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Finite-size security of continuous-variable quantum
key distribution with digital signal processing
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In comparison to conventional discrete-variable (DV) quantum key distribution (QKD),

continuous-variable (CV) QKD with homodyne/heterodyne measurements has distinct

advantages of lower-cost implementation and affinity to wavelength division multiplexing. On

the other hand, its continuous nature makes it harder to accommodate to practical signal

processing, which is always discretized, leading to lack of complete security proofs so far.

Here we propose a tight and robust method of estimating fidelity of an optical pulse to a

coherent state via heterodyne measurements. We then construct a binary phase modulated

CV-QKD protocol and prove its security in the finite-key-size regime against general coherent

attacks, based on proof techniques of DV QKD. Such a complete security proof is indis-

pensable for exploiting the benefits of CV QKD.
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Quantum key distribution (QKD) aims at generating a
secret key shared between two remote legitimate parties
with information-theoretic security, which provides

secure communication against an adversary with arbitrary com-
putational power and hardware technology. Since the first pro-
posal in 19841, various QKD protocols have been proposed with
many kinds of encoding and decoding schemes. These protocols
are typically classified into two categories depending on the
detection methods. One of them is called discrete-variable (DV)
QKD, which uses photon detectors and includes earlier protocols
such as BB841 and B922 protocols. The other is called
continuous-variable (CV) QKD, which uses homodyne and het-
erodyne measurements with photo detectors3–5. See refs. 6,7 for
comprehensive reviews of the topic.

Although DV QKD is more mature and achieves a longer dis-
tance if photon detectors with low dark count rates are available,
CV QKD has its own distinct advantages for a short distance. It
can be implemented with components common to coherent optical
communication technology and is expected to be cost-effective.
Excellent spectral filtering capability inherent in homodyne/
heterodyne measurements suppresses crosstalk in wavelength
division multiplexing (WDM) channels. This allows multiplexing
of hundreds of QKD channels into a single optical fiber8 as well as
co-propagation with classical data channels9–15, which makes
integration into existing communication network easier.

One major obstacle in putting CV QKD to practical use is the
gap between the employed continuous variables and mandatory
digital signal processing. The CV-QKD protocols are divided into
two branches depending on whether the modulation method of
the encoder is also continuous, or it is discrete. The continuous
modulation protocols usually adopts Gaussian modulation, in
which the sender chooses the complex amplitude of a coherent-
state pulse according to a Gaussian distribution3–5,16,17 (see
refs. 18,19 for a review). This allows powerful theoretical tools such
as Gaussian optimality20,21, and complete security proofs for a
finite-size key and against general attacks have been given22. To
implement Gaussian protocols with a digital random-number
generator and digital signal processing, it is necessary to
approximate the continuous distribution with a constellation
composed of a large but finite number of complex
amplitudes23,24. This is where difficulty arises, and the security
analysis has been confined to the asymptotic regime and collec-
tive attacks. The other branch gives priority to simplicity of the
modulation and uses a very small (usually two to four) number of
amplitudes25–28. As for the security analysis, the status is more or
less similar to the Gaussian constellation case, and current
security proofs are either in the asymptotic regime against col-
lective attacks29–32 or in the finite-size regime but against more
restrictive attacks33,34. Hence, regardless of approaches, a com-
plete security proof of CV QKD in the finite-size regime against
general attacks has been a crucial step yet to be achieved.

Here we achieve the above step by proposing a binary phase-
modulated CV-QKD protocol with a complete security proof in
the finite-size regime against general attacks. The key ingredient
is an estimation method using heterodyne measurement devel-
oped in this paper, which is suited for analysis of confidence
region in the finite-size regime. The outcome of heterodyne
measurement, which is unbounded, is converted to a bounded
value by a smooth function such that its expectation is proved to
be no larger than the fidelity of the input pulse to a coherent state.
This allows us to use a standard technique to derive a lower
bound on the fidelity with a required confidence level in the
finite-size regime. The fidelity as a measure of disturbance in the
binary modulated protocol is essentially the same as what is
monitored through bit errors in the B92 protocol2,35,36. This
allows us to construct a security proof based on a reduction to

distillation of entangled qubit pairs37,38, which is a technique
frequently used for DV-QKD protocols.

Results
Estimation of fidelity to a coherent state. We first introduce a
test scheme to estimate the fidelity between an optical state ρ and
the vacuum state 0j i 0h j through a heterodyne measurement. For
a state ρ of a single optical mode, the heterodyne measurement
produces an outcome ω̂ 2 C with a probability density

qρðωÞ d
2ω :¼ ωh jρ ωj i d

2ω

π
; ð1Þ

where a coherent state ωj i is defined as

ωj i :¼ e�jωj2=2
X1
n¼0

ωnffiffiffiffi
n!

p nj i: ð2Þ

We refer to the expectation associated with the distribution qρ(ω)
simply as Eρ. To construct a lower bound for the fidelity 0h jρ 0j i
from ω̂, we will use the associated Laguerre polynomials which
are given by

LðkÞn ðνÞ :¼ ð�1Þk d
kLnþkðνÞ
dνk

; ð3Þ

where

LnðνÞ :¼
eν

n!
dn

dνn
ðe�ννnÞ ð4Þ

are the Laguerre polynomials. Our test scheme is based on the
following theorem.

Theorem 1: Let Λm,r(ν) (ν ≥ 0) be a bounded function given by

Λm;rðνÞ :¼ e�rνð1þ rÞLð1Þm ðð1þ rÞνÞ; ð5Þ
for an integer m ≥ 0 and a real number r > 0. Then, we have

Eρ½Λm;rðjω̂j
2Þ� ¼ 0h jρ 0j i þ

X1
n¼mþ1

nh jρ nj i
ð1þ rÞn In;m; ð6Þ

where In,m are constants satisfying (−1)mIn,m > 0.

From Eq. (6), a lower bound on the fidelity between ρ and the
vacuum state is given by

Eρ½Λm;rðjω̂j
2Þ�≤ 0h jρ 0j i ðm : oddÞ ð7Þ

for any odd integer m. As seen in Fig. 1a, the absolute value and
the slope of the function Λm,r are moderate for small values of m
and r, which is advantageous in executing the test in a finite
duration with a finite resolution. Compared to a similar method
proposed in ref. 39, our method excels in its tightness for weak
input signals; we see from Eq. (6) that, regardless of the value of r,
the inequality (7) saturates when ρ has at most m photons. This is
crucial for the use in QKD in which tightness directly affects the
efficiency of the key generation.

Extension to the fidelity to a coherent state βj i is straightfor-
ward as

Eρ½Λm;rðjω̂� βj2Þ�≤Trðρ βj i βh jÞ ðm : oddÞ: ð8Þ

The proofs are given in Methods.

Proposed protocol. Based on this fidelity test, we propose the fol-
lowing discrete-modulation protocol (see Fig. 2). Prior to the pro-
tocol, Alice and Bob determine the number of rounds N, the
acceptance probability of homodyne measurement f sucðjxjÞ ðx 2 RÞ
with fsuc(0) = 0, the parameters for the test function (m, r),
and the protocol parameters (μ, psig, ptest, ptrash, β, s) with
psig + ptest + ptrash = 1, where all the parameters are positive. Alice
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and Bob then run the protocol described in Box 1. Upon successful
verification, the protocol generates a shared final key of length

N̂
fin ¼ N̂

suc
1� h UðF̂; N̂ trashÞ=N̂suc

� �� �
� s ð9Þ

where hðxÞ :¼ �x log 2ðxÞ � ð1� xÞlog 2ð1� xÞ is the binary

entropy function and the function UðF̂; N̂ trashÞ will be specified later.
The acceptance probability fsuc(∣x∣) should be chosen to post-

select the rounds with larger values of ∣x∣, for which the bit error
probability is expected to be lower. It is ideally a step function, but
our security proof is applicable to any form of fsuc(∣x∣). The
parameter β is typically chosen to be

ffiffiffiffiffi
ημ

p
with η being a nominal

transmissivity of the quantum channel, while the security proof
itself holds for any choice of β. The parameters s and s0 are related
to the overall security parameter in the security proof below.

