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Abstract

Reasoning about the factors underlying habitat connectivity and the inter-habitat movement
of species is essential to many areas of biological inquiry. In order to better describe and
understand the ways in which the landscape may support species movement, an increasing
amount of research has focused on identification of paths or corridors that may be important
in providing connectivity among habitat. The least-cost path problem has proven to be an
instrumental analytical tool in this sense. A complicating aspect of such path identification
methods is how to best reconcile and integrate the array of criteria or objectives that species
may consider in traversal of a landscape. In cases where habitat connectivity is thought to
be influenced or guided by multiple objectives, numerous solutions to least-cost path prob-
lems can exist, representing tradeoffs between the objectives. In practice though, identifica-
tion of these solutions can be very challenging and as such, only a small proportion of them
are typically examined leading to a weak characterization of habitat connectivity. To address
this computational challenge, a multiobjective optimization framework is proposed. A gener-
alizable multiobjective least-cost path model is first detailed. A non-inferior set estimation
(MONISE) algorithm for identifying supported efficient solutions to the multiobjective least-
cost path model is then described. However, it is well known that unsupported efficient solu-
tions (which are equally important) can also exist, but are typically ignored given that they
are more difficult to identify. Thus, to enable the identification of the full set of efficient solu-
tions (supported and unsupported) to the multiobjective model, a multi-criteria labeling algo-
rithm is then proposed. The developed framework is applied to assess different
conceptualizations of habitat connectivity supporting amphibian movement in a wetland sys-
tem. The results highlight the range of tradeoffs in characterizations of connectivity that can
exist when multiple objectives are thought to contribute to movement decisions and that the
number of unsupported efficient solutions (which are typically ignored) can vastly outweigh
that of the supported efficient solutions.
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Author summary

Biological studies and experiments have provided many insights as to the complex nature
of the criteria (objectives) that species may evaluate in decisions regarding inter-habitat
landscape traversal. Those insights are often used to develop models for identifying paths
or corridors potentially supporting inter-habitat movement to characterize habitat con-
nectivity from the species’ perspective. However, typically only a small proportion of the
alternative paths that may also support species movement and be important to habitat
connectivity are identified. Thus, the computational challenge is to develop methods that
can more completely characterize the set of paths/corridors that may support habitat con-
nectivity. To address this challenge, a modeling framework that better integrates the
objectives thought to influence inter-habitat movement is outlined, facilitating the identi-
fication of a broader set of paths reflecting the tradeoffs among the objectives. Through an
application of the developed framework to model habitat connectivity for multiobjective
amphibian movement in a wetland system, it is demonstrated that an extensive and
diverse set of efficient inter-habitat paths can be identified. The capability to characterize
these additional dimensions of habitat connectivity supporting species movement can
provide researchers and practitioners with a means to develop more robust representa-
tions of complex biological systems.

This is a PLOS Computational Biology Methods paper.

Introduction

Research has widely reported changes in species persistence over the past 30 years [1,2].
Urbanization, infrastructure, and habitat transformation are frequently cited as among the
leading factors responsible for these changes [3,4]. Given the rapid pace of environmental and
landscape change, it is important to understand the factors and mechanisms that may influ-
ence habitat connectivity to address management and conservation concerns [5]. For example,
preserving or creating inter-habitat corridors that best meet the needs of species for dispersal
events (e.g., natal dispersal) as well as part their regular migration (e.g., mating, foraging, and
summer-winter habitat) is critical to the persistence of species, especially in human-dominated
landscapes [6,7].

Landscape connectivity and conservation of biodiversity

The extent to which the landscape supports species movement among habitats is often referred
to as landscape or habitat connectivity [8,9]. Connectivity in this sense is a complex function
of landscape and species-specific characteristics. As such, a wide array of metrics for quantify-
ing connectivity have been proposed, many of which are rooted in network theory given the
need to link the spatial structure of complex systems to prospects for movement therein
[10,11]. In network models of landscape systems, habitat areas (i.e., patches) are represented as
nodes and the direct linkages between the habitat nodes are represented as arcs. Connectivity
between a pair of habitat areas can therefore be modeled as the set of arcs a species traverses en
route from one habitat to another, often termed a path or corridor. In networked systems
though, a multitude of paths between a pair of nodes may exist. Therefore, decisions need to

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008540 December 28, 2020 2/23


https://doi.org/10.1371/journal.pcbi.1008540

PLOS COMPUTATIONAL BIOLOGY Modeling habitat connectivity in support of multiobjective species movement

be made as to which paths are actually viable alternatives capable of supporting a particular
type of movement. For example, a common assumption in modeling movement is that travel
in a system involves costs and hence, efficient movements with respect to those costs are more
desirable. A frequently utilized measure of connectivity among habitats in this respect is the
shortest or least-cost path [12,13]. In this sense, the relative cost of movement associated with
traversing arcs connecting landscape features for a particular species is quantified based upon
how different landscape and ecological factors are thought to impede or facilitate movement
[14]. Once the cost of traversing arcs in the landscape system has been established, the most
efficient inter-habitat path(s) is then often sought as a measure of habitat connectivity [12].
That is, it is assumed that paths (or corridors) that have the lowest cumulative cost (i.e., resis-
tance or impedance) from a species’ perspective are more likely to be important in supporting
inter-habitat movements [15,16].

Modeling ecological networks - least-cost paths

The mathematical model used for identifying paths of minimal costs in a network is known as
the shortest path problem or more generally as the least-cost path problem. Methodologically,
least-cost path problems involve a network G with N nodes and A arcs, G(N,A) in which a path
between an origin node (0€N) and a destination node (d€N) is sought. In least-cost path prob-
lems, the decisions are to identify whether or not each arc (i,j)€A should be included as part of
the path. These decisions are typically modeled using binary-integer variables x;; = {0,1} V(i,j)€
A, where x;; = 1 if an arc (i,f) is selected as part of the path and x;; = 0, otherwise.

The objective (or criterion) to be optimized in least-cost path problems is usually some
function of the arc decision variables (x;;) and their associated costs (c;;), such as the product of
the arc cost and associated decision variable as in Eq (1) [17]. Feasible solutions to a least-cost
path problem are those that adhere to Constraints (2)-(3).

Minimize Q = Z C;iX; (1)

(ij)eA

s.t.

1 fori=o
> x= > x,=40 Vii#od (2)
—1 fori=d

x;={0,1} V(ij)€A (3)

More specifically, Constraints (2) are conservation of flow conditions and ensure that: a) an
arc that exits the origin node is selected, b) an arc that enters the destination node is selected,
and c¢) for all nodes other than the origin and destination, if a selected arc enters a node, an arc
that exits the node must also be selected. Constraints (3) stipulate that all arc decision variables
are binary-integer, though it is known that relaxing the binary-integer restriction (0<x;<1)
will also result in a binary-integer solution [17]. Exact solutions to many forms of least-cost
path problems can be readily obtained using well-known algorithms, such as that of Dijkstra
[18]. Given that these types of algorithms are not computationally burdensome and are very
accessible, they have been widely implemented in open-source and commercial software prod-
ucts [19,20] and are commonly applied in ecological research.

