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Abstract

The participation of automated software agents known as social bots within online social
network (OSN) engagements continues to grow at an immense pace. Choruses of concern
speculate as to the impact social bots have within online communications as evidence
shows that an increasing number of individuals are turning to OSNs as a primary source for
information. This automated interaction proliferation within OSNs has led to the emergence
of social bot detection efforts to better understand the extent and behavior of social bots.
While rapidly evolving and continually improving, current social bot detection efforts are
quite varied in their design and performance characteristics. Therefore, social bot research
efforts that rely upon only a single bot detection source will produce very limited results. Our
study expands beyond the limitation of current social bot detection research by introducing
an ensemble bot detection coverage framework that harnesses the power of multiple detec-
tion sources to detect a wider variety of bots within a given OSN corpus of Twitter data. To
test this framework, we focused on identifying social bot activity within OSN interactions tak-
ing place on Twitter related to the 2018 U.S. Midterm Election by using three available bot
detection sources. This approach clearly showed that minimal overlap existed between the
bot accounts detected within the same tweet corpus. Our findings suggest that social bot
research efforts must incorporate multiple detection sources to account for the variety of
social bots operating in OSNs, while incorporating improved or new detection methods to
keep pace with the constant evolution of bot complexity.

Introduction

The 2016 U.S. presidential election broke traditional campaign communication norms, as leg-
acy institutions such as mainstream media sources (e.g. print, television and radio) and politi-
cal-party organizations ceded much power and influence to unmediated, Internet-based
technological platforms (e.g. online social networks (OSNs), online political blogs) [1]. Prior
to 2016, Gibson and Cantijoch [2] had noted that there was an increasing number of people
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engaging in political discourse in OSNs (e.g. Twitter, Facebook) and described such behavior
as a new type of expressive political engagement. Since the 2016 U.S. election, OSNs have sur-
passed print newspapers as a primary news source and continue to gain traction in relation to
television and radio sources [3]. While the rapid rise of OSN platforms has reduced the barrier
for individuals to actively participate in political dialogue, the relatively unsupervised nature of
OSNss increases susceptibility to misinformation campaigns, especially with respect to political
and election dialogue [4-6].

Social bots—automated software agents designed to mimic or impersonate humans—are
prevalent actors in OSN platforms and have proven to amplify misinformation by orders of
magnitude [7]. While the original design or purpose of social bots is not always nefarious, their
impact can directly lead to the intentional or unintentional spreading of false narratives [8]. The
inability for humans to readily discern whether they are engaging in dialogue with a human is a
newly intractable problem with unknown implications. The rapidly evolving social bot problem
has led to the recent emergence of numerous research efforts dedicated to the development of
novel bot detection algorithms [9-12]. Moving beyond detection algorithm development, intro-
ductory social bot analysis efforts have also started to appear which have examined the preva-
lence and activities of detected social bots within general Twitter and Facebook conversations
[13-15]. Further social bot analysis works have focused on detected bots within Twitter conver-
sations involving specific topic areas such as the Brexit referendum [16,17], vaccinations [18],
stock market trading [19], conflict [20] and political elections [21-24].

The constantly evolving sophistication of social bots has proven challenging for even the
most promising detection algorithms developed to date [25]. This relates to the ever-expand-
ing range of potential bot characteristics and activity patterns which demands continual refine-
ment to existing detection methods or the development of entirely new methods to account
for the most sophisticated bots. In summarizing the array of different detection approaches,
Jiang et al [26] cautioned that detection applications, while looking to maximize the detection
of the most ‘suspicious’ behaviors, employ different definitions of suspicious behaviors. In
effect, the design parameters of bot detection algorithms will return results to which the algo-
rithms are trained, and, thus, different detection strategies should detect different types of
social bots. Recent efforts have focused on the evolving nature of bots by introducing adversar-
ial learning detection algorithms [27,28]. While such detection advances are quite promising,
they serve no immediate role in assisting broad, multidisciplinary social bot analysis efforts,
since they are not readily accessible to the larger research community. Therefore, most current
social bot analysis research efforts rely primarily upon an open-source bot detection platform
service such as Botometer [9,29] or DeBot [10], which, like most detection algorithms, cur-
rently only focus on Twitter due to its ease of data accessibility via its publicly available stan-
dard application programming interface (API).