Security proof. We determine a sufficient amount of the privacy
amplification according to Shor and Preskill37,40, which has been
widely used for the DV-QKD protocols. We consider a coherent
version of Steps 1 and 2, in which Alice and Bob share an
entangled pair of qubits for each success signal round, such that

their Z-basis measurement outcomes correspond to the sifted key
bits a and b. For Alice, we introduce a qubit A and assume that
she entangles it with an optical pulse ~C in a state

Ψj iA~C :¼
0j iA

ffiffiffi
μ

p�� �
~C
þ 1j iA � ffiffiffi

μ
p�� �

~Cffiffiffi
2

p : ð10Þ

Then, Step 1 is equivalent to the preparation of Ψj iA~C followed by
a measurement of the qubit A on Z basis f 0j i; 1j ig to determine
the bit value a. For Bob, we construct a process of probabilistically
converting the received optical pulse C to a qubit B (See Fig. 3).
Consider a completely positive (CP) map defined by

FC!BðρCÞ :¼
Z 1

0
dx KðxÞρCK

ðxÞy ð11Þ

with

KðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f sucðxÞ

q
0j iB xh jC þ 1j iB �xh jC
� �

; ð12Þ

where xh j maps a state vector to the value of its wave function at x
(See also Eq. (111)). When the pulse C is in a state ρC, the cor-
responding process succeeds with a probability psuc and then
prepares the qubit B in a state ρB, where psucρB ¼ FC!BðρCÞ. If
the qubit B is further measured on Z basis, probabilities of the
outcome b = 0, 1 are given by

psuc 0h jρB 0j i ¼
Z 1

0
f sucðxÞdx xh jρC xj i; ð13Þ

psuc 1h jρB 1j i ¼
Z 1

0
f sucðxÞdx �xh jρC �xj i; ð14Þ

which shows the equivalence to the signal round in Step 2. This is
illustrated in Fig. 3.

To clarify the above observation, we introduce an
entanglement-sharing protocol defined in Box 2. This protocol
leaves N̂

suc
pairs of qubits shared by Alice and Bob. If they

measure these qubits on Z basis to define the sifted key bits, the
whole procedure is equivalent to Steps 1 through 3 of the actual
protocol (see Fig. 4). Alice’s measurements on X basis f ±j i :¼
ð 0j i þ 1j iÞ=

ffiffiffi
2

p
g in the trash rounds are added for later security

argument, and they do not affect the equivalence.
The Shor-Preskill argument connects the amount of privacy

amplification to the so-called phase error rate. Suppose that, after
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Fig. 2 The proposed continuous-variable quantum key distribution
protocol. Alice generates a random bit a ∈ {0, 1} and sends a coherent
state with amplitude ð�1Þa ffiffiffi

μ
p

. Bob chooses one of the three measurements
based on the predetermined probability. In the signal round, Bob performs a
homodyne measurement on the received optical pulse and obtains an
outcome x̂. In the test round, Bob performs a heterodyne measurement on
the received optical pulse and obtains an outcome ω̂. In the trash round, he
produces no outcome.
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Fig. 1 The test scheme to estimate the fidelity. a Example of the test
functions Λm,r used in the estimation. The values of r in the figure are
chosen so that the range of Λm,r is minimized for given m. In general, the
minimum range of the function Λm,r becomes larger as m increases. The
pair (m, r) = (1, 0.4120) was used in the numerical simulation of key rates
below. b A schematic description of the usage of obtained outcomes in
heterodyne measurement. In order to estimate the lower bound on the
fidelity to the coherent states ± β

�� �
, the squared distance between the

outcome ω̂ and the objective point (−1)aβ (i.e., jω̂� ð�1Þaβj2) is used.
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the entanglement-sharing protocol, Alice and Bob measure their
N̂

suc
pairs of qubits on X basis f þj i; �j ig. A pair with outcomes

(+, −) or (−, +) is defined to be a phase error. Let N̂
suc
ph be the

number of phase errors among N̂
suc

pairs. If we can have a good
upper bound eph on the phase error rate N̂

suc
ph =N̂

suc
, shortening by

fraction h(eph) via privacy amplification in the actual protocol
achieves the security in the asymptotic limit37.

To cover the finite-size case as well, we need a more rigorous
statement on the upper bound. For that purpose, we define an

estimation protocol in Box 3 (see also Fig. 4). The task of proving
the security of the actual protocol is then reduced to construction

of a function UðF̂; N̂ trashÞ which satisfies

Pr N̂
suc
ph ≤ UðF̂; N̂ trashÞ

h i
≥ 1� ϵ ð15Þ

for any attack in the estimation protocol. It is known that
the condition (15) immediately implies that the actual protocol
is ϵsec-secure with a small security parameter ϵsec ¼ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 2�s

p
þ 2�s040,41. See Methods for the rationale and the

detailed definition of security.
At this point, it is beneficial for the analysis of the phase error

statistics to clarify what property of the optical pulse C is
measured by Bob’s X-basis measurement in the estimation
protocol (see Fig. 3). Let Πev(od) be the projection to the subspace
with even (resp. odd) photon numbers. (Πev + Πod = 1C holds by
definition.) Furthermore, since Πev − Πodd is the operator for an
optical phase shift of π, we have ðΠev � ΠoddÞ xj i ¼ �xj i. Eq. (12)
is then rewritten as

KðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f sucðxÞ

q
þj iB xh jC Πev þ �j iB xh jC Πod

� �
: ð16Þ

Therefore, when the state of the pulse C is ρC, the probability of
obtaining +(−) in the X-basis measurement in the estimation
protocol is given by

þð�Þh jFC!BðρCÞ þð�Þj i ¼ Tr ρCM
suc
evðodÞ

� �
; ð17Þ

where

Msuc
evðodÞ :¼

Z 1

0
2f sucðxÞdx ΠevðodÞ xj i xh jC ΠevðodÞ: ð18Þ

This shows that Bob’s X-basis measurement distinguishes the
parity of the photon number of the received pulse. In this sense,
the secrecy of our protocol is assured by the complementarity
between the sign of the quadrature and the parity of the photon
number.

As an intermediate step toward our final goal of Eq. (15), let us
first derive a bound on the expectation value E½N̂suc

ph � in terms of

those collected in the test and the trash rounds, E½F̂� and E½Q̂��,
in the estimation protocol. Let ρAC be the state of the qubit A and
the received pulse C averaged over N pairs, and define relevant
operators as

Msuc
ph :¼ þj i þh jA �Msuc

od þ �j i �h jA �Msuc
ev ; ð19Þ

Box 1 | Actual protocol

1. Alice generates a random bit a ∈ {0, 1} and sends an optical pulse ~C in a coherent state with amplitude ð�1Þa ffiffiffi
μ

p
to Bob. She repeats it N times.

2. For each of the received N pulses, Bob chooses a label from {signal, test, trash} with probabilities psig, ptest, and ptrash, respectively. According to the
label, Alice and Bob do one of the following procedures.
[signal] Bob performs a homodyne measurement on the received optical pulse C, and obtains an outcome x̂ 2 R. With a probability fsucðjx̂jÞ, he regards
the detection to be a "success”, and defines a bit b = 0 (resp. 1) when signðx̂Þ ¼ þð�Þ1. He announces success/failure of the detection. In the case of a
success, Alice (resp. Bob) keeps a (b) as a sifted key bit.
[test] Bob performs a heterodyne measurement on the received optical pulse C, and obtains an outcome ω̂. Alice announces her bit a. Bob calculates
the value of Λm;rðjω̂� ð�1Þaβj2Þ.
[trash] Alice and Bob produce no outcomes.
3. We refer to the numbers of “success” and “failure” signal rounds, test rounds, and trash rounds as N̂

suc
; N̂

fail
; N̂

test
, and N̂

trash
, respectively.

(N ¼ N̂
suc þ N̂

fail þ N̂
test þ N̂

trash
holds by definition.) Bob calculates the sum of Λm;rðjω̂� ð�1Þaβj2Þ obtained in the N̂

test
test rounds, which is denoted

by F̂.
4. For error correction, they use ðHEC þ s0Þ-bits of encrypted communication consuming a pre-shared secret key to do the following. Alice sends Bob HEC

bits of syndrome of a linear code for her sifted key. Bob reconciles his sifted key accordingly. Alice and Bob verify the correction by comparing s0 bits via
universal2 hashing54.
5. Bob computes and announces the final key length N̂

fin
according to Eq. (9). Alice and Bob apply privacy amplification to obtain the final key. The net

key gain Ĝ per pulse is thus given by Ĝ ¼ ðN̂fin � HEC � s0Þ=N.

