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Finite-size security of continuous-variable quantum
key distribution with digital signal processing

Takaya Matsuura® !, Kento Maeda', Toshihiko Sasaki® "2 & Masato Koashi@® "2

In comparison to conventional discrete-variable (DV) quantum key distribution (QKD),
continuous-variable (CV) QKD with homodyne/heterodyne measurements has distinct
advantages of lower-cost implementation and affinity to wavelength division multiplexing. On
the other hand, its continuous nature makes it harder to accommodate to practical signal
processing, which is always discretized, leading to lack of complete security proofs so far.
Here we propose a tight and robust method of estimating fidelity of an optical pulse to a
coherent state via heterodyne measurements. We then construct a binary phase modulated
CV-QKD protocol and prove its security in the finite-key-size regime against general coherent
attacks, based on proof techniques of DV QKD. Such a complete security proof is indis-
pensable for exploiting the benefits of CV QKD.
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uantum key distribution (QKD) aims at generating a

secret key shared between two remote legitimate parties

with information-theoretic security, which provides
secure communication against an adversary with arbitrary com-
putational power and hardware technology. Since the first pro-
posal in 19841, various QKD protocols have been proposed with
many kinds of encoding and decoding schemes. These protocols
are typically classified into two categories depending on the
detection methods. One of them is called discrete-variable (DV)
QKD, which uses photon detectors and includes earlier protocols
such as BB84! and B922 protocols. The other is called
continuous-variable (CV) QKD, which uses homodyne and het-
erodyne measurements with photo detectors=>. See refs. %7 for
comprehensive reviews of the topic.

Although DV QKD is more mature and achieves a longer dis-
tance if photon detectors with low dark count rates are available,
CV QKD has its own distinct advantages for a short distance. It
can be implemented with components common to coherent optical
communication technology and is expected to be cost-effective.
Excellent spectral filtering capability inherent in homodyne/
heterodyne measurements suppresses crosstalk in wavelength
division multiplexing (WDM) channels. This allows multiplexing
of hundreds of QKD channels into a single optical fiber® as well as
co-propagation with classical data channels®!5, which makes
integration into existing communication network easier.

One major obstacle in putting CV QKD to practical use is the
gap between the employed continuous variables and mandatory
digital signal processing. The CV-QKD protocols are divided into
two branches depending on whether the modulation method of
the encoder is also continuous, or it is discrete. The continuous
modulation protocols usually adopts Gaussian modulation, in
which the sender chooses the complex amplitude of a coherent-
state pulse according to a Gaussian distribution3->1617 (see
refs. 18:19 for a review). This allows powerful theoretical tools such
as Gaussian optimality??1, and complete security proofs for a
finite-size key and against general attacks have been given?2. To
implement Gaussian protocols with a digital random-number
generator and digital signal processing, it is necessary to
approximate the continuous distribution with a constellation
composed of a large but finite number of complex
amplitudes?324, This is where difficulty arises, and the security
analysis has been confined to the asymptotic regime and collec-
tive attacks. The other branch gives priority to simplicity of the
modulation and uses a very small (usually two to four) number of
amplitudes?>~28. As for the security analysis, the status is more or
less similar to the Gaussian constellation case, and current
security proofs are either in the asymptotic regime against col-
lective attacks?°-32 or in the finite-size regime but against more
restrictive attacks3334. Hence, regardless of approaches, a com-
plete security proof of CV QKD in the finite-size regime against
general attacks has been a crucial step yet to be achieved.

Here we achieve the above step by proposing a binary phase-
modulated CV-QKD protocol with a complete security proof in
the finite-size regime against general attacks. The key ingredient
is an estimation method using heterodyne measurement devel-
oped in this paper, which is suited for analysis of confidence
region in the finite-size regime. The outcome of heterodyne
measurement, which is unbounded, is converted to a bounded
value by a smooth function such that its expectation is proved to
be no larger than the fidelity of the input pulse to a coherent state.
This allows us to use a standard technique to derive a lower
bound on the fidelity with a required confidence level in the
finite-size regime. The fidelity as a measure of disturbance in the
binary modulated protocol is essentially the same as what is
monitored through bit errors in the B92 protocol?3>36. This
allows us to construct a security proof based on a reduction to

distillation of entangled qubit pairs3”-38, which is a technique
frequently used for DV-QKD protocols.

Results
Estimation of fidelity to a coherent state. We first introduce a
test scheme to estimate the fidelity between an optical state p and
the vacuum state |0) (0| through a heterodyne measurement. For
a state p of a single optical mode, the heterodyne measurement
produces an outcome @ € C with a probability density

2

q,(w) Fw = <w|p|w>d7w, (1)

where a coherent state |w) is defined as

@) = e el i\j—; ). (2)

We refer to the expectation associated with the distribution g,(w)
simply as [,. To construct a lower bound for the fidelity (0[p|0)
from @, we will use the associated Laguerre polynomials which
are given by

10) 1= (-1 L), ®)
where
L) =29 (rm ()

are the Laguerre polynomials. Our test scheme is based on the
following theorem.

Theorem 1: Let A,,,(v) (v=0) be a bounded function given by
A, () =1+ LY (14 7)v), (5)

for an integer m >0 and a real number r > 0. Then, we have

Byl (0] = 00pi0) + Y g

where I,,,, are constants satisfying (—1)"1,,,, > 0.

From Eq. (6), a lower bound on the fidelity between p and the
vacuum state is given by

I, [y (10)] < (0lpl0)  (m : odd) (7)

for any odd integer m. As seen in Fig. 1a, the absolute value and
the slope of the function A,,, are moderate for small values of m
and r, which is advantageous in executing the test in a finite
duration with a finite resolution. Compared to a similar method
proposed in ref. 3%, our method excels in its tightness for weak
input signals; we see from Eq. (6) that, regardless of the value of ,
the inequality (7) saturates when p has at most m photons. This is
crucial for the use in QKD in which tightness directly affects the
efficiency of the key generation.

Extension to the fidelity to a coherent state |f8) is straightfor-
ward as

[ (16— B) < Tr(plB) B)  (m : odd). (8)
The proofs are given in Methods.

Proposed protocol. Based on this fidelity test, we propose the fol-
lowing discrete-modulation protocol (see Fig. 2). Prior to the pro-
tocol, Alice and Bob determine the number of rounds N, the
acceptance probability of homodyne measurement f (|x]) (x € R)
with fu,(0) = 0, the parameters for the test function (m, 1),
and the protocol parameters (4, Psg Presy Prrashy B> 5) Wwith
Psig + Prest + Perash = 1, Where all the parameters are positive. Alice
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Fig. 1 The test scheme to estimate the fidelity. a Example of the test
functions A, used in the estimation. The values of r in the figure are
chosen so that the range of A, is minimized for given m. In general, the
minimum range of the function A,,, becomes larger as m increases. The
pair (m, r) = (1, 0.4120) was used in the numerical simulation of key rates
below. b A schematic description of the usage of obtained outcomes in
heterodyne measurement. In order to estimate the lower bound on the
fidelity to the coherent states |irﬁ>, the squared distance between the
outcome @ and the objective point (=1)98 (i.e., |@ — (=1)?B|2) is used.

and Bob then run the protocol described in Box 1. Upon successful
verification, the protocol generates a shared final key of length

N = NS“C(l - h(U(P, N /NS“C)) —s 9)

where h(x) := —xlog,(x) — (1 — x)log,(1 —x) is the binary

entropy function and the function U(F, N traSh) will be specified later.

