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Interlayer Engineering of a-MoQO; Modulates Selective Hydronium
Intercalation in Neutral Aqueous Electrolyte

Haozhe Zhang, Weixing Wu, Qiyu Liu, Fan Yang, Xin Shi, Xiaoqging Liu, Minghao Yu,* and

Xihong Lu*

Abstract: Among various charge-carrier ions for aqueous
batteries, non-metal hydronium (H;0%) with small ionic size
and fast diffusion kinetics empowers H;O"-intercalation
electrodes with high rate performance and fast-charging
capability. However, pure H;O" charge carriers for inorganic
electrode materials have only been observed in corrosive acidic
electrolytes, rather than in mild neutral electrolytes. Herein, we
report how selective H;O" intercalation in a neutral ZnCl,
electrolyte can be achieved for water-proton co-intercalated o-
MoO; (denoted WP-MoO;). H,O molecules located between
MoO; interlayers block Zn’" intercalation pathways while
allowing smooth H;O" intercalation/diffusion through a Grot-
thuss proton-conduction mechanism. Compared to a-MoOj;
with a Zn**-intercalation mechanism, WP-MoOj; delivers the
substantially  enhanced  specific  capacity  (356.8 vs.
184.0 mAhg™), rate capability (77.5 % vs. 42.2 % from 0.4 to
4.8 Ag™), and cycling stability (83 % vs. 13 % over 1000 cy-
cles). This work demonstrates the possibility of modulating
electrochemical intercalating ions by interlayer engineering, to
construct high-rate and long-life electrodes for aqueous
batteries.

Introduction

Rechargeable aqueous batteries with neutral electrolytes
have attracted intensive scientific attention as promising
alternatives for large-scale energy storage technologies. The
utilized water-based electrolytes offer significant advantages
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of high ionic conductivity (~1Scm™), simplified manufac-
ture, low cost, and intrinsic safety.!l In particular, Zn metal
batteries (ZMBs) with mild aqueous electrolytes have
recently stood out, due to the direct use of Zn metal anodes
with a high specific capacity (~820mAhg™') and a low
stripping/plating potential (—0.76 V vs. standard hydrogen
electrode).”! Numerous efforts have been devoted to explor-
ing Zn**-host cathode materials of ZMBs, which has brought
Mn-compounds, V-compounds, Prussian blue materials into
the spotlight.”! However, the Zn**-intercalation chemistry
generally shows sluggish kinetics and unsatisfactory cycling
stability.! In aqueous electrolytes, Zn>* tends to form a large-
size hydrated state (Zn(H,0),>* with 5.5 A) due to the strong
Zn**-water interaction.”! The intercalation of Zn** into
cathode hosts thus requires large de-solvation and intercala-
tion energy. Besides, bivalent Zn’" imposes a strong repulsive
force with the hosts, leading to the large Zn>*-diffusion energy
barriers within the hosts and the undesired structure dis-
tortion of hosts."

Apart from Zn*>*, non-metal hydronium (H;O™) has also
been recognized as favorable charge carrier ions for aqueous
batteries. Assigned to the small ionic size (~1.0 A) and light
molecular mass, H;O" intercalation presents attractive high-
kinetics and highly reversible behaviors.” The partial involve-
ment of H;O" intercalation was also discovered for the
charge-storage mechanism of ZMB cathodes. For example,
Sun et al. uncovered the consequent intercalation of H;O*
and Zn*" for e-MnO, cathode in a mixed ZnSO,/MnSO,
electrolyte.”) The charge-transfer resistance of &-MnO, in
the H;O"-intercalation step is three orders of magnitude
smaller than that in the Zn*'-intercalation step. A similar
phenomenon was also observed for polyaniline-intercalated
MnO, nanolayers, in which the diffusion coefficient of H;O"
(5.84x107"? cm?s™") was substantially higher than that of
Zn** (7.35x107“ cm?s™").l% These findings inspire that
selective H;O™" intercalation into cathodes would bring the
constructed ZMBs with significant performance advance in
terms of capacity, kinetics, as well as cycle life. However, thus
far, pure H;O"-intercalation behavior for layered/tunneled
cathodes has only been observed in corrosive acidic electro-
lytes.”!! It remains a grand challenge to achieve selective
H,;O" intercalation in mild neutral electrolytes.

