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Abstract

Driver behavior is considered one of the most important factors in the genesis of dilemma

zones and the safety of driver-vehicle-environment systems. An accurate driver behavior

model can improve the traffic signal control efficiency and decrease traffic accidents in sig-

nalized intersections. This paper uses a mathematical modeling method to study driver

behavior in a dilemma zone based on stochastic model predictive control (SMPC), along

with considering the dynamic characteristics of human cognition and execution, aiming to

provide a feasible solution for modeling driver behavior more accurately and potentially

improving the understanding of driver-vehicle-environment systems in dilemma zones. This

paper explores the modeling framework of driver behavior, including the perception module,

decision-making module, and operation module. The perception module is proposed to

stimulate the ability to perceive uncertainty and select attention in the dilemma zone. An

SMPC-based driver control modeling method is proposed to stimulate decision-making

behavior in the dilemma zone. The operation module is proposed to stimulate the execution

ability of the driver. Finally, CarSim, the well-known vehicle dynamics analysis software

package, is used to verify the proposed models of this paper. The simulation results show

that the SMPC-based driver behavior model can effectively and accurately reflect the vehi-

cle motion and dynamics under driving in the dilemma zone.

1 Introduction

When a driver approaches a signalized intersection as the green signal turns yellow, he or she

will face a decision-making or hesitation situation, namely, whether to decelerate to stop

before the stop-line or to accelerate to go through the intersection. In this situation, some of

the drivers who are approaching the signalized intersection will find themselves too close to

the intersection to stop comfortably and safely or too far from the stop-line to pass through

within the legal speed limit. The statistical data from the government authorities show that this

situation accounts for nearly 50% of traffic accidents that happened at a signalized intersection

in China [1–3]. This situation relates to car speed, driver reaction time and decision-making,

the geometric parameters of the road and intersection, the duration of the yellow signal light,

etc. In the 1960s, Denos and Rober [4] first stated this problem, used kinetic equations to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247453 February 24, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li W, Tan L, Lin C (2021) Modeling driver

behavior in the dilemma zone based on stochastic

model predictive control. PLoS ONE 16(2):

e0247453. https://doi.org/10.1371/journal.

pone.0247453

Editor: Feng Chen, Tongii University, CHINA

Received: December 28, 2020

Accepted: February 7, 2021

Published: February 24, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0247453

Copyright: © 2021 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: The authors acknowledge the National

Natural Science Foundation of China (Grant No.

51408257), and the Science and technology

https://orcid.org/0000-0001-9098-2666
https://doi.org/10.1371/journal.pone.0247453
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247453&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247453&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247453&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247453&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247453&domain=pdf&date_stamp=2021-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247453&domain=pdf&date_stamp=2021-02-24
https://doi.org/10.1371/journal.pone.0247453
https://doi.org/10.1371/journal.pone.0247453
https://doi.org/10.1371/journal.pone.0247453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


analyze the influences on this problem, and tried to optimize the duration of the yellow light to

avoid this problem. Olson and Rothery [5] calculated the minimum safe stopping distance and

maximum critical crossing distance under different speeds, perception/reaction times and

acceleration/deceleration rates to optimize the yellow signal for different geometric dimen-

sions of signalized intersections with kinetic equations. Thirty-five years later, Denos and

Rober [6] confirmed that the dilemma zone is an example of the incompatibility of man-made

law and physically attainable human behavior. They tried to propose a yellow signal duration

consistent with the geometry of a signalized intersection that considered broader ranges of

vehicle characteristics to eliminate the conflict. However, they found that it is difficult to elimi-

nate the dilemma zone situation regardless of how slowly the vehicle is moving in any yellow

signal duration. Until now, researchers are still interesting in dilemma zone identification to

enhance the safety at signalized intersection for drivers by implementing various safety mea-

sures [7–9].

Driver behavior is considered one of the most important factors in the genesis of dilemma

zones and the safety of human vehicles in this situation. Driver decisions in dilemma zones

could result in crash-prone situations at signalized intersections, as an improper decision to

stop by the leading driver, combined with the following driver deciding to go, can result in a

rear-end collision. Sahar and Montasir [10] proposed a novel safety surrogate measure to

capture the degree and frequency of dilemma zone-related conflicts at each approaching

intersection. Papaioannou [11] analyzed the relationship between the dilemma zone and the

safety level of signalized intersections. This research indicated that a large percentage of driv-

ers facing the yellow signal are caught in the dilemma zone due to high approaching speeds

and exercise aggressive behavior. More than half of the drivers choose to cross the STOP

line instead of stopping, showing that drivers are neither afraid of the law nor believe that an

accident may be caused as a consequence of their choice. Gates [12] and Kim [13] evaluated

the stopping characteristics of vehicles in the dilemma zone using video cameras. The field

study showed that the different types of drivers and vehicles had different responses in the

dilemma zone. Long [14] used the fuzzy decision tree model to analyze the driver decision to

go or stop in the dilemma zone at a signalized intersection, considering the vehicle location,