The acceptance probability f;,(|x|) should be chosen to post-
select the rounds with larger values of |x|, for which the bit error
probability is expected to be lower. It is ideally a step function, but
our security proof is applicable to any form of f,.(|x]). The
parameter f3 is typically chosen to be /7i with # being a nominal
transmissivity of the quantum channel, while the security proof
itself holds for any choice of . The parameters s and s’ are related
to the overall security parameter in the security proof below.

Security proof. We determine a sufficient amount of the privacy
amplification according to Shor and Preskill3”4, which has been
widely used for the DV-QKD protocols. We consider a coherent
version of Steps 1 and 2, in which Alice and Bob share an
entangled pair of qubits for each success signal round, such that

———————————

Bob : 1
| 1
1
Homodyne i H
Alice measurement, ] !
a=0,1 '% |
—F s = Signal VLo !
Iy~ PMOD o/ ----SIIEIIZIICL.
B/} Eve i Test | o |
i ~ 1 1
ETraSh‘ i #—D i
A
1 1
LO
X g
| Heterodyne :
: measurement;

Fig. 2 The proposed continuous-variable quantum key distribution
protocol. Alice generates a random bit a € {0, 1} and sends a coherent
state with amplitude (—1)° /. Bob chooses one of the three measurements
based on the predetermined probability. In the signal round, Bob performs a
homodyne measurement on the received optical pulse and obtains an
outcome X. In the test round, Bob performs a heterodyne measurement on
the received optical pulse and obtains an outcome @. In the trash round, he
produces no outcome.

their Z-basis measurement outcomes correspond to the sifted key
bits a and b. For Alice, we introduce a qubit A and assume that

she entangles it with an optical pulse C in a state

_ 0 lvE)e + 0al=VE)e
W) ac = :
V2
Then, Step 1 is equivalent to the preparation of |¥) , followed by
a measurement of the qubit A on Z basis {|0), |1)} to determine
the bit value a. For Bob, we construct a process of probabilistically
converting the received optical pulse C to a qubit B (See Fig. 3).
Consider a completely positive (CP) map defined by

Feplpc) 1:/0 dx K<X)PCK(X)T

(10)

(1)
with
K& = [foac@)(10)5 (2l + 15 (=), (12)

where (x| maps a state vector to the value of its wave function at x
(See also Eq. (111)). When the pulse C is in a state pc, the cor-
responding process succeeds with a probability pg,. and then
prepares the qubit B in a state pp, where p,, .pp = F_p(pc). If
the qubit B is further measured on Z basis, probabilities of the
outcome b = 0, 1 are given by

%mmmzlﬂﬁmﬂw%m, (13)

Pucllpalt) = [ Fucllds (<xlpcl-x), (19
which shows the equivalence to the signal round in Step 2. This is
illustrated in Fig. 3.

To clarify the above observation, we introduce an
entanglement-sharing protocol defined in Box 2. This protocol
leaves N™* pairs of qubits shared by Alice and Bob. If they
measure these qubits on Z basis to define the sifted key bits, the
whole procedure is equivalent to Steps 1 through 3 of the actual
protocol (see Fig. 4). Alice’s measurements on X basis {|+) :=
(]0) + |1))/+/2} in the trash rounds are added for later security
argument, and they do not affect the equivalence.

The Shor-Preskill argument connects the amount of privacy
amplification to the so-called phase error rate. Suppose that, after
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Box 1 | Actual protocol

1. Alice generates a random bit a € {0, 1} and sends an optical pulse C in a coherent state with amplitude (—1)? /i to Bob. She repeats it N times.
2. For each of the received N pulses, Bob chooses a label from {signal, test, trash} with probabilities psig, Prest, @and pirash, respectively. According to the
label, Alice and Bob do one of the following procedures.

[signal] Bob performs a homodyne measurement on the received optical pulse C, and obtains an outcome x € IR. With a probability f.(|X]), he regards
the detection to be a "success”, and defines a bit b = O (resp. 1) when sign(X) = +(—)1. He announces success/failure of the detection. In the case of a
success, Alice (resp. Bob) keeps a (b) as a sifted key bit.

[test] Bob performs a heterodyne measurement on the received optical pulse C, and obtains an outcome @. Alice announces her bit a. Bob calculates

the value of A, .(|& — (=1)?BI?).

[trash] Alice and Bob produce no outcomes.
(N Nsuc Nfal\ T Ntest + Ntras
by F.

universal, hashing>4.
5. Bob computes and announces the final key Iength N

key gain G per pulse is thus given by G= (N — Hee —s))/N.

3. We refer to the numbers of “success” and “failure” signal rounds, test rounds, and trash rounds as N, N~ ,N" ", and N
holds by definition.) Bob calculates the sum of A, (l& — (—1)° [3| ) obtalned in the N

4. For error correction, they use (Hg + s')-bits of encrypted communication consuming a pre-shared secret key to do the following. Alice sends Bob Hgc
bits of syndrome of a linear code for her sifted key. Bob reconciles his sifted key accordingly. Alice and Bob verify the correction by comparing s’ bits via

according to Eq. (9). Alice and Bob apply privacy amplification to obtain the final key. The net

suc o fail Atest .
respectlvely.

test rounds, which is denoted

Wave function of optical pulse
[oe]

W) = f Y(x) 1x) dx

N P
\\n f’

. I .

—|x’| [1x’]) X

XD 0

IX
Absolute value of outcome X

Z-measurement g X-measurement

L]

Prlb=0] Extracted qubit
- fo WP o (X)dx PI{b’ = +] = Tl ME
Prib = 1] Prb” =] = TrllyXy| Meg]

= j oo|l//(—x)|2 fue(X)dx
0

Fig. 3 Bob's qubit extraction in the entanglement-sharing protocol. Bob
performs on the optical pulse a non-demolition projective measurement,
with which the absolute value of the outcome of homodyne measurement
|X| is determined. Then, Bob extracts a qubit B by the operation F defined in
Eq. (11). A Z-basis measurement on this qubit gives the same sifted key bit
b as described in the actual protocol. On the other hand, the X-basis
measurement on this qubit reveals the parity of photon number of the
received optical pulse.

the entanglement-sharing protocol, Alice and Bob measure their
N pairs of qubits on X basis {|+),|—)}. A pair with outcomes
(4, =) or (—, +) is defined to be a phase error. Let N “ be the

number of phase errors among N™ pairs. If we can have a good
, shortening by
fraction h(epn) via privacy amplification in the actual protocol
achieves the security in the asymptotic limit3’.

To cover the finite-size case as well, we need a more rigorous
statement on the upper bound. For that purpose, we define an

upper bound e, on the phase error rate N;f /N e

estimation protocol in Box 3 (see also Fig. 4). The task of proving
the security of the actual protocol is then reduced to construction

h
of a function U(F, N"™") which satisfies

)i|217€ (15)

for any attack in the estimation protocol. It is known that
the condition (15) immediately implies that the actual protocol

is  €gc.-secure with a small security parameter €, =

V2v/e + 275 + 2754041 See Methods for the rationale and the
detailed definition of security.

