P denote (closing) price at time ¢ for Bitcoin (BTC), Ethereum (ETH) and
Litecoin (LTC), respectively.

We assume a marginal risk model of Generalized Autoregressive Conditional Heterosce-
dastic [35] of order one or GARCH(1,1) for each risk process. This is mainly due to dynamic
volatility property found from each risk. Specifically, the GARCH(1,1) models for (negative)
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returns of Bitcoin {X;}, Ethereum {Y;} and Litecoin {Z,} are, respectively, given by

— 2 _ 2 2 .
Xt =0, o-x;t - wx + 5xXt—1 + ﬁx O-x;t—ﬁ

xit Txit)
— 2 __ 2 2 .
Yt - O-y:t 8y:t’ gy;t - wy + 5}/ Yt—l + ﬁy O-y:t—l7 (2)

Zr =0,,&. Ui =w,+ 52 Zt2—1 + ﬁz Gz;tfl;
where w,, @), w, > 0 and dy, 8, 8., By, By B. > 0, for t > 0. The restriction on persistence
parameter 6, + f, < 1,6, + B, < 1 and §, + B, < 1 is needed to ensure the stationarity of all
processes {X;}, {Y,} and {Z}}, respectively. We assume that innovation {g,.,, t > 0} is white
noise. In addition, innovation €., t > 0, and volatility o, as well as £,.,, t > 0, and informa-
tion, up to time (¢ - 1), F,_,, are independent. Note that such assumptions also apply to {e,.,
t >0} and {e,,,, t > 0}.

The estimates for each innovation is calculated and the goodness-of-fit procedure for inno-
vation distribution needs to be carried out. From X; = 0, €,.,» the innovation &,; is formulated
as £y, = X4/ 0y,+. Thus, £,,, may be estimated by

t

2
L X, . 1 1< 3
sx;t - G Oy = :Z (xs - ;,ler> . ( )

xit s=1

Meanwhile, we assume standard Student’s ¢ distribution for such innovation. To do so, sup-
pose that a random variable T, has Student’s ¢ distribution with degrees of freedom v, € (0,
00), i.e. T, ~ t(v,). The probability function of T, is

f ()*71 ( t2> Z
t _ 1+ , teR,
RRVAN:IC3E) Vs

where B(:, -) is beta function. Note that its mean is E(T,) = 0, for v, > 1, whilst its variance,
V(T,) = -, is positive and finite, for v, > 2. By defining

>
Ve—2

v, —2

T
mee =T ,
xit V(Tx) X VX

£

we obtain E(g,,) = 0 and V(g,,,) = 1 and the innovation &, is said to have standard Student’s
t distribution with probability function

1
=& = A —=T8(5.) (1+

x PRE

. -2 .
Parameter function | /== may be viewed as scale parameter, so that
X

€., ~ Student/s t(O, w2y ) (4)

Vy
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Now, by applying standard Student’s ¢ distribution to GARCH(1,1) model, the conditional
probability function of X, given information F_, ,, is

1
O-;_i;t(vx - 2)3(%7 %)

fxt\fm,l (x) =

In other words, X,|F ., , is Student’s f distributed with parameter (v e ) The

x) Ut Vi
explicit form of the conditional probability function above leads us to employ the conditional
maximum likelihood method, as in McNeil et al. [4], to estimate its parameters. Note that this
procedure is analogous to Y,|F,, , and Z,|F .

Copula-based modeling

Copula and dependence measures. Suppose that a continuous bivariate random variable
(X, Y), representing a joint risk, has marginal risk distribution function Fx and Fy, respectively.
Suppose also that U = Fx(X) and V = Fy(Y) so that they are uniformly distributed over unit
interval, i.e. U, V ~ U(0, 1). Copula Cy,y is a joint distribution function of (U, V) such that

Cu,v(”yv) =PU<u,V<v), (uv)el0, 1]27
where Cy v [0, 112 = 1[0, 1]. Its corresponding probability function is

0" Coy (1,9
) =55

which is called copula density, see e.g. Nelsen [36] and McNeil et al. [4]. Furthermore, Sklar’s
theorem stated that joint distribution function Fx y of (X, Y) may be determined through cop-
ula Cy,y of marginal distribution functions Fx and Fy, i.e.

Fx,y(x7y) = CU.V[FX(X>7FY0/)]7 (x’y) eR’.

Sklar’s theorem has shown us that the use of copula provides many choices of joint distribu-
tion function of (X, Y). The corresponding joint probability function fx y of (X, Y) is given by

fxﬁy(xd’) =) £ ) 'CU,V[FX(x)vFY(y)]-

To measure dependence between X and Y, the dependence measures of Pearson’s p and
Kendall’s 7 are required. According to Schweizer and Wolff [37], such dependence measures
are defined as

J] )~ ER 0 axey
=rXY) = VX /YY)

Ty =1(X,Y)= 4// ny(xv)’) dFX,Y(x’y) -1
R2

Pxy

i

respectively. By substituting u = Fx(x) and v = Fy(y), they may be formulated as

- //M2 [Cy v (u,v) — uv] dF; ' (u) dF, ' (v)

o
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and
Txy = 4//[ ]QCU_V(u,v) dCyy(u,v) =1 = 4E[C, (U, V)] — 1. (6)
0,1

It is shown from Eq (5) that Pearson’s px y depends not only on copula but also on marginal
of Xand Y. Thus, Pearson’s p is invariant only under linear transformation. Meanwhile, from
Eq (6), it is shown that Kendall’s 7y y depends only on copula. In addition, 7x y = 7y,v. Thus,
Kendall’s 7 is invariant under both linear and nonlinear transformations. We may say that
Kendall’s 7 is copula-based dependence measure. Note that for parameter 0 of copula Cy v,
Kendall’s 7y is a function of 8 i.e. 7y 1/(0).

There are several copulas commonly used such as Archimedean and elliptical copulas.
Based on Joe [38], examples of Archimedean copulas are Clayton, Gumbel and Frank with the

following function and the corresponding density:
1. Clayton copula: C53™ (u, v;0) = (u® + v — 1)_%, where 6 € (0, 00). Its corresponding

copula density is

A wyv50) = (L 0)(wn) (vt =) T

2. Gumbel copula: C§r™ (u, v; 0) = exp {—[(— Inu)’ 4+ (—In v)g]%}, where 6 € [1, c0). Its
corresponding copula density is

(—=In u)(H(— In v)oilg(u, V)
- Corp(u,:0)

cm(u, v;0) =

where g(u,v) = [(~Inw)’ + (—=Inv)"f* + (0 = V(- Inw)’ + (~Inv)}?

3. Frank copula: Ciy*(u, v;0) = — In |1+ w} , where 0 € R € \{0}. Its corre-

e 01

sponding density is

cuy(u, v; 0) =

Qe—ﬁue—ﬂv(e—ﬂu _ 1)(e—ﬂv _ 1) (e—eu _ 1)(e—9v _ 1) -2
S {1 n .