In this study, we, taking orthorhombic MoOj; (a-MoOs) as
an example, for the first time demonstrate the feasibility of
selective H;O" intercalation in a neutral ZnCl, electrolyte. a-
MoO; is selected due to its typical layered structure with
distorted [MoOg] octahedra bilayers weakly bonded by van
der Waals force.™ The complete redox of Mo*'/Mo®* allows
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Figure 1. Schematic illustration of the Zn?"-intercalation chemistry for a-MoO; and the selective H;O™-intercalation chemistry for WP-MoO;.

a-MoO; with an attractive theoretical capacity of
372mAhg !, Selective H;O-intercalation chemistry is
modulated for a-MoO; through a water-proton co-intercala-
tion strategy (denoted WP-MoOQ;), which further tackles the
low-capacity, poor-rate, and short-life issues faced by pristine
a-MoO; with Zn?*'-intercalation chemistry. H,O molecules
located between WP-MoOj interlayers impose a high Zn**-
intercalation energy barrier by blocking Zn*" diffusion path-
ways (Figure 1). Meanwhile, H;O" intercalation/diffusion can
be smoothly achieved within WP-MoOQj interlayers through
a well-known Grotthuss mechanism (proton jumping between
water molecules).””) In contrast to Zn>*-intercalation o-
MoO;, selective H;O"-intercalation WP-MoOj; depicts sub-
stantially enhanced redox depth (1.92 vs. 0.99 e~ per Mo
atom; 357 vs. 184 mA hg '), rate capability (77.5% vs. 42.2%
from 0.4 to 4.8 A g™"), and cycling stability (83 % vs. 13% over
1000 cycles).

