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Abstract

Risk in finance may come from (negative) asset returns whilst payment loss is a typical risk

in insurance. It is often that we encounter several risks, in practice, instead of single risk. In

this paper, we construct a dependence modeling for financial risks and form a portfolio risk

of cryptocurrencies. The marginal risk model is assumed to follow a heteroscedastic pro-

cess of GARCH(1,1) model. The dependence structure is presented through vine copula.

We carry out numerical analysis of cryptocurrencies returns and compute Value-at-Risk

(VaR) forecast along with its accuracy assessed through different backtesting methods. It is

found that the VaR forecast of returns, by considering vine copula-based dependence

among different returns, has higher forecast accuracy than that of returns under prefect

dependence assumption as benchmark. In addition, through vine copula, the aggregate

VaR forecast has not only lower value but also higher accuracy than the simple sum of indi-

vidual VaR forecasts. This shows that vine copula-based forecasting procedure not only

performs better but also provides a well-diversified portfolio.

Introduction

In finance and insurance, one of the major and challenging issues is managing quantitative

risk, specifically forecasting future risk. Risk forecast is not only important for reserving capital

but also for anticipating the worse risk. Risk in finance may come from (negative) asset returns

whilst, in insurance, a typical risk is a payment loss. It is often that we encounter several

(dependent) risks, in practice, instead of a single risk. Dependent random risks or losses occur

in many applications and have challenging statistical features, see e.g. Embrechts et al. [1, 2],

Gräler et al. [3], McNeil et al. [4], Naifar [5], Patton [6], Trabelsi [7], Usman et al. [8] and

Zhang et al. [9].

There are several interesting topics that relate to dependent risks. The first one is construc-

tion of dependent risks either as an aggregate risk model or a multivariate risk model, see e.g.

Kim and Kim [10]. The second topic lies on the fact that dependent risks have a technical

problem with regard to finding an exact form of distribution function (cdf) or probability

function (pdf). Both topics above eventually bring us to learn and employ a more sophisticated
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method in dependent risks namely copula. Copula is a system that does not only accommodate

either non normal or unidentical marginal distributions into a uniform distribution but also

simplify number of parameters of a joint distribution. Meanwhile, a more step method than a

copula is vine copula. It is also a system that constructs pair-copula with high flexibility when

decomposing conditional distribution, e.g. Aas et al. [11] and Trucı́os et al. [12]. Furthermore,

vine copula provides us informative and complete dependence structure. It is well known that

understanding dependence is an important step to make strategy on diversification.

Modeling dependence through vine copula approach is basically aimed to broaden flexibil-

ity of dependence structure among random risks, compared to classical dependence measures

of Pearson’s ρ and Kendall’s τ or even copula. The recent use of vine copula modeling may be

found in (energy) economic and finance applications. For instance, Mejdoub and Ghorbel

[13] investigated conditional dependence between oil price and renewable energy stock prices

and considered threshold Generalized Autoregressive Conditional Heteroscedastic (GARCH)

model, see also Trabelsi [7] for tail risk dependence between oil and stocks of oil-exporting

countries. Kumar et al. [14] examined conditional dependence among not only energy com-

modities but also agricultural and precious metals commodities. Furthermore, Çekin et al. [15]

studied dependence structure among economic policy uncertainty (EPU) of Latin American

countries. Meanwhile, Hernandez et al. [16] compared risk of portfolio: Gulf Cooperation

Council (GCC) Islamic and conventional bank indices. They studied tail asymmetric depen-

dence among Islamic banks’ relationship. In addition, Usman et al. [8] explored dependence

modeling between Islamic and conventional stocks through copula whilst Naifar [5] employed

Archimedean copulas to model tail dependence structure between Islamic bonds and stock

market.

This paper considers risk in finance defined as (negative) asset returns. In particular, we

construct a dependence modeling for financial risks and form a portfolio risk. Whilst marginal

risk is assumed to follow a Generalized Autoregressive Conditional Heteroscedastic (GARCH)

model of order one, forecasting future risk is carried out by risk measure of Value-at-Risk

(VaR). VaR, along with Conditional VaR, has be applied to both single risk and dependent

risks to make use in practice, see e.g. Nieto and Ruiz [17] for latest review on VaR and its back-

testing. Basically, VaR is a maximum tolerated risk or loss for either single or aggregate risk at

a given level of confidence. VaR forecast is crucial for assessing the performance of financial

institution. Embrechts et al. [1, 2] emphasized that VaR is the industry and regulatory standard

for risk capital calculation in both banking and insurance.

We pay particular attention to portfolio risk of cryptocurrencies returns; particularly, Bit-

coin (BTC), Ethereum (ETH) and Litecoin (LTC) are considered. Cryptocurrency has been

one of the major interests among financial practitioners, investors, academia even policy mak-

ers. Bitcoin, since introduced by Nakamoto [18], has shown a dramatic increasing value during

a year period of 2017 and 2018 for about one and a half times ([19]). It has been a prominent

digital asset ever since. However, there is still debate whether cryptocurrencies are defined as

currency, commodity or investment asset. Jiménez et al. [20] argued that Bitcoin is a digital

asset or investment as known before (bonds and equities). Their interests are on volatility clus-

tering and leptokurtosis which are typical in asset returns. However, we may observe an

extreme event on BTC that leads to greater market instability. There are some financial impli-

cations on cryptocurrencies due to uncontrolled monitoring by monetary regulator, see. e.g.

Corbet et al. [21] who recorded pricing bubbles in BTC and ETH. They also claimed that cryp-

tocurrencies may become source of financial instability.