At this point, it is beneficial for the analysis of the phase error
statistics to clarify what property of the optical pulse C is
measured by Bob’s X-basis measurement in the estimation
protocol (see Fig. 3). Let Il.yoq) be the projection to the subspace
with even (resp. odd) photon numbers. (IT., + II,q = I holds by
definition.) Furthermore, since I1., — I1,qq is the operator for an
optical phase shift of 7, we have (II,, — IT 4q)|x) = |—x). Eq. (12)
is then rewritten as

2 e (I4)5 (tle Ty + [=)p xlc Tog) - (16)

Therefore, when the state of the pulse C is p¢, the probability of
obtaining +(—) in the X-basis measurement in the estimation
protocol is given by

(HONF enlp) (=) = Tr (pcMg )

suc ~ trash

Pr[ Ny < U(E,N

KW —

(17)

where

oo

Mzuiod) /0 2fsuc (x)dx 1_Iev(od) |X> <x|C 1_Iev(od)' (18)
This shows that Bob’s X-basis measurement distinguishes the
parity of the photon number of the received pulse. In this sense,
the secrecy of our protocol is assured by the complementarity
between the sign of the quadrature and the parity of the photon
number.

As an intermediate step toward our final goal of Eq. (15), let us

first derive a bound on the expectation value E[N;L}l:] in terms of

those collected in the test and the trash rounds, E[F] and E[Q ],
in the estimation protocol. Let p4¢ be the state of the qubit A and
the received pulse C averaged over N pairs, and define relevant
operators as

pho= ) (Fla @ MGF + =) (=la @ M5, (19)
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Box 2 | Entanglement-sharing protocol

1'. Alice prepares a qubit A and an optical pulse C in a state [¥) 5¢ defined in (10). She repeats it N times.

2'. For each of the received N pulses, Bob announces a label in the same way as that in Step 2. Alice and Bob do one of the following procedures
according to the label.

[signal] Bob performs a quantum operation on the received pulse C specified by the CP map F_ z to determine success/failure of detection and to
obtain a qubit B upon success. He announces success/failure of detection. In the case of a success, Alice keeps her qubit A.

[test] Bob performs a heterodyne measurement on the received optical pulse C, and obtains an outcome @. Alice measures her qubit A on Z basis and
announces the outcome a € {0, 1}. Bob calculates the value of A, (|& — (=1)°B1).

[trash] Alice measures her qubit A on X basis to obtain a’ € {+, —}.
csuc o fail  ~test «trash

I.N N N N ", and F are defined in the same way as those in Step 3. Let Q_ be the number of rounds in the NtraSh trash rounds with @’ = —

Alice Actual protocol (steps 1-3) Bob
Encod Pulse C Failure
ncoae Quantum Channel - Signal
a=01 = | \ % 67 A 2 or
¢ (Optical) pulse C Eve Ya B
H Trash N 4
! Zmeas. X Z-meas.
Entanglement-sharing protocol :
) Q h | Puse C Failure
g /\ uant;m{c anne j\ Signal -
Qubit A Pulse C Eve %t g
) Trash \ )
: (Zmeas. for test, X-meas. for trash) x @ Qubit B’
; X-meas. Estimation protocol X-meas. |
& Pulse C '
. /\ Quantum channel . Signal Failure
a’'=+/- 1

or

Pulse & Eve{ Y‘“ b’ = +i-
Trash \

w
X
Fig. 4 Relation between three protocols. The actual protocol and the estimation protocol stare retlated through the entanglement sharing protocol. After the
entanglement sharing protocol, Alice and Bob are left with the observed data (NSLJC N N et ,F, Q. ) and N pairs of qubits. If Alice and Bob ignore

Q_ and measure their qublts on the Z-basis to determine their N°*-bit sifted keys, it becomes equwalent to the actual protocol. On the other hand, if Alice
and Bob measure their N™ pairs of qublts on the X-basis, they can count the number Nph of phase errors Whlch we call the estimation protocol. If we can
find a reliable upper bound U on N h in the estimation protocol, it restricts the property of the state of N palrs of qubits after the entanglement-sharing
protocol, which in turn limits the amount of leaked information on the sifted keys in the actual protocol. The security proof is thus reduced to finding such
an upper bound U in the estimation protocol, represented as a function of the variables that are commonly available in the three protocols.

Box 3 | Estimation protocol

17-3”. Same as Steps 1, 2/, and 3’ of the egjtcanglement—sharing protocol. e
4”. Alice and Bob measure each of their N pairs of qubits on X basis and obtain outcomes a’ and b’, respectively. Let N," be the number of pairs
found in the combination (d’,b') = (4, —) or (—, +).

I = 10) 01, ® [B) (Blc + 1) (1]4 ® [=B) {~Blc (20) E[F] <poN Tr(pACHﬁd). (24)
et = | ) (—|, ® 1. (21)  Let us denote Tr(p,-M) simply by (M) for any operator M. The
Then we immediately have set of points (( S“°> (mfd), (IT*sh))  for all the density
operators p,c form a convex region. Rather than directly deriving
E[N Suc] = pgN Tr (p AC S“C) (22)  the boundary of the region, it is easier to pursue linear constraints
in the form of
and
N suc \ _ fid trash
E[Q_] _ ptrashN Tr(PACHt,mSh)7 (23) <Mph > _B(K7 )/) K<H > + )/<H_ >, (25)
while application of the property of Eq. (8) leads to where B(x,y),%,y € R.
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It is expected that a meaningful bound is obtained only for
x, y20. Decreasing fidelity <Hﬁd> should allow more room for
eavesdropping, leading to a larger value of phase error rate

<M;L}‘f>. Hence Eq. (25) will give a good bound only when x>0.

As for (IT™"), it only depends on the marginal state of Alice’s
qubit A, which is independent of the adversary’s attack. We thus
have (IT™) =g = ||(—|,|¥) ACH (1—e*)/2. Since
Alice’s use of a stronger pulse should lead to larger leak of
information, we should choose y =0 for a good bound.

To find a function B(x, y) satisfying Eq. (25), let us define an
operator

M;l]c + KHﬁd o yHtiaSh.

Mk, y] == (26)
Then Eq. (25) is rewritten as Tr(p,-M[x,y]) <B(x,y). This
condition holds for all p,c iff M[x, y] satisfies an operator
inequality

M[K7 V] s B(Kv Y) 1AC' (27)

If the operator Mk, y] was represented by a matrix of a small
size, the tightest bound would be found by computing the
maximum eigenvalue of the matrix. But here M[x, y] has an
infinite rank and it is difficult to compute the tightest
bound. We thus compromise and heuristically find a computable
bound B(x, y) which is not necessarily tight; we reduce the
problem to finding the maximum -eigenvalues of small-size
matrices by replacing M[x, y] with a constant upper-bound
except in a relevant finite-dimensional subspace spanned by | + )
and M0 | +p). For the detailed derivation of B(x, y), see

Methods.
With B(x, y) computed, we can rewrite Eq. (25) using Egs.

