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Abstract

Sand management is essential for enhancing the production in oil and gas reservoirs. The

critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production;

hence, its accurate prediction is very important. There are many published CTD prediction

correlations in literature. However, the accuracy of most of these models is questionable.

Therefore, further improvement in CTD prediction is needed for more effective and success-

ful sand control. This article presents a robust and accurate fuzzy logic (FL) model for pre-

dicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the

model. The used data were split into 70% training sets and 30% testing sets. Trend analysis

was conducted to verify that the developed model follows the correct physical behavior

trends of the input parameters. Some statistical analyses were performed to check the mod-

el’s reliability and accuracy as compared to the published correlations. The results demon-

strated that the proposed FL model substantially outperforms the current published

correlations and shows higher prediction accuracy. These results were verified using the

highest correlation coefficient, the lowest average absolute percent relative error (AAPRE),

the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the low-

est root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%,

whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indi-

cate that the FL model could predicts the CTD more accurately than other published models

(>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model,

because it follows the trends of all physical parameters affecting the CTD.

Introduction

Approximately 70% of the world’s petroleum wells are situated in weakly consolidated reser-

voirs [1]. Consequently, many petroleum wells are susceptible to sand production that causes

several problems, such as equipment damage and plugging, maintenance costs, and decline in

reservoir recovery. Moreover, sand production can also lead to equipment erosion and safety,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0250466 April 26, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alakbari FS, Mohyaldinn ME, Ayoub MA,

Muhsan AS, Hussein IA (2021) A robust fuzzy

logic-based model for predicting the critical total

drawdown in sand production in oil and gas wells.

PLoS ONE 16(4): e0250466. https://doi.org/

10.1371/journal.pone.0250466

Editor: Jianguo Wang, China University of Mining

and Technology, CHINA

Received: January 23, 2021

Accepted: April 6, 2021

Published: April 26, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0250466

Copyright: © 2021 Alakbari et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors would like to express their

appreciation to the Universiti Teknologi PETRONAS

https://orcid.org/0000-0002-3227-698X
https://orcid.org/0000-0001-5200-8491
https://orcid.org/0000-0001-8270-0091
https://doi.org/10.1371/journal.pone.0250466
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250466&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250466&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250466&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250466&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250466&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250466&domain=pdf&date_stamp=2021-04-26
https://doi.org/10.1371/journal.pone.0250466
https://doi.org/10.1371/journal.pone.0250466
https://doi.org/10.1371/journal.pone.0250466
http://creativecommons.org/licenses/by/4.0/


environmental, and health issues [2–5]. However, an early sand production prediction is

highly recommended for the success of sand control management strategies [6].

There are three techniques used to predict sand production: numerical, analytical, and

empirical methods. The numerical method includes the application of the finite element

method, discrete element method, or finite difference method. However, the numerical meth-

ods are time-consuming and involve a complicated process. Furthermore, the input data

required to obtain a numerical prediction (such as rock petrophysics, rock mechanics, and

fluid properties) are challenging and laborious to find because of the need of some experimen-

tal data [7]. Similarly, the analytical methods have some drawbacks; they ignore stress anisot-

ropy and assume symmetrical geometry and boundary conditions. Therefore, ignoring the

main effect of stress anisotropy on sand, the method may not explain the sanding risk related

to the orientation of the borehole. In general, assumptions or approximations are needed,

making the models less reliable or accurate, even though they are complex [7].

On the other hand, empirical methods use well data and field observation to predict sand

production. Sand prediction methods depend on field experiences to establish a correlation

between sand production, well data, and field and operation parameters. In general, empirical

methods are categorized into three types: one parameter, two parameters, and multiparameter

correlations [6]. Tixier et al. [8] used acoustic log data to determine the shear modulus ratio to

compressibility to obtain sand production. When the ratio is higher than 0.8 × 1012psi2, there

is a lower probability of sand influx; and when the ratio is less than 0.7 × 1012psi2, there is a

high probability of sand production [8]. Veeken et al. [9] applied a model with two parameters,

which are the depletion reservoir pressure and drawdown pressure, as indicators for sand risk.