Boako et al. [19] and Trucı́os et al. [12] are among authors recently used returns of crypto-

currencies to illustrate vine copula modeling and risk measures forecasting. It is interesting to

classify several areas done by authors. The first area is cryptocurrencies testing in order to have
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a clear position: as a currency, commodity or asset; see e.g. White et al. [22] and Kwon [23].

The related area to the first is pricing formation of cryptocurrencies and other possible mea-

surement such as ratio of gold to platinum (GP) prices forecast Bitcoin return, e.g. Huynh

et al. [24]. The second area lies on cryptocurrencies empirical facts like other returns along

with return-volatility correlation, volatility clustering or asymmetric volatility, see e.g. Bouri

et al. [25], Klein et al. [26], Boako et al. [19] and Wajdi et al. [27]. Such relationship may be

measured by what so called “volatility surprise” or unexpected volatility. It is the difference

between squared innovation and conditional volatility, see Bouri et al. [28]. Furthermore,

interdependence that accounts time and frequency and market interconnection among cryp-

tocurrencies may be explored through wavelet-based approaches CWT, continuous wavelet

transformation, and XWT, cross wavelet transform) as carried out by e.g. Qureshi et al. [29].

Interdependence may also be observed between cryptocurrency and energy or agricultural

commodities. Ji et al. [30], for instance, examined information spillovers via entropy-based

method among both cryptocurrencies and commodities. They found that, first, it changes over

time. Secondly, unlike the spillover of cryptocurrencies, energy commodities spillover contri-

bution to the system is dependent on their price dynamics. The third area is concerned about

economic or financial implication of cryptocurrencies, see e.g. Bouri et al. [31] who studied

global financial stress, whilst Trucı́os et al. [12] argued that it is a shelter against economic and

financial turmoil.

In this paper, we show the portfolio or aggregate VaR forecast by considering vine copula-

based dependence among individual returns. Different from the work of Boako et al. [19] and

Trucı́os et al. [12] who found VaR forecast by using classical historical simulation (HS)

method, our forecast calculation considers “estimative” VaR forecast as in Kabaila and Syu-

hada [32, 33] and Syuhada [34]. The aggregate VaR forecast is compared to the simple sum of

individual VaR forecasts that actually considers perfect dependence assumption. To evaluate

their performance, we assess their accuracy by adopting several backtesting methods as

recently used by Syuhada [34] and Jiménez et al. [20]. In addition, comparing the aggregate

VaR and the simple sum of individual VaRs also leads us to investigate and measure benefits

of the portfolio diversification.

Material and methods

Data

Cryptocurrencies data, Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC), are obtained

from Coin Market Cap (coinmarketcap.com) for period 1 January 2017 till 31 December 2018

(730 days).

Returns and marginal risk model

The marginal risk is (negative) returns of three cryptocurrencies defined as below

Xt ¼ � ln
PBt
PBt� 1

� �

; Yt ¼ � ln
PEt
PEt� 1

� �

; Zt ¼ � ln
PLt
PLt� 1

� �

; ð1Þ

where PBt , PEt and PLt denote (closing) price at time t for Bitcoin (BTC), Ethereum (ETH) and

Litecoin (LTC), respectively.

We assume a marginal risk model of Generalized Autoregressive Conditional Heterosce-

dastic [35] of order one or GARCH(1,1) for each risk process. This is mainly due to dynamic

volatility property found from each risk. Specifically, the GARCH(1,1) models for (negative)
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returns of Bitcoin {Xt}, Ethereum {Yt} and Litecoin {Zt} are, respectively, given by

Xt ¼ sx;t εx;t; s2
x;t ¼ ox þ dx X2

t� 1
þ bx s

2
x;t� 1

;

Yt ¼ sy;t εy;t; s2
y;t ¼ oy þ dy Y2

t� 1
þ by s

2
y;t� 1

;

Zt ¼ sz;t εz;t; s2
z;t ¼ oz þ dz Z2

t� 1
þ bz s

2
z;t� 1

;

ð2Þ

where ωx, ωy, ωz> 0 and δx, δy, δz, βx, βy, βz� 0, for t� 0. The restriction on persistence

parameter δx + βx< 1, δy + βy< 1 and δz + βz< 1 is needed to ensure the stationarity of all

processes {Xt}, {Yt} and {Zt}, respectively. We assume that innovation {εx;t, t� 0} is white

noise. In addition, innovation εx;t, t� 0, and volatility σx;t as well as εx;t, t� 0, and informa-

tion, up to time (t − 1), F x;t� 1, are independent. Note that such assumptions also apply to {εy;t,
t� 0} and {εz;t, t� 0}.

The estimates for each innovation is calculated and the goodness-of-fit procedure for inno-

vation distribution needs to be carried out. From Xt = σx;t εx;t, the innovation εx;t is formulated

as εx;t = Xt/σx;t. Thus, εx;t may be estimated by

ε̂x;t ¼
xt
ŝx;t

; ŝx;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

t � 1

Xt

s¼1

xs �
1

t

Xt

r¼1

xr

 !2
v
u
u
t : ð3Þ

Meanwhile, we assume standard Student’s t distribution for such innovation. To do so, sup-

pose that a random variable Tx has Student’s t distribution with degrees of freedom νx 2 (0,

1), i.e. Tx* t(νx). The probability function of Tx is

fTxðtÞ ¼
1

ffiffiffiffi
nx
p B nx

2
; 1

2

� � 1þ
t2

nx

� �� nxþ1

2

; t 2 R;

where B(�, �) is beta function. Note that its mean is EðTxÞ ¼ 0, for νx> 1, whilst its variance,