velocity and remaining time of the yellow signal. Qi [15] converted the traffic signal light and

drivers into a double game model, and through quantification of their earnings under differ-

ent choice conditions, determined the optimum the driver decision-making via the Nash

equilibrium solution concept. Mohammed and Arash [16] applied well-known artificial

intelligence algorithms to predict driver stop/run decisions at the onset of a yellow indication

for different roadway surface conditions. The research results showed that the driver aggres-

siveness parameter can be estimated by monitoring the driver historical response to yellow

indications. Savolainen, Sharma and Gates [17, 18] investigated how signal timing strategies

such as yellow signal duration, all-red clearance interval, advance warning flasher, and auto-

mated camera enforcement impact driver decision-making. Lu [19] used high-resolution

event-based data to analyze the yellow-light running behavior of drivers. The research

showed that snowing weather conditions cause more yellow-light running events. Bar-Gera

and Musicant [20] used naturalistic data from digital enforcement cameras to quantify yel-

low signal driver behavior. The results showed that the frequencies of entrance time after yel-

low onset are relatively stable during the beginning of the yellow phase. The duration of

frequency reduction from 90% to 10% varies considerably across the signalized intersection,

and the entrance time ranges from 1.9 s to 2.9 s after a yellow onset indication. Dong [21], Li

[22, 23], and Najmi [24] analyzed the influence factors of go/stop decision-making at onset

of yellow at signalized intersections, and modeled driving behaviors to formulate strategies

to reduce unsafe driving in dilemma zone.
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Different drivers exhibit their respective traffic behavior, which is affected by internal fac-

tors and external factors. The internal factors are the driver self-attributes, including driver

gender, age, driving experiences, cultural background, etc. The external factors are the driving

environment, including traffic conditions, road surface conditions, and weather conditions. It

is difficult to use kinetic equations to model traffic behavior in controlling vehicles when the

drivers approach signalized intersections [25]. However, driver behavior can be partly reflected

by the changes in vehicle motion before, during, and after decision-making and after vehicle

operation. The driver perceives surrounding information, estimates the driving situation,

makes decisions to control the vehicle, and then changes the vehicle motion status by adjusting

the steering wheel or changing the vehicle speed by stepping on the gas or brake pedal. These

processes can be indicated by high-fidelity vehicle dynamics models that consider the driver to

have the internal abilities of driving considering perception, traffic condition estimation, and

driving experimental learning and the external abilities of operating vehicles under various

driving scenarios. Compared with the normal vehicle kinetic model, the vehicle dynamics

model must be more adaptive, stochastic, and time-invariant. These kinds of models can rep-

resent driver behavior [26, 27]. Yang [28], Cairano [29] and Dominic [30] pointed out that

driver behavior has stochastic characteristics. Driver behavior can be modeled and explained

with stochastic variables or stochastic processes. Therefore, when a driver drives to a signalized

intersection at the onset of a yellow signal indication, the driver behavior can be described as

[31]: (1) The driver perceives the traffic environment to generate the expected driving state.

(2) The driver estimates the driving state based on driving experience and current driving

states. (3) The driver operates the vehicle (such as accelerating to go through or decelerating to

stop) to make the estimated driving state keep pace with the expected driving state. (4) The

driver persistently estimates and optimizes the driving state to achieve the expected driving

state. Throughout the driving processes, driver behavior is affected by the road surface condi-

tions, traffic flow conditions, weather conditions and driver physiology. In the whole process,

driver behavior is consistent with the characteristics and principle of model predictive control

(MPC) [32–34]. However, although MPC can deal with disturbances and uncertainties, it is

based on the min-max method and cannot efficiently model driver behavior in the dilemma

zone, which needs to consider the disturbance and uncertainty of a person-vehicle-road sys-

tem in real time at a signalized intersection. Stochastic model predictive control (SMPC) has

the advantage of analyzing and modeling the system, which is stochastic and uncertain [29]. In

this paper, we attempt to use SMPC to model driver behavior in the dilemma zone. The aims

of this paper are as follows.

1. A mathematical modeling method is used to study driver behavior in the dilemma zone

based on stochastic model predictive control, along with considering the dynamic charac-

teristics of human cognition and execution.

2. Providing a feasible solution for modeling driver behavior more accurately and then

potentially improving the understanding of the driver-vehicle-environment system in the

dilemma zone, exploring the modeling framework of driver behavior in the dilemma zone,

including the perception module, decision-making module, and operation module.

3. We propose an SMPC-based high-fidelity vehicle dynamics and motion model to describe

the processes of driver behavior at the onset of yellow signal indication when approaching

the signalized intersection and use the CarSim simulator to verify the validity of the pro-

posed model.

The rest of the paper is structured as follows: Section 2 presents the model of driver behav-

ior in the dilemma zone. The simulation and model verification are presented in Section 3.
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Section 4 concludes this article with a summary of contributions and limitations, as well as

perspectives on future work.