Results and Discussion

a-MoO; nanoparticles (Figure S1) were first synthesized
through a sol-gel method. WP-MoO; electrode was obtained
from 0-MoO; electrode through a controllable and time-
efficient (& 6.1 min) electrochemical linear sweep voltamme-
try (LSV) method (Figure S2) in a three-electrode cell with an
electrolyte of 1 M H,SO,. Compared with a-MoO; electrode,
WP-MoO; displays an apparent color change from dark grey
to purple (Figure S3), which is attributed to the formation of
Mo**/Mo>" (Figure S4)." Almost no morphological varia-
tion was observed between a-MoO; and WP-MoO;. The
amount of intercalated H* can be estimated by calculating the
amount of charge transfer (Figure 2a). The overall interca-
lation process presents four stages, referring to potential
windows (vs. saturated calomel electrode (SCE)) of 0.3-
—0.1 V (Stage I), —0.1-—0.34 V (Stage II), —0.34——0.53 V
(Stage IIT), and —0.53-—0.72 V (Stage IV). Approximately,
the intercalated H* numbers per MoOj; unit are 0.25, 0.75,
0.25, and 0.75 at Stage I, Stage II, Stage III, and Stage IV,
respectively. X-ray diffraction (XRD) spectra uncover that
the peak position corresponding to the interlayer spacing of
0-MoO; gradually shifts towards negative at Stage I and II
and keeps almost unchanged at Stage III and IV (Figure 2b &
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S5). This peak of WP-MoO; is located at 12.0°, indicating the
interlayer distance expansion from 6.7 A for a-MoO; to 7.6 A
(Figure S6). Besides, new peaks at 32.5°, 35.0°, and 37.1° are
observed for WP-MoQO;, which indicates a monoclinic phase
of proton-intercalated MoO;.®! The widened interlayer
distance of WP-MoO; was also evidenced by high-resolution
transmission electron microscopy (HRTEM) images, in which
the interlayer spacings are determined to be 6.7 A and 7.6 A
for MoO; and WP-MoO;, respectively (Figure 2¢ & S7).
Figure 2d compares the O 1s X-ray photoelectron spec-
troscopy (XPS) spectra of MoO; and WP-MoO; electrodes.
Two peaks located at 532.6 eV and 531.2 eV are observed for
a-MoO;, which correspond to lattice O in MoO; (denoted
02) and O in adsorbed H,O (denoted O1)."*! Notably, WP-
MoO; shows an O1 peak with the substantially enhanced
intensity, verifying the intercalation of H,O into WP-MoO,.
Thermogravimetric analysis (TGA, Figure S8) results of both
electrodes also suggest the intercalated H,O molecules in
WP-MoO;. More interestingly, an additional XPS peak at
530.2 eV (denoted O3) is observed for WP-MoO;. This peak
can be assigned to the terminal O of [MoOq] bilayers, which
splits from O2 peak due to the formation of the hydrogen
bond with the intercalated H,O/H;O" (as illustrated in
Figure 2¢). Furthermore, synchrotron-based X-ray absorp-
tion near-edge spectra (XANES) measurements were per-
formed to investigate the localized coordination environ-
ments of Mo sites in a-MoO; and WP-MoO;. The Mo K-edge
XANES spectra of a-MoO; and WP-MoO;, as well as
standard Mo foil and MoO; as references, are displayed in
Figure 2 f. In comparison with a-MoO;, the slightly negative-
shifted rising-edge of WP-MoO; around 20015 eV suggests
the enriched electron densities around Mo sites."”! This result
is consistent with the analysis of O K-edge XANES spectra,
which witness the decreased peak intensity of WP-MoO; at
the energy region of 530-540 eV (Figure $9).'®! In addition,
the Mo pre-edge of WP-MoQO; around 20007 eV, referring to
the O 1s-Mo 4d electron transfer, is obviously decreased
compared with that of a-MoOQ;, reflecting the interaction
between the terminal O of [MoQq] bilayers and the interca-
lated species (i.e., H,O and H;0%).’! To acquire the detailed
bonding and coordination information, corresponding R
space curves after k*[y(k)]-weighted Fourier transform of
the extended X-ray absorption fine structure (EXAFS) and
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Figure 2. a) The intercalated proton amount as a function of potential during the water-proton co-intercalation process. b) XRD patterns of a-
MoO; electrode at different intercalation stages. c) HRTEM images of a-MoO; and WP-MoO;. Scale bars: 5 nm. d) O 1s XPS spectra of a-MoO;
and WP-MoO;. e) Illustration of different O atoms in WP-MoO;. f) Normalized Mo K-edge XANES spectra of MoO; standard, Mo foil standard, a-
MoO;, and WP-MoOs. g) Radial distribution functions of a-MoO, and WP-MoOj; obtained from the k*(k) by Fourier transform.

quantitatively fitting spectra are presented in Figure2g &
S10. Two representative peaks at 1.16 and 1.69 A can be
assigned to the scattering of Mo=O and Mo—O bonds in
[MoOy] bilayers, respectively.” These two peaks are also
indicated in Figure 2e. Both Mo=0O and Mo—O bonds show
negligible length difference between a-MoO5 (1.72 & 1.96 A)
and WP-MoO; (1.73 & 1.97 A), implying the water-proton
pre-intercalation causes minor distortion of octahedron
[MoOyq] layers. Moreover, the coordination number of Mo—
O (from 1.8 to 1.4) and Mo=0O (from 2.0 to 1.4) decreases due
to the water-proton co-intercalation, which again verifies the
interaction between the terminal O of [MoQq] bilayers and
the intercalated H,O/H;O™.

