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Abstract

Aiming at the problem of resource allocation for departure flights at congested airports, this

research explores the optimal configuration of holding units in the terminal control area

(TCA). Similar to the job-shop scheduling problem, this problem is solved through a max-

plus model with additional constraints. In particular, two optimization models are con-

structed, in which air segments, departure fixes and holding units are explicitly modeled.

Based on the realistic airspace network selected, the proposed models are tested using

actual flight data. The experimental results show that the models proposed have better qual-

ities compared with the other methods.

Introduction

The increasing air traffic flow has led to high congestion in the TCA, such as holding delays

for arriving flights and the long queues for departure flights. Typically, TCA is a specific con-

trolled airspace surrounding an airport. Due to the restrictions on investment in airport con-

struction or expansion, aviation authorities are exploring new approaches to increase the

utilization rate of existing infrastructure in the TCA [1]. Therefore, the optimal configuration

of the holding unit for departure flights becomes a hot topic. In practice, the delay is usually

caused by the circling and stacking of aircraft at different flight levels, which is called "holding

mode". Once the aircraft enters the holding mode, it must fly according to a specific pre-set

mode. In addition, once an aircraft exits the holding mode, it will proceed along the prescribed

standard trajectory, and there will be no conflict between flights under normal circumstances.

Literature review

As we all know, the bottleneck of the airspace network is the capacity of the area around the

airport. In other words, the airspace network is highly correlated with the number of arrival/

departure flights near the airport, and this is the trigger for the delay propagation. In this case,

a heterogeneous network model that considers congestion connections/degrees is applied to

predict departure flight delays [2, 3]. In order to alleviate flight delays, it is also necessary to

understand the mechanism of air traffic congestion and its propagation process [4, 5]. In this

way, the congestion management module can be employed to describe the performance and

throughput of the airspace. Today’s methods usually include rerouting or reduction of flight

[6, 7].
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When choosing the most appropriate actions to alleviate airport congestion, the decision-

making must reflect the multi-criteria nature of the problem. Therefore, several challenging

results have been proposed for reducing the propagation of perturbations in airspace [8]. In

the absence of a substantial increase in airspace capacity, airport congestion can only be allevi-

ated through scheduling intervention or improving capacity utilization [9].

When the airport is crowded or the runway is busy, the aircraft cannot land immediately.

At this time, it will join the preset holding mode which make it circling around the airport

until the air traffic controller issues a landing signal [10]. Decision support systems based on

optimized algorithms can maximize the use of TCA’s available capacity. They will affect the

flight time, which is our optimization goal. In the existing literature, the flight scheduling prob-

lem is usually regarded as a single-queue optimization problem, from which the aircraft can be

pulled out and "paused" [11, 12]. In this context, an optimized scheduling model is designed

for uncontrolled airports, and then an optimized scheduling algorithm is tailored for this

model [13].

It can be seen from the literature review that recent research mainly focus on improving the

operational efficiency of arrival & departure flight. However, none of the existing methods

provide sufficient flexibility to assist air traffic controllers in controlling departure flights. It is

worth noting that many models ignore the problem of airspace structure optimization related

to scheduling, or the configuration of holding units that require decision-making. Conse-

quently, these deficiencies seriously affect the effectiveness of the output as a decision support

tool.

Some studies try to overcome these shortcomings by introducing various constraints in the

real world, such as landing time windows and priority restrictions. For example, an alternative

graph model with additional constraints can be used to solve the aircraft scheduling problem

with routing flexibility [14]. Then, a growing number of studies regard this problem as a "job

shop" scheduling process [15, 16]. In view of the above discussions, it is necessary to establish a

model that is more in line with the realistic situation and incorporate various constraints in air

traffic control. Therefore, further research is needed to develop effective algorithms and find

the optimal number of configurations for each holding unit.

In addition, dynamic programming (DP) is a method for solving sequential optimization

problems consisting of multiple decisions, so that the optimal solution can be obtained from

the optimal solution of the sub-problem corresponding to the original problem. In particular,

the application of several dynamic programming algorithms in air traffic control is given. For

some objective functions, dynamic programming algorithms can be used to obtain the optimal

order of flights [17, 18]. Airspace capacity may be reduced due to convective weather, which

will cause traffic congestion. Therefore, the optimization of air traffic flow in congested air-

space with dynamic convective weather is a challenging problem [19]. In this context, a

dynamic programming algorithm is designed to generate a robust solution for airport runway

operation [20–22]. More importantly, the stochastic dynamic programming algorithm can

well adapt to various operational constraints imposed by TCA, such as the minimum interval

requirement between consecutive aircraft, the earliest and latest arrival/departure time of each

aircraft, etc. [23, 24].