0
x

Pr[b = 0]

Pr[b = 1]

|�(x )|2 fsuc(x )dx=

Absolute value of outcome x

Wave function of optical pulse

Acceptance probability
fsuc (|x |)

Extracted qubit

Z-measurement X-measurement

evPr[b ′ = +] = Tr[|�〉〈�| Msuc]

odPr[b ′ = –] = Tr[|�〉〈�| Msuc]

b b ′

�(x) |x〉 dx

|–|x ′|〉 | |x ′|〉

|�〉 =

|x|

|�(–x )|2 fsuc(x )dx=

Fig. 3 Bob’s qubit extraction in the entanglement-sharing protocol. Bob
performs on the optical pulse a non-demolition projective measurement,
with which the absolute value of the outcome of homodyne measurement
jx̂j is determined. Then, Bob extracts a qubit B by the operation F defined in
Eq. (11). A Z-basis measurement on this qubit gives the same sifted key bit
b as described in the actual protocol. On the other hand, the X-basis
measurement on this qubit reveals the parity of photon number of the
received optical pulse.
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Πfid :¼ 0j i 0h jA � βj i βh jC þ 1j i 1h jA � �βj i �βh jC; ð20Þ

Πtrash
� :¼ �j i �h jA � 1C: ð21Þ

Then we immediately have

E½N̂suc
ph � ¼ psigN Tr ρACM

suc
ph

� �
ð22Þ

and

E½Q̂�� ¼ ptrashN Tr ρACΠ
trash
�

� �
; ð23Þ

while application of the property of Eq. (8) leads to

E½F̂�≤ ptestN Tr ρACΠ
fid

� �
: ð24Þ

Let us denote Tr ρACM
� �

simply by Mh i for any operator M. The
set of points

�	
Msuc

ph

�
;
	
Πfid
�
;
	
Πtrash

�
��

for all the density
operators ρAC form a convex region. Rather than directly deriving
the boundary of the region, it is easier to pursue linear constraints
in the form of

Msuc
ph

D E
≤Bðκ; γÞ � κ Πfid

	 �
þ γ Πtrash

�
	 �

; ð25Þ

where Bðκ; γÞ; κ; γ 2 R.

Box 2 | Entanglement-sharing protocol

10. Alice prepares a qubit A and an optical pulse ~C in a state Ψj iA~C defined in (10). She repeats it N times.
20. For each of the received N pulses, Bob announces a label in the same way as that in Step 2. Alice and Bob do one of the following procedures
according to the label.
[signal] Bob performs a quantum operation on the received pulse C specified by the CP map F C!B to determine success/failure of detection and to
obtain a qubit B upon success. He announces success/failure of detection. In the case of a success, Alice keeps her qubit A.
[test] Bob performs a heterodyne measurement on the received optical pulse C, and obtains an outcome ω̂. Alice measures her qubit A on Z basis and
announces the outcome a ∈ {0, 1}. Bob calculates the value of Λm;rðjω̂� ð�1Þaβj2Þ.
[trash] Alice measures her qubit A on X basis to obtain a0 2 fþ;�g.
30 . N̂

suc
; N̂

fail
; N̂

test
; N̂

trash
, and F̂ are defined in the same way as those in Step 3. Let Q̂� be the number of rounds in the N̂

trash
trash rounds with a0 ¼ �.

Quantum Channel
a = 0/1

Actual protocol (steps 1–3)

Failure
or

b = 0/1

Signal

Test

Trash

Entanglement-sharing protocol

(Optical) pulse C

~

~

~

Alice Bob

Z-meas.

Failure
or

Qubit A
Qubit B ′

Z-meas.

Estimation protocol

a ′ = +/−

(Z-meas. for test, X-meas. for trash)
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b ′ = +/−
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Encode

Eve

Pulse C

Quantum channel Signal
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Pulse C Eve

Pulse C

Quantum channel Signal

Test

Trash
Pulse C Eve

Pulse C

�
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�

Fig. 4 Relation between three protocols. The actual protocol and the estimation protocol are related through the entanglement-sharing protocol. After the
entanglement-sharing protocol, Alice and Bob are left with the observed data ðN̂suc

; N̂
fail
; N̂

test
; N̂

trash
; F̂; Q̂�Þ and N̂

suc
pairs of qubits. If Alice and Bob ignore

Q̂� and measure their qubits on the Z-basis to determine their N̂
suc

-bit sifted keys, it becomes equivalent to the actual protocol. On the other hand, if Alice
and Bob measure their N̂

suc
pairs of qubits on the X-basis, they can count the number N̂

suc
ph of phase errors, which we call the estimation protocol. If we can

find a reliable upper bound U on N̂
suc
ph in the estimation protocol, it restricts the property of the state of N̂

suc
pairs of qubits after the entanglement-sharing

protocol, which in turn limits the amount of leaked information on the sifted keys in the actual protocol. The security proof is thus reduced to finding such
an upper bound U in the estimation protocol, represented as a function of the variables that are commonly available in the three protocols.

Box 3 | Estimation protocol

1″–3″. Same as Steps 10 , 20, and 30 of the entanglement-sharing protocol.
4″. Alice and Bob measure each of their N̂

suc
pairs of qubits on X basis and obtain outcomes a0 and b0, respectively. Let N̂

suc
ph be the number of pairs

found in the combination ða0; b0Þ ¼ ðþ; �Þ or (−, +).
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It is expected that a meaningful bound is obtained only for
κ, γ ≥ 0. Decreasing fidelity Πfid

	 �
should allow more room for

eavesdropping, leading to a larger value of phase error rate

Msuc
ph

D E
. Hence Eq. (25) will give a good bound only when κ≥0.

As for Πtrash
�

	 �
, it only depends on the marginal state of Alice’s

qubit A, which is independent of the adversary’s attack. We thus
have Πtrash

�
	 �

¼ q� :¼ �h jA Ψj iA~C


 

2 ¼ ð1� e�2μÞ=2. Since

Alice’s use of a stronger pulse should lead to larger leak of
information, we should choose γ ≥ 0 for a good bound.

To find a function B(κ, γ) satisfying Eq. (25), let us define an
operator

M½κ; γ� :¼ Msuc
ph þ κΠfid � γΠtrash

� : ð26Þ

Then Eq. (25) is rewritten as Tr ρACM½κ; γ�
� �

≤Bðκ; γÞ. This
condition holds for all ρAC iff M[κ, γ] satisfies an operator
inequality

M½κ; γ�≤Bðκ; γÞ1AC: ð27Þ

If the operator M[κ, γ] was represented by a matrix of a small
size, the tightest bound would be found by computing the
maximum eigenvalue of the matrix. But here M[κ, γ] has an
infinite rank and it is difficult to compute the tightest
bound. We thus compromise and heuristically find a computable
bound B(κ, γ) which is not necessarily tight; we reduce the
problem to finding the maximum eigenvalues of small-size
matrices by replacing M[κ, γ] with a constant upper-bound
except in a relevant finite-dimensional subspace spanned by ± βj i
and Msuc

evðodÞ ± βj i. For the detailed derivation of B(κ, γ), see
Methods.

With B(κ, γ) computed, we can rewrite Eq. (25) using Eqs.
(22)–(24) to obtain a relation between E½N̂suc

ph �, E½F̂�, and E½Q̂��.
It is concisely written as

E T̂½κ; γ�
� �

≤NBðκ; γÞ ð28Þ

with

T̂½κ; γ� :¼ p�1
sig N̂

suc
ph þ p�1

testκF̂ � p�1
trashγQ̂�: ð29Þ

This relation leads to an explicit bound on the phase error rate as
E½N̂suc

ph �=psigN ≤Bðκ; γÞ þ γq� � κ E½F̂�=ptestN , which is enough
for the computation of asymptotic key rates.

The security in the finite-size regime is proved as follows. The
fact that the bound given in Eq. (28) is true for all the states ρAC
allows us to use Azuma’s inequality42 to evaluate the fluctuations
around the expectation value, leading to an inequality

T̂½κ; γ�≤NBðκ; γÞ þ δ1ðϵ=2Þ ð30Þ

which holds with a probability no smaller than 1 − ϵ/2 (see
Methods for the explicit form of δ1(ϵ/2), which is of Oð

ffiffiffiffi
N

p
Þ). We

remark that the reason for including the trash rounds in the
actual protocol is to circumvent a technical issue which would
arise in this step. Without measurement of Q̂� in the estimation
protocol, we would obtain an inequality E½p�1

sig N̂
suc
ph þ p�1

testκF̂�≤
NBðκ; γÞ þ γq�. In contrast to Eq. (28), the new inequality is true
only when ρAC satisfies Πtrash

�
	 �

¼ q�, which is too stringent for
the application of Azuma’s inequality.

Although Eq. (29) includes Q̂� which is inaccessible in the
actual protocol, we can derive a bound by noticing that it is an
outcome from Alice’s qubits and is independent of the adversary’s

attack. In fact, given N̂
trash

, it is the tally of N̂
trash

Bernoulli trials
with a probability q−. Hence, we can derive an inequality of the

form

Q̂� ≤ q�N̂
trash þ δ2ðϵ=2; N̂

trashÞ ð31Þ

which holds with a probability no smaller than 1 − ϵ/2. Here

δ2ðϵ=2; N̂
trashÞ can be determined by a Chernoff bound (see

Methods). Combining Eqs. (29), (30), and (31), we obtain

UðF̂; N̂ trashÞ satisfying Eq. (15) to complete the finite-size
security proof.