The ion-intercalation behaviors of 0-MoO; and WP-
MoOs; electrodes were explored in two-electrode cells with
Zn foil as the anode and 2 M ZnCl, aqueous solution as the
electrolyte. Figure 3a and Figure 3b present the galvanostatic
charge/discharge (GCD) curves of a-MoO; and WP-MoO;
electrodes after three-cycle activation at 0.4 Ag'. Both
electrodes show two mainly ion-intercalation stages in their
discharge curves, which agrees well with the cyclic voltam-
metry (CV) curves (Figure S11). In detail, a-MoO; electrode
presents a discharge curve consisting of one plateau region
(Plateau I, ~0.62 V) and one slope region (Slope I, 0.25-
0.35V), while WP-MoO; electrode presents two plateaus
around 0.68 V (Plateau I) and 0.30 V (Plateau II). Impres-
sively, WP-MoO; electrode exhibits a high redox depth of
1.92 ™ per Mo atom, close to the full conversion of Mo*"/
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Mo®". By contrast, a shallow redox depth of 0.99 e~ per Mo
atom is achieved by a-MoO; electrode.

Electrochemical quartz crystal microbalance (EQCM)
was employed to in-operando monitor the mass evolution of
MoO; and WP-MoO; along with the continuous ion inter-
calation. In consistent with the discharge curves, the mass
change of both electrodes during ion intercalation depicted
two stages. At the first stage of a-MoOQO;, the average weight
increase calculated by the curve slope (Figure 3c¢) is 45 g per
mol charge, which suggests the co-intercalation of Zn*" and
H,0 into a-MoOj; (Zn**-1.5H,0 in average). Meanwhile, the
average weight increase of a-MoQO; at the second stage is 18 g
per mol charge, close to the weight of H;O" (19 g per mol
charge). Clearly, Zn**/H,O co-intercalation plays the domi-
nant role in the charge-storage mechanism of a-MoO;. By
contrast, WP-MoO; depicts the weight increase of 19 and 18 g
per mol charge at the two stages (Figure 3d), verifying the
selective H;O"-intercalation chemistry of WP-MoOs in 2 M
ZnCl, electrolyte. This result means although Zn®" is the
mainly charge carrier in the electrolyte, the charge carrier
only consists of H;O" in WP- MoO; electrode, which comes
from the pre-stored H* in WP-MoQ; and the slight hydrolysis
of ZnCl, in the electrolyte. However, the local Zn*" concen-
tration near the surface of WP-MoO; should be increased
during discharging, because Zn** tends to migrate to the
Helmholtz layer of WP-MoO; due to the electrostatic
interaction.

Angew. Chem. Int. Ed. 2021, 60, 896 —903


http://www.angewandte.org

GDCh

Research Articles

g
a 15
c o 21
> zZ
~ 1.0 )
) 0 ]
(@] ©
% 0.5- —> Plateau | g
> < 3 0] . _
0.0 Slope | ()] ‘ 45 g per mol e
0 100 200 300 400 0 2 4 6
Specific capacity / mA h g™’ Delta charge / mC
b 15 d
(@]
> 24
~ 1.0 )
(0] n
g £ 1,
% 0.5 "X plateau | -
= D 0.
0.0 N Plateau Il (@)
~ 0 100 200 300 400 0 4 8 12

Specific capacity / mA h g™’

Delta charge / mC

Figure 3. GCD profiles of a) a-MoO; and b) WP-MoO; electrodes at a current density of 0.4 Ag™'. Electrode mass change versus charge during
the discharge (ion-intercalation) processes of ¢) a-MoO; and d) WP-MoO; electrodes. EDX elemental mapping of e) a-MoO; and f) WP-MoO; at

the fully discharged state. Scale bars: 50 nm.