2 Model driver behavior in the dilemma zone

2.1 Model framework

When a driver approaches the signalized intersection, he or she will perceive the traffic envi-

ronment, including the traffic light, the distance from the stop-line and the traffic flow in the

approaching direction. Then, he or she will estimate the traffic environment and driving state

(vehicle motion status) to decide whether to stop before the stop-line or to pass through the

signalized intersection. After the decision is made, he or she optimizes the driving operation

and operates the vehicle based on his or her driving experience, reaction time, age, ability to

handle vehicle, etc. Therefore, the whole process can be divided into three modules: the per-

ception module, the decision-making module, and the operation module. The framework of

the driving behavior is shown in Fig 1.

2.2 Perception module

When driving to the signalized intersection at the onset of a yellow signal indication, the driver

perceives traffic conditions by sensory organs such as vision, auditory, and tactile. All traffic

condition information is processed, conducted, and interpreted by the driver brain. Then, the

brain generates the expected driving state, which is the ability to predict the vehicle motion sta-

tus based on the driver experience and current vehicle motion status [35]. Therefore, the per-

ception module model is composed of a traffic condition perception model and an expectation

driving state model.

2.2.1 Traffic condition perception. The driver perceives road surface conditions, traffic

conditions, and vehicle interior motion status by sensory organs. However, not all the infor-

mation obtained from sensory organs is processed by the brain. The information is selected,

processed and comprehended by the cognitive neural system of the driver [36, 37]. In different

driving environments, the objects concerning the drivers are different. The driver pays more

attention to the objects that impact the driving status most. Regarding selective attention,

Broadbent [38] considered that there is a large amount of information stimulation from the

surroundings, but the ability of the sensory channel to receive information and the ability of

Fig 1. The framework of driving behavior in the dilemma zone.

https://doi.org/10.1371/journal.pone.0247453.g001
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the cognitive system to process information are limited. Therefore, it is necessary to filter and

adjust the large amount of information input from the outside world. There is only one chan-

nel that passes through a filter into the advanced analysis phase, and this filter demonstrates

the selectivity of attention. Then, Deutsch proposed the response selection model (RSM) in

1963 [39]. Compared to the filter model (FM) proposed by Broadbent in 1958, Deutsch con-

sidered that there are several channels that pass through the filter and enter the advanced anal-

ysis phase. Kahneman [40] proposed the capacity division model (CDM) in 1973. Kahneman

considered that selective attention is essentially a resource allocation mechanism that allocates

the limited information processing capacity of human beings according to the resource alloca-

tion scheme under the constraints of various factors. Based on the theory proposed by Broad-

bent, Deutsch and Kahneman, researchers have proposed many hypotheses such as the

maximum stimulus hypothesis, minimal stimulus hypothesis, and capability of the maximum

stimulus number hypothesis to analyze the critical threshold of the filter [41]. However, the

selective attention models mentioned above are based on the theory of psychology. In driver

behavior modeling, we do not focus on quantizing the complex psychological characteristics

of drivers and use only the research results of selective attention that consider the complex psy-

chological characteristics of humans and affect drivers in different driving scenes.

In this paper, we use the theory of RSM and the maximum stimulus hypothesis to describe

driver selective attention in the dilemma zone as follows: When a driver approaches the signal-

ized intersection at the onset of the yellow signal indication, the objects in the driving environ-

ment will stimulate the driver sensory organ [42]. When the stimulus exceeds a certain

threshold value, the driver will keep his/her mind on the objects in the driving environment

[43, 44]. This phenomenon is expressed by the following mathematical formula:

SAðtÞ 2 fijSTiðtÞ > STcg ð1Þ

where SA(t) is the set of selected attention objects in the driving environment at time t. i is the

ith object in the driving environment. STi(t) is the ith object stimulus to the driver at time t in

the driving environment. STc is the threshold of stimulus to the driver to receive attention in

the driving environment.

When a driver is caught in the dilemma zone, he or she will pay more attention to the traffic

light, current vehicle distance from the stop-line, and current vehicle speed, which are the key

factors for the driver to make decisions in the proceeding driving operation in the dilemma

zone [45]. In the driver behavior modeling, we consider only the ability of driving surrounding

perception affecting drivers to make decisions in dilemma zones. Therefore, the effect of traffic

condition perception on driver decision-making in the dilemma zone is described as AF{SA

(t)}. According to the references of [46, 47], AF{SA(t)} depends on the driver psychophysiolog-

ical characteristics and the time of the driver confronting the yellow signal in the dilemma

zone. Therefore, we assume that AF{SA(t)} is a random variable subordinate to a specific sta-

tistical property. In different prediction periods, the effects of driver traffic condition percep-

tion AF{SA(t)} are independent.

2.2.2 Expectation driving state. After perceiving the driving surroundings in the

dilemma zone, the driver will generate an expected driving state in mind before deciding

whether to pass through the signalized intersection or not. The expected driving state relies on

the vehicle current speed, the distance from the forward vehicle or from the stop-line, and the

rest time of the yellow signal. In this process, the driver focuses on the vehicle location and

vehicle speed. Therefore, we can describe that the expected driving state as the change in loca-

tion when the vehicle approaches the signalized intersection.