~_suc

(22)-(24) to obtain a relation between E[N 1, E[F], and E[Q_].
It is concisely written as

E[T[ky] <N (28)

B(x,y)
with

Tle,y) = pyg Ny (29)

This relation leads to an explicit bound on the phase error rate as
suc

E[Nph]/PSIgN<B(K ) +yq_ — & E[F]/p,N, which is enough
for the computation of asymptotic key rates.

The security in the finite-size regime is proved as follows. The
fact that the bound given in Eq. (28) is true for all the states psc
allows us to use Azuma’s inequality?? to evaluate the fluctuations
around the expectation value, leading to an inequality

T[x,y) < NB(x,y) + 8,(¢/2)

ph + ptest KF ptrashyQ

(30)

which holds with a probability no smaller than 1 — /2 (see
Methods for the explicit form of &,(e/2), which is of O(v/N)). We
remark that the reason for including the trash rounds in the
actual protocol is to circumvent a technical issue which would
arise in this step. Without measurement of Q in the estimation
protocol, we would obtain an inequality E[pSlg ph o piKF] <
NB(k,y) + yq_. In contrast to Eq. (28), the new inequality is true
only when p,¢ satisfies <H‘j”h> = g_, which is too stringent for
the application of Azuma’s inequality.

Although Eq. (29) includes Q_ which is inaccessible in the
actual protocol, we can derive a bound by noticing that it is an
outcome from Alice’s qubits and is independent of the adversary’s
attack. In fact, given Ntmh, it is the tally of N Bernoulli trials
with a probability q_. Hence, we can derive an inequality of the

form

trash

O <q N™" 4 8,(e/2;N"™) (31)

which holds with a probability no smaller than 1 — €/2. Here

0,(e/2; N ) can be determined by a Chernoff bound (see
Methods). Combining Egs. (29), (30), and (31), we obtain

U(F, Ntmh) satisfying Eq. (15) to complete the finite-size
security proof.

Numerical simulation. We simulated the net key gain per pulse
G as a function of attenuation in the optical channel (including
the efficiency of Bob’s apparatus). We assume a channel model
with a loss with transmissivity # and an excess noise at channel
output; Bob receives Gaussian states obtained by randomly dis-
placing coherent states |+ ,/7ii) to increase their variances by a
factor of (1 + £)*34% We assume a step function with a threshold
xm( > 0) as the acceptance probability f,(|x]). The expected
amplitude of coherent state 3 is chosen to be /7. We set €, =
27 for the security parameter, and set ¢ = 27 = ¢2,./16 and
27 = e, /2. We thus have two coefficients (, y), four protocol
parameters ({4, Xn, Psigp Prest)> and two parameters (m, r) of the
test function to be determined. For each transmissivity 7, we
determined (x, y) via a convex optimization using the CVXPY
1.0.25%%46 and (4, X Psig Prest) Via the Nelder-Mead in the
scipy.minimize library in Python, in order to maximize the key
rate. Furthermore, we adopted m = 1 and r = 0.4120, which leads
to (maxA,, ., minA,, ) = (2.824,—0.9932). See Methods for the
detail of the model of our numerical simulation and examples of
optimized parameters. Typical optimized values of the threshold
X, range from 0.4 to 1.5 (we adopted a normalization for which

((Ax)®) = 0.5). They are larger than

those in other analyses of protocols with post-selection (e.g.,
ref. 31). A possible reason is the fact that the latter protocols use
more than two states to monitor the eavesdropping act, which
may lead to a lower cost of privacy amplification and higher
tolerance against bit errors.

Figure 5 shows the key rates of our protocol in the asymptotic
limit N — oo and finite-size cases with N = 10°-10!2 for
§=10"20-10-30 and 0. (Note that from the results of the recent
experiments$4447, excess noise with £ = 10720-10730 at the
channel output seems reasonable. Furthermore, the state-of-the-
art experiments® work at 0.5 GHz repetition rate, which implies
that total number of rounds N = 10°-10!2 can be achieved in a
realistic duration.) For the noiseless model (£ = 0), the asymptotic
rate reaches 8 dB. In the case of £ = 10730, it reaches 4 dB, which
is comparable to the result of a similar binary modulation
protocol proposed in ref. 2%. As for finite-size key rates, we see
that the noiseless model shows a significant finite-size effect even
for N = 10!2, On the other hand, with a presence of noises
(¢ = 10739) the effect becomes milder, and N = 10!! is enough to
achieve a rate close to the asymptotic case. This may be ascribed
to the cost of the fidelity test. In order to make sure that the
fidelity is no smaller than 1 — §, the statistical uncertainty of the
fidelity test must be reduced to O(J). As a result, approaching the
asymptotic rate of £ = 0 will require many rounds for the fidelity
test.

the vacuum fluctuation is

Discussion

Numerically simulated key rates above were computed on the
implicit assumption that Bob’s observed quantities are processed
with infinite precision. Even when these are approximated
with a finite set of discrete points, we can still prove the security
with minimal degradation of key rates. For the heterodyne
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measurement used for the test in the protocol, assume that a
digitized outcome wgig ensures that the true value @ lies in a
range ((wg;g). Then, we need only to replace A, ,(|@ + B|*) with
. . I 2 A~ 2

its worst-case value, min{A,, (|0 f[") : @ € Q(wg)}- As seen

Fig. 5 The net key gain per pulse G (key rate) vs. transmissivity 7 of the
optical channel. The abscissa represents attenuation in decibel, i.e.,
—10log 7. We assumed that the optical pulse that Bob receives is given
by randomly displacing a coherent state to increase its variance by a factor
of (1 + £). a The asymptotic key rate for various values of £. b The key rate
for various values of & when the pulse number is finite (N = 10"). ¢ The key
rate without the excess noise (£ = 0) along with the repeaterless bound
(PLOB bound) of the secure key rate in the pure-loss channel®®. d The key
rate with the excess noise of & = 10-30,

in Fig. 1a, the slope of function A,, (v) is moderate and goes to
zero for v — co. This means that the worst-case value can be
made close to the true value, leading to small influence on the
key rate. For the homodyne measurement used for the signal,
finite precision can be treated through appropriate modification
of the acceptance probability fi,(x). Aside from a very small
change in the success rate and the bit error rate, this function
affects the key rate only through integrals in Eqs. (116), (118),
and (120) in Methods, and hence influence on the key rate is
expected to be small. We thus believe that the fundamental
obstacles associated with the analog nature of the CV protocol
have been settled by our approach.

In comparison with recent asymptotic analyses®l:32 of
discrete-modulation CV QKD, our protocol achieves lower key
rates and much shorter distance. Since ours is the first attempt
of applying the proof technique of DV QKD to CV QKD, there
is much room for possible improvement. We sacrificed the
optimality for simplicity in deriving the operator inequality. The
definition of the phase error is not unique and there may be a
better choice. The trash rounds were introduced for technical
reasons, but we are not sure whether they are really necessary.
Nonetheless, we believe that the dominant reason for the dif-
ference lies in the fact that our protocol uses only two states. In
contrast, the protocols considered in refs. 3132 use four or more
states in signal or test modes. The genuine binary protocol was
analyzed in ref. 2%, and the key rate derived there is comparable
to ours.