VðTxÞ ¼
nx
nx � 2

, is positive and finite, for νx> 2. By defining

εx;t ¼
Txffiffiffiffiffiffiffiffiffiffiffiffi
VðTxÞ

p ¼ Tx

ffiffiffiffiffiffiffiffiffiffiffiffi
nx � 2

nx

s

;

we obtain Eðεx;tÞ ¼ 0 and Vðεx;tÞ ¼ 1 and the innovation εx;t is said to have standard Student’s

t distribution with probability function

fεxðεÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffi
nx � 2

p
B nx

2
; 1

2

� � 1þ
ε2

nx � 2

� �� nxþ1

2

; ε 2 R:

Parameter function
ffiffiffiffiffiffiffi
nx � 2

nx

q
may be viewed as scale parameter, so that

εx;t � Student0s t 0;
ffiffiffiffiffiffiffiffi
nx � 2

nx

q
; nx

� �
: ð4Þ
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Now, by applying standard Student’s t distribution to GARCH(1,1) model, the conditional

probability function of Xt, given information F x;t� 1, is

fXt jFx;t� 1
ðxÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x;tðnx � 2Þ

q
B nx

2
; 1

2

� � 1þ
x2

s2
x;tðnx � 2Þ

" #� nxþ1

2

; x 2 R:

In other words, XtjF x;t� 1 is Student’s t distributed with parameter nx; sx;t

ffiffiffiffiffiffiffi
nx � 2

nx

q� �
. The

explicit form of the conditional probability function above leads us to employ the conditional

maximum likelihood method, as in McNeil et al. [4], to estimate its parameters. Note that this

procedure is analogous to YtjF y;t� 1 and ZtjF z;t� 1.

Copula-based modeling

Copula and dependence measures. Suppose that a continuous bivariate random variable

(X, Y), representing a joint risk, has marginal risk distribution function FX and FY, respectively.

Suppose also that U = FX(X) and V = FY(Y) so that they are uniformly distributed over unit

interval, i.e. U;V � Uð0; 1Þ. Copula CU,V is a joint distribution function of (U, V) such that

CU;Vðu; vÞ ¼ PðU � u;V � vÞ; ðu; vÞ 2 ½0; 1�2;

where CU,V: [0, 1]2! [0, 1]. Its corresponding probability function is

cU;Vðu; vÞ ¼
@

2CU;Vðu; vÞ
@u @v

;

which is called copula density, see e.g. Nelsen [36] and McNeil et al. [4]. Furthermore, Sklar’s

theorem stated that joint distribution function FX,Y of (X, Y) may be determined through cop-

ula CU,V of marginal distribution functions FX and FY, i.e.

FX;Yðx; yÞ ¼ CU;V ½FXðxÞ; FYðyÞ�; ðx; yÞ 2 R2
:

Sklar’s theorem has shown us that the use of copula provides many choices of joint distribu-

tion function of (X, Y). The corresponding joint probability function fX,Y of (X, Y) is given by

fX;Yðx; yÞ ¼ fXðxÞ � fYðyÞ � cU;V ½FXðxÞ; FYðyÞ�:

To measure dependence between X and Y, the dependence measures of Pearson’s ρ and

Kendall’s τ are required. According to Schweizer and Wolff [37], such dependence measures

are defined as

rX;Y ¼ rðX;YÞ ¼

ZZ

R2

½FX;Yðx; yÞ � FXðxÞFYðyÞ� dx dy
ffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p ffiffiffiffiffiffiffiffiffiffiffi
VðYÞ

p ;

tX;Y ¼ tðX;YÞ ¼ 4

ZZ

R2

FX;Yðx; yÞ dFX;Yðx; yÞ � 1;

respectively. By substituting u = FX(x) and v = FY(y), they may be formulated as

rX;Y ¼

ZZ

½0;1�2
½CU;Vðu; vÞ � uv� dF

� 1

X ðuÞ dF
� 1

Y ðvÞ
ffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p ffiffiffiffiffiffiffiffiffiffiffi
VðYÞ

p
ð5Þ

PLOS ONE Risk dependence and VaR for cryptocurrencies

PLOS ONE | https://doi.org/10.1371/journal.pone.0242102 December 23, 2020 5 / 34

https://doi.org/10.1371/journal.pone.0242102


and

tX;Y ¼ 4

ZZ

½0;1�2
CU;Vðu; vÞ dCU;Vðu; vÞ � 1 ¼ 4E½CU;VðU;VÞ� � 1: ð6Þ

It is shown from Eq (5) that Pearson’s ρX,Y depends not only on copula but also on marginal

of X and Y. Thus, Pearson’s ρ is invariant only under linear transformation. Meanwhile, from

Eq (6), it is shown that Kendall’s τX,Y depends only on copula. In addition, τX,Y = τU,V. Thus,

Kendall’s τ is invariant under both linear and nonlinear transformations. We may say that

Kendall’s τ is copula-based dependence measure. Note that for parameter θ of copula CU,V,

Kendall’s τU,V is a function of θ i.e. τU,V(θ).

There are several copulas commonly used such as Archimedean and elliptical copulas.

Based on Joe [38], examples of Archimedean copulas are Clayton, Gumbel and Frank with the

following function and the corresponding density:

1. Clayton copula: CClayton
U;V ðu; v; yÞ ¼ ðu� y þ v� y � 1Þ

� 1
y, where θ 2 (0,1). Its corresponding

copula density is

cClaytonU;V ðu; v; yÞ ¼ ð1þ yÞðuvÞ
� 1� y
ðu� y þ v� y � 1Þ

� 1
y
� 2
:

2. Gumbel copula: CGumbel
U;V ðu; v; yÞ ¼ exp � ½ð� lnuÞy þ ð� ln vÞy�

1
y

n o
, where θ 2 [1,1). Its

corresponding copula density is

cGumbelU;V ðu; v; yÞ ¼
ð� lnuÞy� 1

ð� ln vÞy� 1gðu; vÞ
uv � CGumbel

U;V ðu; v; yÞ

where gðu; vÞ ¼ ½ð� lnuÞy þ ð� ln vÞy�
2
y
� 2
þ ðy � 1Þ½ð� lnuÞy þ ð� ln vÞy�

1
y
� 2

.