As the results of the 2015 Defense Advanced Research Projects Agency (DARPA) Twitter
Bot Challenge summarized, no single detection algorithm is able to account for the myriad of
social bots operating in OSNs [30]. It is from this perspective that the following study expands
current social bot analysis research by incorporating multiple social bot detection services to
determine the prevalence and relative importance of social bots within an OSN conversation
of tweets. Through the lens of the 2018 U.S. midterm elections, harvested tweets capturing the
election conversation were analyzed for evidence of bots using three bot detection platform
services: Botometer [29], DeBot [10] and Bot-hunter [11]. The resulting suspected bot evi-
dence serves as the basis for an ensemble of applied social network analysis (SNA) methods to
determine the relative structural importance of bots in the conversation. Finally, a comprehen-
sive, ensemble bot detection coverage analysis evaluates the resulting overlap in performance
among the employed bot detection services.
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The results of this study show that bot and human accounts contributed temporally to our
43.5 million tweet election corpus at relatively similar cumulative rates. The multi-detection
platform comparative analysis of intra-group and cross-group interactions shows that bots
detected by DeBot and Bot-hunter persistently engaged humans at rates much higher than
bots detected by Botometer. Furthermore, while bots accounted for less than 8% of all unique
accounts in the election conversation retweet network, bots accounted for more than 20% of
the top-100 and top-25 ranking out-degree centrality, thus suggesting persistent activity to
engage with human accounts. Finally, the bot coverage overlap analysis shows that minimal
overlap existed among the bots detected by the three bot detection platforms, with only eight
total bot accounts detected by all.

The intra-group and cross-group analysis of the constructed retweet network shows that
bots detected by DeBot and Bot-hunter persistently engaged humans at rates much higher
(5.03% and 6.09%, respectively) than bots detected by Botometer (2.27%). In addition, the
intra-group and cross-group interactions, when viewed from a consolidated bot account per-
spective, provide the first piece of evidence that minimal overall overlap existed between the
set of bots detected by each detection platform. The centrality ranking results showed that
bots, from an overall perspective, achieved large volumes of high centrality ranking positions
despite their relatively small populations size. The classification of relative importance by social
bot accounts was most noticeable with bots detected by DeBot in the out-degree rankings and
with bots detected by Botometer in the eigenvector rankings. Analysis of the overlap of bots
detected by the detection platforms showed that no overlap existed between the bots ranking
in the top-50 centrality results. Moreover, the Jaccard similarity index showed little bot detec-
tion overlap from a pairwise perspective, while only eight bots out of a total of 254,492 unique
bots in the overall tweet corpus were detected by all three detection platforms.

In the remainder of this paper, the Background section provides the necessary context for
this study by introducing applicable previous works involving social bot detection and analysis.
Next, the Data and Methods section details the specific data acquisition and processing, as
well as the applied methods, used in this study. The Results and Discussion section presents
the pertinent findings of the study, and the paper closes with the Conclusion section.

Background

OSN research has emerged and evolved rapidly in concert with the global adoption of social
media platforms throughout the past decade. While the limitations, biases and risks associated
with using OSN data are widely discussed [31,32], there have been many positive insights
gained from OSN research contributions. Such works include OSN-findings related to disaster
event detection [33,34], suicide prevention and detection [35,36] and cyberbullying [37,38].
OSNs have even been described as transformational media in creating new avenues of political
participation and dialogue [1,39], while also fostering strong patterns of rumor propagation
driven by echo chambers [40]. In a 61-million person Facebook experiment during the 2010
U.S. congressional elections, Bond et al. [41] showed how social human ties were instrumental
in spreading both online and offline political behavior. Vaccari et al. [42] identified that lower-
threshold political engagement activities in OSNs, such as posting political views, were strongly
associated with higher-threshold activities such as campaigning for particular parties/candi-
dates and attending offline political events. In a survey of active political Twitter users, Bode
and Dalrymple [43] discovered that a primary reason for engaging in political discourse on
Twitter was due to a general lack of trust in mainstream media sources.