Generally, increasing the number of parameters improves the accuracy of the sand prediction

model [9].

Some models and correlations are available in the literature for the prediction of the critical

total drawdown (CTD) that is used as an indicator of the onset of sand production. The CTD

can be defined as the maximum difference between the reservoir pressure and the minimum

well bottomhole flowing pressure that the formation can withstand without sand production.

Some researchers used analytical models like Mohr Coulomb and modified Lade to predict the

CTD; nevertheless, the models have some assumptions such as the formation rock mechanics

properties are homogenous and isotropic [10–12]. Kanj and Abousleiman [13] used ANNs,

feed-forward backpropagation network (BPN), and generalized regression neural network to

predict the CTD using data of 31 wells from the Adriatic Sea. Multiple linear regression (MLR)

and the genetic algorithm MLP (GA-MLR) were applied by Khamehchi et al. [6] to predict the

CTD using data of 23 wells from the Adriatic Sea. However, these models are proven to have a

lack of accuracy that reaches more than 20% error (AAPRE).

Numerous studies have used the fuzzy logic (FL) approach in petroleum engineering.

Rezaee et al. [14] used petrophysical data and applied the FL tool to calculate shear wave veloc-

ity, which showed accurate predictions. In addition, Moradi et al. [15] used a FL approach to

obtain the drilling rate. The FL model is proved to be more accurate than other models, such

as Bourgoyne and Young models [15]. A FL tool was also developed to assist in selecting candi-

date wells for hydraulic fracturing treatment in a carbonate reservoir [16]. The FL model

reduced the uncertainty that existed in the candidate well selection [16]. Ahmadi et al. [17]

used the FL to calculate the breakthrough time of water coning in the fractured reservoirs.

Akbarzadeh et al. [18] used a fuzzy model to predict conductivity; the fuzzy model was

reported to be robust and accurate. Wang et al. [19] applied the FL to characterize reservoir

heterogeneity and demonstrated that the model was accurate. The FL model was also used for

forecasting petroleum economic parameters; the authors concluded that Mamdani type out-

performed other models, such as autoregressive integrated moving average (ARIMA) [20]. Al-
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Jamimi and Saleh [21] used an FL tool to optimize the catalysts, and the FL model was success-

ful in predicting catalyst performance. Artun and Kulga [22] used the FL to select candidate

wells for refracturing in tight gas sand reservoirs. Karacan [23] used the FL model using 24

data points to estimate the recovery factors of miscible CO2. API, porosity, permeability,

depth, hydrocarbon pore volumes (HCPV), net pay, initial pressure, well spacing, and Sorw

were included as features; the FL model was showed to be accurate [23].

This study aims to build a new robust and more accurate model for predicting the CTD by

applying the FL. The developed model considers four parameters: total vertical depth (TVD),

transit time (TT), cohesive strength (COH), and effective overburden vertical stress (EOVS). A

trend analysis has been performed to investigate the accuracy of the physical behavior and

trends of the model parameters. Furthermore, the performance of the model was compared

with the most recent correlations.

Methodology

Data collection and description

This study has been performed in four phases: data collection and preparation, model develop-

ment, trend analysis, and validation. A data set of 23 wells of the North Adriatic Sea was col-

lected from the literature [24]. The data were split into two sections: for the first section, 70%

of the data sets were allocated for developing the model, and for the second section, 30% of the

data were used for verifying the model. Table 1 lists the data range and statistical analysis of

the training and verification parameters.

Fuzzy logic approach

Zadeh [25] invented a fuzzy set theory to handle data uncertainty. The benefit of using FL

is that it considers the identification uncertainty present in any evaluation process in the

developed model [26]. The FL can deal between zero and one, unlike the Boolean that can

only take a zero or one. The fuzzy sets can provide gradual transitions from membership to

non-membership [27]. The proposed fuzzy logic model offered high robust and reliable

estimations and is thus well suited to other applications. The FL system is flexible and has a

structure that can be modified. The FL methods can link human reasoning and concept

formation through linguistic rules to obtain functions and control nonlinear systems. The

FL can efficiently handle the complexity and uncertainty of the process with limited data

[28]. The fuzzy logic can be applied with small data; hence they cannot occupy a huge

memory space [29]. The fuzzy inference system contains five functional components, as

illustrated in Fig 1:

Table 1. Data range and statistical analysis of the collected data for the developing FL model.