Numerical simulation. We simulated the net key gain per pulse
Ĝ as a function of attenuation in the optical channel (including
the efficiency of Bob’s apparatus). We assume a channel model
with a loss with transmissivity η and an excess noise at channel
output; Bob receives Gaussian states obtained by randomly dis-
placing coherent states ±

ffiffiffiffiffi
ημ

p�� �
to increase their variances by a

factor of (1 + ξ)43,44. We assume a step function with a threshold
xth( > 0) as the acceptance probability fsuc(∣x∣). The expected
amplitude of coherent state β is chosen to be

ffiffiffiffiffi
ημ

p
. We set ϵsec ¼

2�50 for the security parameter, and set ϵ ¼ 2�s ¼ ϵ2sec=16 and
2�s0 ¼ ϵsec=2. We thus have two coefficients (κ, γ), four protocol
parameters (μ, xth, psig, ptest), and two parameters (m, r) of the
test function to be determined. For each transmissivity η, we
determined (κ, γ) via a convex optimization using the CVXPY
1.0.2545,46 and (μ, xth, psig, ptest) via the Nelder-Mead in the
scipy.minimize library in Python, in order to maximize the key
rate. Furthermore, we adopted m = 1 and r = 0.4120, which leads
to ðmaxΛm;r;minΛm;rÞ ¼ ð2:824;�0:9932Þ. See Methods for the
detail of the model of our numerical simulation and examples of
optimized parameters. Typical optimized values of the threshold
xth range from 0.4 to 1.5 (we adopted a normalization for which

the vacuum fluctuation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔxÞ2i

q
¼ 0:5). They are larger than

those in other analyses of protocols with post-selection (e.g.,
ref. 31). A possible reason is the fact that the latter protocols use
more than two states to monitor the eavesdropping act, which
may lead to a lower cost of privacy amplification and higher
tolerance against bit errors.

Figure 5 shows the key rates of our protocol in the asymptotic
limit N → ∞ and finite-size cases with N = 109–1012 for
ξ = 10−2.0–10−3.0 and 0. (Note that from the results of the recent
experiments8,44,47, excess noise with ξ = 10−2.0–10−3.0 at the
channel output seems reasonable. Furthermore, the state-of-the-
art experiments8 work at 0.5 GHz repetition rate, which implies
that total number of rounds N = 109–1012 can be achieved in a
realistic duration.) For the noiseless model (ξ = 0), the asymptotic
rate reaches 8 dB. In the case of ξ = 10−3.0, it reaches 4 dB, which
is comparable to the result of a similar binary modulation
protocol proposed in ref. 29. As for finite-size key rates, we see
that the noiseless model shows a significant finite-size effect even
for N = 1012. On the other hand, with a presence of noises
(ξ = 10−3.0) the effect becomes milder, and N = 1011 is enough to
achieve a rate close to the asymptotic case. This may be ascribed
to the cost of the fidelity test. In order to make sure that the
fidelity is no smaller than 1 − δ, the statistical uncertainty of the
fidelity test must be reduced to O(δ). As a result, approaching the
asymptotic rate of ξ = 0 will require many rounds for the fidelity
test.

Discussion
Numerically simulated key rates above were computed on the
implicit assumption that Bob’s observed quantities are processed
with infinite precision. Even when these are approximated
with a finite set of discrete points, we can still prove the security
with minimal degradation of key rates. For the heterodyne
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measurement used for the test in the protocol, assume that a
digitized outcome ωdig ensures that the true value ω̂ lies in a
range Ω(ωdig). Then, we need only to replace Λm;rðjω̂± βj2Þ with
its worst-case value, minfΛm;rðjω̂± βj2Þ : ω̂ 2 ΩðωdigÞg. As seen

in Fig. 1a, the slope of function Λm,r(ν) is moderate and goes to
zero for ν → ∞. This means that the worst-case value can be
made close to the true value, leading to small influence on the
key rate. For the homodyne measurement used for the signal,
finite precision can be treated through appropriate modification
of the acceptance probability fsuc(x). Aside from a very small
change in the success rate and the bit error rate, this function
affects the key rate only through integrals in Eqs. (116), (118),
and (120) in Methods, and hence influence on the key rate is
expected to be small. We thus believe that the fundamental
obstacles associated with the analog nature of the CV protocol
have been settled by our approach.

In comparison with recent asymptotic analyses31,32 of
discrete-modulation CV QKD, our protocol achieves lower key
rates and much shorter distance. Since ours is the first attempt
of applying the proof technique of DV QKD to CV QKD, there
is much room for possible improvement. We sacrificed the
optimality for simplicity in deriving the operator inequality. The
definition of the phase error is not unique and there may be a
better choice. The trash rounds were introduced for technical
reasons, but we are not sure whether they are really necessary.
Nonetheless, we believe that the dominant reason for the dif-
ference lies in the fact that our protocol uses only two states. In
contrast, the protocols considered in refs. 31,32 use four or more
states in signal or test modes. The genuine binary protocol was
analyzed in ref. 29, and the key rate derived there is comparable
to ours.

In order to improve the presented finite-size key rate, a
promising route will thus be increasing the number of states
from two. Our fidelity test can be straightforwardly generalized
to monitoring of such a larger constellation of signals, and we
will be able to confine the adversary’s attacks more tightly than
in the present binary protocol. As for the proof techniques to
determine the amount of privacy amplification, there are two
possible directions. One is to generalize the present DV-QKD-
inspired approach of estimating the number of phase errors in
qubits to the case of qudits. The other direction is to seek a way
to combine the existing analyses31,32,48 of discrete-modulation
CV-QKD protocols, which have been reported to yield high key
rates in the asymptotic regime, to our fidelity test. Although
either of the approaches is nontrivial, we believe that the present
results will open up new direction toward exploiting the
expected high potential of CV QKD with an improved
security level.

In summary, we proved the security of a binary-modulated CV-
QKD protocol in the finite-size regime while completely cir-
cumventing the problems arising from the analog nature of CV
QKD. We believe that it is a significant milestone toward real-
world implementation of CV QKD, which has its own advantages.

Methods
Proof of Theorem 1 and Eq. (8). In this section, we prove Theorem 1 stated in the
main text and derive Eq. (8) as a corollary of Theorem 1.

Fig. 5 The net key gain per pulse Ĝ (key rate) vs. transmissivity η of the
optical channel. The abscissa represents attenuation in decibel, i.e.,
�10 log 10η. We assumed that the optical pulse that Bob receives is given
by randomly displacing a coherent state to increase its variance by a factor
of (1 + ξ). a The asymptotic key rate for various values of ξ. b The key rate
for various values of ξ when the pulse number is finite (N = 1011). c The key
rate without the excess noise (ξ = 0) along with the repeaterless bound
(PLOB bound) of the secure key rate in the pure-loss channel55. d The key
rate with the excess noise of ξ = 10−3.0.
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Proof: From Eq. (1), the expectation value of Λm;rðjω̂j
2Þ when given a measured

state ρ is given by

Eρ½Λm;r jω̂j2
� �

�

¼
Z
ω2C

Λm;r jωj2
� �

qρðωÞ d
2ω

¼
Z 1

0
dν Λm;rðνÞ

Z 2π

0

dθ
2π

ffiffiffi
ν

p
eiθ

	 ��ρ ffiffiffi
ν

p
eiθ

�� �
 �

¼
Z 1

0
dν Λm;rðνÞ

X1
n¼0

νne�ν

n!
nh jρ nj i

 !

¼
X1
n¼0

nh jρ nj iIn;m
ð1þ rÞn ;

ð32Þ

where

In;m :¼ 1
n!

Z 1

0
dν e�ννnLð1Þm ðνÞ ð33Þ

for integers n, m ≥ 0.
The following three properties hold for In,m:

(i) In,m = 0 for m ≥ n ≥ 1.

This results from orthogonality relations of the associated Laguerre
polynomials, that is,Z 1

0
Lð1Þn ðνÞLð1Þm ðνÞνe�ν dν ¼ ðnþ 1Þδn;m: ð34Þ

Since the polynomial νn−1 can be written as a linear combination of lower order

polynomials fLð1Þl ðνÞg0≤ l ≤ n�1, In,m vanishes whenever m ≥ n ≥ 1.

(ii) (−1)mIn,m > 0 for n > m ≥ 0.

This property is shown as follows. First, the associated Laguerre polynomials
satisfy the following recurrence relation for m ≥ 149:

mLð1Þm ðνÞ ¼ ν
dLð1Þm

dν
ðνÞ þ ðmþ 1ÞLð1Þm�1ðνÞ: ð35Þ

Substituting this to Eq. (33) and using integration by parts, we have

In;m ¼ nþm
n

In�1;m �mþ 1
n

In�1;m�1: ð36Þ

for n ≥ 1 and m ≥ 1. The property (ii) is then proved by induction over m. For
m = 0, it is true since In,0 = 1 > 0. When (−1)m−1In,m−1 > 0 for n > m − 1, we can
prove (−1)mIn,m > 0 for n > m by using Eq. (36) recursively with Im,m = 0 from
property (i).

(iii) I0,m = 1 for m ≥ 0.

This also follows from property (i) and Eq. (36) for n = 1 and m ≥ 1, which
leads to I0,m = I0,0 = 1.

Combining properties (i), (ii), and (iii) shows Eq. (6).
Eq. (8) in the main text is derived as the following corollary.

