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Skilful predictions of the Asian summer monsoon
one year ahead
Yuhei Takaya 1✉, Yu Kosaka 2, Masahiro Watanabe 3 & Shuhei Maeda4

The interannual variability of the Asian summer monsoon has significant impacts on Asian

society. Advances in climate modelling have enabled us to make useful predictions of the

seasonal Asian summer monsoon up to approximately half a year ahead, but long-range

predictions remain challenging. Here, using a 52-member large ensemble hindcast experi-

ment spanning 1980–2016, we show that a state-of-the-art climate model can predict the

Asian summer monsoon and associated summer tropical cyclone activity more than one year

ahead. The key to this long-range prediction is successfully simulating El Niño-Southern

Oscillation evolution and realistically representing the subsequent atmosphere–ocean

response in the Indian Ocean–western North Pacific in the second boreal summer of the

prediction. A large ensemble size is also important for achieving a useful prediction skill, with

a margin for further improvement by an even larger ensemble.
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The variability of the Asian summer monsoon has con-
siderable impacts on the human lives and economy
throughout Asia1, the most populous region on the globe,

by modulating seasonal precipitation, surface temperatures, and
the occurrences of floods2, droughts3 and tropical cyclones
(TCs)4. Summer rainfall and the discharge of major rivers in the
Asian monsoon region are vital for water security5 and food
production1,6. Accurately predicting the Asian summer monsoon
with a long lead time is thus of great value for decision-making
across a wide range of sectors1–8.

Despite considerable amounts of effort, long-range Asian sum-
mer monsoon predictions have presented immense challenges9–13.
Complex atmosphere–land–ocean interactions, global interbasin
interactions and unpredictable atmospheric internal variabilities
limit model representations and predictions of the Asian
monsoon9–11,14–16. In particular, anomalous precipitation over the
tropical western North Pacific (WNP) and South China Sea, an
essential component of Indo-WNP summer monsoon variability, is
negatively correlated with local sea surface temperature (SST) in
summer (Supplementary Fig. 1), indicating dominance of local
atmospheric forcing on the ocean and suggesting lack of potential
predictability from local SST17,18.

However, improvements to climate models in representing
atmosphere–ocean–land processes and initialisation techniques
have steadily extended seasonal predictions and beyond8,19,20,
and certain capabilities have been achieved in predicting the
Asian monsoon with up to about half a year in advance11–13,19–22.
Moreover, recent advances in understanding the mechanism of
the Indo-WNP summer monsoon variability suggest seasonal
predictions with longer leads than previously expected23–26.

Here, we demonstrate the capability of a long-range prediction
of the Indo-WNP summer monsoon far beyond current seasonal

predictions. We also illustrate that the skilful prediction of the
Asian summer monsoon 1 year ahead indeed stems from suc-
cessful simulations of the El Niño-Southern Oscillation (ENSO)
evolution and the ENSO-induced subsequent atmosphere–ocean
variation in the Indian Ocean–WNP.

Results and discussion
Prediction skill of the Asian summer monsoon 1 year ahead.
We conducted a 16-month-long prediction experiment using the
quasi-operational seasonal prediction system called the Japan
Meteorological Agency/Meteorological Research Institute-
Climate Prediction System version 2 (JMA/MRI-CPS2)21. A set
of 52-member ensemble hindcasts starting from every April was
established for the summer seasons for 37 years from 1980 to
2016. We particularly focused on the prediction skill for the
second-year boreal summer (June–August with a 13-month lead)
against historical observations and reanalysis (Methods).