Parameter TVD (m) TT (micsec/ft) COH (Mpa) EOVS (Mpa) CTD measured (Mpa)

Minimum 1070.000 85.000 0.539 10.885 0.314

Maximum 4548.000 170.000 5.217 80.709 43.973

Mean 2564.957 115.043 1.775 38.165 15.284

Median 2380.000 110.000 1.275 29.420 12.807

Range 3478.000 85.000 4.678 69.823 43.659

Skewness 0.187 0.940 1.234 0.398 0.600

Standard deviation 10.238 0.208 0.012 0.228 0.123

https://doi.org/10.1371/journal.pone.0250466.t001
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a. A fuzzification interface is used to convert crisp inputs to linguistic (fuzzy) variables apply-

ing membership functions.

b. A database is used to define membership functions.

c. A rule base contains several fuzzy if-then rules.

The IF of the rule describes a condition or assumption that is partly satisfied, whereas the

THEN of the rule describes a conclusion or an action obtained when the conditions are hold

true [26].

d. The inference engine of the FL is a decision-making unit.

e. The defuzzification interface is used to convert fuzzy outputs into crisp outputs [30]. The

defuzzification can be conducted using some defuzzification methods such as the max or

mean-max membership principles, the centroid method, and the weighted average

method [31]. We used the weighted average method for this research.

The FL model in this study was developed by applying MATLAB R2020a. A membership

function (MF) is known as the curve, which defines how each point in the input space can be

designed to a membership value between (0–1) [32]. An MF can identify the fuzzy set by

assigning a membership degree to each element [23]. Fuzziness is measured by using MFs as

the fundamental constituents of the fuzzy set theory. The shape and type of MF should be

accurately chosen because they impact the fuzzy inference system. Trapezoidal MFs were

applied for the independent data because they show significantly enhanced outcomes com-

pared to other MFs, whereas Gaussian MFs were used for the dependent data because they can

be non-zero and smooth [33]. Gaussian MFs was used for this study. Table 2 presents the spec-

ifications of the FL MATLAB code used to obtain the CTD model.

Results and discussion

Two tests were performed to evaluate the proposed FL model. First, the FL approach was

tested to show that it is robust and follows physical behavior trends by applying trend analysis.

Fig 1. Fuzzy inference system for CTD model.

https://doi.org/10.1371/journal.pone.0250466.g001
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Second, the performance of the proposed FL approach was compared with the current correla-

tions. Cross-plots and statistical error analyses, such as correlation coefficient (R), average per-

cent relative error (APRE), average absolute percentage relative error (AAPRE), root mean

square error (RMSE), and standard deviation (SD), were conducted.

Trend analysis

The trend analysis was performed to test the robustness of the model in the presence of uncer-

tainty. The trend analysis is used to indicate the relationships between input and output vari-

ables in the model. The trend analysis defines errors in the models to show unexpected

relationships between input and outputs, which highlights the need to display the reliability of

the models. Furthermore, the trend analysis identifies and removes the unnecessary parts of

the model structure [34]. Moreover, the trend analysis was used to identify significant connec-

tions among observations, model inputs, and predictions, guiding the development of robust

models [35]. Therefore, the trend analysis is essential for this study.

The selected input parameter for investigation is varied between the minimum and maxi-

mum value, while other parameters are kept constant at their mean values [36–38]. Graphs are

plotted for the input parameter values (x-axis) against the output CTD (y-axis) for the previous

models and the FL model. Four input parameters, TVD, TT, COH, and EOVS, have been

selected for the trend analysis.

Fig 2 shows the trend of TVD. Kanj and Abousleiman [13] correlation (Fig 2) shows that

the CTD was independent of TVD, because it is based only on the cohesive strength (COH).