Su1
ðtþ 1Þ; Su2

ðtþ 2Þ; � � � ; SuNE ðtþ NEÞ ð2Þ
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where Sυ1(t + 1), Sυ2(t + 2), and SuNE
ðtþ NEÞ are the expected vehicle distances from the stop

line at times t + 1, t + 2, and t + NE, respectively. t is the time the driver realizes the dilemma

zone or the time start to expect the driving state. υ1, υ2, and uNE
are the vehicle speeds at times t

+ 1, t + 2, and t + NE, respectively. NE relates to the degree of driver expectation. A greater

value of NE means more concentration in the driving environment and a better traffic condi-

tion for the approaching entrance lane of the signalized intersection.

When a driver approaches the signalized intersection at the onset of a yellow signal indica-

tion, the initial speed of the vehicle during the perception-expectation-response period T is

defined as υ0, and the acceleration of the vehicle in the period is defined as α. As the vehicle

location and the yellow signal status change, the expectation driving state of the driver will

change in every reaction period. The diagram of the expected driving state in the dilemma

zone is shown in Fig 2.

2.3 Decision-making module

When the driver realizes that he or she is caught in the dilemma zone with real-time selective

attention to the driving environment, he or she must decide whether to decelerate to stop

before the stop-line or to accelerate to pass through the signalized intersection. In this situa-

tion, the driver evaluates the driving conditions, makes a decision, and optimizes the driving

state to cope with the decision and to drive safely and comfortably. Therefore, we divide the

decision-making module into two models: (1) the driving condition estimation model, and (2)

the decision-making and optimization model.

2.3.1 Driving condition estimation. In the process of decision making in the dilemma

zone, the driver will estimate the forward traffic state of the road and the driving state of the

vehicle. To describe these characteristics, we try to model the driver cognitive characteristics

Fig 2. Diagram of the expected driving state in the dilemma zone.

https://doi.org/10.1371/journal.pone.0247453.g002
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in this situation [48, 49].

M _vy þ s �Mvx ¼ Fyf þ Fxd

Iz _s ¼ x � Fyf � z � Fxd

(

ð3Þ

where M is the quality of vehicle; vy and vx are the lateral and transverse speed of vehicle,

respectively; Fy and Fx are the driver selective attention to the forward traffic state, and around

traffic state of the vehicle which are reflected by the lateral and transverse braking force,

respectively; f and δ are the response time of driver lateral and transverse braking force, respec-

tively; Iz is the rotational inertia, used to deal with the case where driver changes the driving

lane, accelerating and overtaking to pass through the signalized intersection; σ is the angular

speed; ξ and z are the lateral and transverse distance from braking force to the centroid of the

vehicle.

The lateral and transverse braking forces Fy and Fx are closely related to the impact factors

of selective attention AF{SA(t)}, loading and vehicle capacity. We rewrite Fy and Fx as:

Fyf ¼ Cf � m � af
Fxd ¼ Cd � m � ad

(

ð4Þ

where μ is used to describe the effect of selective attention in the dilemma zone during driving;

af and aδ are the lateral and transverse accelerations under the braking force, respectively; and

Cf and Cδ are the lateral and transverse capacities of the vehicle, respectively.

Putting formula (4) into formula (3), formula (3) can be rewritten as:

_vy ¼
mðCf � af þ Cd � adÞ

M
� s � vx

_s ¼ mðx � Cf � af � z � Cd � adÞ=Iz

8
><

>:
ð5Þ

With the kinematic equation of vehicle motion, the vehicle movement can be described as:

_xðtÞ ¼ vxcosφðtÞ � vyðtÞsinφðtÞ

_yðtÞ ¼ vxsinφðtÞ þ vyðtÞcosφðtÞ

(

ð6Þ

where x(t) and y(t) are the lateral and transverse displacements of the vehicle, respectively, and

φ is the yaw angle of the vehicle heading.

In the dilemma zone, the foremost reaction of the driver is to consider decelerating to stop

before the stop-line or accelerating to go through the intersection. The yaw angle in this paper

is considered close to zero. The formula (6) can be rewritten as follows:

_xðtÞ ¼ vx � vyðtÞφðtÞ

_yðtÞ ¼ vxφðtÞ þ vyðtÞ

(

ð7Þ

Combining formula (5) and formula (7), the state of driving condition estimation can be

formed as a fourth-order status variable:

X tð Þ ¼

vyðtÞ
sðtÞ
yðtÞ
φðtÞ

0

B
B
@

1

C
C
A ð8Þ
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Formula (5) and formula (7) can be combined as a matrix:

_XðtÞ ¼ AðmÞXðtÞ þ BðmÞtðtÞ

YðtÞ ¼ CXðtÞ

(

ð9Þ

where A mð Þ ¼

�
ðCfþCdÞm

Mvx
�
ðx�Cf � z�CdÞm

Mvx
� vx 0 0

�
ðx�Cf � z�CdÞm

Izvx
�
ðx2 �Cfþz2 �CdÞm

Izvx
0 0

1 0 0 vx
0 1 0 0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

and B mð Þ ¼

Cf m
M

x�Cf m
Iz

0

0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

are the status

variable coefficient matrixes; τ(t) is the coefficient of correction, which is used to represent the

stochastic and uncertainty factors; and C is the constant vector, C = (0 0 1 0).