In order to derive a least-cost path, the cost of moving among habitats (i.e., nodes) through
the intervening landscape (i.e., the arcs) must first be quantified. In many ecological
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applications, the landscape is partitioned into a set of analysis areas (e.g., raster cells or poly-
gons). Each area is assigned a cost reflecting the relative resistance it presents to movement.
The cost of traversing an analysis area is usually derived based on the assumed contribution of
different landscape characteristics present within the area. For example, combinations of land-
scape characteristics such as forest canopy, land use and land cover, habitat quality, elevation,
road density and proximity to water are frequently used in deriving landscape traversal cost
[12,21-23]. After each analysis area has been assigned a cost, a network can be constructed in
which the nodes represent the analysis areas to be traversed with the arcs representing the spa-
tial connection between neighboring areas. The arcs can then be attributed with the cost values
from the corresponding analysis areas and the least-cost path model can be applied, yielding a
single optimal path between an origin and destination node.

While least-cost paths based on composite measures of cost have been widely explored,
such cost representations have been viewed as lacking a robust biological or empirical founda-
tion [13]. While there is evidence that species utilize some sort of decision-making framework
when navigating the landscape, the exact nature of the framework and the combination of fac-
tors upon which it is premised has not been well established. For example, there are many
objectives that have been postulated regarding the amphibian decision-making processes in
seeking new habitat, such as: minimizing distance, minimizing elevation change, maximizing
exposure to moist environments, and maximizing likelihood of successful traversal [24-27].
Further, the exact combination(s) of objectives that may underlie movement decisions is
unknown.

Measurement of the objectives can also present challenges as even small differences in how
costs are quantified for arcs can influence the location and characteristics of the resulting least-
cost paths [28]. Given that the cost of traversing arcs is often derived based on a combination
of factors, the way in which the factors are combined can be a major source of uncertainty in
the representation of an ecological system [15]. Further, the fact that there are essentially an
infinite number of ways in which costs representing different objectives can be weighted and
combined perhaps remains one of the most challenging obstacles to application of multiobjec-
tive least-cost path problems and interpretation thereof. As is described next, a myriad of
Pareto-optimal or efficient solutions can exist for a multiobjective least-cost path problem.
However, the efficient solutions that are usually identified in practice, likely represent only a
very small sample of those that exist given the solution methodologies that are commonly
employed. Measures of habitat connectivity premised upon a limited set of solutions are there-
fore also likely to only represent weak estimates of connectivity.

Multiobjective optimization

Multiobjective approaches serve to integrate a broader set of criteria into analysis/planning
problems. Unlike with single objective optimization models (e.g., the least-cost path problem),
in multiobjective models, there can be many solutions, each optimal with respect to some mix
of the objectives considered (termed Pareto-optimal solutions). Eq (4) is a generic multiobjec-
tive least-cost path problem in which there are a set of I€L objectives. Each objective / repre-
sents some function of the arc decision variables and their associated cost components (cfj)

The multiple objectives are subject to Constraints (2) and (3) as in the single objective least-
cost path problem.

Minimize ((f,(c}x,)|(i,) € A), ., (fyy(¢%,)[(0, ) € A)) (4)

Consider a set of feasible solutions (those that do not violate the constraints) S to a multiob-
jective optimization problem. Given a feasible solution s€S§, if there is no other feasible
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solution s€S in which fl(cfjxfj) < fl(cfjxfj ), s* is considered to be an efficient or Pareto-optimal
solution and the corresponding Pareto-frontier fl(cfjx;) is termed non-dominated [29]. Thus,
in the full set of Pareto-optimal solutions S*, each solution is better than (efficient) all others
with respect to at least one criterion.

Within the set of efficient solutions, some exist on the convex boundary of the solution
space. These solutions are termed supported and can be found by techniques such as the
weighting method, NISE, and MONISE. In the weighting method, the objectives are combined
into a single minimization problem in which each objective I€L is assigned a weight (w;), such
that wy+w,,. . .,+w) = 1.0 [30]. For example, given two objectives Q; and Q,, one weighting
scheme might be to set both objective weights to 0.5 (e.g., Minimize 0.5Q,+0.5Q,). The result-
ing model has the same form as the single-objective least cost path problem and can therefore
be solved as such. Once solved, the result is a single supported efficient solution and associated
non-dominated path. In order to identify other efficient supported solutions, different combi-
nations of weights can be applied and the resulting models solved in order to search for other
supported efficient solutions to approximate the supported efficient set. For example, another
weighting scheme might involve weighting one objective by 0.8 and the other by 0.2 (e.g., Min-
imize 0.8Q;+0.2€),). This is by far the most common approach for addressing multi-criteria
least-cost paths in ecological studies [12,15,31-33]. Although the weighting method is straight-
forward to apply, its utility for identifying all supported efficient solutions is typically very lim-
ited. In cases in which two objective are to be optimized, the non-inferior set estimation
(NISE) method can be applied to estimate the set of efficient solutions [34]. This process
involves evaluating the solution space between pairs of supported efficient solutions to detect
the presence of another supported efficient solution. When new supported efficient solutions
are found, the solution space between them and their neighboring supporting solutions is in
turn evaluated for the presence of additional supported efficient solutions. Therefore, NISE
provides a means for identifying all supported efficient solutions in biobjective optimization
problems. In the case that more than two objectives are to be considered, the NISE approach
becomes more complicated [35,36]. In order to cope with these complexities, multiple objec-
tive non-inferior set estimation (MONISE) techniques have been proposed to extend the NISE
concept to characterize the supported efficient frontier when more than two criteria are
involved [37-39].

While solution techniques such as the weighting method, NISE and MONISE can assist
with providing an estimate of the efficient set (the supported efficient solutions), other efficient
solutions can also exist between supported solutions along non-convex portions of the solution
space. These unsupported efficient solutions are more challenging to identify, but can represent
sizable portions of the Pareto-optimal solution set, the number of which can increase exponen-
tially with the size of the optimization problem [40]. The complete set of efficient solutions
(supported and unsupported) to a multiobjective least-cost path model can be identified using
a class of solution algorithms known as exact multi-criteria labeling algorithms [41,42]. Multi-
criteria labeling algorithms start by first examining an origin node, iteratively visiting neigh-
boring nodes, and assigning labels representing traversal cost for the tentative paths connect-
ing the origin node to other nodes. Every time a new non-dominated path is found, a node’s
label is updated, and this process continues until all nodes are labeled, at which point all effi-
cient (supported and unsupported) paths between the origin and destination node are found.
While labeling algorithms are very effective solution methods, they can be applied only if the
path cost is separable among its component arcs and if the monotonicity of the cost functions
can be guaranteed [43]. In cases where those conditions cannot be satisfied, a subset of the effi-
cient solutions can be heuristically identified by imposing a threshold constraint on one of the
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objectives, enumerating all paths that meet the threshold constraint, and then applying a filter-
ing technique to retrieve those that are efficient [44].

While the applicability of multiobjective least-cost path approaches to biological and eco-
logical problems has been demonstrated in literature, the tendency has been to utilize solution
methods that yield a limited number of supported efficient solutions. As such, there are likely
many other valid, important, solutions to these problems that are not being evaluated and ana-
lyzed that could provide fruitful insights. The other supported and unsupported efficient solu-
tions to multiobjective least-cost path problems can provide more insight on the nuanced
tradeoffs between the characteristics of the paths potentially supporting habitat connectivity
for a species. In particular, consideration of the unsupported efficient solutions is especially
important given the fact that they can often constitute a major proportion the solutions in the
efficient set. To this end, a general multiobjective framework for modeling paths/corridors
supporting habitat connectivity is described. A MONISE algorithm is then detailed for identi-
tying supported efficient solutions to the multiobjective problem. An exact multi-criteria label-
ing approach for identifying all efficient solutions (supported and unsupported) to the
multiobjective problem is then described. An application of the multiobjective model (and
solution techniques) to connectivity in amphibian habitat systems is then provided to highlight
the utility of the proposed approach.