The TVD trend of the FL model obeys the trend of the existing correlations, as shown in Fig 3.

Ahad et al. [39] stated that older rocks can be more consolidated. On the other hand, shallow

formations can be weakly consolidated [39]. Therefore, increasing the depth will increase the

CTD.

Fig 4 indicates that the TT is inversely proportional to the CTD, as illustrated by all the pre-

vious models except Kanj and Abousleiman [13] correlation, which demonstrates that the

CTD is constant as they did not include the TT. As a result, Kanj and Abousleiman [13] corre-

lation failed to represent the behavior accurately. The FL model also follows the trend of the

existing correlations (Fig 5), indicating the proper trend for the TT. The shorter TT implies

that the sand is more consolidated [40]. Consequently, decreasing TT will increase the CTD.

Table 2. Specifications of the FL model.

Parameter Description/value

Fuzzy structure Sugeno-type

Initial FIS for training genfis3

Membership function type Gaussian MF

Output membership function linear

The number of membership functions 4

The fuzzy rules if x is A and y is B then z = f(x, y)
The fuzzification Gaussian

The defuzzification weighted average method

The number of clusters 4

Number of inputs 4

Number of outputs 1

Training epoch number 500

Radii 1.1585

https://doi.org/10.1371/journal.pone.0250466.t002
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Fig 6 indicates that the cohesive strength (COH) is directly proportional to the CTD. Kanj

and Abousleiman [13] correlation followed the trend of existing correlations, but the CTD is

negative (−2.57 MPa) when the COH is 0.539 MPa. Consequently, Kanj and Abousleiman [13]

correlation has not proven a proper trend for the CTD correlation (Fig 6). The FL model

shows that the COH trendobeys the trend shown by the correlations in the literature where the

COH is directly proportional to the CTD (Fig 7). Hence, the FL model is successful in

Fig 2. TVD trend analysis of the FL model and previously published models.

https://doi.org/10.1371/journal.pone.0250466.g002

Fig 3. TVD trend analysis of the FL model.

https://doi.org/10.1371/journal.pone.0250466.g003
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following the accurate trends. The formation failure decreases the strength of rock and causes

sand production [41]. The cohesive strength increases the degree of cementation [42]. Increas-

ing the cementation degree of sand grains can lead to a decrease in sand production. Thus,

increasing the rock’s cohesive strength results in in rising the CTD.

The trend of the EOVS is illustrated in Fig 8. The CTD follows an inverse relationship with

EOVS. However, Kanj and Abousleiman [13] correlation displays a horizontal line, which

indicates that their correlation does not consider the EOVS parameter. The trend expressed by

Fig 4. TT trend analysis of the FL model and previously published models.

https://doi.org/10.1371/journal.pone.0250466.g004

Fig 5. TT trend analysis of the proposed FL model.

https://doi.org/10.1371/journal.pone.0250466.g005
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the FL model is also shown to follow the trend of the previous correlations; Fig 9 indicates that

it represents the proper trend for the EOVS. The overburden stress stays constant; however,

when the pore pressure declines, the effective overburden stress must rise [42]. The critical

drawdown pressure decreases with the decline in pore pressure [43]. Therefore, increasing

EOVS decreases the CTD.

To summarize the trend analysis, all the input parameters (TVD, TT, COH, and EOVS) of

the developed FL model can follow the correct trends, indicating the FL model’s reliability.

Fig 6. COH trend analysis of the proposed FL model and previously published models.

https://doi.org/10.1371/journal.pone.0250466.g006

Fig 7. COH trend analysis of the FL model.

https://doi.org/10.1371/journal.pone.0250466.g007
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Nevertheless, Kanj and Abousleiman [13] correlation trends fail to present the behavior

correctly.