JMA/MRI-CPS2 skilfully predicts key indices representing the
interannual variability of the Indo-WNP monsoon and ENSO27 1
year ahead (Fig. 1; see Methods for the index definitions).
Ensemble envelopes (maximum–minimum ranges) generally
encompass the observations by virtue of the large ensemble size.
The WNP monsoon index, which represents the dominant
variability of the WNP monsoon based on 850 hPa zonal wind28,
is predicted at a significant correlation skill of r= 0.50 (p < 0.005)
for the second summer (Fig. 1a; see Methods for the skill
evaluation). The predictability of the Indo-WNP monsoon
originates from a slowly evolving SST8 but not necessarily
through a direct influence from concurrent ENSO conditions.
Indeed, the prediction skill of the NINO3.4 SST index for the
second summer is only moderate (r= 0.41, p= 0.012; Fig. 1b)

Fig. 1 Prediction skill for climate indices in the second summer. Time series of a the western North Pacific monsoon (WNPM) index, b NINO3.4 sea
surface temperature (SST) index, c Indian Ocean Basin (IOB) SST index, d western North Pacific (WNP) rainfall index, e Ganges rainfall index, and f
Indochina land surface (2 m air) temperature (LST) index (see Methods for definitions). JMA/MRI-CPS2 ensemble mean predictions (thin black lines) and
observations (thick red lines) are presented with a maximum–minimum and interquartile ranges of the ensemble predictions (grey shading). The ensemble
mean predictions and observations are normalised by the mean and standard deviation of the concatenated all-member predictions and observations.
Adjusted ensemble mean predictions (thick blue lines) are those normalised by the mean and standard deviation of the ensemble mean predictions.
Correlation coefficients between the ensemble mean predictions and observations are shown at the bottom right (r raw time series, rd after linear
detrending).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22299-6

2 NATURE COMMUNICATIONS |         (2021) 12:2094 | https://doi.org/10.1038/s41467-021-22299-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


due to the so-called spring predictability barrier29. Instead, the
Indian Ocean Basin (IOB)-wide SST variability, which is
predicted with a much higher correlation skill of r= 0.70 (p <
0.001) owing to a delayed Indian Ocean response to preceding
ENSO (Fig. 1c)23,26, is fundamental to predicting the Indo-WNP
summer monsoon (discussed later). The correlation skill for the
IOB SST remains significant even after linear detrending (rd=
0.52). Notably, the correlation skill for the IOB SST drops slightly
for the first few months but recovers and remains high until the
second summer (Supplementary Fig. 2). It is also noted that the
model presents higher prediction skill of NINO3.4 SST with
linear detrending than without, due to an overestimate of the
warming trend of NINO3.4 SST in the model (Fig. 1b), consistent
with a multi-model ensemble coupled seasonal predictions30.

The WNP monsoon index is significantly correlated with
surface temperature and precipitation over broad regions of
Asia23,24,26 (Supplementary Fig. 3), highlighting the importance
of its skilful prediction23,24. With a statistically significant skill for
predicting the WNP monsoon circulation for the second summer,
the model predicts tropical WNP rainfall with a high statistical
significance (r= 0.52, p < 0.001; Figs. 1d and 2c), despite the lack
of a local SST predictability source (Supplementary Fig. 1). There
is a markedly high skill (r= 0.75, p < 0.001; Fig. 1f) for the 2 m
land surface air temperature over Indochina (mainland Southeast
Asia), reflecting a strong influence from the Indo-Pacific Ocean.
In addition, we find meaningful prediction skills for precipitation
in the Ganges River Basin (r= 0.48, p < 0.005; Fig. 1e) as well as
around Indonesia and the Horn of Africa (Fig. 2c). In particular,
the reliable prediction of precipitation in the Ganges river basin is

of primary importance and has considerable implications for
water resources management5. Previous studies suggested that
precipitation in the Ganges river basin is associated with Asian
monsoon variability31,32.