In order to improve the presented finite-size key rate, a
promising route will thus be increasing the number of states
from two. Our fidelity test can be straightforwardly generalized
to monitoring of such a larger constellation of signals, and we
will be able to confine the adversary’s attacks more tightly than
in the present binary protocol. As for the proof techniques to
determine the amount of privacy amplification, there are two
possible directions. One is to generalize the present DV-QKD-
inspired approach of estimating the number of phase errors in
qubits to the case of qudits. The other direction is to seek a way
to combine the existing analyses3!:3248 of discrete-modulation
CV-QKD protocols, which have been reported to yield high key
rates in the asymptotic regime, to our fidelity test. Although
either of the approaches is nontrivial, we believe that the present
results will open up new direction toward exploiting the
expected high potential of CV QKD with an improved
security level.

In summary, we proved the security of a binary-modulated CV-
QKD protocol in the finite-size regime while completely cir-
cumventing the problems arising from the analog nature of CV
QKD. We believe that it is a significant milestone toward real-
world implementation of CV QKD, which has its own advantages.

Methods
Proof of Theorem 1 and Eq. (8). In this section, we prove Theorem 1 stated in the
main text and derive Eq. (8) as a corollary of Theorem 1.
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Proof: From Eq. (1), the expectation value of A,, ,(|@|*
state p is given by

) when given a measured

@]

&=
)
>
£}
)
—

I
s~

S a0 | Z”%Wa‘”\p!ﬁe"%)

(32)
o0 I/Ylefl/
= [ dva,,w) (Z : <n\p\n>>
Jo — n
_ 5 bty
e (140"
where
1 >
I, = o dve "LV (v) (33)
for integers n, m > 0.
The following three properties hold for I, ,,:
i) Lyn=0form=znz1.
This results from orthogonality relations of the associated Laguerre
polynomials, that is,
oo
/ LOWLY e dv = (n+1)3,,. (34)
Jo

Since the polynomial v*~! can be written as a linear combination of lower order
polynomials {Ll(l)(’/)}oglgn—l’ I,,,» vanishes whenever m>n> 1.

(i) (=1)™,,, >0 for n >m=0.

This property is shown as follows. First, the associated Laguerre polynomials
satisfy the following recurrence relation for m > 149

1)

dL!
ML) = v ) + (m+ DL (). (3%)
v
Substituting this to Eq. (33) and using integration by parts, we have
n+m m+1
nm n n—1,m 771n—1,m—1' (36)

for n>1 and m > 1. The property (ii) is then proved by induction over m. For
m = 0, it is true since I,y = 1 > 0. When (—1)"~1L, ., > 0 for n >m — 1, we can
prove (—1)"I,, ,, > 0 for n > m by using Eq. (36) recursively with I,,, ,, = 0 from
property (i).

(iii) Io,, = 1 for m=0.

This also follows from property (i) and Eq. (36) for n = 1 and m > 1, which
leads to I, = Ipp = 1.

Combining properties (i), (ii), and (iii) shows Eq. (6).

Eq. (8) in the main text is derived as the following corollary.

Corollary 1: Let |B) (B € C) be the coherent state with amplitude . Then, for any
B € C and for any odd positive integer m, we have

Ey (A, (10 = B < (BlPIB)- (37)
Proof: From Eq. (6) of Theorem 1, for any odd positive integer m, we have
B, (A, (16]°)] < (01p]0). (38)
Let Dg be a displacement operator satisfying
D0} (01D = I8) (Bl (39)

and DL =D_g. With p:= DﬁpDZ;, we have q;(w) = g,(w — p) for probability
density function of heterodyne measurement outcome, which implies that
B[, (10— B)] = E,[A,,,(|@]")]
<(0lp[0)
= (BIPIB)-

(40)

Replacing p with p, we obtain Eq. (37).

Detail of the security proof. In this section, we prove the security of the proposed
protocol in the main text. This section consists of several subsections. In the first

subsection, we give a definition of security, which is standard in the literature. The
security condition is divided into two conditions, secrecy and correctness. Since the
correctness is trivially satisfied, it is the secrecy that is the focus of the security proof.
The second subsection explains how the secrecy condition is reduced to Eq. (15) of

the estimation protocol, which bounds the number of phase errors. The third
subsection lays the groundwork for the full security proof by deriving the inequality
(27) involving three operators relevant for the quantities observed in the signal, the
test, and the trash round in the estimation protocol. After proving a general lemma
(Lemma 1), an explicit form of the upper bound B(x, y) satisfying Eq. (27) is given
as a corollary (Corollary 2) of the lemma. Finally, the fourth subsection uses

Azuma’s inequality and Corollaries 1 and 2 to derive an explicit form of U(F, N tra°h)

that fulfills Eq. (15), which completes the security proof of the actual protocol.

1. Definition of security in the finite-size regime. We evaluate the secrecy of the
final key as follows. When the final key length is Nfi" > 1, we represent Alice’s final
key and an adversary’s quantum system as a joint state

N
i fi
P = D Pr(2)]2) (2] @ plian (2), (41)
z=0
and define the corresponding ideal state as
g
ideal _Nfin fi
Paie = D 27V [2) (2ly @ Trapim ). (42)
z=0

Let ||o]|; = TrVo'o be the trace norm of an operator 0. We say a protocol is €5t
secret when

fin
PAE\N‘ n

= Z Pr(Nf")

N!m >1

S €t (43)

ideal
T Pagnee ||

holds regardless of the adversary’s attack. The main goal of the security proof is to
derive the amount of privacy amplification, or equivalently to find the function

U(F, N[mh) in Eq. (9), such that Eq. (43) should hold for given ey > 0.

For correctness, we say a protocol is e.o,-correct if the probability for Alice’s and
Bob’s final key to differ is bounded by €. Our protocol achieves ., = 2~ via the
verification in Step 4.

When the above two conditions are met, the protocol becomes ¢, -secure with
€gec = €t T+ €qor In the sense of universal composability®0.

2. Reduction to the estimation protocol. Here we show that Eq. (15) in the
estimation protocol implies ey.-secrecy of the actual protocol with

« = V2y/e +27°. We have already seen that the entanglement-sharing protocol
immediately followed by Z-basis measurements of the qubits is equivalent to Steps 1
through 3 of the actual protocol. Here we consider a slightly modified scenario in
which, after the entanglement-sharing protocol, a controlled-NOT operation V is
applied on each pair of qubits, where V := |0) (0], ® 15 + [1) (1|, ® X with
Xp :=[1) (0] + |0) (1]5. Alice then measures her qubits on the Z basis to define her
sifted key bits and proceeds with Step 5 of the actual protocol. Since V does not affect

the Z-basis value of the Alice’s qubit, her procedure of determining the N bit final
key in this scenario is equivalent to that in the actual protocol. Although V prevents
Bob from obtaining an equivalent final key, he can still simulate the reconciliation and
the verification process in Step 4 since the Z-basis value of each of his N™* qubits

corresponds to absence/presence of a bit error between Alice’s and Bob’s sifted key

bits. Hence Bob can equivalently carry out all the announcements in Steps 4 and 5 of
the actual protocol. As a result, this scenario leads to exactly the same distribution Pr