The comparison of FL model and current models

Cross-plotting analysis. The proposed FL model and current correlation cross-plots were

presented. A 45˚ straight line is illustrated on the cross-plot of the measured and expected

Fig 8. EOVS trend analysis of the FL model and previously published models.

https://doi.org/10.1371/journal.pone.0250466.g008

Fig 9. EOVS trend analysis of the proposed FL model.

https://doi.org/10.1371/journal.pone.0250466.g009
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CTD values. The closer the plotted data points to the straight line, the higher the correlation or

model’s accuracy.

Fig 10 illustrates the cross-plotting of the testing data set of the FL model, and Fig 11 illus-

trates the cross-plotting comparison of the FL model with the existing correlations. As shown

Fig 10. Cross-plot of testing FL model.

https://doi.org/10.1371/journal.pone.0250466.g010

Fig 11. Cross-plot comparison of the proposed FL model with the previously published models.

https://doi.org/10.1371/journal.pone.0250466.g011
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in Figs 10 and 11, the FL model represents the highest accuracy and can predict the CTD with

the coefficient determination (R2) of 0.9947.

Statistical error analysis. The statistical error analysis is performed to verify the FL mod-

el’s accuracy and compare it against the current correlations. The statistical parameters used in

this research are correlation coefficient (R), APRE, AAPRE, SD, RMSE, maximum absolute

percent relative error (Emax.), and the minimum absolute percent relative error (Emin.), as

included in the S1 Appendix. The AAPRE and correlation coefficient (R) are used as

indicators.

Fig 12 illustrates the AAPRE and correlation coefficient (R) comparison of the FL model

with the existing models. As shown in Fig 12, the proposed FL model has the lowest AAPRE of

8.647% and the highest correlation coefficient (R) of 0.9947. Khamehchi et al. [6] (GA-MLR)

model shows the AAPRE (%) of 22.644% and correlation coefficient (R) of 0.9827, whereas

Khamehchi et al. [6] (MLR) model shows the highest AAPRE of 30.485%.

The published predictions of the performance correlations were compared with the pro-

posed FL approach, as shown in Fig 13. Statistical error analysis has been conducted to test the

robustness of the proposed FL model. The FL model also has the lowest RMSE and SD com-

pared to other models (Fig 13). This comparison of all correlations and the FL model provides

essential means for validating the performance of the proposed FL model. Investigation of

these statistical error analyses indicates that the FL model outperforms all the existing correla-

tions. The AAPRE and correlation coefficient (R) are taken as the primary indicators of accu-

racy in this study. Khamehchi et al. [6] (GA-MLR) correlation is ranked as the second

Fig 12. Correlation coefficient (R) and AAPRE (%) comparison of the proposed FL model with the previously published

models.

https://doi.org/10.1371/journal.pone.0250466.g012
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correlation; it has an AAPRE of 22.644% and a correlation coefficient (R) of 0.9827. Khameh-

chi et al. [6] (GA-MLR) and (MLR) models show AAPRE of more than 20% (Fig 13).

Conclusions

An FL model was developed for predicting the CTD in sand formations in oil and gas wells. Dif-

ferent techniques, such as trend analysis, cross-plotting, and statistical error analysis, were used

to validate the model. The prediction outcomes were compared with the published models avail-

able in the literature. Based on the obtained results, the following conclusions are emphasized:

• The FL model could accurately describe the proper trend of the CTD as a function of all the

considered independent variables (i.e., TVD, TT, COH, and EOVS). The model is observed

to follow the actual trend as expected from the physical relationship.

Fig 13. Comparison of the statistical parameters for the proposed FL model with other models. (a) RMSE, SD, and R; (b)

APRE, AAPRE, AAPREmax, and AAPREmin.

https://doi.org/10.1371/journal.pone.0250466.g013
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• The FL model has provided the best CTD estimations as compared to other available correla-

tions. The FL model presented the highest correlation coefficient of 0.9947, the lowest

AAPRE of 8.647%, the lowest root mean squared error of 0.014, and the lowest SD of 0.082

compared to the published correlations. The model accuracy and reliability have further

been enhanced by data randomization to ensure that each data set does not memorize the

pattern and avoid generalization and model overfitting.

• The FL model has shown an AAPRE of 8.647%, whereas the existing models have reported

values higher than 20%.
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