Meanwhile, Gaussian and Student’s ¢ copulas are examples of elliptical copulas. Their cop-
ula functions are

Comn (11, v:0) = B, (1), @ (v);]
and
Cf}f“fe“t/s “(u,v;v,0) = Fy o [Fr' (usv), F7 (v v); v, 0],
respectively, where 0 € (-1, 1). Note that ®(-) and @,(-, -;0) are distribution function of stan-
dard univariate normal and standard bivariate normal random variables, respectively. Further-

more, Fr.p(-, v, 0) is joint distribution function of identical Student’s t random variables (T,
T') with marginal distribution function Fr(-;v) and degrees of freedom v € (0, c0). The
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corresponding densities of Gaussian and Student’s ¢ copulas are, respectively, given by

G 1, v;0) =

_;L_apkwwwy%ww]
V1i_? 2(1 —0°) ’

where x = ® (1) and y = ®'(v), and

o

1 x4y — 20xy} -
Student/s t u,v; V, 0 — |:1
A QT T N V(1= 07)

C

)

where x = F,'(u;v) and y = F,' (v; v).

The dependence measures of Kendall’s 7 for Archimedean and elliptical copulas are pro-
vided in Table 1. It is shown that Kendall’s 7 may be expressed in copula parameter 0. In addi-
tion, copula parameter 8 may also be expressed in Kendall’s 7, except for Frank copula.

For equal value of Kendall’s 7, we present in Fig 1 the contour plot for the density of Archi-
medean and elliptical copulas. It may be observed that Clayton, Gumbel and Student’s ¢ copu-
las perform tail dependence. In more detail, Clayton copula is appropriate for lower-tail
dependent risks whilst upper-tail dependence may be captured by Gumbel copula. Further-
more, Student’s t copula displays symmetrical lower- and upper-tail dependence. Meanwhile,
Frank and Gaussian copulas have symmetrical lower- and upper-tail independence.

Copula selection. For a given risk data set, the challenging task is selecting the best
copula which fits well to the data. We may do this by considering several criteria. One of
them is Akaike Information Criterion (AIC) introduced by Akaike [39]. Suppose that a cop-
ula Cy (-, -;0) with its corresponding density ¢y (-, -;0) has parameter 0. Based on data
{(u;,v,)}._, of (U, V), the estimate for such parameter may be obtained through maximum
likelihood (ML) method with likelihood function (0) = []_, ¢, (u;, v;; 0). By replacing 6

with its estimate, 0, we have C v 9) as the parametric estimate for Cy (-, ;0). The AIC
value from such copula is defined as

AIC = —21n1L(0) + 2b,

where b is number of parameters in 8. Among several choices of copulas, a copula with the
lowest value of AIC may be decided as the best copula.

Table 1. Dependence measures of Kendall’s 7 for Archimedean and elliptical copulas.

Copula Kendall’s 7y;,/(6) Parameter 0(7y,y)
Clayton(@) ﬁ 1_)jtbvvv v

Gumbel(6) 1-4 =

Frank(6) 1— —4“73‘ ) 5 (0)
Gaussian(6) 2 arcsin(0) sin(Z7,,)
Student’s (6, v) 2 arcsin(0) sin(g T U_‘,)

Note: Kendall’s 7 is expressed as function of copula parameter 6 and such 6 is expressed as function of Kendall’s 7.

t
ef—1

For Frank copula, its Kendall’s 7 is depend on Debye function of D, (0) = 3 f[f dt whose inverse function has no

explicit form.

https://doi.org/10.1371/journal.pone.0242102.t001
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Fig 1. Contour plot for the density of Archimedean and elliptical copulas. The contours show their different dependence structure for equal
Kendall’s 7= 0.6.

https://doi.org/10.1371/journal.pone.0242102.9001

In addition, we employ other criteria by considering empirical version of copula. The
empirical copula C,, for the data {(u,,v,)}",, is defined as

ir i/ Ji=1?
o 1<
Cn(“’ V) = ;Zﬂ{uigu,vigvp (u7 V) € [03 1]23
i=1

where II, is indicator function on set A. Through graphical approach, the best fitting copula
may typically be selected by comparing the surface of such empirical copula to that of

Cy v (u,v;0). To give more convenient interpretation, we consider its univariate version i.e.

A

1 n
K,(q) = ;ZH{cnwpvpg}a q€0,1]. (7)
j=1

Such empirical function is the nonparametric estimate of distribution function,
K(gq;0) = P(Q < gq), for the so-called Kendall’s transform, Q = Cy, (U, V;0), defining Ken-
dall’s 7in Eq 6. According to Genest and Rivest [40], this leads us to visualize the curve for

K, (q) and its corresponding function of A, defined by

A(q) =q—K,(q), (8)

along with the parametric version derived from C v (U, v; 0). Furthermore, we may perform a
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goodness-of-fit (GoF) test for such copula. It is carried out by testing

H,:Cy, =Cyy(,0) versus H, :Cy, # CU‘V(-, -+ 0),

or, equivalently, testing H, : K = K(-; 0) versus H, : K # K(-; 0), where Cy,1yand K are the
true copula and the corresponding true Kendall’s distribution function, respectively. We use
Cramér-von Mises test statistic

5 = / nlK(q) — K (q:0)]" dK,(q)

and calculate p-value of the test by adopting parametric bootstrap as proposed by Genest et al.
[41].

Vine copula-based modeling

Pair-copula construction method. Suppose that (X, Y, Z) is a dependent risk model con-
sisting of three continuous random variables with joint probability function

Jxve =Ffyr J2 exvz )

where the marginal risk probability functions are fy, fy, fz and cx y, z is a trivariate copula den-
sity. Since there is limitation on classes of trivariate copulas, we aim to find joint distribution
of (X, Y, Z) through another approach. Joe [42] suggested a decomposition for fx y,  as

fX,YﬁZ :fx 'fy\x 'fz\x‘r

Note that
f & fx Jy - exy —fc
YIX T f f Y “X\Y
X
and
fy Z|X fY\X 'fz|x " Cy z)x
fz\x Yy = :fz\x *Cyzix-
fy\x fY\X
Since
fxz fX Sy Cxz
fz\x

fx fx =f e
we have f;)x vy =fz - cxz " ¢y.zx- Thus,
Fevz =Fefyfrrexy ez Cr e (10)
Now, from Egs (9) and (10), we obtain
Cxyz = Cxy  Cxz - Cyzx- (11)

This shows that the trivariate copula density cx y, ~ for (X, Y, Z) model may be constructed
from bivariate copula densities: cx,y, cx,z Cy,7x- In other words, it provides flexible way to
determine joint distribution of (X, Y, Z). The first two components cy y and cx z show depen-
dence of (X, Y) and of (X, Z), respectively, with dependence measure kx y and kx . Mean-
while, the component cy,;jx shows partial dependence of (Y, Z), given X, with partial

PLOS ONE | https://doi.org/10.1371/journal.pone.0242102 December 23, 2020 9/34


https://doi.org/10.1371/journal.pone.0242102

PLOS ONE

Risk dependence and VaR for cryptocurrencies

dependence measure Ky z|x. Note that the dependence measure of ¥ may be either Person’s p
or Kendall’s 7.