In every perception-expectation-response period T, the dynamic driving condition estima-

tion can be described as a discretization equation.

Xðt þ 1Þ ¼ AðmðtÞÞXðtÞ þ BðmðtÞÞtðtÞ ð10Þ

2.3.2 Decision-making and optimization. After estimating the traffic condition and vehi-

cle state while making decisions in the dilemma zone, the driver will evaluate the vehicle

motion and optimize the vehicle status in the next reaction period. We try to use the dynamic

discretization equation to describe the estimated state based on stochastic model prediction

control theory [33, 34, 50].

Xðt þ 1Þ

Xðt þ 2Þ

..

.

Xðt þ NEÞ

0

B
B
B
@

1

C
C
C
A

¼

AðmðtÞÞ
A2ðmðtÞÞ

..

.

ANEðmðtÞÞ

0

B
B
B
@

1

C
C
C
A
X tð Þ

þ

BðmðtÞÞ � � � 0

AðmðtÞÞBðmðtÞÞ � � � 0

..

. ..
. ..

.

ANE � 1ðmðtÞÞBðmðtÞÞ � � �
PNE

i¼1
Ai� 1ðmðtÞÞBðmðtÞÞ

0

B
B
B
@

1

C
C
C
A

tðtÞ
tðt þ 1Þ

..

.

tðt þNE � 1Þ

0

B
B
B
@

1

C
C
C
A

ð11Þ

Yðt þ 1Þ

Yðt þ 2Þ

..

.

Yðt þNEÞ

0

B
B
B
@

1

C
C
C
A
¼

C 0 � � � 0

0 C � � � 0

..

. ..
.

� � � ..
.

0 0 � � � C

0

B
B
B
@

1

C
C
C
A

Xðt þ 1Þ

Xðt þ 2Þ

..

.

Xðt þNEÞ

0

B
B
B
@

1

C
C
C
A

ð12Þ

The evaluation driving status can be formulated as:

DSðtÞ ¼ EðmðtÞÞXðtÞ þ FðmðtÞÞRðtÞ ð13Þ

where DS(t) is the vector of estimation approaching vehicle status in the dilemma zone at
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time t; EðmðtÞÞ ¼

CAðmðtÞÞ
CA2ðmðtÞÞ

..

.

CANEðmðtÞÞ

0

B
B
B
B
@

1

C
C
C
C
A

;

FðmðtÞÞ ¼

CBðmðtÞÞ 0 � � � 0

AðmðtÞÞBðmðtÞÞ CBðmðtÞÞ � � � 0

..

. ..
. ..

. ..
.

ANE � 1ðmðtÞÞBðmðtÞÞ ANE � 2ðmðtÞÞBðmðtÞÞ � � �
XNE

i¼1

Ai� 1ðmðtÞÞBðmðtÞÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; and

RðtÞ ¼

tðtÞ
tðt þ 1Þ

..

.

tðt þNE � 1Þ

0

B
B
B
B
@

1

C
C
C
C
A

.

As a driver obtains the vehicle motion status by estimation in mind, he or she tries to opti-

mize the vehicle status to make the driving comfortable and safe.

JðtÞ ¼
XNE

i¼1

kDSðt þ iÞ � Opðt þ iÞk
2
þ
XNE

i¼1

ktðt þ i � 1Þ � rðt þ i � 1Þk
2

ð14Þ

where J(t) is the object of driver decision, that is, to stop before the stop-line or pass through

the signalized intersection; Op(t) is the optimized operation of the driver at time t to obtain the

final object; and ρ(t) is the random disturbance in the decision or operation in the dilemma

zone at time t.

As Op(t) is considered based on the traffic condition perception and driving state expecta-

tion, it can be rewritten as:

Opðt þ iÞ ¼ Suðtþ iÞconφðtÞ þ iTvxsinφðtÞ þ yðtÞ ð15Þ

2.4 Operation module

Due to the restrictions of driver driving experiences, response ability, and cognitive character-

istics, the action of optimization and the expected vehicle state will be delayed. Delays may

occur in the process of traffic perception, decision-making, driving expectation and optimiza-

tion. We use the delay transfer function to describe this phenomenon as [25]:

DTðtÞ ¼
Xn

i¼1

e� tdðiÞ ð16Þ

where DT(t) is the total delay time of the process from traffic perception to vehicle operation

in the dilemma zone, and td(i) is the delay parameter in the ith section during the process.