Materials and methods
Multiobjective habitat connectivity problem

A multiobjective habitat connectivity problem (MOHCP) is proposed for accounting for a gen-
eral set of objectives that could be modeled in a least-cost path framework. In particular, three
objectives assumed to influence the inter-habitat movement of a species are integrated in the
model: a) minimize the total risk associated with movement [9,45], b) minimize the total dis-
tance traveled [22,46], and ¢) minimize change in environmental conditions encountered dur-
ing movement [26,27]. To model these objectives, each arc (i,j) in the network is associated
with attributes reflective of environmental change (z;), travel distance (c;;), and risk associated
with landscape traversal (7). For each origin-destination (0,d€N) habitat pair in the network,
the MOHCP can be formulated as follows:

Lo od X;;
Minimize Q" =1 — I, ., (1 — ;)" (5)
Minimize Q3" = Z €% (6)

(i)eA
Minimize Q)" = Z ZyX; (7)

(ij)eA

s.t. (2) & (3)

Objective (5) minimizes the risk (;; = [0,1]) of traversal failure. This objective is analogous
to maximizing the likelihood of successful traversal. Objective (6) minimizes the total distance
traveled. Objective (7) minimizes the total change in environmental conditions encountered.
Constraints (2) and (3) are applied as in the regular least-cost path problem.

Given that the probability of successful traversal of each arc is (1-7;) = [0,1], Objective (5)
is monotonically increasing, a sufficient condition for Bellman’s principal of optimality [43].
Thus, all sub-paths of a Pareto-optimal path with respect to Objective (5) are also Pareto-opti-
mal. Objectives (6) and (7) are also monotonic, therefore, all sub-paths of Pareto-optimal
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solutions with respect to these objectives are Pareto-optimal as well. While Objective (5) is
nonlinear and non-additive, it can be re-stated in an additive and linear form by modifying
the log transformation function proposed by Reinhardt and Pisinger [47] as in Eq (8).

1
Minimize Q% = E x;In (1 ) (8)
—

(ij)eA

Solution methodologies

As discussed earlier, the weighting method is commonly used to identify some of the sup-
ported efficient solutions to problems like the MOHCP. However, the extent to which those
supported efficient solutions represent the complete set of efficient solutions cannot be deter-
mined. Thus, alternative methods for characterizing the efficient set should be explored. In
this spirit, a MONISE routine is described for identifying the set of supported efficient solu-
tions and an exact multi-criteria labeling routine is detailed for identifying the complete set of
efficient solutions to the MOHCP (Eqs (5)-(7) & (2)-(3)).

MONISE for MOHCP. To identify the supported efficient solutions for the MOHCP, a
MONISE algorithm for identifying supported non-dominated least-cost paths is now outlined
in Fig 1. The MONISE Supported Nondominated Least-cost Paths algorithm requires a net-
work, attributes for each arc that can be used to measure the objectives (e.g., traversal risk, dis-
tance traveled, environmental change) and a pair of origin and destination habitat nodes (0,d)
as input. In Stage A, lists for vectors of objective weights to be applied (W), vectors of the
objectives comprising the Pareto frontier for each solution (Y*), vectors tracking sets of Pareto
frontiers (U*), as well as storing the arcs comprising the non-dominated paths associated with
efficient solutions are initialized. MONISE works by identifying weights for the objectives that
will give rise to supported efficient solutions. That is, Objectives (5)-(7) are combined into a
single weighted objective (Eq 9) where each weight (w;) has a value [0,1] such that wi+w,+w;
=1.0 as is done in the regular weighting method approach described earlier.

Minimize w, Q" + w,Q5" + w, Q" )

In Stage B, a set of initial weights are given to the objectives in (Eq 9) to find the three indi-
vidual minima (i.e., Minimize Q°, Minimize Q3', and Minimize Q') known as anchor points
[48]. In practice, this equates to applying a large weight to the objective to be optimized and a
small, near-zero weight (e.g., § = 0.0001) to the other objectives (step 5) (e.g., wy = 0.9998, w, =
0.0001, w3 = 0.0001; in the case of optimizing Q") to ensure the anchor points are not domi-
nated. Objective (9) subject to Constraints (2)-(3) can then be solved (step 6) with the arcs
associated with the solution (s*) stored in the list of supported efficient paths SEP (step 7) and
the Pareto frontier (y*k) stored in list Y* (step 8). The Utopia plane defined by the initial three
solutions (y*',y*%,y*) is then stored in list U* (step 9). In Stage C, the Utopia plane can then be
used to derive a new set of objective weights (1,,1,,n3) (steps 10-12) which are stored in list W
(step 13). Now that a new set of objective weights has been found, they can be used in Stage D
in an iterative routine (step 15) to generate and solve a new model (step 16-17). The solution
to the new model is then evaluated to see whether or not it has already been found (step 18). If
itisn’t present in the set of identified supported efficient paths, it is added to that set (step 19)
and its Pareto frontier is recorded (step 20). Next, the Pareto frontier of the new solution is
then iteratively swapped into the plane of solutions used to derive the weights used in the
model to construct three new planes to add to list U* (steps 23-24). Each of those planes in
turn are used to derive three new weighting schemes (steps 26-27) which are added to the list
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MONISE Supported Non-dominated Least-cost Paths (G(N,A),le L,oe N,d e N,5=0.0001, k=0)

A: Initialization D: Solve and explore new facets
1. W =) list of criteria weight vectors 14. r=1 _
. . . . i >(r):
2. Y =) list of vectors of Pareto frontiers 15. While [W'> () -
. . . 16. yeee =W
3. U = () list of vectors of |L| Pareto frontiers (50 w) ]
* *r . od
4. SEP = () list of arcs for non-dominated path 7. s <y =Min ZW/ Q" st (2)and(3)
leL
B: Identify anchor points and Utopia plane C N st . .
5. for each criterion v in L : 18. If{(, )] x; =1} not in SEP:
for each criterion / in L : 19. SEP.insert ({(i, j)| x; =1
ifv#l: w =0; else:w, =(1-205) 20. Y insert(y™)
k=k+1 21. k=k+1
6. s <y =Min )Y wQ" st (2)and (3) 22. forg=1to |L]|:
leL * *
. C g 23. U .insert(U
7. SEPinsert ({(i, j)|x; =1}) L @tr) .
.. " 24. Ullu [llgl=y
8. Y .insert(y ") 25, R=(0,0),i=1
9. U insert((y™" y* ...y™)) forh=1to |LI:
C: Identify new weighting vector if(h#1):
10. R=(0,0),i=1 U
forh=1to |L: y =U 1 lial
*I * *
if(h=1): y =UU [][1]
Yy =UIU k] Rlil=y"y" =y" ="
v =UTUT o i=idl
e 26. m = R[1]x R[2]
Rlil]=y'y =y -y ,71
i—i+l 27. (n, n, ...nm)z%
11. m=R[1]xR[2] _
= 28. W.insert((n, n, ...n,))
12. (n, n, ...nm)zﬁ 29. r=r+l1
_ " 30. Return SEP,Y”
13. W.nsert((n, n, ...n,))