This paper is organized as follows. Section 3 introduces the formulation of mathematical

model, including constraints and objective functions. Section 4 discusses different system con-

figurations and their optimization results. Finally, this article gives a conclusion and proposes

further research directions.
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The model and problem definition

For each TCA, the landing aircraft lands on the runway along a predetermined route and stan-

dard descent profile from the approach fixes. Similarly, the takeoff aircraft leaves the runway

and flies along the ascending profile towards the designated departure fixes. In order to com-

plete the takeoff procedure, each aircraft needs to traverse a certain amount of TCA resources

[25].

In addition, most optimization models in the existing literature model TCA as a single

resource, these models ignore the air segments in the TCA and are therefore not realistic.

More specifically, the aircraft circling in the holding units and the aircraft queued in the depar-

ture queue can be represented as "operation" waiting for the air segment to be processed. The

processing time of the operation is equal to the time required for the aircraft to traverse a spec-

ified resource, depending on the characteristics of the aircraft. This section introduces concrete

expressions of decision variables, constraints and objective functions. In the max-plus model

given below, an operation refers to the movement of a specific aircraft [26].

According to this representation, the departure route can be subdivided into N segments,

M1,M2,. . .,MN with N−1 holding units B1,B2,. . .,BN−1 between them. Generally, it takes a cer-

tain period of time to transverse a given air segment, which is usually known, because each

flight has a scheduled speed sequence. Each holding unit has Si(i =1,2,. . .,N), candidate flight

levels. Let xi(j) and tij be the completion time of operation to be performed by flight i on the

sub-segment j, and processing time, respectively. The result is a no-waiting "job shop" schedul-

ing model in which aircraft with given earliest arrival (departure) time is modeled as a "job"

with a release date. However, it should be noted that it is necessary to avoid congestion in the

fixes for the ‘operations’ [27].

Definition 3.1 [Non-blocking of departure route] If the completion time of each flight

"processed" by an air-segment is equal to the time instant when the flight departs from the

same air-segment, then the air-segment is said to be non-blocking.

Theorem 3.2 [State equations of air segments with holding units] For the serial departure

routes with n sub-segments and m flights, the state equation can be described by:

xiðjþ 1Þ ¼ tj� 1;i � ½xi� 1ðj � 1Þ � xiðjÞ� � xi� 1ðj � bi� 1 þ 1Þði ¼ 1; 2; . . . ; n; j ¼ 0; 1; . . . ;mÞð1Þ

Theorem 3.3 [State equations of air segments without holding unit] For the serial depar-

ture routes with n sub-segments and m flights, the state equations without holding unit can be

described by:

xiðjþ 1Þ ¼
½tj� 1;i � xiðjÞ� � xi� 1ðjÞ; i ¼ 1

½tj� 1;i � xi� 1ðj � 1Þ� � xi� 1ðjÞ; i � 2
ðj ¼ 0; 1; . . . ;mÞ ð2Þ

(

Theorem 3.4 [State vector equations of air segments with holding units] For the serial

departure routes with n sub-segments and m flights, let x(j) = [x1(j),x2(j),. . .,xn(j)]T be the state

vector, the vector equation with finite holding unit can be described by:

xðjþ 1Þ ¼ TðjÞ � xðj � 1Þ � E� ½x1ðj � b1 þ 1Þ; . . . ; xnðj � bm� 1 þ 1Þ�
T

ð3Þ
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where T is a lower triangular matrix and

Tðjþ 1Þ ¼

tj;1

P
2

l¼1�

tj;l tj;2

..

. ..
. . .

.

P
n

l¼1�

tj;l P
n

l¼2�

tj;l � � � tj;n

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

; E ¼

ε 0 ε

. .
. . .

.

. .
.

0

ε ε

2

6
6
6
6
6
4

3

7
7
7
7
7
5

In particular, when the aircraft traverse the same resource (air segment or holding unit)

and the preset minimum safety interval is violated, a potential conflict will occur [28].