Suppose that Fx, Fy, F, denote marginal distribution functions of (X, Y, Z). The copula den-
sity cx v, zin Eq 11 is basically expressed as

CXYZ[ () Y()’) ()] :CXY[ () Y(y)]xcxz[ (x)an(z)]

XCy z\x[ YIx (y|x), F. ZIx (z]x)]

for all (x,y,z) € R®, where Fyjx and Fyx are conditional distribution function of Y and Z,
given X, respectively. According to Joe [42], they may be defined as

0
Fral) =22 XN ¢ i )1Ey ) (12

By =TI, o) o) (13

This shows that conditional copula density cy,zx is determined through copula Cx y and
Cy,z. From Eqs (12) and (13), copula density cy y, z is completely given by

CxyzlFx (%), Fy(0), F2(2)] = cxy[Fx(x), Fy(y)] X cx,[Fx(x), F,(2)]
XCY,Z\X{CY\X[FY()/”FX( x)], CZ\X[FZ( z)|Fy ()]}

According to Joe [38], function of Cyx for each copula Cy y, from Archimedean and ellipti-
cal copulas, is given in Table 2. Now, for u = Fx(x), v = Fy(y) and w = F(z), copula density
Cx.v, z1s given by

Sy z (1 Vs W) = Cxy (1, v) - e 5 (1, W) - 0y 4y [Cp (VIw), Crpy(wlu)]

for all (u, v, w)€[0, 1]*. Furthermore, if

<
I

= Cyx(v[u) = Cyy[Fy (y)|Fy(x)
u CZ\X( wlu) = CZ\X[FZ(Z”FX(x)]?

=
I

Table 2. Function of Cyjx-

Copula Function of Cyx(v|u)
Clayton W (0 4yt — 1)
- 1

Gumbel ! ()" () 4 () o ()
Frank e M- -1+ E@™-1)"
Gaussian e 1 (v) =00~ (u)

V162
Student’s ¢ F, % |

(1=0%) (v+{F (ww)]?)/ (v+1)

Note: The function of Cyjx is derived for Archimedean and elliptical copulas.

https://doi.org/10.1371/journal.pone.0242102.t002
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such copula density is as follows

CXA,Y,Z(uv v, W) = CX,Y(u’ V) : Cx,z(ua W) : CY,Z\X(VW Wu)'

Graph structure and vine (copula). Suppose that V denotes an empty and finite set. Sup-
pose also that [V]* = {{v, vV}, V € V}isasetofall pairs of two unordered elements in V.
According to Diestel [43], a graph is a pair (V, E) of sets for some E C [V]?. The element of V
is called node whilst the element of E is an edge. A simple graph 7 = (V, E) that is connected
and has no cycle is called a tree graph.

Based on Bedford and Cooke [44, 45] and Kurowicka and Cooke [46], VV,, is called vine on
m elements, with E(V, ) = E, UE,U...UE, _,,if

.V, ={7,,7,,...7, .}

2. T, isatree graph with a set of nodes V; = {1, 2, ..., m} and a set of (m — 1) edges E; C
[V1]2§

3. forallj=2,3,..,m-1, Tj is a tree graph with a set of nodes Vi=Ej_, and a set of edges
EC V).

In short, vine is a collection of nested trees where edge of the jth tree is a node of the (j + 1)
th tree.

Avine V, is called a regular vine (R-vine) on m elements if “V, satisfies proximity condi-
tion, thatis forallj=2,3,...,m - 1,ifv,,v; € V, where {v, v/} € E, then [v,Nv]| = 1.In
other words, two adjacent nodes in the tree graph 7, are two adjacent edges in the tree graph
T, ,”. There are two special cases of R-vine that are drawable vine (D-vine) and canonical vine
(C-vine). R-vine V,, is a D-vine if all nodes in the tree graph 7", have maximum degrees of 2.
Meanwhile, V), is called a C-vine if the tree graph 7 ; has exactly one node with degrees of m —
jiforj=1,2,...,m—1;in tree graph 7 |, such node is called a root. For an illustration, it is
shown in Fig 2 graph structure of D-vine and C-vine, form=4and V, = {7,,7,,7,}.

Now, an R-vine V, is employed to represent dependence model (X, Y, Z) determined
through trivariate copula by pair-copula construction method. Here, node is a random vari-
able whilst edge is a bivariate copula added by absolute dependence measure as weight. Such
weight is used to find appropriate R-vine i.e. an R-vine where each tree graph has maximum of
the sum of weights, according to Diffimann et al. [47].

First, define a complete graph X', (or a cricle graph C,) with three nodes representing ran-
dom variables of X, Y, Z. Let absolute value of each dependence measure xx y, kx 7, Ky.z be
defined as weight of edge that connects two nodes. Then, select a maximum spanning tree
graph, that is a tree subgraph of the complete graph K, maximizing the sum of weights. We
denote the resulted R-vine copula by (F, V,, C, K), where F is a collection of marginal distribu-
tion functions of (X, Y, Z). Meanwhile, C and K consist of bivariate copulas and the corre-
sponding dependence measures, respectively.

Forecasting Value-at-Risk (VaR)

Individual VaR forecast. The one-step-ahead VaR forecast is actually a forecast(ing limit)
of future risk or return, X,,,1, given previous information up to time n, 7 _,. At a specified con-
fidence level of 1 — @, it may be calculated through the following formula, see e.g. McNeil et al.
[4] and Syuhada [34],

VaR* =inf{x:P(X,, <x[F,)>1-oa},

x;n4-1
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{{{1,2},{1,3}},{{1,2},{1,4}}}

Fig 2. Graph structure of R-vine. The R-vineis V, = {7,,7,,7 ,} as a (a) D-vine and as a (b) C-vine.
https://doi.org/10.1371/journal.pone.0242102.9002
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for o € (0, 1). Provided that the inverse of distribution function of X,,,;, given F _,, exists, we
may obtain VaR! * = Fy lﬂ‘ #_(1 — o), according to Syuhada et al. [48]. This means that such

x;n+1
VaR forecast is basically the (1 — a)-quantile of (conditional) distribution of the future return.
Since we use standard Student’s ¢ for innovation distribution and assume GARCH(1,1) for
(negative) return model, the conditional distribution of X,,,,, given F _, is Student’s t with

x;n’

degrees of freedom v, and scale parameter o, . /“~. This implies that its conditional mean

and variance are

E(Xn+1|fx;n) - 07 V(Xn+1|fx:n) = xn+1 ('U +5 X +ﬁxa

xn?

respectively. Note that Student’s ¢ is a symmetrical distribution. Thus, the one-step-ahead VaR
forecast for X,,,4, given F_, consists of such conditional mean and variance, i.e.

. (1—o).Sincee,, =T,

VaR™* , we obtain

xn+1 = xn+1

VaR:™” =g¢ ‘*’QF (1 —ov,)

x;n+1 x;n+1

= (o, 45,2+ B.02, ) 52 F (1L - 2,).