Fig 1. MONISE algorithm for the MOHCP.
https://doi.org/10.1371/journal.pchi.1008540.9001

of objective weights to consider (step 28). Any new objective weightings that are found are like-
wise used to generate and solve additional models (steps 16-17), find new supported efficient
solutions (steps 18-20), and generate new weighting schemes to consider until all supported effi-
cient solutions and associated non-dominated paths have been found (step 30). For comparative
purposes, the NISE approach for biobjective least-cost paths is outlined in S1 Text.
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Multi-Criteria labeling algorithm for MOHCP. The multi-criteria labeling algorithm of
Martins [41] can be adapted to accommodate the three objectives in the MOHCP problem to
retrieve the full set of efficient solutions (supported and unsupported) from one origin to all
destination nodes (Fig 2). The Multi-criteria All Non-dominated Least-cost Paths algorithm for
MOHCEP requires a graph, G(N,A), with arcs attributed with the measures needed to evaluate
the objectives (e.g., a;, a;, a;), as well as an origin node and a set of destination nodes. In Stage
A, empty list Q is initialized that tracks nodes that have been labeled and need to be reconsid-
ered later in the solution procedure. The origin node is then labeled with a set of initial values,
a 5-tuple in which the first three elements reflect objective values when traveling from origin
node to the labeled node and the last two referencing the index of the preceding node and an
id for the label, respectively. These initial values are to assist with computing objective values
at the first move when departing the origin node toward an adjacent node. The labeled origin
node is then added Q (step 1). In Stage B, for each labeled node i in Q (step 3), the objective
values of the neighboring nodes N; = {j|(i,j))€A} (step 4) are re-computed as accessed through
node i (steps 5-9), with their labels updated accordingly. A filtering technique is applied to
drop dominated paths that may be encountered whenever a set of labels is updated or changed
(steps 10-13). Whenever a new node (JEN;) is visited, its label set is evaluated to check if the
set of non-dominated paths from origin node to that node have changed or not. Should a
node’s label be updated, it is added to Q for reconsideration (steps 14-15). Finally, the incum-
bent node i is removed from Q (step 16) and the process continues until all nodes are visited
and labeled. In Stage C, the supported and unsupported non-dominated paths are retrieved by
tracking labels, from each destination node back to the origin node using the reference index
to the predecessor node embedded in each label (steps 18-27) and placed into the list AEP.

Application to amphibian habitat connectivity

The MOHCP is now applied to model paths/corridors that could support amphibian habitat
connectivity to illustrate the applicability of the multiobjective optimization framework and
solution approaches.

Factors affecting amphibian habitat connectivity. The persistence of amphibians
depend on aquatic and terrestrial habitat, and the ability to successfully migrate and disperse
[49,50]. There is some doubt as to the amphibians’ ability to accurately orient themselves with
respect to prospective new habitat [6,51]. However, there is evidence that movements toward
and away from breeding sites are nonrandom. For instance, Walston and Mullin [52] report
that the initial orientation of juveniles from breeding ponds may be influenced by the width of
surrounding forested habitat. There is an increasing body of research that has noted the effects
that different types of landscape conditions may have on the ability of amphibians to traverse
the landscape. For example, Lowe et al. [26] report slope between habitat having a negative
effect on gene flow and dispersal. In another study, Giordano, Ridenhour, and Storfer [27]
report limited gene flow between high-altitude and low-altitude sites, highlighting the negative
impact of elevation change on dispersal. Amphibian movement is known to be influenced by
changes in moisture conditions, perhaps in attempts to minimize risk of desiccation and
depredation [25]. Traversal distance, the total distance covered in moving from one habitat to
another, has also been reported as a factor affecting the movement of amphibians [53] and is
viewed as an important factor when modeling cost and likelihood of successful dispersal over
the landscape [24]. Therefore, three objectives that may be relevant to amphibian habitat con-
nectivity that fit into the general MOHCP framework are: a) minimize traversal risks associ-
ated with land use/land cover types, b) minimize distance and deviation from ideal moisture
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Multi-Criteria All Non-dominated Least-cost Paths

(G(N,A), (al a a;.), o€eN, DEN)

g2y

A: Initialization

1. Label(o) ={(1,0,0,0,1)} & O = {0}

B: Start from origin node and label all network nodes
2.while Q #J:

i=Q[]

4. ForjeN;

5. if Label(j) does not exist, Label(j) = ()
6. TempLabel = ()
7

8

9

W

for g in Label(i):
TempLabel insert ((g[1] * a,,g[2]+a,,g[3]+a,))
Label(j) = Label(j).merge (TempLabel) |
10.  Foreach g, e Label(}):

11. For each g, € Label(j):

12. if g[1]= g,[1], g,[2] < g,[2] and g,[3] < g,[3]
13. drop (g,)

14. if j notin Q:

15. Q.insert ()

16.  Q.remove (i)

C: Identify all efficient paths
17. AEP =()

18. Ford inD:

19. For g in Label(d):

20. path = ()

21. path.insert (d)

22. 0 =g [4]

23. while 8 # o :

24. path.insert (0)

25. n = Label(0)[5]
26. 6 = Label(0)[n][4]

27. path.insert (0)
28. AEP.insert (path)
29. Return AEP

Fig 2. Multi-criteria all non-dominated least-cost paths labeling algorithm for the MOHCP.
https://doi.org/10.1371/journal.pcbi.1008540.9002
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conditions, and ¢) minimize change in elevation, which relate to Objectives (5)-(7) in the
MOHCP respectively.

Study area and experimental design. The MOHCP and solution methodologies outlined
earlier are applied to model landscape paths supporting amphibian habitat connectivity in a
portion of Pershing State Park, located in the state of Missouri, USA (Fig 3). This area hosts a
variety of wetland types and other landscape features including woody-dominated wetland,
deciduous forest, deciduous woody, grassland, cropland, open water and impervious surface
[54]. The study site contains 12 wetlands which are considered to be viable origin and destina-
tion amphibian habitats.

While many studies of habitat connectivity utilize a raster-based model of the landscape as
a basis for the network, vector-based models can be used as well [55], especially when the land-
scape characteristics exhibit homogeneity over larger areas as is the case with the current study
site. Wetland polygons [56] were used to represent amphibian habitat within the region. To
represent the landscape to be traversed, each wetland polygon was rendered as a network
node. The areas intervening the wetlands were also rendered as nodes located to represent the
spatial variation in land use/ land cover in the region and arcs were added between neighbor-
ing nodes. Nodes were then added at locations where the network arcs intersected land use/
land cover polygon boundaries to ensure each arc only traverses one land use/ land cover cate-
gory. A total of 909 nodes and 1,277 arcs were involved in the resulting network representation
of this system (Fig 4).