Based on the stochastic model prediction control theory, we can obtain the driver reaction

and operation in every step in the dilemma zone and model the rolling horizon driver behavior

model in the dilemma zone by using the sequence formulas in the perception module, deci-

sion-making module and operation module.
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3 Simulation and model verification

In this paper, we use the CarSim 8.02 simulator (Mechanical Simulation Corporation, Ann

Arbor, Michigan, United States) to verify the validation of the proposed model in this paper

based on SMPC. CarSim is universally the preferred tool for analyzing vehicle dynamics,

developing active controllers, calculating the performance characteristics of a car, and engi-

neering next-generation active safety systems. CarSim includes configurable high-fidelity and

real-time vehicle dynamics models, which can accurately reflect vehicle dynamics and motion

under various driving conditions, and includes models of complex road and road structures,

high-fidelity traffic, weather and lighting conditions, and vehicle models for cars, SUVs,

trucks, and buses [51]. In China, cars and SUVs make up the bulk of traffic flow in urban city.

The Hatchback and SUV models in CarSim are closest to the actual vehicles running on the

road. Therefore, we use the vehicle models of A-Class (Hatchback), B-Class (Hatchback), and

D-Class (SUV) in the CarSim software package to verify the proposed model in this paper. The

vehicle model parameter settings in CarSim are shown in Table 1.

The driver behavior and vehicle dynamics model in the dilemma zone proposed in this

paper are defined by formulas and variables added with VS commands and VS configurable

functions, handled by built-in controllers and solvers. Traffic light is defined as a target object

and combined with ranging sensors in CarSim. Roads and reference paths are created with

Scene Builder and defined with configurable functions to build dilemma zone scenarios and

traffic event sequences. A snapshot of the traffic scene in the simulator is shown in Fig 3.

In traffic event sequences, we use kinetic equations to define the range of the dilemma zone

and assume that:

Table 1. Vehicle model parameter settings in CarSim.

Vehicle Model M (kg) Iz (kg/m2) Cf (N) Cδ (N)

A-Class (Hatchback) 747.00 288.00 8614 13649

B-Class (Hatchback) 1111.00 288.00 8614 13649

D-Class (SUV) 1429.00 377.10 9335 10541

https://doi.org/10.1371/journal.pone.0247453.t001

Fig 3. The snapshot of traffic scene.

https://doi.org/10.1371/journal.pone.0247453.g003

PLOS ONE Modeling driver behavior in the dilemma zone based on stochastic model predictive control

PLOS ONE | https://doi.org/10.1371/journal.pone.0247453 February 24, 2021 10 / 21

https://doi.org/10.1371/journal.pone.0247453.t001
https://doi.org/10.1371/journal.pone.0247453.g003
https://doi.org/10.1371/journal.pone.0247453


1. When the driver realizes the yellow signal indication, the initial vehicle speed is V0. If the

driver decides to stop before the stop-line, the minimum distance to stop safely is [6]:

X0 ¼ V0 � dþ
V2

0

2a�
ð17Þ

where δ is the reaction time delay, and α_ is the vehicle deceleration.

2. If the driver decides to pass through the signalized intersection, the maximum distance to

pass through safety is [6]:

Xc ¼ V0 � dþ V0 � t � dð Þ þ
1

2
aþ � ðt � dÞ

2
� wþ lð Þ ð18Þ

where τ is the rest of the yellow signal time; α+ is the vehicle acceleration; w is the width of

the intersection; and l is the length of the vehicle.

If Xc< X0, the location of vehicle X 2 (Xc, X0) or if Xc > X0, and the location of vehicle

X 2 (X0, Xc), the vehicle is caught in the dilemma zone, as shown in Figs 4 and 5.

To analyze the degree of attention affecting driver behavior, we set NE as (5, 10, 15) to

examine the relationship by comparing the expectation path to the simulation path under dif-

ferent driving conditions. The simulation experiments are divided into two groups: (1) the

driver decides to stop before the stop-line; or (2) the driver decides to pass through the signal-

ized intersection. The vehicle speed in the simulation is set as 45 km/h. The range and location

of dilemma zone for different driver is different. To make the trajectory data compareable,

the observation range is setting as 100 meter along the driving approaching. The starting

observation location is set at 100 meter before the stop-line for the vehicles which decide to

stop before the stop-line (group 1). For vehicles which decide to go through the signalized

intersection, the starting observation location is set at 50 meter before the stop-line (group 2).

Running the CarSim software using A-Class (Hatchback), B-Class (Hatchback), and D-Class

(SUV) with NE = 5, NE = 10, NE = 15 in group 1 and group 2, respectively, we obtain the pot

data of the simulation results and form the comparison diagram as in Figs 6–9.