Lemma 3.5 [Sufficient and necessary conditions of non-blocking] For the serial depar-

ture routes with n sub-segments and m flights, if it is not blocked, the state equations with

finite holding units satisfy:

xðjþ 1Þ ¼ TðjÞ � xðjÞðj ¼ 0; 1; . . . ;m � 1Þ ð4Þ

In fact, the performance of the holding unit is a key indicator to measure the congestion and

stability of the airspace. In an airspace with dense traffic flow, the congestion at a fix usually

causes a series of chain reactions upstream, which propagates to the entire airspace. In sum-

mary, the optimization problem can be described in detail as follows: Given a set of planned

landing/take-off aircraft, and each aircraft’s entry/exit route and their scheduled speed, the opti-

mization model needs to allocate the holding units to each approach/departure route so that all

conflicts between aircraft will be solved and the given performance indicators is optimized.

For the limited resources in the TCA, we search the optimal number for each holding unit

(q1,q2,. . .,qk−1) which minimizes the total number of holding unit qT such that the ’processing

rate’ P is not less than pr. Noticing that this is a non-linear programming, that is,

Minimize qT ¼
Xl� 1

i¼1

qi

with Pðq1; q2; . . . ; ql� 1Þ � pr

ð5Þ

Furthermore, the natural extension for the problem presented above is to search the optimal

number for each of the holding unit with predefined total number of holding unit which maxi-

mizes the ’processing rate’ P ¼
Xq

i¼1

ð1=diÞ, di denotes the average delay time in each departure

route i. That is,

Maximize Pðq1; q2; . . . ; ql� 1Þ

with qT ¼
Xl� 1

i¼1

qi
ð6Þ

This optimization model can be solved by DP algorithm. All in all, the models given above

can effectively integrate the approach routes and departure routes as well as the fixes in the TCA.

Computational experiments

The instances discussed in the following section are derived from actual data for ZABC Airport, as

shown in Fig 1. A standard instrument departure procedures usually includes a specific number of

fixes and the air segments connecting them. Generally, it is very attractive to use real trajectory
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data, and can capture the specific characteristics of air traffic flow in an airspace in detail. The next

section will discuss in detail the various practical situations presented. In addition, a detailed quanti-

tative comparison will also be made between the simulation model and genetic algorithm. In partic-

ular, five typical cases have been designed to represent the realistic scenarios.

Baseline (Case 1)

Firstly, the traffic flow distribution for each departure route is obtained through statistical

analysis. In addition, TCA contains 25% of heavy jets and 75% of medium jets. The minimum

safety distance is set to 15km, which is quite short. In this context, we calculate key indicators

such as the total waiting time of the scheduled flight.

Case 2

The arrival flow and the departure flow at the fixes are correlated. The ratio of arrival traffic to

departure traffic is one. Therefore, there are nine situations. In each case, the traffic arriving at

the airport is cleared on average fifteen minutes before departure. The minimum safety dis-

tance is set to 20km.

Case 3

Large safety distance. In this case, we set the minimum safe distance to 25 km. Other parame-

ters are the same as the baseline situation.

Case 4

High throughput. The throughput of each fix is unlimited as long as the safety distance is

guaranteed and other parameters are the same as the baseline situation,.

Fig 1. Standard instrument departure chart of the TCA (left) and typical aircraft trajectories (right).

https://doi.org/10.1371/journal.pone.0241204.g001
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Case 5

Normal throughput. The throughput of each fix is set to 0.8� (unlimited throughput), and

other parameters are the same as the baseline situation.

In addition, simulation models are applied to evaluate the continuous departure traffic flow

of ZABC Airport under high demand. In terms of air traffic distribution, 48% of aircraft take

off eastward, 38% take off west and northwest, and about 14% take off southwest and south. In

this way, specific simulation scenarios can be generated to obtain simulation results. Prior to

the experiment, the basic experimental parameters were fully trained in order to provide a

highly realistic simulation environment. As a result, the average interval between the aircraft

and the average delay distribution are obtained using the actual training data. Moreover, it

should also be noted that the simulations was repeated one hundred times.

Furthermore, our genetic algorithm consists of four components such as selection, cross-

over, mutation and evaluation. The basic steps of the genetic algorithm are as follows: Firstly,

the population is initialized according to the spatial layout of the TCA, and two individuals are

selected from the initial population as parents. Then the crossover operation is applied to these

two individuals. In order to calculate the fitness value of each individual in the population, our

algorithm uses the fitness value of each individual to simulate the configuration of holding

units on the departure route. After all the fitness values have been obtained, the algorithm

sorts the individuals according to their fitness values and performs iterations.

1. Gene structure: Each gene string corresponds to a holding unit configuration for the depar-

ture route, that is, a departure route consists of a specific number of holding units. In partic-

ular, the gene string uses integer coding, and the chromosome length is 9.