(Nfin) and the same states PTF\ N

The secrecy of Alice’s final key can be determined from the X-basis property of

as those of the actual protocol.

her N™ qubits after the application of V. Since V can be rewritten as V =

L ®[+) (+lp +Z4 @ | =) {—[p with Z, := [=) (+], + |[+) (— 4, the X-basis
value of each of Alice’s qubits corresponds to absence/presence of a phase error.
Suppose that these N™* qubits are measured on the X-basis to produce an outcome
% € {4+, -}V . Let wt(%) be the number of symbol ‘—” in %. If Eq. (15) holds in the
estimation protocol, the statistics of X should satisfy

)}2176‘,

which implies that the number of probable patterns X is limited. To be more
precise, let us introduce a set Q(n, w) := {x € {+, —}""| wt(x) < w}, whose size is
bounded as |Q(n, w)| < 2" (/1) The condition (44) then implies

o trash

Pr [wt(x) <U(E N (44)

Pr [N >1,k¢ TN, F, N‘“‘S“)] (45)
with 7(N™ F, N“aSh) = (N U(F, th ) which satisfies
logzl,]_(Nsuc ﬁ Nlrash)‘ SN B Nﬁn s (46)

from Eq. (9). It is known?%:4151 that the above conditions imply Eq. (43) with
€ = V2V/€ + 27°. Therefore, it suffices to show that Eq. (15) holds in the

estimation protocol for proving the actual protocol to be €, -secure with
w=V2/et 2 +277.

We remark that the encryption of M := Hy¢ + ¢ bits in Step 4 can be omitted
as long as each bit linearly depends on Alice’s sifted key over GF(2). In such a case,
the above scenario must include measurements on Alice’s qubits to simulate the
announcement of the M bits in Step 4. The backaction on X basis caused by the
measurement for each bit amounts to doubling the number of probable patterns x.
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suc o trash

We can thus redefine the set 7(N™", F, N
such that Eq. (45) holds. Then, by decreasing & by M, Eq. (46) also holds. This
means that we achieve the same net key rate with the same level of security.

3. Derivation of the operator inequality. The aim of this subsection is to
construct B(x, y) which fulfills the operator inequality (27). Let 0,,,(0) denote the
supremum of the spectrum of a bounded self-adjoint operator O. Although
B(k,y) = 04, (M[k, y]) would give the tightest bound satisfying Eq. (27), it is hard
to compute it numerically since system C has an infinite-dimensional Hilbert space.
Instead, we derive a looser but simpler bound. We first prove the following lemma.

) by enlarging its size by factor of 2M

Lemma I: Let I, be orthogonal projections satisfying IT, IT_ = 0. Suppose that the
rank of II, is no smaller than 2 or infinite. Let M, be self-adjoint operators
satisfying [L.M.II, = M, < a.Il,, where a, are real constants. Let |¢) be an
unnormalized vector satisfying (IT, + IT_)|y) = |y) and II, |y) # 0. Define
following quantities with respect to |y):

C, = (y|I, [y)(>0), (47)
D, := C;I<V/‘Mi [v), (48)
v, =C{yIM|y) - Di. (49)

Then, for any real numbers y, and y_, we have

Tup (M +M_+ ) (y| — y, T — y_TL) S0, (Mag), (50)

where four dimensional matrix M,q is defined as

LSt \/V—+ 0 0
M4d — m C+ +D+ — Y+ V C+C7 0 . (51)
0 C,C_ C_+D_—y_ JV_
0 0 VV_ a —y_

),
Vel )y =11 ly), (52)
e(il)> =D, e(tl)> +VV, 8(12)>, (53)

which is well-defined due to Egs. (47)-(49) and II.M.II, = M.. From
(IL, +TL)ly) = [y}, we have

) = /|l )+ /O [, (54)

Let us define the following projection operators:

Proof: We choose orthonormal vectors { e(f)>} in the domain of I1.,

respectively, to satisfy

M,

n? = [e?) (2] (=12), (55)
n®? .=, -, (56)
n¥ =n®? - n?. (57)

nZ? +nPm, n? +nPm, nd.  (58)

S
H+

Il
:lA
=
=
H+
=
H E
+
=
H
5
H+

The second term in the right-hand side of Eq. (58) is bounded as
H&EZ)Mil'[(fz)SatH(fz), (59)
since M, < a,II,. Combining Egs. (48), (58), and (59), we have

M, - yiHi
< (Dr - yt) e(i1)> <e(tl) + (“1 - yt) e<i2>> <e(12) (60)
V(] + 2 (0] + o —
Combining Egs. (54) and (60), we have
M, +M_+ —y, 0, —y I1_
+ ) (vl -y, 0L —y (61)

<My @ (o, —y )0 @ (@ —y )Y,

where Mygq is given in Eq. (51) with the basis {‘ef)>, {e(l)), e}, |e?))}. Since
a, —y, = <e(12) |M4d‘e(i2>> <04, (Myq), supremum of the spectrum of the right-
hand side of Eq. (61) is equal to the maximum eigenvalue of the four-dimensional
matrix Myy. We thus obtain Eq. (50).

As a corollary, we derive Eq. (27) as follows.

Corollary 2: Let |B) be a coherent state. Let Iev(od) Mey(oq)» and M[x; y] be as
defined in the main text, and define following quantities:

2
Cov = (BTl |B) = e " cosh B[, (62)
2
Cod = <ﬂ‘Hod|ﬁ> = e—\ﬁ\ sinh ‘)B|27 (63>
Deyviody = Cartod) BIMEoa 1) (64)
2
Vestod) = Cartod) <ﬁ\< Z‘\:Eod)) B) — D%, 00)- (65)
Let M [x,y] and M5 [x, y] be defined as follows:
1 Voa
V K Coq + D, K1/Coq Coy
Mz:; [K, y] — od od od od “e , (66)
K\/Cod Cev’ Kcev+Dev -y VVev
Vev 1- y
Mcor[K )’} o [ K Cev K\/ Cev Cod:| (67)
2d K5 Y] = .
Ky/ Cev Cod K Cod -y

Define a convex function

Bk, y) i= max{ o, (M5, 7)), 00y (M5, 1) |- (68)
Then, for «, y =0, we have

M[Kv )’] < B(K, )/)1AC' (69)

Proof: Let us first observe that the operator ITfid defined in Eq. (20) can be rewritten
as follows:

Hﬁd = |¢err> <¢err|AC + ‘¢cor> <¢cor‘AC’ (70>

where orthogonal states |§,,,),. and |¢.) . are defined as
|¢err>AC = ‘+>A ® Hod‘ﬁ)c + |7>A ® Hev|ﬁ>C~, (71)
‘¢cor>AC = |+>A ® Hevlﬁ)C + ‘_>A ® Hod‘ﬁ>C' (72)

Next, using Egs. (70), (19), and (21), we rearrange the operator M[x, y] defined in
Eq. (26) as follows:

Mxe,y] = M [1c, y] & M“[xc, y], (73)
where
M y] = 4) (+y © M3 + |-) (-1, @ M3 o
+ K‘¢err> <¢'err‘Ac - y|_> <_‘A ® Hew