Corollary 1: Let βj i ðβ 2 CÞ be the coherent state with amplitude β. Then, for any
β 2 C and for any odd positive integer m, we have

Eρ½Λm;rðjω̂� βj2Þ�≤ βh jρ βj i: ð37Þ

Proof: From Eq. (6) of Theorem 1, for any odd positive integer m, we have

Eρ½Λm;rðjω̂j
2Þ�≤ 0h jρ 0j i: ð38Þ

Let Dβ be a displacement operator satisfying

Dβ 0j i 0h jDy
β ¼ βj i βh j; ð39Þ

and Dy
β ¼ D�β . With ~ρ :¼ DβρD

y
β , we have q~ρðωÞ ¼ qρðω� βÞ for probability

density function of heterodyne measurement outcome, which implies that

E~ρ½Λm;rðjω̂� βj2Þ� ¼ Eρ½Λm;rðjω̂j
2Þ�

≤ 0h jρ 0j i
¼ βh j~ρ βj i:

ð40Þ

Replacing ~ρ with ρ, we obtain Eq. (37).

Detail of the security proof. In this section, we prove the security of the proposed
protocol in the main text. This section consists of several subsections. In the first
subsection, we give a definition of security, which is standard in the literature. The
security condition is divided into two conditions, secrecy and correctness. Since the
correctness is trivially satisfied, it is the secrecy that is the focus of the security proof.
The second subsection explains how the secrecy condition is reduced to Eq. (15) of

the estimation protocol, which bounds the number of phase errors. The third
subsection lays the groundwork for the full security proof by deriving the inequality
(27) involving three operators relevant for the quantities observed in the signal, the
test, and the trash round in the estimation protocol. After proving a general lemma
(Lemma 1), an explicit form of the upper bound B(κ, γ) satisfying Eq. (27) is given
as a corollary (Corollary 2) of the lemma. Finally, the fourth subsection uses

Azuma’s inequality and Corollaries 1 and 2 to derive an explicit form of UðF̂; N̂ trashÞ
that fulfills Eq. (15), which completes the security proof of the actual protocol.

1. Definition of security in the finite-size regime. We evaluate the secrecy of the
final key as follows. When the final key length is Nfin ≥ 1, we represent Alice’s final
key and an adversary’s quantum system as a joint state

ρfinAEjN fin ¼
X2Nfin�1

z¼0

PrðzÞ zj i zh jA � ρfinEjN fin ðzÞ; ð41Þ

and define the corresponding ideal state as

ρidealAEjN fin ¼
X2Nfin�1

z¼0

2�N fin
zj i zh jA � TrAðρfinAEjN fin Þ: ð42Þ

Let σk k1 ¼ Tr
ffiffiffiffiffiffiffi
σyσ

p
be the trace norm of an operator σ. We say a protocol is ϵsct-

secret when

1
2

X
N fin ≥ 1

PrðN finÞ ρfinAEjN fin � ρidealAEjN fin




 



1
≤ ϵsct ð43Þ

holds regardless of the adversary’s attack. The main goal of the security proof is to
derive the amount of privacy amplification, or equivalently to find the function

UðF̂; N̂ trashÞ in Eq. (9), such that Eq. (43) should hold for given ϵsct > 0.
For correctness, we say a protocol is ϵcor-correct if the probability for Alice’s and

Bob’s final key to differ is bounded by ϵcor. Our protocol achieves ϵcor ¼ 2�s0 via the
verification in Step 4.

When the above two conditions are met, the protocol becomes ϵsec-secure with
ϵsec ¼ ϵsct þ ϵcor in the sense of universal composability50.

2. Reduction to the estimation protocol. Here we show that Eq. (15) in the
estimation protocol implies ϵsct-secrecy of the actual protocol with
ϵsct ¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 2�s

p
. We have already seen that the entanglement-sharing protocol

immediately followed by Z-basis measurements of the qubits is equivalent to Steps 1
through 3 of the actual protocol. Here we consider a slightly modified scenario in
which, after the entanglement-sharing protocol, a controlled-NOT operation V is
applied on each pair of qubits, where V :¼ 0j i 0h jA � 1B þ 1j i 1h jA � XB with
XB :¼ 1j i 0h jB þ 0j i 1h jB . Alice then measures her qubits on the Z basis to define her
sifted key bits and proceeds with Step 5 of the actual protocol. Since V does not affect

the Z-basis value of the Alice’s qubit, her procedure of determining the N̂
fin
-bit final

key in this scenario is equivalent to that in the actual protocol. Although V prevents
Bob from obtaining an equivalent final key, he can still simulate the reconciliation and
the verification process in Step 4 since the Z-basis value of each of his N̂

suc
qubits

corresponds to absence/presence of a bit error between Alice’s and Bob’s sifted key
bits. Hence Bob can equivalently carry out all the announcements in Steps 4 and 5 of
the actual protocol. As a result, this scenario leads to exactly the same distribution Pr
(Nfin) and the same states ρfin

AEjN fin as those of the actual protocol.

The secrecy of Alice’s final key can be determined from the X-basis property of
her N̂

suc
qubits after the application of V. Since V can be rewritten as V ¼

1A � þj i þh jB þ ZA � �j i �h jB with ZA :¼ �j i þh jA þ þj i �h jA, the X-basis
value of each of Alice’s qubits corresponds to absence/presence of a phase error.
Suppose that these N̂

suc
qubits are measured on the X-basis to produce an outcome

x̂ 2 fþ;�gN̂
suc

. Let wtðx̂Þ be the number of symbol ‘−’ in x̂. If Eq. (15) holds in the
estimation protocol, the statistics of x̂ should satisfy

Pr wtðx̂Þ≤UðF̂; N̂ trashÞ
h i

≥ 1� ϵ; ð44Þ

which implies that the number of probable patterns x̂ is limited. To be more
precise, let us introduce a set Ω(n, w) ≔ {x ∈ {+, −}n∣ wt(x) ≤ w}, whose size is
bounded as ∣Ω(n, w)∣ ≤ 2nh(w/n). The condition (44) then implies

Pr N̂
suc

≥ 1; x̂ =2 T ðN̂suc
; F̂; N̂

trashÞ
h i

≤ ϵ ð45Þ

with T ðN̂ suc
; F̂; N̂

trashÞ :¼ Ω N̂
suc
;UðF̂; N̂ trashÞ

� �
, which satisfies

log 2jT ðN̂ suc
; F̂; N̂

trashÞj ≤ N̂ suc � N̂
fin � s ð46Þ

from Eq. (9). It is known40,41,51 that the above conditions imply Eq. (43) with
ϵsct ¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 2�s

p
. Therefore, it suffices to show that Eq. (15) holds in the

estimation protocol for proving the actual protocol to be ϵsec-secure with
ϵsec ¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 2�s

p
þ 2�s0 .

We remark that the encryption of M :¼ HEC þ s0 bits in Step 4 can be omitted
as long as each bit linearly depends on Alice’s sifted key over GF(2). In such a case,
the above scenario must include measurements on Alice’s qubits to simulate the
announcement of the M bits in Step 4. The backaction on X basis caused by the
measurement for each bit amounts to doubling the number of probable patterns x̂.
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We can thus redefine the set T ðN̂suc
; F̂; N̂

trashÞ by enlarging its size by factor of 2M

such that Eq. (45) holds. Then, by decreasing N̂
fin

by M, Eq. (46) also holds. This
means that we achieve the same net key rate with the same level of security.

3. Derivation of the operator inequality. The aim of this subsection is to
construct B(κ, γ) which fulfills the operator inequality (27). Let σsupðOÞ denote the
supremum of the spectrum of a bounded self-adjoint operator O. Although
Bðκ; γÞ ¼ σsupðM½κ; γ�Þ would give the tightest bound satisfying Eq. (27), it is hard
to compute it numerically since system C has an infinite-dimensional Hilbert space.
Instead, we derive a looser but simpler bound. We first prove the following lemma.