Parameter of model, (w,, d, By vx), may be replaced by its estimate so that we have the esti-
mative one-step-ahead VaR forecast given by

VaRL, = \[(@, + 0,22+ B,62,) 52 (1 - o5 ,). (14)

P

In addition, the estimative £(>1)-step-ahead VaR forecast is as follows

VaRch nj—[ = \/(d)x + 3):th+137] + [3)( 6';2c;n+£71) ‘Ai’r;? F;xl(]' — ﬁx)? (15)

where6? ., =, + b X+ B, G2, Note that forecasting VaR for Y, given F,, ,,
and Z,, given F,_,, may be carried out through the similar procedure.
Aggregate VaR forecast. For the case of a portfolio or aggregate risk, we aim to forecast

VaR for future aggregate risk of

S Xn+1 + n+1 + Zn+1’

given previous information F,

x.y,z;nt

. We may employ vine copula to determine the joint distri-
bution of model (X;,,, Y, ,Z,,,) = (X,.,|F s Y| F s Z,1a [ F L) Suppose that
fo v denotes its joint probability function having a certain decomposition. Then, the

n+1’ VH»I

condmonal distribution function of S,,, 1, given F_ _, is determined as follows

xX).2;
Fsvﬂrl‘]:x.y.z:n (5) = IP(SYHrl S s|fx.y.z;n)

= n+1 + Yn+1 + Zn+l S s|fx,y,z;n)
s—x—y
/ / fxx+1 vz (x,y,2z)dzdydx, seR.

By employing vine copula, forecasting the one-step- ahead individual VaRs is simulta-

neously carried out based on the joint distribution of (X!, Y>, ,Z" ). We collect all of them
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into a vector denoted by

V.., = (VaR* VaR* VaRl *)". (16)

xn+1) yin+1? zin+1

Then, we may forecast the one-step-ahead aggregate VaR, aggVaR! ” , by taking such indi-

s;n+12
vidual VaR forecasts into account. We do this by first observing that

aggVaRsl;;il = (VZHPV»«H)I/Q» (17)
where
1 Key Kis

. . * * *
is matrix of dependence measure for (X, ,,Y: |, Z: |

). From Eq (17), through simple alge-
braic operation we have

aggVaRl " = [(VaRl* )"+ (VaR) )"+ (VaRl )’ + 2, (VaR.’ )(VaR! * )

sin+1 xn+1 yin+-1 z;n+1 xn+1 yin4-1

+2rc,, (VaRL", ) (VaRL ") + 2x, (VaR} ", ) (VaR] )],

This means that the aggVaR forecast above incorporates interactions between different
returns by introducing their dependence measures. Note that the estimative aggVaR forecast
may be obtained by using the individual estimative VaR forecasts and the estimate of depen-
dence measures.

For perfect (positive) dependence, i.e. k.., = k., = k. = 1, it is obvious that the aggVaR
forecast is equal to the simple sum of individual VaR forecasts written by

simplesumVaR}, = VaR|.*, 4+ VaR} * + VaRl * . (18)

Thus, simplesumVaR may simply be decided as the aggVaR forecast when the worse cases
of all of our risks always occur simultaneously, see e.g. Li et at. [49] and Embrechts et al. [2]. In
other words, the risks have dependence representation of the form M(u, v, w) = min(u, v, w)
which may be called perfect-dependence copula. However, since the dependence measures sat-
isfy |y |s |Kx.2> |y,2| <1, we have

aggVaR! ”

a1 < simplesumVaR!

sin+1°

This means that the aggVaR forecast in Eq (17) is bounded from above by simplesumVaR
in Eq (18). The weaker the dependence among marginal risks, the lower the aggVaR forecast.
This is inline with the fact that M(u, v, w) is the upper bound for all classes of copulas, see e.g.
Joe [38], including pair-copula which determines the vine copula-based dependence among
marginal risks for our portfolio risk.

In addition, it is interesting to investigate diversification benefits of using aggVaR and sim-
plesumVaR. As in Li et at. [49], such diversification benefits may be measured by a so-called
diversification coefficient (DC) defined as

simplesumVaR] ", — aggVaR! *| (19)

1—o __
DCn-H - . 1 vV lea
simplesumyVva —_—
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From Eq (19), it may be understood that such coefficient is getting higher as the depen-
dence among marginal risks is weaker. This makes the portfolio better diversified.

To find the ¢-step-ahead aggregate VaR forecast, we consider the vector of £-step-ahead
individual VaR forecasts derived simultaneously. We denote it by

V,., = (VaR*, VaR*, VaR'*))"; (20)

x40 ysnA-L) z;n+l
each component is obtained similarly by Eq (15). Then, we have

aggVaR!* = (V! )2 (21)

ssntl T n+t

PVn+/
The calculation of DC for this aggVaR forecast is analogous to Eq (19) by involving the sim-
ple sum of individual VaR forecasts of Eq (20).

Backtesting VaR

After we find the (aggregate) VaR forecast, the assessment of the forecast accuracy is required.
It may be carried out through backtesting. From a variety of the backtesting methods, we
adopt the methods from Syuhada [34] and Jiménez et al. [20]. We discuss the following meth-
ods for the case of VaR[,* ; the discussion for the other individual VaR and the aggregate VaR
forecasts are similar.

Probability-based backtesting. As stated before, the one-step-ahead VaR forecast is the
forecasting limit of future risk, given information of risks in the past. To simply asses the accu-
racy of VaR forecast, we, therefore, may calculate the probability that the actual future risks do
not violate the VaR forecast. It is called coverage probability (CP) defined by

CP = P(X,,, < VaRl,|7,,).

xin+1

The closer the CP to the confidence level, 1 — a, the more accurate the VaR forecast.
N

When the sequence of actual future risks, {x, +1;k}£}: ,» is obtained, we may define {I,,,,},

wherel, ., =1 R ) fork=1,2,...,N. We expect that {In+1:k}£]:1 is the sequence of

{xn14<Val
realizations of Bernoulli random variable with parameter 1 — a. Thus, the value of & S 1k
is required to estimate the CP.

From the sequence of {x, 1;k}f: \» We may also require the sequence of {I;

n

N
+12k}k:1’ where

%

etk = 1 P VaRE? fork=1,2,..., N. Note that the term 1 refers to failure or violation of

the VaR forecast; all terms are expected to be the realizations of Bernoulli random variable

with failure proportion equal to a. Comparison of the actual number of failures, 3" | I* S
and the expected number of failures, Na, may be considered to assess the accuracy of VaR fore-
cast. Their ratio is called actual over expected (AE) ratio.

Conditional coverage test. The standard test for assessing the accuracy of VaR forecast is
the test whether the failure proportion is equal to a. It is basically carried out through binomial
test by considering normal approximation of binomial distribution. However, according to
Christoffersen [50], the forecast accuracy may be assessed by determining whether the
sequence of {I’ +1:k}g=1 consists of independent and identical realizations with failure propor-
tion equal to . This means that we need to combine the test of proportion of failure (PoF) and
the test whether this sequence satisfies the conditional coverage independence (CCI). Their
combination is called conditional coverage (CC) test.
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The PoF and CCI tests employ likelihood ratio (LR) test statistic. The LR statistic for PoF

test is defined by
1T—a\"™ o\ M
LR, = —2In Kl - a) (&> ]

where N, = S0 | I 14 18 the actual number of failures and & = % js its actual proportion.
Meanwhile, the LR statistic for CCI test is

Noo+N1o _Nor+N11

LRy = ~2In | o m) 2 imt :
(1 - P(n) " Ptllvlm (1 - Pn) " Pi\]lll

where Nj; is number of the term i followed by the term j and P;; is the corresponding transition
probability, for i, j = 0, 1, from {I’ +1:k}kN:1 viewed as the sequence of realizations of a Markov
chain model with binary states; 7 is unconditional probability of the term 1 (failure). Both LR
statistics are asymptotically chi-square distributed with 1 degree of freedom. As proposed by
Christoffersen [50], the CC test employs the LR statistic defined by LRcc = LRpor + LRy it is
asymptotically chi-square distributed with 2 degrees of freedom. The null hypothesis of correct
model specification fails to be rejected when p-value derived from this statistic is above signifi-
cance level.