The interesting H;O*-intercalation behavior of WP-MoO,
is further supported by the Energy-dispersive X-ray spectros-
copy (EDX) elemental mapping analysis. The fully dis-
charged a-MoOj; presents the even distribution of Mo and
Zn over the sample (Figure 3¢ & S12), while Zn distribution
is barely observed in WP-MoO; (Figure 3 f & S12). The Zn/
Mo atomic ratio of the discharged WP-MoOs; is calculated to
be 0.02, which contrasts with the high Zn/Mo atomic ratio of
the discharged 0-MoO; (0.48). Moreover, the discharged a-
MoO; and WP-MoO; were annealed in air at 500°C and
subjected for XRD measurements (Figure S13). Peaks refer
to ZnMoQj; are only detected for the discharged a-MoOs;,
rather than for the discharged WP-MoQO;. All these results
identify the successful modulation of intercalating charge
carriers for a-MoQO;, which brings the obtained WP-MoO;
with exceptional selective H;O*-intercalation chemistry in
a neutral electrolyte.

To understand the origin of the selective H;O"-intercala-
tion behavior, the first three CV cycles of WP-MoO;
electrode were recorded as shown in Figure 4a. In the initial
cycle, only a small cathodic peak is observed during the
discharge process, whereas the charge process displays four
anodic peaks corresponding to the extraction of the pre-
intercalated H;O" and H,O. Afterwards, WP-MoO; electrode
presents almost the identical 2™ and 3™ cycles (Figure S14),
which include three anodic peaks and three cathodic peaks.
The cathodic peaks and anodic peaks can be assigned to the
H;O" intercalation and de-intercalation, respectively. Based
on the CV curves, the charge transfer number of the first two
pairs of redox peaks is calculated to be 1.495 (close to 1.5),
implying the conversion between Mo®" and Mo*"/Mo*" (1:1).
Meanwhile, the charge transfer of the third pair of redox
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peaks is 0.498 (close to 0.5), which refers to the conversion
between Mo’*/Mo*t (1:1) and Mo*". In this regard, the
structure of WP-MoO; after the first cycle (denoted WP-
MoO;-c) is of significance to induce the selective H;O"
intercalation of WP-MoO; electrode. The Mo 3d XPS
spectrum of WP-MoO,-c uncovers the existence of Mo*" in
WP-MoO;-c (Figure S15), indicating that H* ions were not
fully extracted from the lattice. This result is further
supported by the observation of O3 peak in the O 1s XPS
of WP-MoO;-c (Figure 4b). The partial extraction of H,O was
verified by the larger O1 peak intensity of WP-MoO;-c than
that of a-MoO;, as well as the TGA analysis (Figure S16).
Moreover, the interlayer distance of WP-MoO;-c identified
by the XRD peak position only slightly decreased from 7.6 A
for WP-MoO; to 7.4 A, which remains to be significantly
larger than that of a-MoO; (6.7 A) (Figure 4c & S17).
Based on the quantitive analysis of XPS results, the
structures of a-MoO; and WP-MoO;-c (Figure S18) were
simulated with the density functional theory (DFT) method.
In WP-MoO;-c, the bonding interaction between the residual
intercalant (i.e., H,O and H;O") and the terminal O of
[MoOgq] bilayers is proved by the formant arise at —10 eV in
projected density of states (PDOS) of terminal O-p orbital
with H-s orbital (Figure 4 d). This bonding interaction greatly
influence the electron density of terminal O atoms, which
agrees well with the O 1s XPS results of our samples.
Additionally, WP-MoO; has a band gap of 0.04 eV, which is
remarkably smaller than that of a-MoO; (2.18 eV). The Fermi
level of WP-MoO; also shifts to the conduction band, favoring
the excitation of charge carriers to the conduction band and
thus the improved electronic conductivity (Figure $19).P!
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Subsequently, the Zn**-intercalation energy (Figure 4¢)
and H;O"-intercalation energy (Figure 4 f) were calculated
for a-MoO; and WP-MoOs-c. As expected, a substantially
enlarged Zn-intercalation energy is uncovered for WP-MoO;-
¢ (—0.11 eV) in comparison to a-MoO; (—1.49 eV), while the
H;O-intercalation energy of WP-MoOj;-c (—3.93 eV) is nota-
bly lower than that of a-MoO; (—1.61eV). These results
confirm the thermodynamically preferable H;O" intercala-
tion into WP-MoOs-c. Besides, the residual H,O and H;0*
located in the interlayer space and bonded with terminal O
atoms of [MoQq] bilayers block the Zn**-diffusion pathways
in WP-MoO;-c (Figure 5a) and hinder the charge transfer
through the interaction with [MoOq] bilayers (Figure S20 &
21). In the case of H;O" intercalation into WP-MoOj;-c,
charge carrier diffusion can be efficiently achieved through
a well-established Grotthuss mechanism (Figure 5b), in which
protons can be fast transported by “jumping” through water
molecules.”” Proton conductivities measurement (Fig-
ure S22) shows that WP-MoOjs-c owns a proton conductivity
value of 43 x 107> Scm™" at 318 K and 100 % humidity, which
is much higher than a-MoO, (6.2x 107> Scm™). Moreover,
WP-MoO;-c also shows an activation energy (E,) of 0.28 eV,
which suggests the Grotthuss conduction mechanism (E, <
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0.4 V). H,0 molecules between the interlayers serve as
the proton transport intermedia, providing a hydrogen-bond-
ing network for the high-kinetics charge carrier diffusion.”*!
Moreover, the charge transfer from H;O* to WP-MoO;-c can
be also through Grotthuss mechanism without breaking the
hydrogen bonding interaction between H,O and the terminal
O of [MoOy] bilayers (Figure 5c). Thereby, the unique van
der Waals structure of WP-MoO;-c favors the selective H;O*-
intercalation behavior both thermodynamically and kineti-
cally.