The increasing use of OSNs for political communication dialogue has led to the rightful
criticism of the transparency and validity not only behind how social media platforms
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operationally promote certain narratives, but also of how the platforms verify accounts as
human actors or social bots [44]. Not surprisingly, given the propensity for polarization and
the observed emergence of echo chambers within political conversations in OSNs [45], social
bot campaigns view the manipulation of political dialogue as a natural attack vector. With the
emergent role of OSNs in the 2016 U.S. presidential election, as previously mentioned, recent
social bot analysis efforts have expanded their focus greatly into political OSN conversations.
These works include the examination of detected bots within the 2016 U.S. presidential elec-
tion [4,21,22], the UK-EU Brexit referendum [16,17], the 2018 Italian general election [46], the
2017 Catalan referendum [47] and the 2019 Spanish general election [48] within Twitter con-
versations. These election-focused social bot analyses relied upon an assortment of bot detec-
tion platform algorithms, but they all used a single method to classify bots. Further, while these
recent works produced promising results using a single bot detection method (e.g., Botometer
in [17,21,22,48] or DeBot in [20]) and inspired the development of more robust detection algo-
rithms, such as the vastly improved methods involving adversarial detection approaches
[27,28], they ultimately do not support more robust analyses given the lack of accessibility to
the underlying detection algorithms for other researchers. This study significantly expands
this body of work by aggregating the classification results of three bot detection platforms (i.e.,
DeBot, Bot-hunter and Botometer) in an effort to provide a more holistic social bot analysis
framework. The following introduces and highlights the three detection platform services
employed in this study to classify bots within the 2018 U.S. midterm Twitter conversation.
These particular detection platforms were chosen due to their open accessibility to researchers.

Botometer, a widely used open-source bot detection platform created by researchers at
Indiana University, is based on a supervised Random Forest ensemble classification technique
that evaluates more than 1,000 extracted features for each analyzed Twitter account [9,29].
Given the supervised nature of the underlying algorithm, Botometer requires and has updated
its detection classification algorithm multiple times by retraining against new data [29,49].
Botometer ultimately provides a likelihood estimate score on a [0,1] scale that an account is a
bot, with simple bots scoring (0.8-1.0) and more sophisticated (i.e. human-like) bots scoring
(0.5-0.7) [29]. While popular, Botometer is limited by several significant factors, which have
been thoroughly documented in previous works [47,50,51]. These limiting factors include an
inability to retrospectively analyze historical tweets and to classify suspended/protected Twit-
ter accounts, while its publicly available API does not support large-scale analyses given inher-
ited Twitter API rate limits.

DeBot, an open-source bot detection platform developed by researchers at the University of
New Mexico, adopts an unsupervised warped correlation method to detect and label as bots
those Twitter accounts having more than 40 synchronous events in a given window of time
[10]. This novel unsupervised implementation extends beyond just a traditional correlation
analysis by incorporating the concept of time warping distance to identify correlative activities
within a specific time sampling window. The DeBot binary classification scheme (i.e. bot or
not) detects bots with high precision, but it does so at a cost of total recall due to the limited
sample size of overall Twitter accounts it evaluates [52]. While limited in coverage and suscep-
tible to the precision/recall tradeoff of bot detection highlighted by Morstatter et al. [53], his-
torical DeBot results are easily accessible and have led to the identification of bot impact
within social bot analyses [20,54].

Finally, Bot-hunter, a bot detection platform developed by researchers at Carnegie Mellon
University, applies a supervised Random Forest classification method to previously extracted
Twitter data in a multi-tiered fashion with successive tiers incurring higher computational
costs [11]. This deliberate tiered approach overcomes the limitations observed with Botometer
(i.e. scalability and the classification of suspended accounts) by allowing bot classification to
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occur locally and against historical tweets, as opposed to classification in coordination with the
Twitter APL Further, the scale and reach of Bot-hunter allows for a more complete evaluation
of Tweet corpus accounts, thus overcoming the recall tradeoff observed with the limited cover-
age provided by DeBot. In a similar fashion to Botometer, Bot-hunter returns a bot classifica-
tion score for each Twitter account of interest on a normalized scale between 0 and 1. While
Bot-hunter is not currently accessible via a public API, it was made available to this study by
the Carnegie Mellon research team upon request.

Data and methods

This study breaks new ground in its use of multiple bot detection platforms to identify and
analyze the presence of social bots within the 2018 U.S. midterm election OSN conversation.
The following section details the study’s overall methodological framework as depicted in Fig
1. First, Twitter Data provides the essential background describing the capture, storage and
processing stages required to develop the election midterm tweet corpus. Bot Detection details
the steps taken to label the accounts within the election corpus with the three chosen bot detec-
tion platforms. Retweet Network construction explains the process to derive a network struc-
ture out of the original election conversation corpus. The section concludes with Bot Analysis,
which introduces the applied analysis methods used in the remainder of the paper.

Twitter data

The 2018 U.S. midterm elections provided a new opportunity to build upon previous social
bot analyses dedicated to examining the role of bots within OSN election conversations. Given
the specific limitations of bot detection platforms as described in the Background section, it
was essential to properly prepare a collection plan well in advance of the planned 30-day col-
lection window leading up to election day (November 6, 2018). As Zhang et al. [55] asserts,
keyword selection in social media studies can induce varying levels of selection bias. To miti-
gate this risk, this study chose a comprehensive panel of keywords shown in Table 1 to capture
the 2018 midterm election corpus. This panel included generic keywords associated with the
election (e.g. Election2018, midterms2018) as well as keywords referencing campaign phrases
and high-profile races in order to account for both major U.S. political parties.