Backtesting through loss function. It is known that VaR is basically the quantile of (con-
ditional) distribution of the future risk. In addition to the use of inverse of its distribution
function, VaR as quantile may be formulated through different approach. Based on Kuan et al.
[51], VaR. *  is the minimizer of the loss function defined by

xn+1
‘C(a) = E“(l - OC) - H{Xn+1§u}| ’ |Xn+1 - a" given fx;n]'

In this case, the loss function evaluated at our VaR forecast may be relatively compared to
that evaluated at VaR forecast obtained from other method as benchmark. They are called
quantile losses. The value of their ratio below one means that our forecasting method outper-
forms the benchmark.

Result and discussion
Daily returns, innovation distribution and marginal risks

The dynamic daily prices and returns for Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC)
for a period of 730 days in 2017-2018 are given in Figs 3 and 4, respectively. The returns follow
formula in Eq (1). Whilst the three cryptocurrencies seem to have similar prices behavior, Lite-
coin has a dramatic increase in day 350 (December 2017) before the decrease in day 400 (Feb-
ruary 2018), in comparison to Bitcoin (less dramatic) and Ethereum (gradual increase). In
addition, the returns of Litecoin have more high volatility compared to the low and medium
volatility as shown in Bitcoin and Ethereum returns, respectively. The property of dynamic
volatility significantly appears in all of these returns based on the result of hypothesis test for
ARCH effect of Engle [52] in Table 3. This result leads us to assume conditional heteroscedas-
ticity for each of our risk models. Furthermore, the stationarity assumption is also needed
based on the result of ADF test in Table 3. In addition, the existence of (inverse) leverage effect
may also be considered, especially for Bitcoin whose (negative) return is positively correlated
with its squared volatility as visualized in Fig 5. In other words, we also need to assume asym-
metric heteroscedastic model in order to capture the feature of asymmetrical volatility. This is
in line with assumption in Bouri et al. [25] and Klein et al. [26].
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Fig 3. Daily closing prices of cryptocurrencies. The cryptocurrecy prices are { PP } for Bitcoin (BTC), { P} for Ethereum (ETH) and {P} } for Litecoin
(LTC).
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Fig 4. Negative returns of cryptocurrencies. The notations of such returns are {X;}, {Y;} and {Z;} for BTC, ETH and LTC, respectively.
https://doi.org/10.1371/journal.pone.0242102.9004

We have assumed a GARCH(1,1), as in Eq (2), for each of our risk models. It consists of
dynamic volatility and innovation. Table 4 gives the summary of statistics for the estimates of
such innovation, defined in Eq (3), for the returns of Bitcoin, Ethereum and Litecoin. It is
observed that the high empirical kurtosis leads us to employ heavy-tailed distribution for
innovation.

Furthermore, we visualize the innovation estimates in histogram, Fig 6. Both standard nor-
mal and standard Student’s ¢ curves for probability function are fitted, where the estimated

Table 3. Summary of test statistics for returns of Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC).

Test Statistic BTC ETH LTC
ARCH PQ 105.3 (0.0000) 120.0 (0.0000) 48.7 (0.0000)
ADF -717.5 (0.0000) -709.1 (0.0000) -717.7 (0.0000)

Note: The Portmanteau-Q (PQ) test statistic is used to test Engle’s ARCH effect or conditional heteroscedasticity
whilst the augmented Dickey-Fuller (ADF) test is for stationarity. The null hypothesis of the tests is rejected due to

low p-value (in parentheses) below 5% significance level.

https://doi.org/10.1371/journal.pone.0242102.t003
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Fig 5. Correlation between (negative) return and its squared volatility. The significant positive correlation indicates (inverse) leverage effect in the
returns data.

https://doi.org/10.1371/journal.pone.0242102.9005

Table 4. Summary of statistics for innovation estimates of Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC).

Statistic BTC ETH LTC
Minimum -16.8157 -4.3824 -7.9936
Maximum 4.6060 4.2687 4.9401
Mean -0.0724 -0.0615 -0.0404
Median -0.0745 -0.0076 0.0229
Std. Deviation 1.1679 0.9342 0.9326
Kurtosis 61.2525 6.2055 13.987

Note: The high kurtosis (above 3) indicates that the innovation is leptokurtic or heavy-tailed.

https://doi.org/10.1371/journal.pone.0242102.t1004

degrees of freedom of standard Student’s t are given in Table 5. In fact, it may be observed that

standard normal distribution is not appropriate for each innovation. This is also described in

Fig 7 for its distribution function. Based on AIC values also given in Table 5, standard Stu-

dent’s t distribution has lower value of AIC than standard normal distribution. This confirms

the appropriateness of standard Student’s ¢ distribution for such innovation, as in Eq (4).
Based on the assumption above, parameter estimates of GARCH(1,1) model are given

in Table 6. By assuming symmetrical volatility, it is observed that the persistence parameters

Je(&x) Je,(&y) Je.(&2)
BTC ETH

0.6f 0.6 0.6

0.4 0.4 0.4

0.2

0.21 0.2

0.6/ »

Normal
—— Student's ¢

Fig 6. Histogram of innovation estimates. The histogram for BTC (blue), ETH (green) and LTC (yellow) is fitted to standard normal (black dashed)
and standard Student’s ¢ (red) probability functions.

https://doi.org/10.1371/journal.pone.0242102.9g006
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Table 5. The estimate for degrees of freedom of standard Student’s ¢ distribution along with AIC value.

BTC ETH LTC
Estimate for degrees of freedom 3.6111 2.8916 2.8363
AIC for standard Student’s ¢ 1988.1323 1823.1346 1745.1279
AIC for standard normal 2335.3883 1977.2438 1973.5137

Note: The estimate for degrees of freedom is calculated through maximum likelihood method. Lower value of AIC is in boldface.

https://doi.org/10.1371/journal.pone.0242102.t005
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5x + Bx (0.9256), 5y + [?y (0.8178), 5Z + BZ (0.9239) are close to one but still lower than one.
These also show stationarity of all processes {X,}, {Y,} and {Z,}. Meanwhile, for asymmetric
model with considering inverse leverage effect, we need an additional parameter y to ensure
that the positive-signed returns lead a rise in the volatility. In other words, such volatility is

modeled by

O-)Zc;t =, + 5x Xt2—1 + ﬂx O-z;t—l + Y Xt2—1 ]I{Xt_1>0}7

for (instance) Bitcoin returns. From Table 6, the stationarity condition is also satisfied for all

asymmetric processes since the persistence parameters o+ B +19 = 0.9247,0.8207,0.9239
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Fig 7. Empirical distribution function of innovations. The distribution function for BTC (blue), ETH (green) and LTC (yellow) is fitted to standard
normal (black dashed) and standard Student’s ¢ (red) distribution functions.

https://doi.org/10.1371/journal.pone.0242102.9007

Table 6. The estimate for parameters of (a)symmetric GARCH(1,1) model.