3. Frank copula: CFrank
U;V ðu; v; yÞ ¼ �

1

y
ln 1þ

ðe� yu � 1Þðe� yv � 1Þ

e� y � 1

h i
, where y 2 R 2 nf0g. Its corre-

sponding density is

cFrankU;V ðu; v; yÞ ¼
ye� yue� yvðe� yu � 1Þðe� yv � 1Þ

ðe� y � 1Þ
2

1þ
ðe� yu � 1Þðe� yv � 1Þ

e� y � 1

� �� 2

:

Meanwhile, Gaussian and Student’s t copulas are examples of elliptical copulas. Their cop-

ula functions are

CGaussian
U;V ðu; v; yÞ ¼ F2½F

� 1ðuÞ;F� 1ðvÞ; y�

and

CStudent0s t
U;V ðu; v; n; yÞ ¼ FT;T0 ½F� 1

T ðu; nÞ; F� 1
T ðv; nÞ; n; y�;

respectively, where θ 2 (−1, 1). Note that F(�) and F2(�, �;θ) are distribution function of stan-

dard univariate normal and standard bivariate normal random variables, respectively. Further-

more, FT,T0(�, �;ν, θ) is joint distribution function of identical Student’s t random variables (T,

T0) with marginal distribution function FT(�;ν) and degrees of freedom ν 2 (0,1). The
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corresponding densities of Gaussian and Student’s t copulas are, respectively, given by

cGaussianU;V ðu; v; yÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y

2
p exp �

y
2
ðx2 þ y2Þ � 2yxy

2ð1 � y
2
Þ

� �

;

where x = F−1(u) and y = F−1(v), and

cStudent0s t
U;V ðu; v; n; yÞ ¼

1

pfTðx; nÞfTðy; nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y

2
p 1þ

x2 þ y2 � 2yxy
nð1 � y

2
Þ

� �� nþ2
2

;

where x ¼ F� 1
T ðu; nÞ and y ¼ F� 1

T ðv; nÞ.
The dependence measures of Kendall’s τ for Archimedean and elliptical copulas are pro-

vided in Table 1. It is shown that Kendall’s τmay be expressed in copula parameter θ. In addi-

tion, copula parameter θmay also be expressed in Kendall’s τ, except for Frank copula.

For equal value of Kendall’s τ, we present in Fig 1 the contour plot for the density of Archi-

medean and elliptical copulas. It may be observed that Clayton, Gumbel and Student’s t copu-

las perform tail dependence. In more detail, Clayton copula is appropriate for lower-tail

dependent risks whilst upper-tail dependence may be captured by Gumbel copula. Further-

more, Student’s t copula displays symmetrical lower- and upper-tail dependence. Meanwhile,

Frank and Gaussian copulas have symmetrical lower- and upper-tail independence.

Copula selection. For a given risk data set, the challenging task is selecting the best

copula which fits well to the data. We may do this by considering several criteria. One of

them is Akaike Information Criterion (AIC) introduced by Akaike [39]. Suppose that a cop-

ula CU,V(�, �;θ) with its corresponding density cU,V(�, �;θ) has parameter θ. Based on data

fðui; viÞg
n
i¼1

of (U, V), the estimate for such parameter may be obtained through maximum

likelihood (ML) method with likelihood function LðyÞ ¼
Qn

i¼1
cU;Vðui; vi; yÞ. By replacing θ

with its estimate, ŷ, we have ĈU;Vð�; �; ŷÞ as the parametric estimate for CU,V(�, �;θ). The AIC

value from such copula is defined as

AIC ¼ � 2 lnLðŷÞ þ 2b;

where b is number of parameters in θ. Among several choices of copulas, a copula with the

lowest value of AIC may be decided as the best copula.

Table 1. Dependence measures of Kendall’s τ for Archimedean and elliptical copulas.

Copula Kendall’s τU,V(θ) Parameter θ(τU,V)

Clayton(θ) y

yþ2

2tU;V
1� tU;V

Gumbel(θ) 1 � 1

y

1

1� tU;V

Frank(θ) 1 �
4½1� D1ðyÞ�

y
t� 1
U;VðyÞ

Gaussian(θ) 2

p
arcsinðyÞ sin p

2
tU;V

� �

Student’s t(θ, ν) 2

p
arcsinðyÞ sin p

2
tU;V

� �

Note: Kendall’s τ is expressed as function of copula parameter θ and such θ is expressed as function of Kendall’s τ.

For Frank copula, its Kendall’s τ is depend on Debye function of D1ðyÞ ¼
1

y

R y
0

t
et � 1

dt whose inverse function has no

explicit form.

https://doi.org/10.1371/journal.pone.0242102.t001
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In addition, we employ other criteria by considering empirical version of copula. The

empirical copula Ĉn, for the data fðui; viÞg
n
i¼1

, is defined as

Ĉnðu; vÞ ¼
1

n

Xn

i¼1

Ifui�u;vi�vg; ðu; vÞ 2 ½0; 1�2;

where IA is indicator function on set A. Through graphical approach, the best fitting copula

may typically be selected by comparing the surface of such empirical copula to that of

ĈU;Vðu; v; ŷÞ. To give more convenient interpretation, we consider its univariate version i.e.