The tweet collection process consisted of submitting the keyword panel to the publicly
available Twitter standard streaming API for four weeks prior to the election day (October 10
through November 6, 2018). The overall tweet collection process yielded a consolidated corpus
consisting in excess of 43.5 million tweets produced by approximately 3.2 million unique

£ Bot Classification

e
API Request B
Twitter Account DeBot . .
— Retweet Author Original Author Weight
Gy @authRT_X @authOrigin_X 5
KEYWORDS ~ 43.6 million e @authRT_X @athr!g!nj 1
2018 U.S. Midterm TWEETS @auhRT Y  @authOrign X 3
Election < @authRT_n @authOrigin_n z - ) = .
Harvested Tweets “ J =
API Query B :
Data Acquisition |

Data Processing | | Bot Enrichment ‘ |Retweet Network Construction | | Bot Coverage Analysis |

Fig 1. Social bot analysis framework employing multiple bot detection platforms. The framework enables the application of ensemble analysis methods to
determine the prevalence and relative importance of social bots within Twitter conversations discussing the 2018 U.S. midterm elections.

https://doi.org/10.1371/journal.pone.0244309.9001
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Table 1. Election-related keywords submitted to capture relevant tweets associated with the 2018 U.S. midterm elections via the Twitter API.

Generic Election

Election2018
midterms2018

democrat

DNC
DNC2018
@TheDemocrats

@SenateDems

@HouseDemocrats

https://doi.org/10.1371/journal.pone.0244309.t001

Campaign Phrases Key Races
midterms BlueWave RedWave @ScottWalker
2018midterms FlipTheSenate maga @WISuptTonyEvers
republican FlipTheHouse kag @tedcruz
RNC VoteThemOut buildthewall @BetoORourke
RNC2018 HandsOffOurCare takeitback @SenatorHeitkamp
@GOP @KevinCramer
@SenateGOP @FLGovScott
@HouseGOP @ SenBillNelson

accounts. Retweets accounted for approximately 83.2% of the tweet corpus with more than
36.2 million retweets produced by more than 2.3 million unique accounts. Due to the large vol-
ume of harvested tweets and the subsequent data processing requirements as detailed in the
remainder of this section, all immediate data processing and storage took place in a scalable
16vCPU and 64GB RAM Amazon Web Services (AWS) m5a.4xlarge instance.

Bot detection

To detect and label social bots in the collected election conversation corpus, this study relied
upon three bot detection platforms: Botometer, DeBot and Bot-hunter. While the Background
section provided a general overview of these platforms and their underlying detection algo-
rithms, the remainder of this subsection presents the technical details explaining how this
study used each detection platform to detect and label bots within the election conversation
corpus of tweets. First, a technical explanation describes the processing and environmental
considerations associated with each platform. Next, given the scoring scales of Botometer and
Bot-hunter, a scoring analysis explains the chosen cutoff threshold for labeling accounts as
bots. Finally, an aggregate and specific detection platform perspective presents the bot detec-
tion results.

Currently, both DeBot and Botometer provide researchers open-source access to their
hosted detection platforms via an API. However, due to individual API limitations, these two
platforms required special access considerations to scale to the size of this study’s tweet corpus.
Upon request, the DeBot development team provided access to the entire DeBot archival
repository. The resulting detection processing simply consisted of matching unique tweet
account information from the election conversation corpus to discovered bot profiles in the
DeBot repository. The Botometer API provides both an open-access free tier with a rate limit
of 17,280 requests per day and a ‘professional’ paid tier, which aligns to the publicly available
Twitter standard API rate limits, with a rate limit of 43,200 requests per day. Due to the size of
the election corpus and Botometer’s reliance on evaluating associated tweet data directly via
the Twitter AP, this study required three Botometer professional paid tier licenses in order to
process the entire corpus volume in a timely manner. The faster execution tried to help miti-
gate Botometer’s inability to process suspended or deleted accounts by evaluating accounts
prior to their potential removal by Twitter. As noted above, Bot-hunter does not currently pro-
vide a publicly available API, so the Bot-hunter team provided access to their platform upon
request to process the raw tweets comprising the election conversation corpus.