Lemma 1: Let Π± be orthogonal projections satisfying Π+Π− = 0. Suppose that the
rank of Π± is no smaller than 2 or infinite. Let M± be self-adjoint operators
satisfying Π±M±Π± = M± ≤ α±Π±, where α± are real constants. Let ψj i be an
unnormalized vector satisfying ðΠþ þ Π�Þ ψj i ¼ ψj i and Π ± ψj i≠ 0. Define
following quantities with respect to ψj i:

C ± :¼ ψh jΠ± ψj ið>0Þ; ð47Þ

D ± :¼ C�1
± ψh jM ± ψj i; ð48Þ

V ± :¼ C�1
± ψh jM2

± ψj i � D2
± : ð49Þ

Then, for any real numbers γ+ and γ−, we have

σsup Mþ þM� þ ψj i ψh j � γþΠþ � γ�Π�
� �

≤ σsup M4dð Þ; ð50Þ

where four dimensional matrix M4d is defined as

M4d :¼

αþ � γþ
ffiffiffiffiffiffiffi
Vþ

p
0 0ffiffiffiffiffiffiffi

Vþ
p

Cþ þ Dþ � γþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CþC�

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CþC�

p
C� þ D� � γ�

ffiffiffiffiffiffiffi
V�

p

0 0
ffiffiffiffiffiffiffi
V�

p
α� � γ�

2
66664

3
77775: ð51Þ

Proof: We choose orthonormal vectors eð1Þ±
��� E

; eð2Þ±
��� En o

in the domain of Π±,

respectively, to satisfy ffiffiffiffiffiffiffi
C ±

p
eð1Þ±
��� E

¼ Π± ψj i; ð52Þ

M ± eð1Þ±
��� E

¼ D ± eð1Þ±
��� E

þ
ffiffiffiffiffiffiffi
V ±

p
eð2Þ±
��� E

; ð53Þ

which is well-defined due to Eqs. (47)–(49) and Π±M±Π± = M±. From
ðΠþ þ Π�Þ ψj i ¼ ψj i, we have

ψj i ¼
ffiffiffiffiffiffiffi
Cþ

p
eð1Þþ

��� E
þ

ffiffiffiffiffiffiffi
C�

p
eð1Þ�
�� E

: ð54Þ

Let us define the following projection operators:

ΠðjÞ
± :¼ eðjÞ±

��� E
eðjÞ±
D ��� ðj ¼ 1; 2Þ; ð55Þ

Πð≥ 2Þ
± :¼ Π ± � Πð1Þ

± ; ð56Þ

Πð≥ 3Þ
± :¼ Πð≥ 2Þ

± � Πð2Þ
± : ð57Þ

Since Eq. (53) implies Πð≥ 3Þ
± M ±Π

ð1Þ
± ¼ 0, we have

M ± ¼ Πð1Þ
± M ±Π

ð1Þ
± þ Πð≥ 2Þ

± M ±Π
ð≥ 2Þ
± þ Πð1Þ

± M ±Π
ð2Þ
± þ Πð2Þ

± M ±Π
ð1Þ
± : ð58Þ

The second term in the right-hand side of Eq. (58) is bounded as

Πð≥ 2Þ
± M ±Π

ð≥ 2Þ
± ≤ α±Π

ð≥ 2Þ
± ; ð59Þ

since M± ≤ α±Π±. Combining Eqs. (48), (58), and (59), we have

M ± � γ±Π ±

≤ ðD ± � γ± Þ e
ð1Þ
±

��� E
eð1Þ±
D ���þ ðα± � γ ± Þ e

ð2Þ
±

��� E
eð2Þ±
D ���

þ
ffiffiffiffiffiffiffi
V ±

p
eð1Þ±
��� E

eð2Þ±
D ���þ eð2Þ±

��� E
eð1Þ±
D ���� �

þ ðα± � γ± ÞΠ
ð≥ 3Þ
± :

ð60Þ

Combining Eqs. (54) and (60), we have

Mþ þM� þ ψj i ψh j � γþΠþ � γ�Π�

≤M4d � ðαþ � γþÞΠ
ð≥ 3Þ
þ � ðα� � γ�ÞΠð≥ 3Þ

� ;
ð61Þ

where M4d is given in Eq. (51) with the basis f
��eð2Þþ

�
;
��eð1Þþ

�
;
��eð1Þ�

�
;
��eð2Þ�

�
g. Since

α± � γ± ¼
	
eð2Þ±
��M4d

��eð2Þ± �≤ σsup M4dð Þ, supremum of the spectrum of the right-
hand side of Eq. (61) is equal to the maximum eigenvalue of the four-dimensional
matrix M4d. We thus obtain Eq. (50).

As a corollary, we derive Eq. (27) as follows.

Corollary 2: Let βj i be a coherent state. Let Πev(od), Msuc
evðodÞ, and M[κ, γ] be as

defined in the main text, and define following quantities:

Cev :¼ βh jΠev βj i ¼ e�jβj2 cosh jβj2; ð62Þ

Cod :¼ βh jΠod βj i ¼ e�jβj2 sinh jβj2; ð63Þ

DevðodÞ :¼ C�1
evðodÞ βh jMsuc

evðodÞ βj i; ð64Þ

VevðodÞ :¼ C�1
evðodÞ βh j Msuc

evðodÞ

� �2
βj i � D2

evðodÞ: ð65Þ

Let Merr
4d ½κ; γ� and Mcor

2d ½κ; γ� be defined as follows:

Merr
4d ½κ; γ� :¼

1
ffiffiffiffiffiffiffiffi
Vod

pffiffiffiffiffiffiffiffi
Vod

p
κ Cod þ Dod κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cod Cev

p
κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cod Cev

p
; κ Cev þ Dev � γ

ffiffiffiffiffiffiffi
Vev

p
ffiffiffiffiffiffiffi
Vev

p
1� γ

2
6664

3
7775; ð66Þ

Mcor
2d ½κ; γ� :¼

"
κ Cev κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cev Cod

p
κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cev Cod

p
κ Cod � γ

#
: ð67Þ

Define a convex function

Bðκ; γÞ :¼ max σsup Merr
4d ½κ; γ�

� �
; σsup Mcor

2d ½κ; γ�
� �n o

: ð68Þ

Then, for κ, γ ≥ 0, we have

M½κ; γ�≤Bðκ; γÞ1AC : ð69Þ
Proof: Let us first observe that the operator Πfid defined in Eq. (20) can be rewritten
as follows:

Πfid ¼ ϕerr
�� �

ϕerr
	 ��

AC
þ ϕcor
�� �

ϕcor
	 ��

AC
; ð70Þ

where orthogonal states ϕerr
�� �

AC
and ϕcor

�� �
AC

are defined as

ϕerr
�� �

AC
:¼ þj iA � Πod βj iC þ �j iA � Πev βj iC ; ð71Þ

ϕcor
�� �

AC
:¼ þj iA � Πev βj iC þ �j iA � Πod βj iC : ð72Þ

Next, using Eqs. (70), (19), and (21), we rearrange the operator M[κ, γ] defined in
Eq. (26) as follows:

M½κ; γ� ¼ Merr½κ; γ� �Mcor½κ; γ�; ð73Þ
where

Merr½κ; γ� :¼ þj i þh jA �Msuc
od þ �j i �h jA �Msuc

ev

þ κ ϕerr
�� �

ϕerr
	 ��

AC
� γ �j i �h jA � Πev;

ð74Þ

Mcor½κ; γ� :¼ κ ϕcor
�� �

ϕcor
	 ��

AC
� γ �j i �h jA � Πod: ð75Þ

We can apply Lemma 1 to Merr[κ, γ] by the following substitutions

M ± ¼ ±j i ±h jA �Msuc
odðevÞ; ð76Þ

ψj i ¼
ffiffiffi
κ

p
ϕerr
�� �

AC
; ð77Þ

Π ± ¼ ±j i ±h jA � ΠodðevÞ; ð78Þ

α± ¼ 1; ð79Þ

γþ ¼ 0; γ� ¼ γ: ð80Þ
Here, M± ≤Π± (i.e., α± = 1) holds because Msuc

odðevÞ are POVM elements. The other
prerequisites of Lemma 1 are easy to be confirmed. Thus, we obtain

σsup Merr½κ; γ�ð Þ≤ σsup Merr
4d ½κ; γ�

� �
: ð81Þ

In the same way, we can apply Lemma 1 to Mcor[κ, γ] via

M ± ¼ 0; ð82Þ

ψj i ¼
ffiffiffi
κ

p
ϕcor
�� �

AC
; ð83Þ

Π ± ¼ ±j i ±h jA � ΠevðodÞ; ð84Þ

α± ¼ 0; ð85Þ

γþ ¼ 0; γ� ¼ γ: ð86Þ
Since M± = 0 implies D± = V± = 0 in Lemma 1, this time we can reduce the
dimension of relevant matrix Eq. (51) by separating known eigenvalues 0 and −γ.
Therefore, we have
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σsup Mcor½κ; γ�ð Þ≤ max σsup Mcor
2d ½κ; γ�

� �
; 0;�γ

n o
¼ σsup Mcor

2d ½κ; γ�
� �

;
ð87Þ

where the last inequality holds since γ ≥ 0 and κCev ≥ 0. We then obtain Eq. (69)
from Eqs. (73), (81), and (87). Since Merr

4d ½κ; γ� and Mcor
2d ½κ; γ� are symmetric and

their elements linearly depend on κ and γ, σsup Merr
4d ½κ; γ�

� �
and σsup Mcor

2d ½κ; γ�
� �

are
convex functions over κ and γ, and so is B(κ, γ).