K̂ nðqÞ ¼
1

n

Xn

j¼1

IfCnðuj;vjÞ�qg; q 2 ½0; 1�: ð7Þ

Such empirical function is the nonparametric estimate of distribution function,

Kðq; yÞ ¼ PðQ � qÞ, for the so-called Kendall’s transform, Q = CU,V(U, V;θ), defining Ken-

dall’s τ in Eq 6. According to Genest and Rivest [40], this leads us to visualize the curve for

K̂ nðqÞ and its corresponding function of λ, defined by

l̂nðqÞ ¼ q � K̂ nðqÞ; ð8Þ

along with the parametric version derived from ĈU;Vðu; v; ŷÞ. Furthermore, we may perform a

Fig 1. Contour plot for the density of Archimedean and elliptical copulas. The contours show their different dependence structure for equal

Kendall’s τ = 0.6.

https://doi.org/10.1371/journal.pone.0242102.g001
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goodness-of-fit (GoF) test for such copula. It is carried out by testing

H0 : CU;V ¼ ĈU;Vð�; �; ŷÞ versus H1 : CU;V 6¼ ĈU;Vð�; �; ŷÞ;

or, equivalently, testing H0 : K ¼ K̂ð�; ŷÞ versus H1 : K 6¼ K̂ð�; ŷÞ, where CU,V and K are the

true copula and the corresponding true Kendall’s distribution function, respectively. We use

Cramér–von Mises test statistic

SðKÞn ¼

Z 1

0

n½K̂ nðqÞ � K̂ðq; ŷÞ�
2 dK̂ nðqÞ

and calculate p-value of the test by adopting parametric bootstrap as proposed by Genest et al.

[41].

Vine copula-based modeling

Pair-copula construction method. Suppose that (X, Y, Z) is a dependent risk model con-

sisting of three continuous random variables with joint probability function

fX;Y;Z ¼ fX � fY � fZ � cX;Y;Z; ð9Þ

where the marginal risk probability functions are fX, fY, fZ and cX,Y, Z is a trivariate copula den-

sity. Since there is limitation on classes of trivariate copulas, we aim to find joint distribution

of (X, Y, Z) through another approach. Joe [42] suggested a decomposition for fX,Y, Z as

fX;Y;Z ¼ fX � fYjX � fZjX;Y :

Note that

fYjX ¼
fX;Y
fX
¼
fX � fY � cX;Y

fX
¼ fY � cX;Y

and

fZjX;Y ¼
fY;ZjX
fYjX
¼
fYjX � fZjX � cY;ZjX

fYjX
¼ fZjX � cY;ZjX:

Since

fZjX ¼
fX;Z
fX
¼
fX � fZ � cX;Z

fX
¼ fZ � cX;Z;

we have fZ|X, Y = fZ � cX,Z � cY,Z|X. Thus,

fX;Y;Z ¼ fX � fY � fZ � cX;Y � cX;Z � cY;ZjX: ð10Þ

Now, from Eqs (9) and (10), we obtain

cX;Y;Z ¼ cX;Y � cX;Z � cY;ZjX: ð11Þ

This shows that the trivariate copula density cX,Y, Z for (X, Y, Z) model may be constructed

from bivariate copula densities: cX,Y, cX,Z, cY,Z|X. In other words, it provides flexible way to

determine joint distribution of (X, Y, Z). The first two components cX,Y and cX,Z show depen-

dence of (X, Y) and of (X, Z), respectively, with dependence measure κX,Y and κX,Z. Mean-

while, the component cY,Z|X shows partial dependence of (Y, Z), given X, with partial
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dependence measure κY,Z|X. Note that the dependence measure of κmay be either Person’s ρ
or Kendall’s τ.

Suppose that FX, FY, FZ denote marginal distribution functions of (X, Y, Z). The copula den-

sity cX,Y, Z in Eq 11 is basically expressed as

cX;Y;Z½FXðxÞ; FYðyÞ; FZðzÞ� ¼ cX;Y ½FXðxÞ; FYðyÞ� � cX;Z½FXðxÞ; FZðzÞ�

�cY;ZjX½FYjXðyjxÞ; FZjXðzjxÞ�

for all ðx; y; zÞ 2 R3
, where FY|X and FZ|X are conditional distribution function of Y and Z,

given X, respectively. According to Joe [42], they may be defined as

FYjXðyjxÞ ¼
@CX;Y ½FXðxÞ; FYðyÞ�

@FXðxÞ
¼ CYjX½FYðyÞjFXðxÞ�; ð12Þ

FZjXðzjxÞ ¼
@CX;Z½FXðxÞ; FZðzÞ�

@FXðxÞ
¼ CZjX½FZðzÞjFXðxÞ�: ð13Þ

This shows that conditional copula density cY,Z|X is determined through copula CX,Y and

CY,Z. From Eqs (12) and (13), copula density cX,Y, Z is completely given by

cX;Y;Z½FXðxÞ; FYðyÞ; FZðzÞ� ¼ cX;Y ½FXðxÞ; FYðyÞ� � cX;Z½FXðxÞ; FZðzÞ�

�cY;ZjXfCYjX½FYðyÞjFXðxÞ�;CZjX½FZðzÞjFXðxÞ�g:

According to Joe [38], function of CY|X for each copula CX,Y, from Archimedean and ellipti-

cal copulas, is given in Table 2. Now, for u = FX(x), v = FY(y) and w = FZ(z), copula density

cX,Y, Z is given by

cX;Y;Zðu; v;wÞ ¼ cX;Yðu; vÞ � cX;Zðu;wÞ � cY;ZjX½CYjXðvjuÞ;CZjXðwjuÞ�

for all (u, v, w)2[0, 1]3. Furthermore, if

vu ¼ CYjXðvjuÞ ¼ CYjX½FYðyÞjFXðxÞ�;

wu ¼ CZjXðwjuÞ ¼ CZjX½FZðzÞjFXðxÞ�;

Table 2. Function of CY|X.