The selective H;O" intercalation of WP-MoO; electrode
motivated us to assess the electrochemical performance of
ZMB devices assembled by coupling Zn anodes with WP-
MoO; cathodes (denoted Zn/WP-MoO;). ZMB devices based
on Zn**-intercalation a-MoO; cathodes were also constructed
for comparison (denoted Zn/a-MoQO;). GCD curves at
various current densities were collected to evaluate both
devices (Figure S23). As shown in Figure 6 a, Zn/a-MoOj; only
exhibits a specific capacity of 184.0mAhg™ at 04 Ag™!
(based on the cathode) and a capacity retention of 42.2% at
4.8 Ag™'. By contrast, Zn/WP-MoO, delivers a much larger
specific capacity (356.8 mAhg™' at 0.4 Ag™!) and a greatly
improved rate capability (77.5% from 0.4 to 4.8 Ag™'). When

Angew. Chem. Int. Ed. 2021, 60, 896 —903
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Figure 6. a) Rate performance, b) ion diffusion coefficient as a function of the voltage during the discharge, c) R, at different voltages, and

d) cycling performance at 3.2 Ag™' of Zn/a-MoO; and Zn/WP-MoO; devices. ) Ex situ XRD of WP-MoOj; during one discharge/charge cycle of
Zn/WP-MoO,. f) Radial distribution functions obtained from the k*(k) by Fourier transform of XANES of WP-MoO, cathode at the charged (WP-
Mo0;-A) and discharged (WP-MoOs-D) states.