Pointwise temporal correlation maps further corroborate the
prediction skills (Fig. 2). Notably, distributions of relatively high
correlations for 850 hPa zonal wind and precipitation match the
dominant pattern of variability associated with the Indo-WNP
summer monsoon23,26,28 as represented here by the WNP
monsoon index (Supplementary Fig. 3). These correlations are
also generally consistent with the inherent potential predictability
(Supplementary Fig. 4). Notably, the model retains meaningful
prediction skill after linear detrending, indicating its capability to
predict the interannual variability (Supplementary Fig. 5). More-
over, the contribution of the trend to the actual prediction skill is
also consistent with its contribution to the potential predictability
(Fig. 2; Supplementary Figs. 4 and 5). We additionally note that
the model predicts the first summer with generally higher skill
(Supplementary Fig. 6).

Underlying mechanisms of the skilful predictions. Having
obtained skilful 1-year-lead predictions of the Asian summer
monsoon, we then discuss the mechanism by which the Indian
Ocean mediates the El Niño influence on the Asian climate in the
subsequent summer23,26 (Supplementary Fig. 7). Similar to a
battery charging a capacitor, El Niño warms the Indian Ocean
from its peak boreal winter to spring through changes in the
Walker circulation and Indonesian throughflow. While El Niño
SST anomalies in the equatorial eastern Pacific typically disappear
by the subsequent boreal summer, Indian Ocean warm conditions
persist and, like a discharging capacitor, trigger coherent
ocean–atmosphere variability called the Indo-western Pacific
Ocean capacitor (IPOC) mode. In the IPOC mode, the warmer
Indian Ocean excites an atmospheric Kelvin wave response and
induces surface Ekman divergence over the tropical WNP, where
atmospheric convections are suppressed. In response, an anom-
alous lower-tropospheric anticyclone corresponding to a weak
WNP summer monsoon extends westward and affects the Indo-
WNP climate while providing feedback to SST warming in the
North Indian Ocean and the tropical WNP west of 150°E. SST
cooling in the tropical WNP east of 150°E also amplifies these
anomalies through wind–evaporation–SST feedback24,25,33.
ENSO and the subsequent IPOC development constitute a year-
long process, and the latter has pervasive influences on the Asian
climate and seasonal TC activity23,24,31,34,35. Therefore, ENSO
growth in the first year and subsequent IPOC development is
likely the key to the year-long predictability of the Asian
monsoon19,23,26.

The above hypothesis is confirmed by a simple skill evaluation:
the prediction performance of IOB SST and associated WNP
summer monsoon tends to decrease when summers following
major El Niños are excluded (Supplementary Table 1). By
contrast, such a decrease does not occur when we exclude the
summers of developing major El Niños. These findings indicate
that preceding El Niños contribute more to the prediction skill for
the second summer than concurrent El Niños.

Composite maps for boreal summers after major El Niños
(observed NINO3.4 index >1 std. dev. in preceding
November–January; 1983, 1992, 1998, 2003, 2010 and 2016;
Fig. 3) further substantiate that the ENSO–IPOC coupling
conveys successful second summer predictions for the Indo-
WNP and Asian climate. Those summers exhibit high surface
pressure and suppressed rainfall over the tropical WNP and
enhanced rainfall around the Maritime Continent, consistent

Fig. 2 Prediction skill for the second summer Asian monsoon. Correlation
coefficients between the observations and ensemble mean predictions for
a 850 hPa zonal wind, b sea surface temperature (SST) over the ocean and
land surface (2 m air) temperature over land (LST), and c precipitation.
Stippled regions are statistically significant at the 5% level according to
Student’s t test. Boxes indicate the regions of indices used in this study
(Methods). In (c), the Ganges basin53 is shown in green.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22299-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2094 | https://doi.org/10.1038/s41467-021-22299-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


with previous studies23,26. Warmer surface temperatures are
remarkable in India and Southeast Asia, surrounded by warmer
SSTs. In addition, the 500 hPa height anomalies over the WNP
feature a poleward teleconnection called the Pacific–Japan
pattern36, increasing predictability over midlatitude East Asia23,26