Model Parameter BTC ETH LTC
Symmetric w 1.9285x 10> 18.4322 x 107° 3.1725x 107°
5 0.0919 0.1202 0.0758
B 0.8337 0.6976 0.8481
Asymmetric w 1.9955 x 107 18.0567 x 107° 3.1725x107°
5 0.0892 0.1105 0.0758
B 0.8320 0.6995 0.8481
y 0.0070 0.0214 0

Note: The estimation is carried out through conditional maximum likelihood method.

https://doi.org/10.1371/journal.pone.0242102.t006
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are below one. For Litecoin, we obtain §, = 0 which means that asymmetric GARCH(1,1) is
equal to symmetric GARCH(1,1).

Dependence among innovations and the best copula selection

Modeling dependence of (g £y, £ is used to compute and to find joint distribution of
(X5, Y, 2) = (X|F 1, Vi F, 15 ZIF ., 1) As stated before, suppose thate, = {&,,},
g, = {&,} and e, = {€,,}. We calculate the dependence measure for each pair of innovation
estimates and also calculate maximum of the sum of absolute dependence measures. Then, the
appropriate trivariate copula density Ce,peypen, 1O determine joint distribution of (€, £, £2)
is constructed.

Fig 8 shows scatter plot (three dimension) of innovation estimates {(€,,,€,,,€,,) } whilst
Fig 9 describes scatter plot of each two dimensional pair of innovation estimates: { (8)”, £, ,)}

{(é.,€.,)} and {(&,,,€,,)}. Note that their dependence measures are ¢, , = 0.4501, &
0.4910andk,, = 0.5127, respectively. This means that innovation estlmates with maximum
of the sum of absolute dependence measures are {(€,,,€,,)} and {(¢,,€_,) }. Thus, the appro-

priate trivariate copula density ¢

Ex;t Lyt Lt

to determine joint distribution of (Exst> €y €24) 1s

=C - C - C .
Exit Eyit Lzt ExitEzit EyitEzt gx:txgyzr‘gz:t

Note that the first two bivariate copula densities, respectively, correspond to bivariate cop-
ulaC, . andC for edges of the tree graph 7", whilst the last one corresponds to condi-

tE€zt Eyit:€zt

tional copula C

Exit €yt [

for edge of the next tree graph 7',. The latter copula is defined through
copula C and C

Exit- €zt €€t
According to Aas et al. [11] and Czado et al. [53], copula parameters are estimated through
sequential maximum likelihood method as follows. First, the innovation estimates €, € ,, €.

are transformed through marginal distribution function F,_, L that are

u, = st:t (éx;t)7 Ve = Fsy:[ (éy;t)’ w, =F, ot (éz:t) € [07 1]'

£,
The transformed data are then used to estimate parameter of copula C, (,50,,) and

(,+50,,) from several classes. The best copulas for C, . and C based on several

Eyit-Eat £zt Eyit €z’

criteria, are used to find function C, . and Ce, e respectively. Now, define

tlezy
Upr = Csx:t\s”( tlwme )7 Vit = Cﬁy;:\fz:( t|Wt7 yz) € [071]7

so that we have the transformed data {(u,,., v,1.;)}. We then use these data to estimate parame-
ter of copula ng:tfyzt‘gz:t (s OXW).

The scatter plot of the transformed data {(u,, w,)} and {(v;, w;)} is shown in Fig 10. It may be
observed that these transformed data of the estimated innovations show asymmetrical depen-
dence with strong dependence in upper tails. This means that an increase of extremely positive
innovation for BTC (or ETH) returns is followed by an increase of that for LTC returns. This
empirical fact indicates that Gumbel copula is appropriate for such data. This indication is
inline with the result of copula selection based on AIC and goodness-of-fit criteria provided in
Table 7. This is because Gumbel copula has the lowest value of AIC and the highest p-value
(>0.05) of the goodness-of-fit test for both data {(u;, wy)} and {(v,, w))}.

In addition, graphical approach visualized in Fig 11 explains that Kendall’s distribution
function (and the corresponding function of 1) derived from Gumbel copula seem to be close
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Fig 8. Three dimensional scatter plot of innovation estimates. The innovation estimates are {(¢_,,& ,,&_,)}.
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https://doi.org/10.1371/journal.pone.0242102.9008

enough to the empirical Kendall’s distribution function defined in Eq (7) (and the empirical
function of A,, defined in Eq (8)). This means that Gumbel copula fits well to the upper-tail
dependent data {(u;, w;)} and {(v, w)}.

From the result above, Gumbel copula is the best fitting copula for C, and Ce,pe.e BY

employing Gumbel copula for such copulas, we obtain the transformed data {(u,,,;, V,0)}
shown in Fig 12. We now observe that the new transformed data show symmetrical tail depen-
dence. This empirical fact leads us to consider Student’s t copula as the best fitting copula for
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and goodness-of-fit criteria, see Table 8, as well as graphical approach, see Fig 13.
By merging the results above, the best dependence model for (g, €y, €2;) based on the

data of innovation estimates {(&

x;t? gy;t’

£_,)} has joint probability function

f — f . f . f . CGumbel . CGumbel . CStudent/s t
Exit €yt Ezit e ey Je  Tenien  TepEn ExiEpler)

. This consideration is inline with the result of the best copula selection based on AIC

where f, , fsy;n Je., are probability function of standard Student’s  with degrees of freedom,
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Fig 10. Transformed data for determining the best copulas for the first tree graph. The data are (a) {(u;, wy)} and (b) {(v;, w))}.
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respectively, V.,V , V.. Fig 14 shows its graph structure. As a consequence, dependence model

(X;,Y;,Z;) through graph structure is presented in Fig 15.

VaR forecast

Now, the one-step-ahead VaR forecasts for Bitcoin, Ethereum and Litecoin returns based on
(a)symmetric GARCH(1,1) model are provided in Table 9. Such VaR forecasts are calculated
at 95%, 97% and 99% confidence levels (CLs) under two assumptions: (i) perfect dependence,

Table 7. Parameter estimates along with the best copula selection for the first tree graph based on AIC and goodness-of-fit test by using data (a) {(u,, w,)} and (b)

{(ve wp}.

Data Copula Estimate (Std. Error) AIC GoF (p-value)
(a) Clayton 0.8202 (0.0680) -208.3876 2.3732 (0.0000)
Gumbel 1.9709 (0.0610) -513.3633 0.0757 (0.2445)
Frank 5.7798 (0.2920) -440.1642 0.5330 (0.0000)
Gaussian 0.6244 (0.0190) -377.3082 0.3657 (0.0000)
Student’s ¢ 0.6894 (0.0210) -484.0637 0.4091 (0.0000)
3.0795 (0.4210)
(b) Clayton 0.7725 (0.0660) -204.8118 3.4415 (0.0000)
Gumbel 2.0281 (0.0630) -531.6440 0.1133 (0.0769)
Frank 6.1585 (0.3040) -473.6364 0.4293 (0.0000)
Gaussian 0.6339 (0.0180) -389.5267 0.6240 (0.0000)
Student’s ¢ 0.7049 (0.0200) -486.3833 0.5506 (0.0000)
3.0055 (0.3880)

Note: The estimation for parameter of Archimedean and elliptical copulas is carried out through maximum likelihood method whilst the goodness-of-fit test uses
Cramér-von Mises statistic. The lowest value of AIC and the highest p-value for certain data are in boldface.

https://doi.org/10.1371/journal.pone.0242102.1007
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Fig 11. The best copula selection for the first tree graph based on Kendall’s distribution function and the corresponding function
of L. Such functions for Archimedean and elliptical copulas are compared and fitted to those for empirical copula of the data (a-b) {(u,,
wy)} and (c-d) {(vi» w))}.

https://doi.org/10.1371/journal.pone.0242102.9011

as benchmark, and (ii) vine copula-based dependence among different returns. For the former
assumption, we simulate perfectly dependent innovations to calculate the previous returns and
volatility and, hence, to find the individual VaR forecasts. This procedure is similarly applied

for the latter assumption for which the innovations are simulated through vine copula we have
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Fig 12. Transformed data for determining the best copula for the second tree graph. The data are {(u,,,; V,,,)} with

R = 0.2301.
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Table 8. Parameter estimates along with the best copula selection for the second tree graph based on AIC and
goodness-of-fit test by using data {(u,,,, V1,1 }.