the current density returns to 0.4 A g~' after the rate tests, Zn/ ~ 0.25 to 2.0 per MoO;) on the electrochemical performance
WP-MoO; can still show a specific capacity of 345.6 mAhg™'.  was also investigated by preparing a series of WP-MoO,
The influence of different amounts of intercalated H* (from  electrodes with different cut-off potentials (Figure S24). In
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brief, the larger amount of intercalated H" results in the
higher specific capacity of the obtained Zn/WP-MoO;
devices. Importantly, Zn/WP-MoOQO; delivers the maximum
energy density of 198.0 Whkg™' (based on the cathode) at
a power density of 0.28 kWkg™, as well as the peak power
density of 6.7kWkg' at a high energy density of
104.5 Whkg . These energy and power densities significantly
outperform those of the recently reported ZMBs based on
cathodes like MnO,,*? ZnMn,0,,? VS, 21 ZnHCF?"! and
pyrene-4,5,9,10-tetraone! (Figure S25). It should be noticed
that the energy contribution of plateau II (& 0.30 V) is only
about 16.8 % in Zn/WP-MoO; (Figure S26), while most of the
energy is contributed by plateau I (~0.68 V). The outstand-
ing performance of Zn/WP-MoO; originates from H;O*
charge carriers, which allow the high-kinetics diffusion and
the efficient charge transfer. Figure 6b displays the calculated
charge carrier diffusion coefficients of Zn/a-MoO; and Zn/
WP-MoO; devices based on a galvanostatic intermittent
titration technique (GITT, Figure S27). Both devices exhibit
low charge carrier diffusion coefficients at voltages associated
with ion-intercalation stages. As expected, Zn/WP-MoO;
with H;O" charge carriers achieves high diffusion coefficients
of 1.6x10 % cm?s™" at 0.57 Vand 4.4x 10~ cm?s™! at 0.29 V,
which are several orders of magnitude higher than those of
Zn/a-MoO; with Zn®" as the main charge carrier (1.2x
10 cm?s™! at 0.58 V and 1.3x10"?cm?s™! at 0.22V). In
addition, the low charge transfer resistance (R,) of Zn/WP-
MoO; derived from electrochemical impedance spectroscopy
(EIS, Figure S28) reflects the efficient charge transfer enabled
by H;O" charge carriers. As shown in Figure 6¢, R, of Zn/
WP-MoOj; ranges from 48.9 to 124.5 Q, which contrasts with
that of Zn/a-MoOj; (48.1 to 667.3 Q).

The cycling stability of Zn/0-MoO; and Zn/WP-MoO;
was evaluated at a current density of 3.2 Ag™'. Zn/WP-MoO;
presents impressive coulombic efficiencies of nearly 100 %,
which indicates its high charge/discharge reversibility. In
contrast with the fast capacity decay of Zn/a-MoO; (13 %
capacity retention after 1000 cycles), Zn/WP-MoO; can
maintain 83 % of the initial capacity after 1000 cycles (Fig-
ure 6d). The outstanding cycling performance of Zn/WP-
MoO; is assigned to the negligible structure distortion of WP-
MoO; during the repeated H;O™" intercalation/extraction. In
the ex-situ XRD tests of WP-MoO; cathode during one
discharge/charge cycle of Zn/WP-MoO;, the peak position
located at 12.3° of WP-MoO; only experiences slight shift,
indicating the little volume expansion/shrinkage of WP-MoO;
in direction which is perpendicular to interlayer (Figure 6¢).
Moreover, Mo-K edge XANES (Figure S29) and correspond-
ing Fourier transforms of the Mo K-edge k*¢(k) spectra
(Figure 6 f) confirm that both Mo=0O and Mo—O bonds of
WP-MoO; cathode have no change in bonding length at the
fully charged and discharged stages. All these results imply
that the selective H;O"-intercalation chemistry is able to
empower electrodes with large specific capacity, high charge-
storage kinetics and long cycle life.
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Conclusion

In summary, we have uncovered an exceptional selective
H;O"-intercalation chemistry for WP-MoO; electrode in
a neutral ZnCl, electrolyte. The interesting charge-carrier-
selection behavior of WP-MoO; originated from the inter-
layer species (i.e., H,O, H;O") of WP-MoO;, which allowed
the fast-kinetics transport and charge transfer of H;O" while
blocking Zn*' intercalation. This study provides a novel
charge-carrier-modulation concept through the strategic van
der Waals structure engineering, which opens a promising
prospect for developing high-kinetics and long-life battery
technologies.
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