(Supplementary Fig. 3). We find that these observed IPOC-related
teleconnections are reasonably well reproduced in the second
summer predictions (Fig. 3 and Supplementary Fig. 3). Further-
more, the WNP summer monsoon is enhanced by concurrent El
Niños24,32 and suppressed by La Niñas, indicating additional
contributions from accurate ENSO predictions through the
second summer to successful Indo-WNP monsoon predictions.
The model, however, presents a tendency of a weaker transition

from El Niño to La Niña than observed, which may limit
the prediction skill of the WNP summer monsoon (Fig. 3).
The lag composites of the observations and predictions after
the major El Niños further support the model capability of
reproducing and predicting the IPOC development along the
lifecycle of ENSO (Supplementary Fig. 7). In summary, the
success of the 1-year-lead prediction stems from the model’s
ability to predict ENSO evolution and IPOC development in
the second summer as well as its capability to reproduce the
associated climate anomalies.

Ensemble size dependency of the prediction skill. Apart from
the predictability inherent to the atmosphere–ocean system,
large ensembles are generally necessary for obtaining meaningful
prediction skills for phenomena featuring low signal-to-
noise ratios37,38. This holds true for the 1-year-lead prediction
of the Asian summer monsoon. Figure 4 presents the ensemble
size dependency of the prediction skill. The correlation coeffi-
cients for the first summer prediction are well above the 99%
confidence level, indicating the high fidelity of the seasonal pre-
diction. For the second summer prediction, by contrast, the
correlation coefficients are far below the 99% confidence level
when the ensemble size is small (<10 members), while a statis-
tically significant correlation skill is achievable with a large
ensemble size (>20 members). This skill increase reasonably
agrees with a theoretical estimate (Methods). The second summer
performance does not fully level off around the maximum
ensemble size of the present study, suggesting possible further
enhancement of the skill by increasing the ensemble size, albeit
with a slower rate. We also note that the estimated potential
predictability (Supplementary Fig. 5) is overall higher than the
real prediction skills. Thus, the so-called signal-to-noise
paradox38 is not apparent in the 1-year-lead Asian summer
monsoon prediction in JMA/MRI-CPS2.

WNP TC predictions. Finally, we discuss the capability of sea-
sonal TC predictions in the WNP (Methods). The model can
make predictions of the WNP TC density averaged over the WNP
(0°–60°N,100°E–180°) during June–August, which corresponds to
the first half of the WNP TC season34, with a highly significant

Fig. 3 The IPOC mode and its second summer prediction. Composite anomalies of the (a, b) observations and (c, d) JMA/MRI-CPS2 13-month-lead
prediction for summers following major El Niño events (1983, 1992, 1998, 2003, 2010 and 2016; see text for definition). a, c Precipitation (colours) and sea
level pressure (SLP; contours with an interval of 0.3 hPa; red for positive, grey for zero and blue for negative). b, d SST over the ocean and land surface (2m
air) temperature (LST) over land (colours) and 500 hPa geopotential height (Z500; contours with an interval of 3 m; red for positive, grey for zero and
green for negative). Stippled regions are statistically significant at the 5% level based on a bootstrap method (10,000 resamplings).

Fig. 4 Prediction skill dependency on ensemble size. Correlation
coefficients of the WNP monsoon index for the first (blue line) and second
(red line) summers. Medians (thick lines) and 25–75% ranges (colour
shading) are estimated by using a bootstrap method (10,000 resamplings
of ensemble members with a fixed retrospective prediction period). The
theoretical estimates45 are shown based on averages of 1-member
correlation skills (Methods). The statistical significance levels are based on
Student’s t test.
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skill (r= 0.67, p < 0.001) for the first summer (Fig. 5a) and a
moderate skill (r= 0.39, p= 0.017) for the second summer
(Fig. 5b). We note that the skill is slightly lower for
July–September in the second year (r= 0.35, p= 0.035) than for
June–August, due to gradual dissipation of delayed ENSO influ-
ence and skill decline with a lead time23,35.