4. Derivation of the finite-size bound. Here we construct the function

UðF̂; N̂ trashÞ to satisfy Eq. (15) in the estimation protocol. For that, we will first
derive Eq. (30). In the estimation protocol, we define the following random
variables labeled by the number i of the round;

(i) N̂
suc;ðiÞ
ph is defined to be unity only when “signal” is chosen in the i-th round,

the detection is a “success”, and a pair of outcomes ða0; b0Þ is (+, −) or

(−, +). Otherwise, N̂
suc;ðiÞ
ph ¼ 0. We have

N̂
suc;ðiÞ
ph ¼

1 signal; success; ðþ;�Þ or ð�;þÞð Þ
0 ðotherwiseÞ;

�
ð88Þ

and N̂
suc
ph ¼

PN
i¼1 N̂

suc;ðiÞ
ph .

(ii) F̂
ðiÞ

is defined to be Λm;rðjω̂� ð�1Þaβj2Þ when “test” is chosen in the i-th
round. We have

F̂
ðiÞ ¼ Λm;rðjω̂� ð�1Þaβj2Þ ðtestÞ

0 ðotherwiseÞ;

(
ð89Þ

and F̂ ¼
PN

i¼1 F̂
ðiÞ
.

(iii) Q̂
ðiÞ
� is defined to be unity only when “trash” is chosen in the i-th round and

a0 ¼ �. Otherwise, Q̂
ðiÞ
� ¼ 0. We have

Q̂
ðiÞ
� ¼

1 ðtrash; �Þ
0 ðotherwiseÞ;

�
ð90Þ

and Q̂� ¼
PN

i¼1 Q̂
ðiÞ
� .

(iv) We also define

T̂
ðiÞ

:¼ p�1
sig N̂

suc;ðiÞ
ph þ p�1

testκF̂
ðiÞ � p�1

trashγQ̂
ðiÞ
� ; ð91Þ

which leads to T̂½κ; γ� ¼
PN

i¼1 T̂
ðiÞ
.

We will make use of Azuma’s inequality42. We define stochastic processes

fX̂ðkÞgk¼0;¼ ;N and fŶðkÞgk¼1;¼ ;N as follows:

X̂
ð0Þ

:¼ 0; ð92Þ

X̂
ðkÞ

:¼
Xk
i¼1

T̂
ðiÞ � Ŷ

ðiÞ� �
ðk≥ 1Þ; ð93Þ

Ŷ
ðkÞ

:¼ E T̂
ðkÞ���X̂ < k

h i
; ð94Þ

where X̂
< k

:¼ ðX̂ð0Þ
; X̂

ð1Þ
; ¼ ; X̂

ðk�1ÞÞ. Note that Ŷ
ðkÞ

is a constant when

conditioned on X̂
< k
. Such a sequence fŶðkÞgk¼1;2;¼ is called a predictable process

with regards to fX̂ðkÞg. Since T̂
ðiÞ

is bounded for any i and fX̂ðkÞgk¼0;1;¼ is a
martingale, we can apply Azuma’s inequality.

Proposition 1 (Azuma’s inequality52,53): Suppose fX̂ðkÞgk¼0;1;¼ is a martingale
which satisfies

�Ŷ
ðkÞ þ cmin ≤ X̂

ðkÞ � X̂
ðk�1Þ

≤ � Ŷ
ðkÞ þ cmax; ð95Þ

for constants cmin and cmax, and a predictable process fŶ ðkÞgk¼1;2;¼ with regards to

fX̂ðkÞg, i.e., ŶðkÞ
is constant when conditioned on X̂

< k
. Then, for all positive

integers N and all positive reals δ,

Pr½X̂ðNÞ � X̂
ð0Þ

≥ δ�≤ exp � 2δ2

ðcmax � cminÞ
2N

 !
: ð96Þ

We define constants cmin and cmax as follows. In each round, at most one of

N̂
suc;ðiÞ
ph , F̂

ðiÞ
, and Q̂

ðiÞ
� takes non-zero value; N̂

suc;ðiÞ
ph and Q̂

ðiÞ
� are either zero or unity,

and minΛm;r ≤ F̂
ðiÞ
≤ maxΛm;r . Since κ, γ ≥ 0, Eq. (95) holds when cmin and cmax

are defined as

cmin :¼ min p�1
testκ minΛm;r ; �p�1

trashγ; 0
� �

; ð97Þ

cmax :¼ max p�1
sig ; p

�1
testκ maxΛm;r ; 0

� �
: ð98Þ

With cmin and cmax defined as above, we further define

δ1ðϵÞ :¼ ðcmax � cminÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
2
ln

1
ϵ


 �s
: ð99Þ

Setting δ = δ1(ϵ/2) in the proposition, we conclude that

T̂½κ; γ�≤
XN
i¼1

Ŷ
ðiÞ þ δ1ðϵ=2Þ ð100Þ

holds with a probability no smaller than 1 − ϵ/2.

Next, we will construct a deterministic bound on Ŷ
ðiÞ
. Let ρðiÞAC be the state of

Alice’s i-th qubit and Bob’s i-th pulse conditioned on X̂
< i
. Then, using the same

argument as that has lead to Eqs. (22)–(24), we have

E N̂
suc;ðiÞ
ph

���X̂ < i
h i

¼ psigTr ρðiÞACM
suc
ph

� �
; ð101Þ

E Q̂
ðiÞ
�

���X̂ < i
h i

¼ ptrashTr ρðiÞACΠ
trash
�

� �
; ð102Þ

E F̂
ðiÞjX̂ < i

h i
≤ pfidTr ρðiÞACΠ

fid
� �

; ð103Þ

and thus

Ŷ
ðiÞ
≤Tr ρðiÞACM½κ; γ�

� �
; ð104Þ

whereM[κ, γ] is defined in Eq. (26). Using the operator inequality (27), we obtain a
bound independent of i as

Ŷ
ðiÞ
≤Bðκ; γÞ: ð105Þ

Combining this with Eq. (100) proves Eq. (30).

The function δ2ðϵ=2; N̂
trashÞ satisfying the bound (31) on Q̂� can be derived

from the fact that Pr½Q̂�jN̂
trash� is a binomial distribution. The following inequality

thus holds for any positive integer n and a real δ with 0 < δ < (1 − q−)n (Chernoff
bound):

Pr Q̂� � q�n≥ δ
��N̂ trash ¼ n

h i
≤ 2�nDðq�þδ=nkq�Þ; ð106Þ

where

Dðx k yÞ :¼ x log 2
x
y
þ ð1� xÞ log 2

1� x
1� y

ð107Þ

is the Kullback-Leibler divergence. On the other hand, for any non-negative integer
n, we always have

Pr Q̂� � q�n≤ ð1� q�Þn
��N̂ trash ¼ n

h i
¼ 1: ð108Þ

Therefore, for any non-negative integer n, by defining δ2(ϵ; n) which satisfies

D q� þ δ2ðϵ; nÞ=n k q�
� �

¼ � 1
n log 2ðϵÞ ðϵ> qn�Þ

δ2ðϵ; nÞ ¼ ð1� q�Þn ðϵ ≤ qn�Þ

(
; ð109Þ

and by combining Eq. (106) and (108), we conclude that Eq. (31) holds with a
probability no smaller than 1 − ϵ/2.

Combining Eq. (30) and Eq. (31), we obtain Eq. (15) by setting

UðF̂; N̂ trashÞ :¼ psigNBðκ; γÞ þ psigδ1ðϵ=2Þ

�
psig
ptest

κF̂ þ
psig
ptrash

γ q�N̂
trash þ δ2ðϵ=2; N̂

trashÞ
� �

;
ð110Þ

which holds with a probability no smaller than 1 − ϵ (Union bound). Note that

since B(κ, γ) is a convex function, so is UðF̂; N̂ trashÞ with respect to auxiliary
parameters κ and γ.