Copula Function of CY|X(v|u)

Clayton u� y� 1ðu� y þ v� y � 1Þ
� 1
y
� 1

Gumbel u� 1ð� lnuÞy� 1
½ð� lnuÞy þ ð� lnvÞy�

1
y
� 1CGumbel

X;Y ðu; vÞ

Frank e−θu[(e−θ − 1)(e−θv − 1)−1 + (e−θu − 1)]−1

Gaussian
F

F� 1ðvÞ� yF� 1ðuÞffiffiffiffiffiffiffi
1� y2
p

� �

Student’s t
FT

F� 1
T ðv;nÞ� yF

� 1
T ðu;nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� y2Þðnþ½F� 1

T ðu;nÞ�2Þ=ðnþ1Þ
p ; nþ 1

� �

Note: The function of CY|X is derived for Archimedean and elliptical copulas.

https://doi.org/10.1371/journal.pone.0242102.t002
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such copula density is as follows

cX;Y;Zðu; v;wÞ ¼ cX;Yðu; vÞ � cX;Zðu;wÞ � cY;ZjXðvu;wuÞ:

Graph structure and vine (copula). Suppose that V denotes an empty and finite set. Sup-

pose also that [V]2 = {{v, v0}:v, v0 2 V} is a set of all pairs of two unordered elements in V.

According to Diestel [43], a graph is a pair (V, E) of sets for some E� [V]2. The element of V
is called node whilst the element of E is an edge. A simple graph T ¼ ðV;EÞ that is connected

and has no cycle is called a tree graph.

Based on Bedford and Cooke [44, 45] and Kurowicka and Cooke [46], Vm is called vine on

m elements, with EðVmÞ ¼ E1 [ E2 [ . . . [ Em� 1, if

1. Vm ¼ fT 1; T 2; :::; T m� 1g;

2. T 1 is a tree graph with a set of nodes V1 = {1, 2, . . .,m} and a set of (m − 1) edges E1�

[V1]2;

3. for all j = 2, 3, . . .,m − 1, T j is a tree graph with a set of nodes Vj = Ej−1 and a set of edges

Ej� [Vj]2.

In short, vine is a collection of nested trees where edge of the jth tree is a node of the (j + 1)

th tree.

A vine Vm is called a regular vine (R-vine) onm elements if “Vm satisfies proximity condi-

tion, that is for all j = 2, 3, . . .,m − 1, if vj; v0j 2 Vj where fvj; v0jg 2 Ej, then jvj \ v0jj ¼ 1. In

other words, two adjacent nodes in the tree graph T j are two adjacent edges in the tree graph

T j� 1”. There are two special cases of R-vine that are drawable vine (D-vine) and canonical vine

(C-vine). R-vine Vm is a D-vine if all nodes in the tree graph T 1 have maximum degrees of 2.

Meanwhile, Vm is called a C-vine if the tree graph T j has exactly one node with degrees ofm −
j, for j = 1, 2, . . .,m − 1; in tree graph T 1, such node is called a root. For an illustration, it is

shown in Fig 2 graph structure of D-vine and C-vine, form = 4 and V4 ¼ fT 1; T 2; T 3g.

Now, an R-vine V3 is employed to represent dependence model (X, Y, Z) determined

through trivariate copula by pair-copula construction method. Here, node is a random vari-

able whilst edge is a bivariate copula added by absolute dependence measure as weight. Such

weight is used to find appropriate R-vine i.e. an R-vine where each tree graph has maximum of

the sum of weights, according to Dißmann et al. [47].

First, define a complete graph K3 (or a cricle graph C3) with three nodes representing ran-

dom variables of X, Y, Z. Let absolute value of each dependence measure κX,Y, κX,Z, κY,Z be

defined as weight of edge that connects two nodes. Then, select a maximum spanning tree

graph, that is a tree subgraph of the complete graph K3 maximizing the sum of weights. We

denote the resulted R-vine copula by ðF;V3;C;KÞ, where F is a collection of marginal distribu-

tion functions of (X, Y, Z). Meanwhile, C and K consist of bivariate copulas and the corre-

sponding dependence measures, respectively.

Forecasting Value-at-Risk (VaR)

Individual VaR forecast. The one-step-ahead VaR forecast is actually a forecast(ing limit)

of future risk or return, Xn+1, given previous information up to time n, F x;n. At a specified con-

fidence level of 1 − α, it may be calculated through the following formula, see e.g. McNeil et al.

[4] and Syuhada [34],

VaR1� a

x;nþ1
¼ inffx : PðXnþ1 � xjF x;nÞ � 1 � ag;
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Fig 2. Graph structure of R-vine. The R-vine is V4 ¼ fT 1;T 2; T 3g as a (a) D-vine and as a (b) C-vine.

https://doi.org/10.1371/journal.pone.0242102.g002
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for α 2 (0, 1). Provided that the inverse of distribution function of Xn+1, given F x;n, exists, we

may obtain VaR1� a

x;nþ1
¼ F� 1

Xnþ1 jFx;n
ð1 � aÞ, according to Syuhada et al. [48]. This means that such

VaR forecast is basically the (1 − α)-quantile of (conditional) distribution of the future return.

Since we use standard Student’s t for innovation distribution and assume GARCH(1,1) for

(negative) return model, the conditional distribution of Xn+1, given F x;n, is Student’s t with

degrees of freedom νx and scale parameter sx;nþ1

ffiffiffiffiffiffiffi
nx � 2

nx

q
. This implies that its conditional mean

and variance are

EðXnþ1jF x;nÞ ¼ 0; VðXnþ1jF x;nÞ ¼ s
2
x;nþ1
¼ ox þ dx x2

n þ bx s
2
x;n;

respectively. Note that Student’s t is a symmetrical distribution. Thus, the one-step-ahead VaR

forecast for Xn+1, given F x;n, consists of such conditional mean and variance, i.e.