Both Botometer and Bot-hunter return a classification score for each of the accounts they
evaluate that falls within a [0,1] distribution, with a higher valuation constituting a greater like-
lihood that an account is a bot. DeBot, as previously mentioned, provides a simple binary
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classification for an account. Many studies using Botometer have historically used a 0.50 score
threshold to classify bots [15,22,56]. While a clear binary cutoff threshold is a challenging deci-
sion to make, platforms like Botometer are providing the necessary transparency for research-
ers to make an informed decision [49]. This study used a highly conservative cutoff threshold
0f 0.80 to 1.00 to label accounts as detected bots, in a similar categorization paradigm of ‘most
likely” bots put forth by Broniatowski et al. [57]. This decision reflected a desire to determine
the coverage overlap of the most certain bot accounts between different bot detection plat-
forms. Fig 2 depicts the distribution of classification scores for both Botometer (Fig 2A) and
Bot-hunter (Fig 2B), with the shaded gray areas highlighting the 0.80 to 1.00 score range.

Table 2 provides a summary of the bot detection classification volume results across all
three bot detection platforms, as well as an aggregate classification volume. The aggregate clas-
sification method labels an account as a bot if at least one of the bot detection results declares
that account to be a bot. In total, the aggregate bot classification process labeled 254,492 unique
accounts, or 7.95% of all accounts, as bots that were responsible for contributing more than 5.7
million tweets (13.23% of all tweets) in the election corpus. From the specific detection plat-
form perspective, Bot-hunter led all platforms by labeling 6.26% of all accounts as bots, fol-
lowed by Botometer and DeBot with labeling rates of 3.80% and 0.64%, respectively. In terms
of retweets, aggregate and specific platform bot labeling occurred at approximately that same
rates; however, Botometer-labeled bot accounts retweeted at far lower rates in comparison to
their regular tweet contribution rates.

Retweet network construction

A retweet serves as an observable interaction within a Twitter conversation that has been
shown to promote trust [58] and increase engagement between users [59]. This study focused
on retweets as the primary interaction of interest between accounts within the election conver-
sation corpus. By extracting the directional nature of a retweet between two accounts, a logical
node-edge paradigm emerges that can lead to the construction of an overall retweet network.
For example, an initial retweet between two accounts receives a directional edge weight of ‘1’
and the edge weight increases by ‘1’ for each subsequent directional retweet between the same
two accounts. Overall, the election corpus produced a retweet network, which served as the

300,000
250,000
200,000

150,000

Number of Accounts

100,000

, mmﬂmﬂﬂﬂﬂﬂﬂﬂﬂﬂ [NANNANEANMAMon et s i Aﬂmmwmw WWWHWWW

0.20

0.40

Bot Score

(a) Botometer Score Distribution

0.60 0.80 1.00 0 0.20 0.40 0.60 0.80 1.00

Bot Score

(b) Bot-hunter Score Distribution

Fig 2. Resulting distribution of scores for Twitter accounts present within the 2018 U.S. midterm election tweet corpus using the (a) Botometer (pink) and the (b) Bot-

hunter (orange) bot detection platforms.

https://doi.org/10.1371/journal.pone.0244309.9002
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Table 2. Twitter corpus volume and contributor populations from the 2018 U.S. midterm election OSN conversation with associated bot detection platform classifi-

cation results.

Corpus
Tweets
Humans
Bots
Retweets
Humans
Bots

Detection Platform

DeBot
Botometer

Bot-hunter

DeBot
Botometer
Bot-hunter

https://doi.org/10.1371/journal.pone.0244309.t002

Volume % of Total Contributors % of Total
43,565,164 3,201,996
37,800,157 86.77% 2,947,504 92.05%
5,765,007 13.23% 254,492 7.95%
2,201,858 5.05% 20,605 0.64%
4,239,870 9.73% 121,780 3.80%
2,729,354 6.26% 130,553 4.08%
36,264,206 2,588,956
31,242,038 86.15% 2,388,447 92.26%
5,022,168 13.85% 200,509 7.74%
1,991,654 5.49% 19,466 0.75%
920,675 2.54% 87,590 3.38%
2,337,760 6.45% 107,861 4.17%

inherent graph object to enable the application of the SNA techniques described in the subse-
quent Bot Analysis Methods section, consisting of 3,388,805 nodes and 27,607,691 edges. The
total network exhibited an average degree of 8.147. While not a fully connected network, the
big component of the network consisted of 3,196,932 nodes, which accounted for 94.3% of the
total network nodes.