Copula Estimate (Std. Error) AIC GoF (p-value)

Clayton 0.2376 (0.0920) -43.6005 0.9125 (0.0000)

Gumbel 1.2364 (0.0350) -79.4680 0.2910 (0.0041)

Frank 2.4035 (0.2560) -85.3951 0.1178 (0.0659)

Gaussian 0.2616 (0.0310) -58.7777 0.1691 (0.1644)

Student’s ¢ 0.3221 (0.0370) -107.0723 0.0985 (0.4384)
5.5976 (1.0060)

Note: The estimation for parameter of Archimedean and elliptical copulas is carried out through maximum

likelihood method whilst the goodness-of-fit test uses Cramér—von Mises statistic. The lowest value of AIC and the

highest p-value are in boldface.

https://doi.org/10.1371/journal.pone.0242102.t008
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previously determined. Note that the individual VaR forecasts are found simultaneously by Eq
(16) for one day only.

The forecast accuracy under two assumptions above is assessed and compared through sev-
eral backtesting methods adopted from Syuhada [34] and Jiménez et al. [20]. These methods
include coverage probability (CP), actual over expected (AE) ratio, conditional coverage (CC)
test and quantile loss (QL) ratio.

We find that the VaR forecasts for returns by assuming vine copula-based dependence have
higher forecast accuracy. This is because the CP for these VaR forecasts are closer to the corre-
sponding CL and their AE ratio are closer to one. Furthermore, this assumption successfully
passes the CC test since the resulted p-value is higher than 5% significance level, except for
Litecoin at the 97% CL with p-value 0.0322. The choice of significance level may be relaxed to
1% so that the CC test for Litecoin at such CL is also passed. Such results are obtained based
on both symmetric and asymmetric GARCH(1,1) models. These show the positive impact of
vine copula-based dependence on the VaR forecasts. These are confirmed from the low value
of all QL ratios below one. As the CL increases, the QL ratio is getting lower. Meanwhile, the
consideration of using asymmetric model do not give better impact on the VaR forecasts. This
is because the VaR forecasts derived from both symmetric and asymmetric models do not
obviously differ, but the asymmetric model provides higher value of QL ratio.
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Fig 15. Representation of joint distribution for returns. The joint distribution for (X, Y;,Z;) =
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(X |F i YAl F 15 Z,|F L, ) is represented through (weighted) graph structure of vine copula (F, V;, C, K).

https://doi.org/10.1371/journal.pone.0242102.9015
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Table 9. VaR forecasts of marginal risks for one day along with backtesting based on (a)symmetric GARCH(1,1) model under perfect dependence and vine copula-
based dependence assumptions.

Model Currency CL VaR cp |AE | CC (p-value) QL (Ratio)
Under perfect dependence assumption
Symmetric BTC 95% 0.0237 95.24% 0.9517 0.3417 (0.8429) 0.00199
97% 0.0297 97.52% 0.8276 4.7255 (0.0942) 0.00149
99% 0.0456 99.24% 0.7586 4.2226 (0.1211) 0.00084
ETH 95% 0.0462 96.69% 0.6624 12.6247 (0.0018) 0.00365
97% 0.0617 98.27% 0.5751 12.7249 (0.0017) 0.00280
99% 0.1103 99.45% 0.5521 8.0716 (0.0177) 0.00159
LTC 95% 0.0285 96.41% 0.7177 8.7266 (0.0127) 0.00254
97% 0.0380 98.27% 0.5751 12.7249 (0.0017) 0.00202
99% 0.0680 99.38% 0.6211 6.5150 (0.0385) 0.00127
Asymmetric BTC 95% 0.0238 95.24% 0.9517 0.3417 (0.8429) 0.00200
97% 0.0303 97.52% 0.8276 4.7255 (0.0942) 0.00149
99% 0.0466 99.24% 0.7586 4.2226 (0.1211) 0.00084
ETH 95% 0.0459 96.55% 0.6901 10.5727 (0.0051) 0.00362
97% 0.0613 98.27% 0.5751 12.7249 (0.0017) 0.00278
99% 0.1096 99.45% 0.5521 8.0716 (0.0177) 0.00157
LTC 95% 0.0285 96.41% 0.7177 8.7266 (0.0127) 0.00254
97% 0.0380 98.27% 0.6671 12.7249 (0.0017) 0.00202
99% 0.0680 99.38% 0.6211 6.5150 (0.0385) 0.00127
Under vine copula-based dependence assumption
Symmetric BTC 95% 0.0230 94.98% 1.0041 0.1441 (0.9305) 0.00192 (0.9640)
97% 0.0288 96.97% 1.0087 0.0995 (0.9515) 0.00141 (0.9493)
99% 0.0443 98.97% 1.0316 0.3272 (0.8491) 0.00068 (0.8107)
ETH 95% 0.0458 95.59% 0.8822 1.1211 (0.5709) 0.00362 (0.9910)
97% 0.0611 97.79% 0.7351 3.5742 (0.1674) 0.00271 (0.9657)
99% 0.1091 99.31% 0.6892 1.7278 (0.4215) 0.00135 (0.8469)
LTC 95% 0.0276 96.01% 0.7989 3.3590 (0.1865) 0.00219 (0.8621)
97% 0.0369 98.07% 0.6428 6.8704 (0.0322) 0.00165 (0.8154)
99% 0.0659 99.17% 0.8264 3.4289 (0.1801) 0.00083 (0.6492)
Asymmetric BTC 95% 0.0233 94.98% 1.0041 0.1441 (0.9305) 0.00194 (0.9686)
97% 0.0292 96.97% 1.0087 0.0995 (0.9515) 0.00143 (0.9564)
99% 0.0449 98.83% 1.1692 0.8009 (0.6700) 0.00069 (0.8202)
ETH 95% 0.0457 94.70% 1.0599 1.7564 (0.4155) 0.00360 (0.9947)
97% 0.0610 97.25% 0.9176 2.9389 (0.2300) 0.00269 (0.9698)
99% 0.1090 99.24% 0.7571 2.5563 (0.2786) 0.00133 (0.8505)
LTC 95% 0.0276 96.01% 0.7989 3.3590 (0.1865) 0.00219 (0.8621)
97% 0.0369 98.07% 0.6428 6.8704 (0.0322) 0.00165 (0.8154)
99% 0.0659 99.17% 0.8264 3.4289 (0.1801) 0.00083 (0.6492)