VaR1� a

x;nþ1
¼ sx;nþ1 F� 1

εx
ð1 � aÞ. Since εx;t ¼ Tx

ffiffiffiffiffiffiffi
nx � 2

nx

q
, we obtain

VaR1� a

x;nþ1
¼ sx;nþ1

ffiffiffiffiffiffiffiffi
nx � 2

nx

q
F� 1
Tx
ð1 � a; nxÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðox þ dx x2

n þ bx s
2
x;nÞ

nx � 2

nx

q
F� 1
Tx
ð1 � a; nxÞ:

Parameter of model, (ωx, δx, βx, νx), may be replaced by its estimate so that we have the esti-

mative one-step-ahead VaR forecast given by

dVaR1� a
x;nþ1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðôx þ d̂x x2
n þ b̂x ŝ

2
x;nÞ

n̂x � 2

n̂x

q

F� 1
Tx
ð1 � a; n̂xÞ: ð14Þ

In addition, the estimative ℓ(>1)-step-ahead VaR forecast is as follows

dVaR1� a
x;nþ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðôx þ d̂x X̂2
nþ‘� 1 þ b̂x ŝ

2
x;nþ‘� 1Þ

n̂x � 2

n̂x

q

F� 1
Tx
ð1 � a; n̂xÞ; ð15Þ

where ŝ2
x;nþ‘� 1

¼ ôx þ d̂x X̂2
nþ‘� 1

þ b̂x ŝ
2
x;nþ‘� 2

. Note that forecasting VaR for Yt, given F y;t� 1,

and Zt, given F z;t� 1, may be carried out through the similar procedure.

Aggregate VaR forecast. For the case of a portfolio or aggregate risk, we aim to forecast

VaR for future aggregate risk of

Snþ1 ¼ Xnþ1 þ Ynþ1 þ Znþ1;

given previous information F x;y;z;n. We may employ vine copula to determine the joint distri-

bution of model ðX�nþ1
;Y�nþ1

;Z�nþ1
Þ ¼ ðXnþ1jF x;n;Ynþ1jF y;n;Znþ1jF z;nÞ. Suppose that

fX�nþ1
;Y�nþ1

;Z�nþ1
denotes its joint probability function having a certain decomposition. Then, the

conditional distribution function of Sn+1, given F x;y;z;n, is determined as follows

FSnþ1 jFx;y;z;n
ðsÞ ¼ PðSnþ1 � sjF x;y;z;nÞ

¼ PðXnþ1 þ Ynþ1 þ Znþ1 � sjF x;y;z;nÞ

¼

Z s

� 1

Z s� x

� 1

Z s� x� y

� 1

fX�nþ1
;Y�nþ1

;Z�nþ1
ðx; y; zÞ dz dy dx; s 2 R:

By employing vine copula, forecasting the one-step-ahead individual VaRs is simulta-

neously carried out based on the joint distribution of ðX�nþ1
;Y�nþ1

;Z�nþ1
Þ. We collect all of them
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into a vector denoted by

Vnþ1 ¼ ðVaR
1� a

x;nþ1
;VaR1� a

y;nþ1
;VaR1� a

z;nþ1
Þ
T
: ð16Þ

Then, we may forecast the one-step-ahead aggregate VaR, aggVaR1� a

s;nþ1
, by taking such indi-

vidual VaR forecasts into account. We do this by first observing that

aggVaR1� a

s;nþ1
¼ ðVT

nþ1
PVnþ1Þ

1=2
; ð17Þ

where

P ¼

1 kx;y kx;z

kx;y 1 ky;z

kx;z ky;z 1

0

B
B
B
@

1

C
C
C
A

is matrix of dependence measure for ðX�nþ1
;Y�nþ1

;Z�nþ1
Þ. From Eq (17), through simple alge-

braic operation we have

aggVaR1� a

s;nþ1
¼ ½ðVaR1� a

x;nþ1
Þ

2
þ ðVaR1� a

y;nþ1
Þ

2
þ ðVaR1� a

z;nþ1
Þ

2
þ 2kx;yðVaR

1� a

x;nþ1
ÞðVaR1� a

y;nþ1
Þ

þ2kx;zðVaR
1� a

x;nþ1
ÞðVaR1� a

z;nþ1
Þ þ 2ky;zðVaR

1� a

y;nþ1
ÞðVaR1� a

z;nþ1
Þ�

1=2
:

This means that the aggVaR forecast above incorporates interactions between different

returns by introducing their dependence measures. Note that the estimative aggVaR forecast

may be obtained by using the individual estimative VaR forecasts and the estimate of depen-

dence measures.

For perfect (positive) dependence, i.e. κx,y = κx,z = κy,z = 1, it is obvious that the aggVaR

forecast is equal to the simple sum of individual VaR forecasts written by

simplesumVaR1� a

s;nþ1
¼ VaR1� a

x;nþ1
þ VaR1� a

y;nþ1
þ VaR1� a

z;nþ1
: ð18Þ

Thus, simplesumVaR may simply be decided as the aggVaR forecast when the worse cases

of all of our risks always occur simultaneously, see e.g. Li et at. [49] and Embrechts et al. [2]. In

other words, the risks have dependence representation of the formM(u, v, w) = min(u, v, w)

which may be called perfect-dependence copula. However, since the dependence measures sat-

isfy |κx,y|, |κx,z|, |κy,z|�1, we have

aggVaR1� a

s;nþ1
� simplesumVaR1� a

s;nþ1
:

This means that the aggVaR forecast in Eq (17) is bounded from above by simplesumVaR

in Eq (18). The weaker the dependence among marginal risks, the lower the aggVaR forecast.