2. Crossover operation: Crossover operation is an important step to effectively find feasible

solutions by exchanging fragments of two gene strings. More specifically, two parents are

selected according to their fitness values, and the crossover operation with probability 0.5 is

adopted.

3. Mutation operation: Our algorithm mutates an individual with a specified probability. That

is, some values in the original chromosome vary randomly with the probability of 0.1.

Table 1 shows the results of various models in terms of the various indicators. The first col-

umn reports the scenarios considered. The second column gives the results of the analytical

model. Columns 3–4 provide the information of each indicator for simulation model and

genetic algorithm. It can be seen from the table that the minimum value of the maximum

delay is 362s, which is due to the additional flight time required for airborne holding to meet

the minimum interval time between the departure flights. By comparing various indicators, we

found that the analytical model outperforms the simulation model and genetic algorithm. In

Table 1. Expected indicators for different models.

Analytical model Simulation model Genetic algorithm

P1-P2-P3-P4 P1-P2-P3-P4 P1-P2-P3-P4

Case 1 380-135-28-105 660-166-45-146 512-148-36-121

Case 2 371-132-24-104 623-158-38-136 526-142-31-117

Case 3 412-145-48-115 683-181-49-152 641-160-42-143

Case 4 402-141-34-109 644-162-42-141 630-153-38-135

Case 5 362-105-22-90 564-137-37-126 438-128-29-113

[P1: maximum aircraft delay; P2: the average holding time; P3: the number of flights blocked by the sub-segment; P4: average exit delay].

https://doi.org/10.1371/journal.pone.0241204.t001
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particular, the indicators P1 and P2 corresponding to the analytical model are positively corre-

lated with the other indicators such as P3 and P4. These results are more evident for some sce-

narios where the average exit delay are more than 28% less when using the analytical model.

These differences can be attributed to the following reasons: the arrival time of each aircraft at

the initial fix is calculated according to the scheduled processing time for a specified air seg-

ment, and due to the optimized configuration of the holding unit, the process time can be opti-

mized for some of the air segments.

Noticing that the improvements vary from case to case, as shown below. In cases 2 and 5,

the flight delays were substantially reduced because the analytical model can release more

flights at non-blocking fixes. For the simulation model, since the decision is made at the begin-

ning of the planning period, there may be a tendency to increase the extra flight time in order

to reduce flight conflicts. In case 2, the holding unit was cleared 2.1 minutes before the depar-

ture fixes on average, which created an opportunity to "release" more aircraft when the airport

has cleared but the departure fixes were still blocked. In case 5, the flight arrives later at the

departure fixes, which allows the analytical model to configure the optimal number of holding

units based on the actual situations. Compared with genetic algorithms, the flight time of

flights is reduced by 20% using analytical models. In addition, case 3 and case 4 involve differ-

ent factors, so there are typical differences between these two models. In case 4, the genetic

algorithm has no advantage over the simulation model, because both models cannot clear the

departure fixes until the latest possible arrival time of the flight. Finally, the average number of

holding unit for the simulation model, genetic algorithm, and analytical model are 13, 10, and

8, respectively.

Compared with the current configuration, Table 2 lists the expected growth percentage of

the system throughput that would be attained in each case. By comparing the analytical model

with the simulation model, it can be observed that, in most cases, the analytical model can

increase the system throughput by 17–22%. These increases result from the reduction of air

segment congestion, which can further reduce the airborne holding time. Conversely, when

the analytical model is discarded, either because of a very high airborne delay or because the

departure fixes are blocked, the results will be poor.

After analyzing the performance of the model for different scenarios, the sensitivity of the

model to different system parameters can also further analyzed. Next, the potential benefits of

the DP model in reducing flight delays were also acquired. Similar to the previous descriptions,

we can compare the performance of the DP model and the simulation model in terms of delays

for the departure traffic flow. Specifically, three scenarios are considered. In addition, the total

numbers of candidate flight levels considered are one-hundred, ninety-three and eighty-five

respectively. For the preset number of holding units and "processing time", each row in

Table 3 shows the total number of holding units for each departure route.

For the DP model, it can be observed that more holding units are allocated to the key air

segments which consist of three intersections. In particular, these air segments are very impor-

tant and more complex than the other departure routes. This may suggest that when more

Table 2. Expected increase of the throughput compared to the current configurations.

Model type Analytical model Simulation model Genetic algorithm

Case 1 21% 13% 14%

Case 2 17% 10% 11%

Case 3 18% 9% 12%

Case 4 17% 9% 10%

Case 5 22% 13% 16%

https://doi.org/10.1371/journal.pone.0241204.t002
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aircraft use these intersecting air segments, it becomes more difficult to manage the departure

flow. Finally, the next section will present a comparison of improvements between DP model

and simulation model. It can be seen from Table 4 that the benefits associated with DP model

are better than that of the simulation model.