The seasonal WNP TC activity (TC density) is predominantly
modulated by the WNP monsoon trough (MT) strength
(Methods)39,40. The model effectively captures the observed
variability of the MT index (r= 0.83, p < 0.001 for the first summer;
r= 0.51, p < 0.005 for the second summer; Figs. 5a, b). This MT
prediction skill underscores the model’s capability of predicting WNP
TC activity40. The prediction captures the suppressed MT strength
and TC activity in 1988 and 1998, which are marked IPOC years
following strong El Niños (Fig. 3b). The ensemble envelopes generally
encompass the observed TC activity and MT index. The second
summer prediction failure for 2010 is presumably due to a failure to
predict the 2009/2010 El Niño (Fig. 1b).

The IPOC and ENSO exhibit competing effects on summer WNP
TC activity through MT changes. On one hand, warmer Indian Ocean
conditions suppress TC activity by weakening the WNPMT as part of
the IPOC23,34,35. On the other hand, the warm ENSO phase shifts the
MT (and thereby the TC genesis locations) southeastward, leading to a
longer TC lifetime41,42. Figure 5c confirms these IPOC and ENSO
influences in the observations and the first summer predictions.
Notably, these effects are present even in moderate ENSO cases (with
the NINO3.4 index within ±1 std. dev.); in Fig. 5c, the two groups
(differentiated by background colours) are classified by signs of a
predictand (TC density) of a bivariate linear regression model based on
observational data (Methods). The TC density anomalies (colours) of
the predictions are in good agreement with the observations,
supporting that both ENSO and the IOB SST play roles in modulating
TC activity (Fig. 5c).

Our composite analysis (Fig. 5d; Methods) elaborates the
observed relationship. In strong El Niño summers, TC activity is
enhanced, particularly in the southeastern WNP (Fig. 5d, left). In

Fig. 5 TC prediction skill and influence from ENSO and IOB SST. Same as Fig. 1 but for the a first and b second summer predictions of the tropical cyclone
(TC) density and monsoon trough (MT) index. c Scatterplot of the analysed (circles) and predicted (squares) TC densities with respect to their own Indian
Ocean Basin (IOB) and NINO3.4 SST indices. Colours indicate the TC density accumulated in the western North Pacific (WNP) region normalised by the
climatological mean and standard deviation. Two-digit numbers shown alongside circles or squares indicate years. d Composites of observed and predicted
TC density anomalies for summers with (left) the NINO3.4 index >+1.5 std. dev., (middle) the IOB index >0 and NINO3.4 index <−1 std. dev., and
(right) Group A minus Group B (groups shown in Fig. 5c). Stippled regions are statistically significant at the 5% level according to a bootstrap method
(10,000 resamplings).
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La Niña summers with warm IOB SSTs, TC activity is suppressed
broadly throughout the WNP (Fig. 5d, middle). The distinct
effects of the IOB SST and ENSO on TC activity are also
confirmed even for cases of neutral to weak ENSO summers in
the composite difference between Groups A and B (Fig. 5d, right)
classified based on the bivariate linear regression (Fig. 5c). A
correlation matrix further confirms the competing effects of the
IOB SST and ENSO (Supplementary Fig. 8). In summary, the
successful prediction of summer TC activity arises from the
extended predictability of the WNP MT associated with the IPOC
mode and ENSO. In the second summer prediction, these
processes are reproduced in some marked ENSO and IPOC years,
giving a moderate but meaningful prediction skill for TC activity
(Fig. 5b).

In summary, state-of-the-art climate modelling has the
potential to overcome the difficulty in predicting the Asian
summer monsoon. Based on a large ensemble hindcast experi-
ment, we have demonstrated the capability to make skilful Indo-
WNP monsoon predictions with a lead time exceeding 1 year.
Precipitation, surface temperature and circulation associated with
the Indo-WNP summer monsoon and WNP TC activity in
summer can be predicted with meaningful skill, consistent with
the estimated potential predictability inherent to the climate
system.