For group 1, the value deceleration rate begin to change around the location of 50m before

the stop-line. It can conclude that the dilemma zone is begin around at 50m before the stop-

Fig 4. Type I dilemma zone.

https://doi.org/10.1371/journal.pone.0247453.g004
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Fig 6. The vehicle driving trajectory of different vehicle models in NE = 10 (Group 1).

https://doi.org/10.1371/journal.pone.0247453.g006

Fig 7. The B-Class vehicle driving trajectory for different NE (Group 1).

https://doi.org/10.1371/journal.pone.0247453.g007

Fig 5. Type II dilemma zone.

https://doi.org/10.1371/journal.pone.0247453.g005
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line for the vehicle driving at 45km/h of initial velocity. Higher value of NE means driver palys

more attention on traffic condition when driving. From the trajectory data, the less value of

NE, the fluctuation of deceleration rate is more pronounced and deviates the expection of

driver greater. NE = 10 is enough for driver to keep decelerating the vehicle safety. Furether-

more, it can conclude that if the drivers concentrate enough on the traffic condition when

driving, the trajectories of vehicle are similarity, and consist with the expectation of driver.

For group 2, the value acceleration rate increases continuously around the location of 50m

before the stop-line. It can identify that the dilemma zone forming around 50m before the

stop-line for the vehicle driving at 45km/h of initial velocity. It can conclude that if the drivers

concentrate enough on the traffic condition when driving, the trajectories of vehicle are simi-

larity, and consist with the expectation of driver. However, when passing through the signal-

ized intersection, the trajectories deviation shows out in different vehicle model, especially in

the driver with lower NE value.

The simulation results and Figs 6–9 show that the more concentrated the driving environ-

ment is, the easier it is to obtain the desired path. Based on Figs 6 and 8, the trajectories of

Fig 8. The vehicle driving trajectory of different vehicle models in NE = 10 (Group 2).

https://doi.org/10.1371/journal.pone.0247453.g008

Fig 9. The B-Class vehicle driving trajectory for different NE (Group 2).

https://doi.org/10.1371/journal.pone.0247453.g009
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A-Class, B-Class, and D-Class with the same driving decision are close to each other. We can

conclude that the vehicle models do not obviously affect the driver attention in the dilemma

zone in the simulation. Based on Figs 7 and 9, the deviation of vehicle trajectories in different

NE with the same driving decision are not statistically significant at the 95% confidence level.

Therefore, the driver attention does not distinctly affect the driver to make the decision to stop

before the stop-line or to pass through the signalized intersection.

To analyze the vehicle speed effect on the driver behavior in the dilemma zone, we set the

initial speed as 30 km/h, 45 km/h and 70 km/h in the A-Class (Hatchback), B-Class (Hatch-

back), and D-Class (SUV) vehicle models, respectively [52]. The simulation experiments are

divided into two groups: (1) the driver decides to stop before the stop-line; or (2) the driver

decides to pass through the signalized intersection. The changes in vehicle speeds and vehicle

accelerations during the reactions in the dilemma zone are shown in Figs 10–15.

For group 1, it shows out that the driver stepped on the brake pedal hastily first and then

gradually smooth. The higher initial speed of vehicle, the driver will step on the brake pedal

deeper and more haste. The lower initial speed of vehicle, the driver has more time to stop the

vehicle smoothly before the stop-line. In addition, the different vehicle models show out differ-

ent acceleration performance.

Fig 10. The changes in vehicle speed and acceleration during the reactions at initial speed = 30 km/h with different vehicle models

(Group 1).

https://doi.org/10.1371/journal.pone.0247453.g010

Fig 11. The changes in vehicle speed and acceleration during the reactions at initial speed = 45 km/h with different vehicle models

(Group 1).

https://doi.org/10.1371/journal.pone.0247453.g011
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For group 2, it shows out that the driver stepped on the gas pedal gradually but with differ-

ent strength. The lower initial speed of vehicle, the driver will step on the gas pedal deeper. The

lower initial speed of vehicle, the driver need more time to accelerate the vehicle to go through

the signalized intersection. And the driver will step on the gas pedal deeper to obtain more

Fig 12. The changes in vehicle speed and acceleration during the reactions at initial speed = 70 km/h in different vehicle models

(Group 1).

https://doi.org/10.1371/journal.pone.0247453.g012

Fig 13. The changes in vehicle speed and acceleration during the reactions at initial speed = 30 km/h with different vehicle models

(Group 2).

https://doi.org/10.1371/journal.pone.0247453.g013

Fig 14. The changes in vehicle speed and acceleration during the reactions at initial speed = 45 km/h with different vehicle models

(Group 2).

https://doi.org/10.1371/journal.pone.0247453.g014
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acceleration performance. However, the changing of speed in different initial speed seems

similarity.

In Simulation Group 1, the simulation results and Figs 10–12 show that the B-class vehicle

model seems to be more sensitive to the driving environment than the A-Class and D-Class

vehicle models at any initial speed. The D-Class vehicle model braking response is smoother

than the braking response of the A-Class and B-Class vehicle models. In Simulation Group 2,

the simulation results and Figs 13–15 show that the A-Class and D-Class vehicle models seem

to have the same variation tendency in vehicle speed and vehicle acceleration during the

response. The B-Class vehicle model has a shaper tendency than the A-Class and D-Class vehi-

cle models in the acceleration response.