Bot analysis methods

The following subsections introduce the specific analytic methods used to determine the preva-
lence, characteristics and relative importance of detected bots within the 2018 U.S. midterm
election conversation corpus. Each method accounted for bots from an aggregate labeling per-
spective, as well as for each bot detection platform. The description for each associated analysis
method includes the specific data requirement and any theoretical references necessary to
enable the most interpretive context of results presented in the Results and Discussion section.
Contribution rate analysis. Comparatively analyzing the temporal contribution patterns
of bots and humans over time provided an opportunity to directly observe potential behavioral
differences between the two sub-populations. Furthermore, this comparative context applied to
differentiating the contribution patterns of bots detected by the various detection platforms used
in this study. To accomplish this analysis, the entire election tweet corpus was divided into
aggregate bot and human sub-populations. The resulting bot and human tweet contribution
activities were then temporally indexed, resulting in a daily contribution rate. This same process
was extended to the individual detection platform bot classification results. The Results and Dis-
cussion section presents the consolidated findings of the cumulative contribution rate analysis.
Intra-group and cross-group participation analysis. The constructed retweet network of
the election conversation corpus enabled the observation of a multitude of communication
interactions between bot and human accounts. These specific interactions can be reduced to
intra-group (i.e. bots retweeting bots or humans retweeting humans) or cross-group (i.e. bots
retweeting humans or humans retweeting bots) communication. To quantify the intra-group
and cross-group communication volumes, applicable edgelists were created for each potential
interaction. This included edgelists capturing the aggregate bot and human population inter-
actions, as well as bot and human populations resulting from the individual bot detection plat-
form results. These edgelists served as the foundational data source used to construct the
visualization and associated results narrative presented in the Results and Discussion section.
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Centrality ranking and bot coverage analysis. Beyond the examination of prevalence
and behavioral characteristics, it is reasonable to attempt to ascertain whether social bots can
be construed as ‘important’ actors within an OSN conversation. SNA centrality measures pro-
vide an efficient means to make such an assessment. Centrality measures can imply relative
node importance based on a given node’s structural position in relation to other nodes within
anetwork [60]. Social media research includes numerous applications of centrality analysis to
determine the relative influence of contributing users in tweet networks [61]. Following the
aforementioned node-edge characterization of retweets between accounts, this study applied
the following four centrality measures that are efficiently scalable to the election corpus retweet
network: eigenvector, in-degree, out-degree and PageRank.

Each of the applied centrality measures is a proxy for a specific form of relative impor-
tance within a retweet network. In-degree and out-degree centrality serve as a basis of popu-
larity, given the cumulative direct inbound and/or outbound edges, or communication
interactions, associated with each user account. Eigenvector centrality, which can be viewed
as global measure of influence, is a more complex variant of degree centrality derived from
the weighted sum of a given node’s complete set of direct and indirect edge connections.
Finally, PageRank, is an extension of eigenvector centrality that weights a degree valuation
higher for nodes that initiate edges with nodes that have the highest relative importance val-
ues [62]. Therefore, user accounts with the highest PageRank valuations in a retweet net-
work are the recipients of more retweets from the most popular user accounts. Ranking the
centrality results then allowed for the identification of the specific bots with relative struc-
tural importance, while also providing an opportunity to observe any redundant coverage
between the detection platforms. In addition, the proposed method of ranking centrality
results maintains the integrity of the ordinal ranking results of measures such as PageRank,
which cannot produce an average global interpretation as attempted in other studies [47].
The Centrality Ranking and Bot Coverage subsection within the Results and Discussion
section presents these results.

Results and discussion

The following section presents the detailed results of the applied analysis methods described in
the previous Data and Methods section. Based on the bot detection results from three bot
detection platforms, the Cumulative Bot Contribution Rates subsection facilitated the com-
parative analysis of bot and human temporal contributions to the overall 2018 U.S. midterm
election OSN conversation. The Intra-Group and Cross-Group Comparison subsection
details the interaction patterns between human and bot accounts. This section concludes with
the Centrality Ranking and Bot Coverage subsection identifying social bots within the cen-
trality analysis ranking results, while also presenting a bot coverage assessment based on the
results of the detection platforms used in this study.

Cumulative bot contribution rates

Fig 3 presents the cumulative contribution rates of bot and human accounts to the 2018 U.S.
midterm election OSN conversation. The results shown in Fig 3A directly compare human
and bot contributions rates, with an account being classified as a bot if any of the study’s three
detection platforms positively detected it as such. Visually, the contribution patterns of both
human and bot accounts are quite consistent throughout the four weeks, although bot
accounts slightly outpace the daily cumulative contributions of human accounts for the entire
period. Fig 3B directly compares the cumulative contribution rates of bot accounts according
to the bot detection classification results for each of the detection platforms. The results
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initially show similar cumulative contribution rates by bots from each detection platform, but
bot accounts detected by DeBot and Bot-hunter outpace Botometer-detected bots from Sep-
tember 25" through the November 6™ election day. It is surprising to see the relatively consis-
tent contribution rates across both analysis scenarios, which could suggest that the Twitter
election conversation elicited stable attention from both bot and human account contributors.
While requiring further analysis, the observed cumulative contribution divergence by Bot-
ometer bots from DeBot and Bot-hunter bots midway through the conversation collection
period could potentially suggest that bots detected by Botometer shift their interest over time
to conversational topics beyond the election discussion.