The delayed ENSO influence mediated by Indian Ocean
anomalies (the IPOC mode) is the primary mechanism for
establishing a skilful 1-year-lead prediction. The model veracity at
reproducing IPOC-related climate anomalies is also fundamental
for skilful predictions. Feasible TC predictions benefit addition-
ally from the remote influence of the central–eastern equatorial
Pacific SST associated with concurrent ENSO conditions. The
prediction skill may be further improved not only by increasing
the ensemble size but also by using models with higher
capabilities of predicting ENSO and its delayed impacts in the
WNP, i.e., the IPOC mode. Our results present promise for
further long lead seasonal predictions in Asia with bright
prospects for extensive applications.

Methods
Prediction experiment. A 16-month-long ensemble prediction experiment with
52 members starting from April spanning 38 years (1979–2016) is conducted using
the JMA/MRI-CPS2 seasonal prediction system based on an atmosphere–ocean–sea
ice–land coupled model21. The 52-member ensemble consists of a series of 13-
member predictions initialised on four calendar dates (April 11, 16, 21 and 26). The
model has an atmospheric resolution of ~110 km in the mid-latitudes, 60 atmo-
spheric levels with its top at 0.01 hPa, and an oceanic resolution of 0.5° × 1.0° with
latitudinal grid refinement near the equator (0.3°). The ocean and atmospheric
initial conditions are produced by an ocean analysis system (MOVE/MRI.COM-
G2)43 and atmospheric analysis system (JRA-55)44. The land initial conditions are
taken from the JRA-55 land analysis. The ensemble members are generated by using
slightly perturbed initial conditions and employing a stochastic physics scheme45.
More details can be found in Takaya et al21.

Observational data. To evaluate and analyse the predictions, we use JRA-55
reanalysis data44 for winds, geopotential height, 2 m air temperature and sea level
pressure, COBE-SST data46 for SST, and GPCP version 2.3 data47 for precipitation.
All data are interpolated on a regular 2.5° grid for the analyses except for the
TC analysis, which requires a finer resolution, and thus, the data are regridded to a
1.5° resolution. We additionally use TC analysis data (best track data) provided
from RSMC Tokyo to examine the interannual variability of seasonal TC activity.
TCs stronger than tropical storms (maximum winds exceeding 17.2 m s−1) are
analysed and compared with the predictions in this study.

Climate indices used for analysis. Several indices representing the dominant
interannual variability of SST, atmospheric circulations and TC activity are com-
puted for this study. The NINO3.4 index is defined as SST anomalies averaged over
the central to eastern Pacific (5°N–5°S, 170°W–120°W) representing ENSO
variability27, and the IOB index is defined as SST anomalies averaged over the
Indian Ocean (20°N–20°S, 40°E–100°E)26. The WNP summer monsoon circulation
index (WNP monsoon index) is defined as the 850 hPa zonal wind difference

between the northern (22.5°N–32.5°N, 110°E–140°E) and southern (5°N–15°N, 90°
E–130°E) regions48. Despite its naming, the southern box of the WNP monsoon
index extends to the eastern Indian Ocean, and the index thus captures the summer
monsoon variability throughout the Indo-WNP (Supplementary Fig. 3). The
Ganges and WNP rainfall indices are defined as rainfall averaged over 22.5°N–30°
N, 75°E–90°E and 10°N–20°N, 115°E–140°E, respectively48. The Indochina tem-
perature is defined as the 2 m land surface air temperature averaged over 7.5°N–20°
N, 92.5°E–110°E. All indices are normalised with climatological means and stan-
dard deviations.

Prediction skill evaluation. The Pearson correlation coefficient (denoted as r)
between the observations and ensemble mean prediction is used to evaluate the
prediction skill. The p value (denoted as p) is determined by referring to Student’s
t distribution.