The arc attributes needed to assess Objectives (5), (6) and (7) were then derived from sup-
plementary layers of geographic data. The elevation of each node was extracted from a digital
elevation model (DEM) [54] (Fig 5A). The effects of elevation change were calculated for each
arc by subtracting elevation of the end nodes e; from that of starting nodes e;. Elevation change
was classified as either uphill or downhill where uphill movements were weighted twice as

North-America

~“South
America

N [ ] study Site
[ ] Wetlands
—— Streams

JSGELH — Roads
0 0.130.25 0.5 0

Kilometers

Fig 3. Study site.
https://doi.org/10.1371/journal.pcbi.1008540.9003
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Fig 4. Network representation of wetland system.

https://doi.org/10.1371/journal.pcbi.1008540.9004

high as downhill movements based on their perceived negative impact to movement as in Eq

(10) to compute z;;.

w (e —e), ife>e
{ " T Vijea (10)

w,(e,—¢), ife <e

Surface moisture was estimated using the topographic wetness index (TWI) index of Beven
and Kirkby [57]. The TWI is formulated as TWI = In(a/tan(f3)), where a is the drainage area
and S is local slope. Drainage area (@) and local slope (f) were derived from the DEM. When
calculating the TWT index, locations having zero slope and a non-zero drainage area were
given the maximum meaningful TWI value (TWI = 21.77) over the study area, and locations
having zero slope and zero drainage area were given the lowest meaningful value (TWI =
—0.66). TWI for the study region is shown in Fig 5B. The cost weighted deviation of the soil
moisture (m;;) along an arc (as measured using TWI) from ideal surface moisture conditions
for amphibians (M) was then computed as ((M-m;;+1)c;;). That is, when soil moisture is low
relative to the ideal level, the greater the deviation and associated cost to traversal. Land use/
land cover was used as a basis for characterizing traversal risk (Fig 5C). First, each arc was asso-
ciated with its underlying land use/ land cover [54]. Land use/land cover categories were
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assigned a base level of risk (n°) (Table 1). Since longer arcs pose higher exposure to a risk cate-
gory, an adjustment function was applied (7; = n’ +c,~jnb /2Cmax) Such that the base risk level is
increased up to 50.0% based on the length of an arc (c;) relative to the longest arc (ciax) in the
network. Finally, arcs within wetland polygons were attributed with zero costs given that charac-
teristics within each wetland were assumed to be homogenous. Should significant variations exist
within a habitat area, the habitat would best be represented as multiple polygons/nodes. A sum-
mary of the arc attributes used to represent the three objectives is provided in Table 2 and the
complete network dataset can be accessed at: https://doi.org/10.6084/m9.figshare.12609404.v1.

Results and discussion
Solving the MOHCP

Both the MONISE Supported Non-dominated Least-cost Paths algorithm and the Multi-Criteria
All Non-dominated Least-cost Paths algorithm were applied to solve the MOHCP for the

Table 1. Relative risk associated with traversal of categories of land use/land cover.

Land use/land cover class Relative risk () Area (sq. km)
Woody-dominated wetland 0.060 0.183
Deciduous forest 0.065 0.531
Deciduous woody/Herbaceous 0.070 0.095
Grassland 0.075 0.572
Open water (river) 0.085 0.085
Cropland 0.090 0.428
Impervious surface 0.095 0.035
Total = 1.929

https://doi.org/10.1371/journal.pcbi.1008540.t001
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Table 2. Summary of arc attributes.

Variable Mean SD Min Max
7'[,-]-* 0.080 0.012 0.060 0.135
m,-j-** 3.31 3.77 - 0.66 21.77
Z,j*** 1.645 1.906 0.0 13.293
i 49.879 49.043 0.006 305.195

* % likelihood
= TWI

*** meters.

https://doi.org/10.1371/journal.pcbi.1008540.t002

landscape network representing prospects for amphibian movement in the study site. The
algorithms were implemented using Python 3.6.6 on a Windows 10 64-bit with five 1.80 GHz
processors and 16.0 GB RAM. The optimization solver Gurobi 9.0 was used to find the optimal
solution to weighted models in the MONISE routine (steps 6 and 17 in Fig 1). Example imple-
mentations of these algorithms can be accessed at: https://doi.org/10.6084/m9.figshare.
12609404.v1.

The MONISE Supported Non-dominated Least-cost Paths algorithm was executed 132
times, once for each origin-destination pair, identifying all 620 supported efficient solutions in
13.40 minutes. The Multi-Criteria All Non-dominated Least-cost Paths routine was executed 12
times, once for each origin, identifying all 3,550 efficient solutions and associated non-domi-
nated paths (supported and unsupported) in 34.46 minutes (solutions can be accessed at:
https://doi.org/10.6084/m9.figshare.12609404.v1). Therefore, it is easy to see that the unsup-
ported paths constitute more than 82% of the non-dominated paths, paths that would be
ignored in other estimation procedures such as the weighting method and MONISE. For indi-
vidual origin-destination pairs of wetlands, the number of supported non-dominated paths
range from 1-25, while the number of all non-dominated paths (both supported and unsup-
ported) range between 1-183. One explanation for the relatively high proportion of unsup-
ported non-dominated paths is that in even networks of moderate size, a wide variety of
diverse paths can exist and hence, there are many complex tradeoffs among the objectives that
can manifest.

Solution characteristics

The number of non-dominated paths originating from and destined to each wetland are
reported in Table 3. In general, wetlands with a larger number of supported non-dominated
paths also tend to have a larger number of unsupported non-dominated paths. The number of
arcs entering each wetland vary based on their size, shape, and relationship with other land
use/ land cover areas. The smallest wetland (perimeter = 70.8 m) has only three entrance/exit
nodes while the largest wetland (perimeter = 957.2 m) has 14 entrance/exit nodes. As such,
some wetlands are going to have more prospective paths given that more opportunities for
entrance/exit may exist.

For supported non-dominated paths, the average objective values with respect to likelihood
of successful traversal, deviation from ideal soil moisture weighted distance (cost and moisture
level shown separately), and elevation change are detailed in Table 4. In aggregate, the sup-
ported non-dominated paths tend to have better average objective values with respect to all
modeled objectives than the unsupported paths. One reason for this is that there are many
more unsupported paths between distant wetlands given more diverse opportunities for rout-
ing exist. As discussed earlier, the supported non-dominated paths are only a subset of the full
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Table 3. Number of supported and unsupported non-dominated paths identified for each wetland.

Wetland ID Perimeter (m) # entrance/exit nodes # supported # unsupported #all
Incoming Outgoing Incoming | Outgoing Incoming Outgoing
1 214.8 9 34 27 139 128 173 155
2 166.5 6 43 43 154 122 197 165
3 117.4 5 43 41 163 162 206 203
4 194.4 8 52 48 158 166 210 214
5 113.7 8 54 56 204 173 258 229
6 524.1 9 50 46 194 204 244 250
7 181.9 7 32 34 203 250 235 284
8 70.8 3 38 35 216 257 254 292
9 190.3 5 45 50 262 280 307 330
10 116.2 6 67 84 305 263 372 347
11 172.8 5 74 70 293 296 367 366
12 957.2 14 88 86 639 629 727 715
Sum 3020.1 85 620 620 2930 2930 3550 3550

https://doi.org/10.1371/journal.pchi.1008540.t003

non-dominated set. While the computational time required to identify the supported set using
the MONISE algorithm is approximately 37% of that needed to identify the complete set of
non-dominated paths, the supported non-dominated solutions only constitute 17% of the full
set of non-dominated paths (supported and unsupported). Considering the smaller size of sup-
ported non-dominated set and larger standard deviation among the routing objectives in those
solutions, it is clear that analysis and decision-making based upon only consideration of the
supported efficient solutions (or a subset thereof) is rather limiting given those solutions repre-
sent such a small proportion of the efficient set.

Each panel in Fig 6 depicts the Pareto frontier for paths from one origin wetland to six of
the destination wetlands (wetland ids correspond with those in Fig 3). The circles represent
supported non-dominated paths while the squares represent unsupported non-dominated
paths. For example, Fig 6A shows the frontier for paths originating at wetland 7 destined to
wetlands 1 through 6. There is only one non-dominated path (which is a supported path)
between wetland 7 and 4 and it has the lowest weighted distance, lowest elevation change, and

Table 4. Summary of movement objectives for supported and unsupported non-dominated paths.