Finally, we try to analyze the operation delay time effect on driver expectations. We set td
as (0.10, 0.15, 0.20) to examine the relationship by comparing the expectation path to the simu-

lation path under different driving conditions. The simulation experiments are divided into

two groups: (1) the driver decides to stop before the stop-line; or (2) the driver decides to pass

through the signalized intersection. The vehicle speeds in the simulation are set as 30 km/h, 45

km/h and 70 km/h. Running the CarSim software using A-Class (Hatchback), B-Class (Hatch-

back), and D-Class (SUV) with td = 0.10, td = 0.15, td = 0.20 in group 1 and group 2, respec-

tively, we obtain the pot data of the simulation results and form the comparison diagram as in

Figs 16–18.

Fig 16. Comparison diagram of operation time delay in different vehicle models at initial speed = 30 km/h.

https://doi.org/10.1371/journal.pone.0247453.g016

Fig 15. The changes in vehicle speed and acceleration during the reactions at initial speed = 70 km/h with different vehicle models

(Group 2).

https://doi.org/10.1371/journal.pone.0247453.g015
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From the simulation results, we can conclude that the longer the operation delay is, the

harder it is to follow the expectation path of driver optimization. At an initial speed of 30 km/

h, the operation time delay td does not significantly influence driving when the driver decides

to stop before the stop line. However, when the driver decides to accelerate to pass through the

signalized intersection, the more operation time delay td, the more deviation of expectation

will be obtained during driving through. There is no obvious evidence to indicate that the vehi-

cle model affects the operation delay time. As the initial speed reaches 45 km/h and 70 km/h,

the deviation of expectation increases and becomes unsteady. The deviation of expectation

and unsteadiness is more obvious in the condition of driver deciding to pass through the sig-

nalized intersection than to stop before the stop-line. Therefore, when the driver drives at high

speed into the dilemma zone, the driver has less operation delay time during driving and deci-

sion-making. In other words, the driver needs more concentration on the driving environment

to avoid any deviation of driving desired.

4 Conclusions

In this paper, we use the stochastic model predictive control method to model driver behavior

in dilemma zones. In the driver behavior model, we consider the dynamic characteristics of

the driver-vehicle-environment system when the driver approaches the signalized intersection

Fig 18. Comparison diagram of operation time delay in different vehicle models at initial speed = 70 km/h.

https://doi.org/10.1371/journal.pone.0247453.g018

Fig 17. Comparison diagram of operation time delay in different vehicle models at initial speed = 45 km/h.

https://doi.org/10.1371/journal.pone.0247453.g017
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at the onset of the yellow signal indication. The driver behavior model is divided into three

modules: the perception module, decision-making module, and operation module. The per-

ception module is used to model the ability of drivers to perceive traffic conditions and the

ability to plan the driving state. The decision-making module is used to model the ability of

the driver to realize the dynamic characteristics of vehicle motion and the ability to optimize

the vehicle trajectory by evaluating the traffic condition and vehicle driving state. The opera-

tion module is used to model the response ability of the driver in the dilemma zone from cog-

nitive to vehicle operation. Based on the SMPC-based high-fidelity dynamics and motion

model, the driver behavor can be reflected and estimated by identifying the changes of vehicle

motion. In addition, the disturbances and uncertainties casued by internal factors or by exter-

nal factors during driver approaches the signalized intersction at onset of yellow can be consid-

ered by adjust the parameter value of NE and td(i) in dynamics formula.

Finally, we used CarSim, the well-known vehicle dynamics analysis tool, which includes

high-fidelity models under various driving scenarios and user-defined built-in capabilities in

the software package, to verify the models of this paper. From the simulation results, we can

conclude that:

1. If the driver pays more attention to the driving environment, he or she more easily obtains

the expectation path. This characteristic is not obvious relative to the vehicle models in

which the driver is driving.

2. Driver behavior will be affected by the vehicle model and initial vehicle speed in the dilemma

zone. The effect variation tendency seems consistent when the driver decides to accelerate to

pass through the signalized intersection, and the extent of variation depends on the vehicle

model and initial vehicle speed. If the driver decides to stop before the stop-line, the variation

tendency varies according to different vehicle models and initial vehicle speeds.

3. The operation time delay reflects the driver physiological properties. For driving safely in

the dilemma zone, if the driver is driving at high speed when approaching the signalized

intersection at the onset of the yellow signal indication, more of the driver attention to

the driving environment and less operation time delay to obtain the expectation path is

required. We may infer that older drivers may tend to drive at lower speeds to obtain the

desired driving state in urban cities.

However, some topics remain to be studied, and further research work includes the follow-

ing: (1) pedestrians and other obstacles in front of driving vehicles, road surface conditions,

weather situations and other constraint conditions in dilemma zones should be considered in

driver behavior modeling. (2) The field vehicle trajectory data and driver response tests in the

dilemma zone should be combined in driver behavior modeling. (3) At present, only simula-

tor-based tests have been performed, and hardware experiments, in-vehicle tests, and scenario

tests for the proposed modeling methods should be carried out in the future.
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