Mcor[K7 )’] = K|¢cor> <¢cor|AC - y‘7> <7‘A ® Hod' (75)

We can apply Lemma 1 to M®"'[«, y] by the following substitutions
M, =[%) (+]4 @ Mydey): (76)
|V/> = ﬁ|¢err>Ac7 (77)
I, =) (£, ® Mogien), (78)
a, =1, (79)
yr=0, y =y (80)

Here, M, <II, (i.e., a;x = 1) holds because Mg‘éc(ev) are POVM elements. The other
prerequisites of Lemma 1 are easy to be confirmed. Thus, we obtain

Ty (M (1, y]) < 0 (M5 [k, 7]) - (81)

In the same way, we can apply Lemma 1 to M'[x, y] via

M, =0, (82)

V) = Vil beor) g (83)

I, =) ()4 ® Mey(oq), (84)
a, =0, (85)

yr=0, y =y (86)

Since M, = 0 implies D, = V. = 0 in Lemma 1, this time we can reduce the
dimension of relevant matrix Eq. (51) by separating known eigenvalues 0 and —y.
Therefore, we have
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Usup (Mcm [Kv )/]) < max

{Usup (Mg(()ir [K’ )’]) ’ Oa 71’}
Igup (M55 1,71).
where the last inequality holds since y > 0 and xC,, > 0. We then obtain Eq. (69)
from Egs. (73), (81), and (87). Since M [«, y] and M53 [x,y] are symmetric and
their elements linearly depend on « and y, o, (Mg [x, y]) and o, (M53 [x, y]) are
convex functions over « and y, and so is B(x, y).
4. Derivation of the finite-size bound. Here we construct the function

U(ﬁ,NuaSh) to satisfy Eq. (15) in the estimation protocol. For that, we will first
derive Eq. (30). In the estimation protocol, we define the following random
variables labeled by the number i of the round;

(87)

i N ;L}l‘c'(l) is defined to be unity only when “signal” is chosen in the i-th round,

the detection is a “success”, and a pair of outcomes (a’,¥') is (+, —) or
(—, +). Otherwise, N;;c'(l) = 0. We have

osuei(i) 1
o ={,

suc « suc, (i)

and Nph =y 1Ny

(i) F 0 is defined to be A,,
round We have

(signal, success, (+, —) or (—,+)) (88)

(otherwise),

when “test” is chosen in the i-t
>aﬁ|2) h « » . h . he i-th

Ao — (=1

A (i A o — (—1)"B
0 [ A 0= (18P (test) )
0 (otherwise),
and F =N lﬁ(i)
(iii) Q: is defined to be ux(‘l}ty only when “trash” is chosen in the i-th round and
a’ = —. Otherwise, Q' = 0. We have
. (i) 1 (trash, —)
= 90
e {0 (otherwise), (%0)
and Q_ = Zf\il Q@
(iv) We also define
= +pmu<F ~ k@’ (1)
which leads to Tk, y] = 2[:1 .

We will make use of Azuma’s inequality*2. We define stochastic processes

{X(k)}kzo  and {Y(k)}k:1  as follows:

X(O) =0, (92)

Z( ) ) (k=1), (93)

o[} o

© bl )). Note that 7' is a constant when

M

DRERI]

X
.Such a sequence {Ym}k 2

where X := X

conditioned on X ** is called a predictable process

with regards to {X } Since T
martingale, we can apply Azuma’s inequality.

is bounded for any i and {X }k o1, Isa

Proposition 1 (Azuma’s inequality>>°3): Suppose {X(k)} ko1
which satisfies

is a martingale

_}A,(k) e (k) X(kfl) <_ f’(k) T (95)

‘max

<X

min =

. ok
for constants ¢,;,, and ¢, and a predictable process {Y( ) JT

ok ok o<k
{X( >}, ie., Y( ) is constant when conditioned on X
integers N and all positive reals &,

with regards to

. Then, for all positive

. . 28*
prix™ - %05 < exp( - ). (96)
(Cmax - Cmin) N
We define constants Cmin and ¢, as follows In each round, at most one of

o osuc, (i)

70 . . .
N on > F and Q takes non-zero value, and Q are either zero or unity,

and min A, , < ¥ < max A,,,. Since k, y = 0, Eq. (95) holds when ¢,;, and ¢,
are defined as
Cmin *= min(pt;sltK min Am.r7 _pt;alshy7 0)# (97)
Cmax += Max (p;gl7 pt;slﬁx max Am.ﬂ 0) (98)
10 NATURE COMMUNICAT

With ¢,

defined as above, we further define

~aay 310 (1) (99)

Setting § = §,(e/2) in the proposition, we conclude that

Tk, y) < Z ) 8,(e/2)

and ¢,

8,(e) ==

(Cmax

(100)

holds with a probability no smaller than 1 — e/2.
(i)

Next, we will construct a deterministic bound on Y. Let pX)C be the state of

Alice’s i-th qubit and Bob’s i-th pulse conditioned on X ', Then, using the same
argument as that has lead to Egs. (22)-(24), we have

SN =), o
B[] = pTe(pien™). e
B[FY %] < ppTr(pllert™), (103)

and thus
oy Tr(pg')cM[K, y]), (104)

where M[x, y] is defined in Eq. (26). Using the operator inequality (27), we obtain a
bound independent of i as

(i)

v <B(x,y). (105)

Combining this with Eq. (100) proves Eq. (30).
The function &, (e/2; N"aSh) satisfying the bound (31) on Q_ can be derived

from the fact that Pr[Q_ \Nt o ] is a binomial distribution. The following inequality
thus holds for any positive integer n and a real § with 0 < § < (1 — q_)n (Chernoff
bound):

trash

Pr[Q. = qnz g8 = ] <27 s, (106)
where
X 1—x
D(x [l y) ~—x10g2;+(1—x) log, 1— (107)

is the Kullback-Leibler divergence. On the other hand, for any non-negative integer
n, we always have

Pr[Q7 —q n<(l— qf)n}Nthh = n] =1 (108)

Therefore, for any non-negative integer n, by defining 8,(¢; n) which satisfies
D(q_ +8,(esn)/n | q_) = (e>q2)
8,(e;n) =(1—¢q_)n (e<q)

and by combining Eq. (106) and (108), we conclude that Eq. (31) holds with a
probability no smaller than 1 — €/2.
Combining Eq. (30) and Eq. (31), we obtain Eq. (15) by setting

- %Ing(e) (109)

~, .~ trash
U(EN™) = pNB(k,y) + pygdi (€/2)

psxg F+ pslg <q7 lrash
Prest Prrash

which holds with a probability no smaller than 1 — ¢ (Union bound). Note that

. trash
since B(k, ) is a convex function, so is U(F N

parameters x and y.