The key mechanism for the improvement seems to be twofold. First of all, under the premise

of ensuring the safety interval, TCA can better respond to the changes in the aircraft number

variations and their associated separation requirements. In this way, the dynamic adjustment of

the safety interval between aircraft can be realized, thereby improving the utilization rate of the

air segment. Secondly, the application of DP modeling technology can improve the allocation

number of holding units in the TCA to a certain extent. Finally, a sensitivity analysis is con-

ducted for the optimization model proposed above, which mainly includes the parameters listed

below: throughput strategy, TCA configuration, and scheduled flight time.

(a) Sensitivity analysis with respect to the throughput strategy

In order to evaluate the impact of the throughput strategy on the optimization model for

departure flights, two new simulation scenarios were designed based on the baseline scenario

by modifying the flight flow statistics rules. One of them is called "throughput-75%". In other

words, the 0.75� (unlimited throughput) principle is employed between departure flights. This

means that a departure queue less than 0.75� (unrestricted throughput) will be generated

according to the estimated take-off time for the flights. The other is called "Throughput-85%".

Similarly, The 0.85� (unlimited throughput) principle is employed between departure flights.

The results show that relaxing the sequencing strategy between departure flights can reduce

delays since the departure flights in the departure queue can be better allocated to holding

unit. As a consequence, we observed a reduction of 8% for flight delays. Moreover, it turns out

that adopting another strategy did not bring any benefit in reducing delays.

(b) Sensitivity analysis with respect to the configuration of departure

routes

The alternative departure routes in TCA also affect the performance of the optimized model.

When a more fine-grained minimum safety distance is applied, the model has more divided

Table 3. Comparisons of the optimization configurations for different methods.

Model type Number of holding unit for each departure route

Case 1 Simulation model 15 14 9 11 10 7 11 7 16

DP model 7 10 12 16 11 14 9 8 13

Case 2 Simulation model 14 16 7 9 12 8 10 10 7

DP model 10 10 11 14 10 12 8 7 11

Case 3 Simulation model 10 10 9 10 7 9 12 10 8

DP model 8 9 10 13 8 11 7 8 11

https://doi.org/10.1371/journal.pone.0241204.t003

Table 4. Expected benefits for different models.

DP model Simulation model

P1-P2-P3-P4 P1-P2-P3-P4

15%-17%%-14%-15% 10%-9%%-7%-7%

18%-16%%-15%-16% 11%-10%%-9%-10%

14%-20%%-19%-17% 7%-11%%-11%-12%

https://doi.org/10.1371/journal.pone.0241204.t004
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sub-segments, thus it can produce a lower level of delays. When assessing the potential benefits

of the optimization model, the effect of different TCA configurations on departure flights

must be considered. Next, a new simulation scenario is designed based on the baseline sce-

nario, which mainly involves the number of available departure air segments. For departure

traffic flow, maintaining a minimum safe distance of 17km will lead to a maximum delay of

393 seconds, while 19 kilometers will result in a maximum delay of 405 seconds. As expected,

the results showed that reducing the number of alternative routes would increase delays for

departure flights.

(c) Sensitivity analysis with respect to the flight time

In the tactical phase of departure sequencing, the use of decision support tools is highly depen-

dent on the flight trajectory to determine the estimated time of arrival for each aircraft.

According to the optimization model proposed, the longer the flight time of each aircraft, the

greater the total travel time. In the baseline scenario, the nominal time is adopted for each air-

craft. However, the impact on performance indicators can also be evaluated using different

flight times. This difference is due to the fact that when the flight time is increased, it will have

a greater impact on the upstream and downstream flights considered in the flight plan, result-

ing in a delay in the resolution of aircraft conflict. In fact, when the flight time is reduced by

5%, the delay will be reduced by 3%.

Conclusions

This paper proposes a new method to optimize the configuration of holding units in the TCA.

Experimental results show that these optimization models and algorithms help to improve the

operating efficiency of TCA. As far as we know, this is the first optimization method that ties

flight scheduling to the configuration of holding units for the departure route. The tool devel-

oped based on the optimization model proposed in this paper can be applied to the flight

scheduling, and thereby determine the best flight sequence. However, it is worth mentioning

that further analysis of stochastic factors such as bad weather and rerouting is required in prac-

tical applications.
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