Path attribute Supported non-dominated paths

Mean SD Min Max
1-m;* 0.24 0.16 0.02 0.91
m;** 23404.05 9455.75 1096.88 46028.09
z;" 42.74 2191 0.52 110.42
i 1329.47 551.45 50.31 2401.98

Unsupported non-dominated paths

1-m; 0.14 0.09 0.02 0.70
m;** 29215.34 7585.58 5318.42 47667.66
zi"* 53.47 19.86 5.25 115.59
i ™" 1641.89 443.12 278.58 2693.71

* 9% likelihood
* TWI

*** meters

https://doi.org/10.1371/journal.pcbi.1008540.1004
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Fig 6. The Pareto frontier for paths destined to wetlands 1, 2, 3, 4, 5, and 6 from: A) wetland 7, B) wetland 8, C) wetland 9, D) wetland 10, E) wetland 11,

and F) wetland 12.

https://doi.org/10.1371/journal.pchi.1008540.9006
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highest probability of successful traversal. That is reasonable given that the wetlands are
extremely close together. Wetland 7 is a little further from wetlands 6 and 1 and there are two
supported and two unsupported non-dominated paths connecting it to both. Again, without
using the label correcting approach, 50% of the non-dominated paths would have been missed.
In cases in which wetlands are separated by greater distance and more diverse network struc-
ture, options for movement can exhibit much more variation. For example, wetlands 7 and 5
are both relatively small and far apart. However, there are many more non-dominated paths, 3
of which are supported with the other 15 being unsupported. All of these paths have relatively
low probabilities of traversal success (0.11-0.21%), but have quite a bit of variation in elevation
change (24.6-59.8m) and a small amount of variation in their weighted distance (25,391-
30,962). Fig 6F shows the frontier for paths originating at wetland 12 destined to wetlands 1
through 6. Wetland 12 is relatively large and has multiple entrance/exit nodes. As such, there
are more opportunities for finding competitive combinations of objectives. A majority of the
non-dominated paths in this case are unsupported and the diverse nature of the tradeoffs
between the objectives can be seen. Consider for instance the frontier for paths between wet-
lands 12 and 1. In this case, there are three supported and 79 unsupported non-dominated
paths. So again, if one were to only identify the supported non-dominated paths in this exam-
ple, more than 96% of the other non-dominated paths would be ignored. Among these paths,
the probability of successful traversal ranges from 0.02-0.19%, with elevation change ranging
from 50.4 to 111.2m and weighted distance ranging from 28,790-44,815.

Fig 7 classifies each arc by the number of supported non-dominated paths traversing it in
the anchor point solutions (those optimizing each individual objective as in steps 5-6 in Fig 1).
In this sense, there are 132 non-dominated paths for each objective (one path between each
pair of wetlands). When optimizing the probability of successful traversal (Fig 7A) only 293 of
the 1,277 network arcs (22.9%) are traversed by a non-dominated path. The majority of those
(162) are traversed by 6 or less paths with only 13 being traversed by 19 or more paths. When
optimizing weighted distance (Fig 7B) 37.7% of the network arcs are traversed by a non-domi-
nated path, indicating that more arcs are favorable in some way toward that objective. A
majority of those (344) are still traversed by 6 or less paths. Fig 7C shows the non-dominated
paths resulting from optimizing the elevation change objective. In this case, only 22% of the
arcs are traversed by a path and there are more arcs (52) that are traversed by 19 or more paths
indicating greater consolidation of utility among the wetlands. It should be noted that for any
of the three objectives (Fig 7A, 7B and 7C), there are instances in which arcs traversed by non-
dominated paths according to that objective are not utilized at all by paths non-dominated
with respect to one or both of the other objectives.

The spatial distribution of the supported and unsupported non-dominated paths is shown
in Fig 8. Fig 8A shows the number of supported paths that traversed each arc. In this case,
approximately 55% of the arcs are traversed by at least one supported path (unused arcs are
not shown). There are clearly some portions of the network that are much more utilized than
others. Fig 8B shows the number of unsupported paths traversing each arc. These unsupported
paths traverse approximately 75% of the arcs in the network, making use of 20% more of the
system than the supported paths. Many of the arcs that were heavily traversed by supported
paths are also heavily traversed by unsupported paths, emphasizing their role in the system.
However, there are also some arcs that were used to a lesser extent by the supported paths that
are used much more by the unsupported paths. For some additional perspective, Fig 8C shows
the spatial distribution of all the non-dominated paths (supported and unsupported) as well as
the arcs that are never traversed by a non-dominated path. These unused arcs account for 25%
of the network arcs, many of which occur near the periphery of the wetland system.
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Conclusions

Assessing prospects for habitat connectivity involves consideration of a complex mixture of
factors. A common approach in this respect is to construct a multiobjective least-cost path
model to reason about prospects for habitat connectivity. A major realization of many studies
is that while multiobjective least-cost paths do allow for the tradeoffs among unique combina-
tions of movement criteria to be evaluated, sometimes even minor changes in how the criteria
are combined can give rise to completely different solutions and interpretations of a landscape.
One reason for this is that multiobjective least-cost path problems may indeed have a tremen-
dous number of solutions that are best in some respect, known as Pareto optimal or efficient
solutions. There are two general categories of Pareto optimal solutions, known as supported
and unsupported efficient solutions. Most commonly used solution techniques for multiobjec-
tive least-cost path problems can identify the supported efficient solutions (or a portion
thereof). However, the number of supported efficient solutions can be very small relative to
the number of unsupported efficient solutions. Unfortunately though, most applications of
multiobjective least-cost path models only identify a very small proportion of the supported
efficient solutions given the solution methodologies that are typically employed. As a result,
the solutions that are used as a basis for analysis may only serve as a weak estimate of the con-
nectivity that may actually exist.

To address these issues, this article first provides an overview of the least-cost path problem
in the context of ecological research, the distinction between supported and unsupported effi-
cient solutions to least-cost path problems, and methods that can be used to identify each.
Next, a multiobjective least-cost path model that accounts for a general set of objectives that
are thought in some way to influence movement: a) minimizing risk, b) minimizing distance,
and ¢) minimizing change is formally described. Deriving solutions to a three objective model
such as this can be very challenging and as such, two alternative methods for deriving efficient
solutions to the model are detailed. The first solution method is a multiobjective non-inferior
set estimation (MONISE) algorithm for identifying all supported efficient solutions and associ-
ated non-dominated least-cost paths. While the MONISE approach can identify the supported
efficient solutions, it cannot identify the unsupported efficient solutions. As such, a multi-cri-
teria least-cost path labeling algorithm is extended to identify all efficient solutions (supported
and unsupported) to the multiobjective least-cost path model.