Intra-group and cross-group comparison

The construction of the election corpus retweet network allowed for the observation of com-
munication interaction patterns between detected bot and human accounts. Fig 4 presents the
consolidated intra-group (i.e. bots retweeting bots or humans retweeting humans) and cross-
group (i.e. bots retweeting humans or humans retweeting bots) patterns between bot and
human accounts from the consolidated aggregate bot perspective, shown in Fig 4A (shaded in
gray), as well as individual detection platform perspectives in Fig 4B-4D. Across all bot detec-
tion platforms, bot accounts initiate interaction with human accounts at a much higher rate
than with other bot accounts, with intra-group bot rates all below 0.50% from the individual
detection platform perspective. Social bot accounts detected by DeBot (Fig 4B) and Bot-hunter
(Fig 4D) attempt to engage with human accounts at much higher rates than observed with bot
accounts detected by Botometer (Fig 4C), thus suggesting the DeBot and Bot-hunter classifica-
tion algorithms more readily identify bot accounts that are more persistent in engaging in
social dialogue with human accounts. While the combined bot sources perspective (Fig 4B)
shows that when combining the individual bot detection platform results, minimal overlap or
redundancy exists in the consolidated set of detected bots due to the substantially decreased
human intra-group rate and increasing rates for all other interactions involving bots. This ini-
tial bot coverage assessment is further investigated and discussed in the following Centrality
Ranking Coverage subsection.
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Centrality ranking and bot coverage

Fig 5 presents the centrality ranking analysis results by displaying the density of social
bots within the top-N, (where N = 1000/ 500 / 100 / 25) centrality rankings according to
each bot detection platform for the eigenvector, in-degree, out-degree and PageRank cen-
trality measurements. Although social bots detected by DeBot and Botometer accounted
for just 0.75% and 3.38% of all unique accounts in the retweet network, respectively, many
displayed structural network importance by achieving top centrality out-degree and
eigenvector rankings. Specifically, bots detected by DeBot accounted for more than 20%
of the top-100 and top-25 out-degree ranking accounts, indicating a persistent social
nature for these types of bots. Botometer-detected bots achieved at least 50% more of the
top-ranking eigenvector valuations than the other bot detection services. This could
imply that Botometer detection techniques discover bots that are highly influential from a
structural perspective in a network given their developed direct and indirect relationships
with other accounts.

While all of the bot detection platforms detected few bot accounts within the in-degree and
PageRank centrality ranking results, the large variances shown between the out-degree and
eigenvector results imply that specific detection methods detect specific types of bots. This
concept is further evaluated by directly identifying each bot within the top-50 centrality rank-
ings according to bot detection source and observing potential detection overlap. Fig 6 pres-
ents a detection classification ranking visualization with humans colored in blue and
suspected bots colored according to their platform detection source. Interestingly, no bots
detected within the top-50 rankings for each centrality measurement were detected by more
than one detection source. This is further evidence that different detection algorithms are
designed to identify different types of bots.
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The observation of minimal overlap within the consolidated set of detected bots from the
retweet network discussed in the Intra-group and Cross-group sub-section, coupled with the
lack of detection overlap in the resulting centrality rankings, inspired a final bot coverage
assessment of the entire election tweet corpus. The first step of this analysis consisted of a simi-
larity assessment of the bot detection results derived from each of the bot detection platforms
used in the study. The Jaccard index (J4, p) is a similarity valuation between two sets {A, B}
resulting from dividing the intersection of the two sets |A N B| by their union |A U B| as shown
in Eq 1.

_|AnB]
A8 JAU B

(1)

Table 3 presents the Jaccard similarity index results for all possible bot detection platform
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Table 3. Jaccard similarity index values representing the pairwise comparison results of the same bots detected
between each bot detection platform: Botometer (BT), Bot-hunter (BH) and DeBot (DB).