(110)

+8,(e/28"™)),

) with respect to auxiliary

Models for numerical simulation of key rates. In what follows, we normalize
quadrature x such that a coherent state |w) has expectation (x) = Re(w) and
variance ((Ax)’) = 1/4. The wave function for @ = wg + iw; is given by

1
2\ %
(xlw) = (7> exp[—(x — wp)” + 2iw;x — iwgw;]. (111)
s
For the simulation of the key rate G, we assume that the communication
channel and Bob’s detection apparatus can be modeled by a pure loss channel
followed by random displacement, that is, the states which Bob receives are given

by
pmodel / pely D"/ + y|dy,

1" +y) (-

(112)
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Table 1 Examples of optimized parameters.

n [dB] Key rate G (x, 7) K Xth Psig Ptest
Parameters for N = 10" and £ = 0

0.5 2.17 x 101 (44.9,1.92) 0.554 0.451 0.821 0172
1.0 1.38 x 1071 (32.4,1.38) 0.514 0.532 0.821 0172
1.5 8.71 x 102 (24.9,1.01) 0.487 0.610 0.816 0.176
2.0 536 x 102 (20.3, 0.747) 0.442 0.724 0.831 0.160
25 316 x 1072 (17.0, 0.538) 0.459 0.771 0.788 0.205
3.0 1.75 x 102 (14.6, 0.381) 0.451 0.855 0.767 0.227
3.5 892 x 103 (13.6, 0.262) 0.446 0.941 0.706 0.289
4.0 415 x 10-3 (12.6, 0.175) 0.442 1.03 0.624 0.371
4.5 1.50 x 103 (1.4, 0.107) 0.439 113 0.522 0.473
5.0 323 x10°4 (9.98, 0.059) 0.438 1.25 0.370 0.626
55 1.63 x 107> (8.78, 0.031) 0.443 137 0.126 0.869
Parameters for N = 10" and & = 10—30

0.5 1.79 x 1071 (235, 1.60) 0.491 0.489 0.854 0137
1.0 113 x 1077 (17.9, 1.19) 0.466 0.567 0.853 0.138
1.5 6.95 x 102 (14.3, 0.889) 0.450 0.645 0.848 0.143
2.0 4.07 x 102 (11.9, 0.666) 0.442 0.724 0.831 0.160
25 2.20 x 102 (10.1, 0.487) 0.439 0.808 0.804 0.187
3.0 1.02 x 102 (8.85, 0.345) 0.440 0.898 0.758 0.233
35 3.56 x 1073 (7.72, 0.232) 0.447 0.999 0.674 0.316
4.0 5.29 x 104 (6.70, 0.147) 0.463 m 0.484 0.505
Parameters for N =102 and £ = 0

0.5 2.68 x 101 (82.9, 2.26) 0.616 0.421 0.864 0.133
1.0 1.69 x 10! (54.9, 1.56) 0.556 0.504 0.874 0.123
1.5 1.08 x 101 (40.3, 111 0.518 0.590 0.873 0.124
2.0 6.76 x 102 (31.3, 0.798) 0.493 0.670 0.868 0.128
25 412 x 1072 (26.5, 0.575) 0.475 0.750 0.852 0.145
3.0 2.41 x 1072 (23.2, 0.408) 0.466 0.834 0.829 0.168
35 132 x 1072 (20.1, 0.275) 0.449 0.919 0.803 0.195
4.0 6.93 x 1073 (17.7, 0.184) 0.443 1.01 0.772 0.226
4.5 315 x 1073 (16.4, 0.115) 0.434 1.10 0.698 0.300
5.0 114 x 10-3 (14.6, 0.065) 0.427 1.21 0.596 0.402
55 329 x 104 (12.9, 0.036) 0.423 1.32 0.467 0.531
6.0 323 x10°5 (10.8, 0.017) 0.421 1.45 0.240 0.759
Parameters for N = 102 and & = 1030

0.5 2.09 x 1071 (29.4,1.71) 0.513 0.474 0.906 0.089
1.0 132 x 101 (21.7,1.25) 0.482 0.554 0.909 0.086
1.5 8.23 x 102 (16.9, 0.928) 0.462 0.633 0.909 0.086
2.0 4.92 x 1072 (13.8, 0.689) 0.450 0.712 0.899 0.096
25 2.74 x 1072 (11.5, 0.502) 0.444 0.797 0.888 0.107
3.0 1.36 x 102 (9.82, 0.355) 0.442 0.886 0.858 0137
35 5.28 x 103 (8.26, 0.237) 0.446 0.989 0.834 0.161
4.0 117 x 103 (7.3, 0.151) 0.458 1.10 0.701 0.293
Examples of parameters for a given pair of total number of rounds N and an excess noise parameter ¢ defined in Eq. (114). Given (N, &), protocol parameters (k, ¥, #, Xt Psig: Prest) are optimized for each
attenuation # [dB] so that the net key gain per pulse (key rate) G is maximized.

where 7 is the transmissivity of the pure loss channel and pe(y) is given by

2 2 1
Pe(y) = ”_Ee—z\y\ /g (113) =i [erfc(\/i(xth — ﬁ)) + erfc(\/i(xth +ﬁ)> (117)
The parameter £ is the excess noise relative to the vacuum, namely, + 20 erfc(ﬁxth)} s
(857, = 00/ 9
We assume that Bob sets § = /7 for the fidelity test. The actual fidelity Dy = / 2C 1 f (%) [(x[Toq|B) [Pdx (118)
between Bob’s objective state !(—1)“\/71ﬁ> and the model state P£:Zdel is given by 0
(a) _1\a 1)@
‘model? = erfc 2(x,y — —+ ertc 2(xy, +
F(P dl‘( 1) \/W><( 1)\/@}) [ f<\f(rh lg)) f(f(lh ﬁ))
_ a a od 119)
= -1 -1) —y)Pd? , (
P VR0 = )Py 1) o ()]
1
T1xin
" E/ > —1 2 2 2
For the acceptance probability of Bob’s measurement in the signal rounds, we Vevod) = 2C(oa) (fsuc (X)) ‘(X\Umod)lﬂ)‘ dx — Diyoa) (120)
assume foo(x) = O(]x] — xy,), a step function with the threshold x,, > 0. In this 0
case, the quantities defined in Egs. (64) and (65) are given by
= Doytod) — Diyoays (121)

Do = [ 205 aew) (41T, )i (116)
0 where 8 = /fjpt and the complementary error function erfc(x) is defined as
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erfe(x) := %/xdte”z. (122)

For the derivation of Eq. (120), we used the fact that I1., + IT,q = I and
(I, ~ TL,0)|B) = |-6)-

We assume that the number of “success” signal rounds N is equal to its
expectation value,

. suc

E[R™] = ( / mf<|x|><x\p£::3dd|x>dx)psigw
= pagN(P" +P7),

(123)

where

P* i [ 1P (-1
o (124)

= ete (G0 7 v 1 1)

We also assume that the number of test rounds N'™ is equal to pi.«N and the

~ trash ~
number of trash rounds N™" is equal to pi,snN. The test outcome F is assumed to
be equal to its expectation value [[F], which is given by

BIF] = pua By (A, (16 = (1) )

dzw a) a
— P | a0 = COVAD) g
— ptestN

m+1 5/2 i
e [ (i) }

Under these assumptions, the key rate G for each transmissivity # is optimized
over two coefficients (x, y) and four protocol parameters (4, X, Psigy Prest) 25
discussed in the main part. Examples of optimized parameters are shown in

Table 1. The cost of bit error correction Hgc is assumed to be 1.1x Nsuch(ebit),
where the bit error rate ey is given by
-

R — 126
Chit Pt + p- ( )
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