The developed multiobjective least-cost path model is then applied to evaluate prospects for
amphibian habitat connectivity in a wetland system to demonstrate the approach. In such
applications, the weighting method is typically used to integrate the modeling objectives,
resulting in the identification of a handful of supported efficient solutions. However, to illus-
trate the extensive and diverse set of solutions that can exist, the MONISE and multi-criteria
labeling algorithms are applied to more rigorously identify efficient solutions to the model. It
was found that the MONISE approach can quickly and efficiently identify all the supported
efficient solutions to the multiobjective model. The supported efficient solutions on their own,
provide only an estimate of the solutions in the efficient set. However, despite being a little
more computationally demanding, the multi-criteria labeling approach is able to identify all
supported efficient solutions as well as all unsupported efficient solutions to the model. Of par-
ticular note is that 82% of the efficient solutions were in fact unsupported. Therefore, simply
focusing on identification and analysis of supported efficient solutions (or small subset
therein) could risk overlooking a significant proportion of viable and potentially important
alternatives for habitat connectivity. Thus, analyst should be wary of interpretative problems
that may arise when basing analysis on a limited sample of the efficient solutions to multiob-
jective least-cost path problems.
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Modeling habitat connectivity is extremely challenging and can be subject to many uncer-
tainties. Reasoning about the exact mixture of factors that underlie movement involves both
field research as well as exploratory analysis. Multiobjective modeling approaches allow for the
tradeoffs among the wide variety of factors that could influence habitat connectivity to be bet-
ter evaluated. As shown in this research, in some instances these tradeoffs may be relatively
straightforward. However, in others they may be more complex and perhaps not very intuitive.
Regardless, providing environmental planners, managers, and decision makers with a com-
plete set of tradeoffs will allow for a better understanding as to how elements of the landscape
act to facilitate or impede habitat connectivity.

Supporting information

S1 Text. A NISE algorithm for the biobjective least-cost path problem.
(PDF)

Author Contributions

Conceptualization: Timothy C. Matisziw.

Data curation: Ashkan Gholamialam.

Formal analysis: Timothy C. Matisziw, Ashkan Gholamialam.

Funding acquisition: Timothy C. Matisziw, Kathleen M. Trauth.
Investigation: Timothy C. Matisziw, Ashkan Gholamialam, Kathleen M. Trauth.
Methodology: Timothy C. Matisziw, Ashkan Gholamialam.

Resources: Timothy C. Matisziw, Kathleen M. Trauth.

Software: Timothy C. Matisziw, Ashkan Gholamialam.

Supervision: Timothy C. Matisziw.

Validation: Timothy C. Matisziw, Ashkan Gholamialam, Kathleen M. Trauth.
Visualization: Timothy C. Matisziw, Ashkan Gholamialam.

Writing - original draft: Timothy C. Matisziw, Ashkan Gholamialam.

Writing - review & editing: Timothy C. Matisziw, Ashkan Gholamialam, Kathleen M.
Trauth.

References

1. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, et al. Status and trends of
amphibian declines and extinctions worldwide. Science. 2004; 306(5702):1783-6. https://doi.org/10.
1126/science.1103538 PMID: 15486254

2. Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of
amphibians. Proc Natl Acad Sci U S A. 2008; 105(1):27—44. https://doi.org/10.1073/pnas.0801921105
PMID: 18695221

3. Hamer AJ. Accessible habitat and wetland structure drive occupancy dynamics of a threatened amphib-
ian across a peri-urban landscape. Landsc Urban Plan. 2018; 178(March):228-37.

4. Numminen E, Laine AL. The spread of a wild plant pathogen is driven by the road network. PLoS Com-
put Biol. 2020; 16(3):1-21. https://doi.org/10.1371/journal.pcbi.1007703 PMID: 32231370

5. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm
for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008 Dec; 105(49):19052-9.
https://doi.org/10.1073/pnas.0800375105 PMID: 19060196

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008540 December 28, 2020 21/23


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008540.s001
https://doi.org/10.1126/science.1103538
https://doi.org/10.1126/science.1103538
http://www.ncbi.nlm.nih.gov/pubmed/15486254
https://doi.org/10.1073/pnas.0801921105
http://www.ncbi.nlm.nih.gov/pubmed/18695221
https://doi.org/10.1371/journal.pcbi.1007703
http://www.ncbi.nlm.nih.gov/pubmed/32231370
https://doi.org/10.1073/pnas.0800375105
http://www.ncbi.nlm.nih.gov/pubmed/19060196
https://doi.org/10.1371/journal.pcbi.1008540

PLOS COMPUTATIONAL BIOLOGY Modeling habitat connectivity in support of multiobjective species movement

6. Semlitsch RD. Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl
Manage. 2008; 72(1):260-7.

7. Lowe WH. What drives long-distance dispersal? A test of theoretical predictions. Ecology. 2009; 90
(6):1456—-62. https://doi.org/10.1890/08-1903.1 PMID: 19569359

8. Baguette M, Dyck H Van. Landscape connectivity and animal behavior: functional grain as a key deter-
minant for dispersal. Landsc Ecol. 2007; 22:1117-29.

9. Saura S, Pascual-Hortal L. A new habitat availability index to integrate connectivity in landscape conser-
vation planning: Comparison with existing indices and application to a case study. Landsc Urban Plan.
2007; 83(2—-3):91-103.

10. Matisziw TC, Murray AT. Connectivity change in habitat networks. Landsc Ecol. 2009; 24(1):89-100.

11.  Saura S, Estreguil C, Mouton C, Rodriguez-Freire M. Network analysis to assess landscape connectiv-
ity trends: Application to European forests (1990-2000). Ecol Indic. 2011; 11(2):407-16.

12. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, et al. The application of
“least-cost” modelling as a functional landscape model. Landsc Urban Plan. 2003; 64(4):233—47.

13. Sawyer SC, Epps CW, Brashares JS. Placing linkages among fragmented habitats: Do least-cost mod-
els reflect how animals use landscapes? J Appl Ecol. 2011; 48(3):668—78.

14. Zeller KA, McGarigal K, Whiteley AR. Estimating landscape resistance to movement: A review. Landsc
Ecol. 2012; 27(6):777-97.

15. Beier P, Majka DR, Newell SL. Uncertainty analysis of least-cost modeling for designing wildlife link-
ages. Ecol Appl. 2009; 19(8):2067—77. https://doi.org/10.1890/08-1898.1 PMID: 20014579

16. Gurrutxaga M, Lozano PJ, Barrio GD. GIS-based approach for incorporating the connectivity of ecologi-
cal networks into regional planning. J Nat Conserv. 2010; 18(4):318-26.

17. Dantzig GB. Discrete-variable extremum problems. Oper Res. 1957; 5(2):266—77.
18. Dijkstra EW. A note on two problems in connexion with graphs. Numer Math. 1959; 1(1):269-71.

19. Landguth EL, Hand BK, Glassy J, Cushman SA, Sawaya MA. UNICOR: A species connectivity and cor-
ridor network simulator. Ecography (Cop). 2012; 35(1):9-14.

20. Ribeiro JW, Silveira dos Santos J, Dodonov P, Martello F, Brandao Niebuhr B, Ribeiro MC. LandScape
Corridors (Iscorridors): a new software package for modelling ecological corridors based on landscape
patterns and species requirements. Methods Ecol Evol. 2017; 8(11):1425-32.

21. Sutcliffe OL, Bakkestuen V, Fry G, Stabbetorp OE. Modelling the benefits of farmland restoration: Meth-
odology and application to butterfly movement. Landsc Urban Plan. 2003; 63(1):15-31.

22. Parks SA, Mckelvey KS, Schwartz MK. Effects of weighting schemes on the identification of wildlife cor-
ridors generated with least-cost methods. Conserv Biol. 2012; 27(1):145-54. https://doi.org/10.1111/j.
1523-1739.2012.01929.x PMID: 23003217

23. Matos C, Petrovan SO, Wheeler PM, Ward Al. Landscape connectivity and spatial prioritization in an
urbanising world: A network analysis approach for a threatened amphibian. Biol Conserv. 2019; 237
(November 2018):238—47.