Models for numerical simulation of key rates. In what follows, we normalize
quadrature x such that a coherent state ωj i has expectation xh i ¼ ReðωÞ and
variance ðΔxÞ2

	 �
¼ 1=4. The wave function for ω = ωR + iωI is given by

xjωh i ¼ 2
π


 �1
4

exp � x � ωRð Þ2 þ 2iωI x � iωRωI

� �
: ð111Þ

For the simulation of the key rate Ĝ, we assume that the communication
channel and Bob’s detection apparatus can be modeled by a pure loss channel
followed by random displacement, that is, the states which Bob receives are given
by

ρðaÞmodel :¼
Z
C
pξðγÞ ð�1Þa ffiffiffiffiffi

ημ
p þ γ

�� �
ð�1Þa ffiffiffiffiffi

ημ
p þ γ

	 ��d2γ; ð112Þ
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where η is the transmissivity of the pure loss channel and pξ(γ) is given by

pξðγÞ :¼
2
πξ

e�2jγj2=ξ : ð113Þ

The parameter ξ is the excess noise relative to the vacuum, namely,

ðΔxÞ2
	 �

ρ
ðaÞ
model

¼ ð1þ ξÞ=4: ð114Þ
We assume that Bob sets β ¼ ffiffiffiffiffi

ημ
p

for the fidelity test. The actual fidelity

between Bob’s objective state ð�1Þa ffiffiffiffiffi
ημ

p�� �
and the model state ρðaÞmodel is given by

FðρðaÞmodel; ð�1Þa ffiffiffiffiffi
ημ

p�� �
ð�1Þa ffiffiffiffiffi

ημ
p	 ��Þ

¼
Z
C
pξðγÞj ð�1Þa ffiffiffiffiffi

ημ
p jð�1Þa ffiffiffiffiffi

ημ
p � γ

	 �
j2d2γ

¼ 1
1þ ξ=2

:

ð115Þ

For the acceptance probability of Bob’s measurement in the signal rounds, we
assume fsuc(x) = Θ(∣x∣ − xth), a step function with the threshold xth > 0. In this
case, the quantities defined in Eqs. (64) and (65) are given by

Dev ¼
Z 1

0
2C�1

ev f sucðxÞ xh jΠev βj ij j2dx ð116Þ

¼ 1
4Cev

erfc
ffiffiffi
2

p
ðxth � βÞ

� �
þ erfc

ffiffiffi
2

p
ðxth þ βÞ

� �h
þ 2e�2β2 erfc

ffiffiffi
2

p
xth

� �i
;

ð117Þ

Dod ¼
Z 1

0
2C�1

od f sucðxÞ xh jΠod βj ij j2dx ð118Þ

¼ 1
4Cod

erfc
ffiffiffi
2

p
ðxth � βÞ

� �
þ erfc

ffiffiffi
2

p
ðxth þ βÞ

� �h
� 2e�2β2 erfc

ffiffiffi
2

p
xth

� �i
;

ð119Þ

VevðodÞ ¼
Z 1

0
2C�1

evðodÞ f sucðxÞ
� �2

xh jΠevðodÞ βj i
��� ���2dx � D2

evðodÞ ð120Þ

¼ DevðodÞ � D2
evðodÞ; ð121Þ

where β ¼ ffiffiffiffiffi
ημ

p
and the complementary error function erfcðxÞ is defined as

Table 1 Examples of optimized parameters.

η [dB] Key rate Ĝ (κ, γ) μ xth psig ptest
Parameters for N = 1011 and ξ = 0
0.5 2.17 × 10−1 (44.9, 1.92) 0.554 0.451 0.821 0.172
1.0 1.38 × 10−1 (32.4, 1.38) 0.514 0.532 0.821 0.172
1.5 8.71 × 10−2 (24.9, 1.01) 0.487 0.610 0.816 0.176
2.0 5.36 × 10−2 (20.3, 0.741) 0.442 0.724 0.831 0.160
2.5 3.16 × 10−2 (17.0, 0.538) 0.459 0.771 0.788 0.205
3.0 1.75 × 10−2 (14.6, 0.381) 0.451 0.855 0.767 0.227
3.5 8.92 × 10−3 (13.6, 0.262) 0.446 0.941 0.706 0.289
4.0 4.15 × 10−3 (12.6, 0.175) 0.442 1.03 0.624 0.371
4.5 1.50 × 10−3 (11.4, 0.107) 0.439 1.13 0.522 0.473
5.0 3.23 × 10−4 (9.98, 0.059) 0.438 1.25 0.370 0.626
5.5 1.63 × 10−5 (8.78, 0.031) 0.443 1.37 0.126 0.869
Parameters for N = 1011 and ξ = 10−3.0

0.5 1.79 × 10−1 (23.5, 1.60) 0.491 0.489 0.854 0.137
1.0 1.13 × 10−1 (17.9, 1.19) 0.466 0.567 0.853 0.138
1.5 6.95 × 10−2 (14.3, 0.889) 0.450 0.645 0.848 0.143
2.0 4.07 × 10−2 (11.9, 0.666) 0.442 0.724 0.831 0.160
2.5 2.20 × 10−2 (10.1, 0.487) 0.439 0.808 0.804 0.187
3.0 1.02 × 10−2 (8.85, 0.345) 0.440 0.898 0.758 0.233
3.5 3.56 × 10−3 (7.72, 0.232) 0.447 0.999 0.674 0.316
4.0 5.29 × 10−4 (6.70, 0.147) 0.463 1.11 0.484 0.505
Parameters for N = 1012 and ξ = 0
0.5 2.68 × 10−1 (82.9, 2.26) 0.616 0.421 0.864 0.133
1.0 1.69 × 10−1 (54.9, 1.56) 0.556 0.504 0.874 0.123
1.5 1.08 × 10−1 (40.3, 1.11) 0.518 0.590 0.873 0.124
2.0 6.76 × 10−2 (31.3, 0.798) 0.493 0.670 0.868 0.128
2.5 4.12 × 10−2 (26.5, 0.575) 0.475 0.750 0.852 0.145
3.0 2.41 × 10−2 (23.2, 0.408) 0.466 0.834 0.829 0.168
3.5 1.32 × 10−2 (20.1, 0.275) 0.449 0.919 0.803 0.195
4.0 6.93 × 10−3 (17.7, 0.184) 0.443 1.01 0.772 0.226
4.5 3.15 × 10−3 (16.4, 0.115) 0.434 1.10 0.698 0.300
5.0 1.14 × 10−3 (14.6, 0.065) 0.427 1.21 0.596 0.402
5.5 3.29 × 10−4 (12.9, 0.036) 0.423 1.32 0.467 0.531
6.0 3.23 × 10−5 (10.8, 0.017) 0.421 1.45 0.240 0.759
Parameters for N = 1012 and ξ = 10−3.0

0.5 2.09 × 10−1 (29.4, 1.71) 0.513 0.474 0.906 0.089
1.0 1.32 × 10−1 (21.7, 1.25) 0.482 0.554 0.909 0.086
1.5 8.23 × 10−2 (16.9, 0.928) 0.462 0.633 0.909 0.086
2.0 4.92 × 10−2 (13.8, 0.689) 0.450 0.712 0.899 0.096
2.5 2.74 × 10−2 (11.5, 0.502) 0.444 0.797 0.888 0.107
3.0 1.36 × 10−2 (9.82, 0.355) 0.442 0.886 0.858 0.137
3.5 5.28 × 10−3 (8.26, 0.237) 0.446 0.989 0.834 0.161
4.0 1.17 × 10−3 (7.13, 0.151) 0.458 1.10 0.701 0.293

Examples of parameters for a given pair of total number of rounds N and an excess noise parameter ξ defined in Eq. (114). Given (N, ξ), protocol parameters (κ, γ, μ, xth, psig, ptest) are optimized for each
attenuation η [dB] so that the net key gain per pulse (key rate) Ĝ is maximized.
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erfcðxÞ :¼ 2ffiffiffi
π

p
Z 1

x
dt e�t2 : ð122Þ

For the derivation of Eq. (120), we used the fact that Πev + Πod = 1 and
ðΠev � ΠodÞ βj i ¼ �βj i.

We assume that the number of “success” signal rounds N̂
suc

is equal to its
expectation value,

E½N̂suc� ¼
Z 1

�1
f ðjxjÞ xh jρðaÞmodel xj idx


 �
psigN

¼ psigNðPþ þ P�Þ;
ð123Þ

where

P ± :¼
Z 1

xth

± ð�1Þaxh jρðaÞmodel ± ð�1Þaxj idx

¼ 1
2
erfc ðxth �

ffiffiffiffiffi
ημ

p Þ
ffiffiffiffiffiffiffiffiffiffiffi
2

1þ ξ

r
 �
:

ð124Þ

We also assume that the number of test rounds N̂
test

is equal to ptestN and the

number of trash rounds N̂
trash

is equal to ptrashN. The test outcome F̂ is assumed to
be equal to its expectation value E½F̂�, which is given by

E½F̂� ¼ ptestN E
ρðaÞmodel

½Λm;rðjω̂� ð�1Þa ffiffiffiffiffi
ημ

p j2Þ�

¼ ptestN
Z
C

d2ω
π

ωh jρðaÞmodel ωj iΛm;rðjω� ð�1Þa ffiffiffiffiffi
ημ

p j2Þ

¼ ptestN
1þ ξ=2

1� ð�1Þmþ1 ξ=2
1þ rð1þ ξ=2Þ


 �mþ1
" #

:

ð125Þ

Under these assumptions, the key rate Ĝ for each transmissivity η is optimized
over two coefficients (κ, γ) and four protocol parameters (μ, xth, psig, ptest) as
discussed in the main part. Examples of optimized parameters are shown in
Table 1. The cost of bit error correction HEC is assumed to be 1:1 ´ N̂

suc
hðebitÞ,

where the bit error rate ebit is given by

ebit ¼
P�

Pþ þ P� : ð126Þ

Data availability
Data sharing not applicable to the article as no datasets were generated or analyzed
during the current study.

Code availability
Computer codes to calculate the key rates are available from the corresponding author
upon reasonable request.
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