{4, B} |ANB| |AUB| Ja s

DB, BT 388 123,551 0.314%
DB, BH 1,477 131,235 1.125%
BT, BH 16,565 217,322 7.622%

https://doi.org/10.1371/journal.pone.0244309.t003

pairwise comparisons. Overall, there exist minimal levels of overlap between detection plat-
forms as the highest observed similarity value is 7.62% observed between Botometer and Bot-
hunter and the similarity values including DeBot are just 0.31% (DeBot and Botometer) and
1.13% (DeBot and Bot-hunter). The UpSet plot show in Fig 7 visually presents the intersection
values used to calculate the Jaccard index values, while also identifying a global bot detection
overlap of just eight bot accounts between all three bot detection platforms. The top bar chart
of the UpSet plot represents the intersection set size between detection results, while the con-
nected dot plots below represent the detection platforms comprising each intersection set
volume.

Conclusion

In summary, this study examined the prevalence and relative importance of detected social
bots present within the 2018 U.S. midterm election Twitter conversation. By expanding upon
other social bot analysis works, this study incorporated the use of three bot detection platforms
in an unprecedented fashion, which enabled a comparative analysis of bot coverage across the
Twitter conversation. Bot and human accounts contributed temporally to the 43.5 million
tweet election corpus at relatively similar cumulative rates. The intra-group and cross-group
analysis of the constructed retweet network showed that bots detected by DeBot and Bot-
hunter persistently engaged humans at rates much higher than bots detected by Botometer.
Additionally, the intra-group and cross-group interactions, when viewed from a consolidated
bot account perspective, provided the first piece of evidence that minimal overall overlap
existed between set of bots detected by each detection platform. The centrality ranking results
showed that bots, from an overall perspective, achieved many high centrality ranking positions
despite their relatively small population size. The classification of relative importance of social
bot accounts according to certain centrality results was most notable, with bots detected by
DeBot in the out-degree rankings and with bots detected by Botometer in the eigenvector
rankings. Analyzing the overlap of bots detected by the detection platforms showed that no
overlap existed between the bots ranking in the top-50 centrality results. Moreover, the Jaccard
similarity index showed little bot detection overlap from a pairwise perspective, with only
eight bots out of a total of 254,492 unique bots in the total tweet corpus having been detected
by all three detection platforms.

The overall findings of the study are promising, but not immune from limitations. First of
all, the analyzed OSN election corpus relied upon a single platform, Twitter. This reliance
surely introduces platform representativeness and sampling bias issues as described in other
works [31,32]. Secondly, the keyword categorization of a midterm election is much harder to
efficiently account for than to a more specific election like a single congressional or even presi-
dential election. Thus, the keyword filters used to harvest tweets, while attempting to be repre-
sentative and balanced, surely introduce an unknown level of potential selection bias as
detailed by Zhang et al. [55]. Finally, while the focus of the study was on the cross-platform
detection of bots via different sources, the ultra-conservative cutoff threshold (i.e. 0.80) focused
on high bot precision undoubtedly contributed to an overall lower recall. While acceptable for
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the scope of this study, future work should seek to extend the cutoff threshold to account for
more classification results. Further, bots are not necessarily malicious, as many can be classi-
fied as just benign automaton actors; therefore, determining such distinction by relevant plat-
form could be quite beneficial as well.

Future extensions of this work should seek to apply this multi-detection platform frame-
work to other OSN use-cases of interest. This study focused on the most readily available and
accessible bot detection platforms, but the rapidly evolving research area of bot detection algo-
rithms can hopefully contribute more accessible detection platforms to the greater research
community soon. New options such as these would ideally include emerging detection meth-
ods that account for the evolving nature of bots, such as the adversarial approach put forth by
Cresci et al. [28]. In addition, detection work must begin accounting for other OSN platforms

PLOS ONE | https://doi.org/10.1371/journal.pone.0244309 January 6, 2021 15/19


https://doi.org/10.1371/journal.pone.0244309.g007
https://doi.org/10.1371/journal.pone.0244309

PLOS ONE

Ensemble analysis of social bots evidence in the 2018 US election

and expanding beyond Twitter in a similar fashion to the examination of bot evidence in Wiki-
pedia edits conducted by Tsvetkova et al. [64]. Ultimately, this study expands current social
bot research by putting forth a reproducible framework to evaluate bots from a multi-detection
platform perspective, and the novel analysis methods produce actionable results for analysts to
better understand the prevalence and relative importance of detected social bots. Bots play a
significant participatory role in online conversations, but significant improvement in bot anal-
ysis research remains to understand the implication and effect these automated actors play in
influencing human actors. This study plays a crucial role in advancing the body of research
dedicated to better understanding the role of social bots in social dialogue.
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