24. Bowler DE, Benton TG. Causes and consequences of animal dispersal strategies: Relating individual
behaviour to spatial dynamics. Biol Rev Camb Philos Soc. 2005; 80(2):205-25. https://doi.org/10.1017/
51464793104006645 PMID: 15921049

25. Todd BD, Winne CT. Ontogenetic and interspecific variation in timing of movement and responses to cli-
matic factors during migrations by pond-breeding amphibians. Can J Zool. 2006; 84(5):715-22.

26. Lowe WH, Likens GE, McPeek MA, Buso DC. Linking direct and indirect data on dispersal: Isolation by
slope in a headwater stream salamander. Ecology. 2006; 87(2):334-9. https://doi.org/10.1890/05-0232
PMID: 16637359

27. Giordano AR, Ridenhour BJ, Storfer A. The influence of altitude and topography on genetic structure in
the long-toed salamander (Ambystoma macrodactulym). Mol Ecol. 2007; 16(8):1625-37. https://doi.
org/10.1111/j.1365-294X.2006.03223.x PMID: 17402978

28. Rayfield B, Fortin MJ, Fall A. The sensitivity of least-cost habitat graphs to relative cost surface values.
Landsc Ecol. 2010; 25(4):519-32.

29. Ehrgott M. Multicriteria Optimization. Second. Auckland: Springer; 2006. https://doi.org/10.1016/].
bmcl.2006.11.025 PMID: 17157013

30. Cohon JL. Multiobjective Programming and Planning. New York: Academic Press Inc.; 1978.

31. Williams JC. Delineating protected wildlife corridors with multi-objective programming. Environ Model
Assess. 1998; 3(1-2):77-86.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008540 December 28, 2020 22/23


https://doi.org/10.1890/08-1903.1
http://www.ncbi.nlm.nih.gov/pubmed/19569359
https://doi.org/10.1890/08-1898.1
http://www.ncbi.nlm.nih.gov/pubmed/20014579
https://doi.org/10.1111/j.1523-1739.2012.01929.x
https://doi.org/10.1111/j.1523-1739.2012.01929.x
http://www.ncbi.nlm.nih.gov/pubmed/23003217
https://doi.org/10.1017/s1464793104006645
https://doi.org/10.1017/s1464793104006645
http://www.ncbi.nlm.nih.gov/pubmed/15921049
https://doi.org/10.1890/05-0232
http://www.ncbi.nlm.nih.gov/pubmed/16637359
https://doi.org/10.1111/j.1365-294X.2006.03223.x
https://doi.org/10.1111/j.1365-294X.2006.03223.x
http://www.ncbi.nlm.nih.gov/pubmed/17402978
https://doi.org/10.1016/j.bmcl.2006.11.025
https://doi.org/10.1016/j.bmcl.2006.11.025
http://www.ncbi.nlm.nih.gov/pubmed/17157013
https://doi.org/10.1371/journal.pcbi.1008540

PLOS COMPUTATIONAL BIOLOGY Modeling habitat connectivity in support of multiobjective species movement

32. Loro M, Ortega E, Arce RM, Geneletti D. Assessing landscape resistance to roe deer dispersal using
fuzzy set theory and multicriteria analysis: a case study in Central Spain. Landsc Ecol Eng. 2016; 12
(1):41-60.

33. Santos JS, Leite CCC, Viana JCC, dos Santos AR, Fernandes MM, de Souza Abreu V, et al. Delimita-
tion of ecological corridors in the brazilian atlantic forest. Ecol Indic. 2018; 88(July 2017):414-24.

34. CohonJ, Church R, Sheer D. Generating multiobjective trade-offs: an algorithm for bicriterion problems.
Water Resour Res. 1979; 15(5):1001-10.

35. Huber DL. Alternative methods in corridor routing. The University of Tennessee, Knoxville; 1980.

36. Balachandran M, Gero JS. The noninferior set estimation (NISE) method for three objective problems.
Eng Optim. 1985; 9(2):77-88.

37. Solanki R, Appino P, Cohon J. Approximating the noninferior set in multiobjective linear programming
problems. Eur J Oper Res. 1993; 68(3):356—73.

38. Medrano FA, Church RL. Corridor location for infrastructure development: a fast bi-objective shortest
path method for approximating the pareto frontier. Int Reg Sci Rev. 2014; 37(2):129-48.

39. Raimundo MM, Ferreira PAV, Von Zuben FJ. An extension of the non-inferior set estimation algorithm
for many objectives. Eur J Oper Res. 2020; 1(1):53-66.

40. Ehrgott M. Multiobjective optimization. Al Magazine. 2008;(December):47-57.
41. Martins E. On a multicriteria shortest path model. Eur J Oper Res. 1984; 16(2):236—45.
42, Gholamialam A, Matisziw TC. Modeling bikeability of urban systems. Geogr Anal. 2019; 51(1):73-89.

43. Carraway RL, Morin TL. Theory and applications of generalized dynamic programming: An overview.
Comput Math with Appl. 1988; 16(10—-11):779-88.

44. Ehrgott M, Wang JYT, Raith A, Van Houtte C. A bi-objective cyclist route choice model. Transp Res
Part A Policy Pract. 2012; 46(4):652—63.

45. Tischendorf L, Fahrig L. On the usage and measurement of landscape connectivity. Oikos. 2000; 90
(1):7-19.

46. Urban D, Keitt T. Landscape Connectivity: A Graph-Theoritic Perspective. Ecology. 2001; 82(5):1205—
18.

47. Reinhardt LB, Pisinger D. Multi-objective and multi-constrained non-additive shortest path problems.
Comput Oper Res. 2011; 38(3):605-16.

48. Messac A, Mattson CA. Normal constraint method with guarantee of even representation of complete
pareto frontier. AIAA J. 2004; 42(10):1—11.

49. Heard GW, Scroggie MP, Malone BS. Classical metapopulation theory as a useful paradigm for the
conservation of an endangered amphibian. Biol Conserv. 2012; 148(1):156—66.

50. Sinsch U, Oromi N, Miaud C, Denton J, Sanuy D. Connectivity of local amphibian populations: model-
ling the migratory capacity of radio-tracked natterjack toads. Anim Conserv. 2012; 15(4):388-96.

51. Patrick D, Aram C, Malcoln H. Orientation of juvenile wood frogs, rana sylvatica, leaving experimental
ponds. J Herpetol. 2007; 41(1):158—63.

52. Walston LJ, Mullin SJ. Variation in amount of surrounding forest habitat influences the initial orientation
of juvenile amphibians emigrating from breeding ponds. Can J Zool. 2008; 86(2):141-6.

53. Rothermel BB, Semlitsch RD. An experimental investigation of landscape resistance of forest versus
old-field habitats to emigrating juvenile amphibians. Conserv Biol. 2002; 16(5):1324-32.

54. MSDIS. Missouri Spatial Data Information Service [Internet]. 2019 [cited 2019 Oct 10]. Available from:
http://msdis.missouri.edu

55. Matisziw TC, Alam M, Trauth KM, Inniss EC, Semlitsch RD, MclIntosh S, et al. A vector approach for
modeling landscape corridors and habitat connectivity. Environ Model Assess. 2015; 20(1):1-16.

56. U.S. Fish and Wildlife Service. National Wetlands Inventory [Internet]. 2020 [cited 2020 May 4]. Avail-
able from: https://www.fws.gov/wetlands

57. Beven KJ, Kirkby MJ. A physically based, variable contributing area model of basin hydrology. Hydrol
Sci Bull. 1979; 24(1):43-69.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008540 December 28, 2020 23/23


http://msdis.missouri.edu
https://www.fws.gov/wetlands
https://doi.org/10.1371/journal.pcbi.1008540