Theoretical estimation of the skill dependence on ensemble size. The equation
for estimating the theoretical skill (correlation coefficient) as a function of the
ensemble size is derived under the perfect model assumption49 as

CM ¼ M1=2C1

1þ M � 1ð ÞC1½ �1=2
; ð1Þ

where M is a given ensemble size, C1 is an expectation of a correlation coefficient
skill of a single-member prediction, and CM is an expectation of an M-member
ensemble mean prediction.

Evaluation of TC activity. To evaluate the seasonal TC activity for June–August,
we calculate the TC density using 6-hourly data. TCs with maximum wind
exceeding 17.2 m s−1 are examined here. Model TCs are detected using an objective
detecting and tracking method35,50, which is similar to the methods applied in
previous studies51. The objective detection method is applied to 6-hourly model
outputs at a 1.5° × 1.5° resolution with the following conditions and criteria.

1. A grid point with a local sea level pressure minimum in a 6° × 6° box over
the ocean between the equator and 30°N is determined as the centre of a
candidate TC.

2. The relative vorticity at 850 hPa is below 5 × 10−5 s−1 in a 3° × 3° box
surrounding the centre of a TC.

3. The geopotential height thickness between 200 and 500 hPa at the centre of
the candidate TC is 7 gpm higher than the average thickness in a 9° × 9° box
surrounding the centre of the TC, excluding the centre of the candidate TC
(24 grid points).

4. At the centre of the candidate TC, the wind speed at 200 hPa is lower than
that at 850 hPa.

The four conditions above must hold continuously for at least 12 h for a TC to
be detected. These thresholds have been chosen so that the number of detected TCs
matches the observations of the RSMC Tokyo best track analysis with maximum
winds exceeding 17.2 m s−1. For Fig. 5d, the TC density is defined as the 6-hourly
TC count in each 4.5° × 4.5° box.

For tracking, TCs are searched in 9° × 9° boxes around previous TC positions.
Two days after TC genesis, only criteria 3 and 4 are applied, and the relative
vorticity threshold is reduced to 3.5 × 10−5 s−1.

A previous study validated the above algorithm using JRA-25 reanalysis data52.
The interannual variability of the June–October TC density (total days of TCs) of
the JRA-25 reanalysis correlates well (at r= 0.93) with the RSMC Tokyo best track
analysis50, suggesting that the algorithm can assess the TC density reasonably well.

The monsoon trough (MT) index is defined as the area-integrated 850 hPa
relative vorticity over a MT region (5°N–20°N, 130°E–180°)40.

Composite analysis of TC activity. The composite TC activity analysis in Fig. 5d is
based on the NINO3.4 and IOB indices. Composited events are chosen based on the
observed NINO3.4 and IOB indices and are common to observational and predic-
tion composites. High NINO3.4 SST years (1987, 1997 and 2015) are selected for the
observed NINO3.4 index >1.5 std. dev. Positive IOB and low NINO3.4 years (1988,
1998 and 2010) are selected for the IOB index >0 and NINO3.4 index <−1 std. dev.
In neutral to moderate ENSO cases, we classify years into two groups, namely,
Groups A and B, by dividing years with the zero line of the bivariate linear regression
equation for the TC density with the normalised NINO3.4 and IOB indices of the
observations (Supplementary Information). The years of Group A are 1980, 1982,
1984, 1985, 1986, 1989, 1990, 1992, 1993, 1994, 1996, 2004, 2005, 2006, 2009 and
2012. The years of Group B are 1981, 1983, 1995, 2000, 2001, 2003, 2007, 2008, 2011,
2013, 2014 and 2016.

Data availability
Data of the COBE-SST, JRA-55 reanalysis and RSMC Tokyo tropical cyclone best tracks
used in this study are available from the Japan Meteorological Agency (http://ds.data.jma.
go.jp/tcc/tcc/products/elnino/cobesst/cobe-sst.html, https://jra.kishou.go.jp/JRA-55/index.
html, https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html).

The prediction data can be provided by the authors upon reasonable request.
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Code availability
The computer codes generated during the current study are available from the
corresponding author on reasonable request.
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