Note: The one-step-ahead individual VaR forecasts for BTC, ETH and LTC returns are found simultaneously for one day only based on simulated innovations through

perfect-dependence copula (for the first assumption) and through vine copula (for the second assumption). The resulted p-value of CC test in boldface is higher than 5%

significance level. Meanwhile, the QL ratio in boldface is below one, which means that vine copula-based forecasting procedure performs better.

https://doi.org/10.1371/journal.pone.0242102.t009

As mentioned before, we have used the empirical data from 1-1-17 till 31-12-18. Now, we
compare the VaR forecasts for several steps/days to the empirical data from 1-1-19 till 31-12-

19 as visualized in Fig 16. The comparison is made based on (a)symmetric GARCH(1,1)

model where the VaR forecasts are calculated simultaneously by Eq (20) through vine copula.
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Fig 16. VaR forecasts of marginal risks for several steps/days. The forecasts are derived at 95%, 97% and 99% confidence levels (CLs) based on
symmetric (solid line) and asymmetric (dashed line) GARCH(1,1) models for Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC) through vine copula.
They are also compared to the real data.

https://doi.org/10.1371/journal.pone.0242102.9016

According to the result in Table 9, we now provide, in Table 10, the one-step-ahead forecast
of portfolio risk by using aggregate VaR (aggVaR) through vine copula in comparison to the
simple sum of individual VaRs (simplesumVaR), as the benchmark, for one day only. Their
forecast accuracy is compared in terms of CP, AE ratio, CC test and QL ratio. We may observe
that the aggVaR forecast is lower in value with better accuracy at each CL. The CP as well as
AE ratio are closer to the target and the CC test is successfully passed at 5% significance level.
Meanwhile, in calculating simplesumVaR, the rejection of null hypothesis of the CC test is
only at low level of significance, e.g. 1%, due to the low p-value. Furthermore, the QL ratio
between aggVaR and simplesumVaR is below one and getting lower as the CL increases. These
show that calculating simplesumVaR is too conservative and overestimates the portfolio risk.
In other words, vine copula-based forecasting procedure outperforms perfect dependence
assumption. The use of vine copula also makes the portfolio diversified, with diversification
coefficient (DC) about 18%. Considering diversification typically provides a stable portfolio

Table 10. VaR forecasts of portfolio risk for one day along with backtesting and diversification coefficient based on (a)symmetric GARCH(1,1) model.

Model CL VaR Forecast DC% CP AE CC (p-value) QL (Ratio)
Symmetric 95% simplesum 0.0964 17.95 96.27% 0.7453 7.0780 (0.0290) 0.00812
aggVaR 0.0791 94.73% 1.0548 1.1926 (0.5508) 0.00719 (0.8856)
97% simplesum 0.1267 17.80 97.93% 0.6901 6.8669 (0.0323) 0.00627
aggVaR 0.1042 97.15% 0.9484 0.1473 (0.9290) 0.00534 (0.8517)
99% simplesum 0.2194 17.42 99.38% 0.6211 6.5150 (0.0385) 0.00368
aggVaR 0.1812 98.89% 1.1103 2.0685 (0.3555) 0.00265 (0.7193)
Asymmetric 95% simplesum 0.0966 17.99 96.27% 0.7453 7.0780 (0.0290) 0.00811
aggVaR 0.0792 94.73% 1.0548 1.1926 (0.5508) 0.00719 (0.8872)
97% simplesum 0.1271 17.84 97.93% 0.6901 6.8669 (0.0323) 0.00625
aggVaR 0.1044 97.15% 0.9484 0.1473 (0.9290) 0.00533 (0.8534)
99% simplesum 0.2198 17.46 99.38% 0.6211 6.5150 (0.0385) 0.00366
aggVaR 0.1815 98.89% 1.1103 2.0685 (0.3555) 0.00264 (0.7207)

Note: The aggregate VaR forecast is calculated for one day only through vine copula and is compared to the simple sum of individual VaR forecasts. The diversification

coefficient is also calculated. The resulted p-value of CC test in boldface is higher than 5% significance level whilst the QL ratio in boldface is below one.

https://doi.org/10.1371/journal.pone.0242102.t010
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on symmetric (solid line) and asymmetric (dashed line) models through vine copula. They are compared to the simplesumVaR (purple) and to the real
data (blue).

https://doi.org/10.1371/journal.pone.0242102.9017

since overall risk of the portfolio is properly reduced and, hence, risk allocation is allowed.
However, as shown in Table 10, the DC is getting lower as the CL increases. This means that
the higher the CL, the less stable the portfolio. The results under symmetric and asymmetric
GARCH(1,1) models are in line. However, the asymmetric one performs worse with higher
value of the QL ratio although the resulted DC is higher.

In addition, we calculate the aggVaR forecasts for several steps/days. Such forecasts are
visualized in Fig 17. This figure also provides their comparison to the simplesumVaR and the
real data of aggregated returns from 1-1-19 till 31-12-19. Meanwhile, the corresponding DCs
are displayed in Fig 18.

DC (symmetric)
CL =95%
CL =97%
CL =99%

DC (asymmetric)
------ CL =95%
------ CL =97%
------ CL =99%

MEFEFETEE BN B B T B B R (
0 50 100 150 200 250 300 350
Fig 18. Diversification coefficients of aggregate VaR forecasts. The diversification coefficients (DCs) are calculated at 95%, 97% and 99% confidence

levels (CLs) based on symmetric (solid line) and asymmetric (dashed line) models through vine copula.

https://doi.org/10.1371/journal.pone.0242102.9018
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Conclusion

Model for dependent risks that form a portfolio risk has been constructed. Through vine cop-
ula, their marginal risks assumed to follow GARCH(1,1) model are coupled with complete
representation through graph structure. This approach provides high flexible pair-copula
model since it is able to capture dependence structure of all possible pairs of risks by using dif-
ferent bivariate copulas with the best criterion. As we hope, applying this dependence model
to forecast VaR for Bitcoin, Ethereum and Litecoin returns provides good forecast accuracy.
Furthermore, the resulted portfolio VaR forecast is low in value with high accuracy instead of
simply summing the individual VaR forecasts under perfect dependence assumption. As a
consequence, the portfolio is well diversified which means that its overall risk is well managed
and reduced. The results under consideration of both symmetrical volatility and asymmetrical
volatility in the marginal model are in line. However, the asymmetric model does not perform
better although it makes the portfolio more diversified.

For further research, modeling dependence may be carried out for higher-dimensional risk
data due to the increasing number of risks in the cryptocurrency market or other markets
nowadays. Furthermore, the marginal risk model may be extended to another observable vola-
tility models of GARCH. The use of latent volatility model of Stochastic Volatility Autoregres-
sive (SVAR), see e.g. Han et al. [54] and Syuhada [34], perhaps gives more interesting results.
This is due to volatility shock that appears in volatility process. As for risk measure forecast, it
is important to consider (i) expected-based risk measure, namely Expected Shortfall or Tail-
VaR, and (ii) expectile-based risk measure of EVaR [51]. Whilst the former (VaR) is more
probability-based risk measure, the latter (ES/TVaR, EVaR) takes the magnitude of losses into
account.
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