This is inline with the fact thatM(u, v, w) is the upper bound for all classes of copulas, see e.g.

Joe [38], including pair-copula which determines the vine copula-based dependence among

marginal risks for our portfolio risk.

In addition, it is interesting to investigate diversification benefits of using aggVaR and sim-

plesumVaR. As in Li et at. [49], such diversification benefits may be measured by a so-called

diversification coefficient (DC) defined as

DC1� a

nþ1
¼
simplesumVaR1� a

s;nþ1
� aggVaR1� a

s;nþ1

simplesumVaR1� a

s;nþ1

: ð19Þ
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From Eq (19), it may be understood that such coefficient is getting higher as the depen-

dence among marginal risks is weaker. This makes the portfolio better diversified.

To find the ℓ-step-ahead aggregate VaR forecast, we consider the vector of ℓ-step-ahead

individual VaR forecasts derived simultaneously. We denote it by

Vnþ‘ ¼ ðVaR
1� a

x;nþ‘;VaR
1� a

y;nþ‘;VaR
1� a

z;nþ‘Þ
T
; ð20Þ

each component is obtained similarly by Eq (15). Then, we have

aggVaR1� a

s;nþ‘ ¼ ðV
T
nþ‘ PVnþ‘Þ

1=2
: ð21Þ

The calculation of DC for this aggVaR forecast is analogous to Eq (19) by involving the sim-

ple sum of individual VaR forecasts of Eq (20).

Backtesting VaR

After we find the (aggregate) VaR forecast, the assessment of the forecast accuracy is required.

It may be carried out through backtesting. From a variety of the backtesting methods, we

adopt the methods from Syuhada [34] and Jiménez et al. [20]. We discuss the following meth-

ods for the case of VaR1� a

x;nþ1
; the discussion for the other individual VaR and the aggregate VaR

forecasts are similar.

Probability-based backtesting. As stated before, the one-step-ahead VaR forecast is the

forecasting limit of future risk, given information of risks in the past. To simply asses the accu-

racy of VaR forecast, we, therefore, may calculate the probability that the actual future risks do

not violate the VaR forecast. It is called coverage probability (CP) defined by

CP ¼ PðXnþ1 �
dVaR1� a

x;nþ1
jF x;nÞ:

The closer the CP to the confidence level, 1 − α, the more accurate the VaR forecast.

When the sequence of actual future risks, fxnþ1;kg
N
k¼1

, is obtained, we may define fInþ1;kg
N
k¼1

,

where Inþ1;k ¼ Ifxnþ1;k� ^VaR1� a
x;nþ1

g, for k = 1, 2, . . ., N. We expect that fInþ1;kg
N
k¼1

is the sequence of

realizations of Bernoulli random variable with parameter 1 − α. Thus, the value of 1

N

PN
k¼1
Inþ1;k

is required to estimate the CP.

From the sequence of fxnþ1;kg
N
k¼1

, we may also require the sequence of fI�nþ1;kg
N
k¼1

, where

I�nþ1;k ¼ Ifxnþ1;k> ^VaR1� a
x;nþ1

g, for k = 1, 2, . . ., N. Note that the term 1 refers to failure or violation of

the VaR forecast; all terms are expected to be the realizations of Bernoulli random variable

with failure proportion equal to α. Comparison of the actual number of failures,
PN

k¼1
I�nþ1;k,

and the expected number of failures, Nα, may be considered to assess the accuracy of VaR fore-

cast. Their ratio is called actual over expected (AE) ratio.

Conditional coverage test. The standard test for assessing the accuracy of VaR forecast is

the test whether the failure proportion is equal to α. It is basically carried out through binomial

test by considering normal approximation of binomial distribution. However, according to

Christoffersen [50], the forecast accuracy may be assessed by determining whether the

sequence of fI�nþ1;kg
N
k¼1

consists of independent and identical realizations with failure propor-

tion equal to α. This means that we need to combine the test of proportion of failure (PoF) and

the test whether this sequence satisfies the conditional coverage independence (CCI). Their

combination is called conditional coverage (CC) test.
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The PoF and CCI tests employ likelihood ratio (LR) test statistic. The LR statistic for PoF

test is defined by

LRPoF ¼ � 2 ln
1 � a

1 � â

� �N� Nf a

â

� �Nf
� �

;

where Nf ¼
PN

k¼1
I�nþ1;k is the actual number of failures and â ¼

Nf
N is its actual proportion.

Meanwhile, the LR statistic for CCI test is

LRCCI ¼ � 2 ln
ð1 � p1Þ

N00þN10 p
N01þN11

1

ð1 � P01Þ
N00 PN01

01 ð1 � P11Þ
N10 PN11

11

" #

;

where Nij is number of the term i followed by the term j and Pij is the corresponding transition

probability, for i, j = 0, 1, from fI�nþ1;kg
N
k¼1

viewed as the sequence of realizations of a Markov

chain model with binary states; π1 is unconditional probability of the term 1 (failure). Both LR

statistics are asymptotically chi-square distributed with 1 degree of freedom. As proposed by

Christoffersen [50], the CC test employs the LR statistic defined by LRCC = LRPoF + LRCCI; it is

asymptotically chi-square distributed with 2 degrees of freedom. The null hypothesis of correct

model specification fails to be rejected when p-value derived from this statistic is above signifi-

cance level.

Backtesting through loss function. It is known that VaR is basically the quantile of (con-

ditional) distribution of the future risk. In addition to the use of inverse of its distribution

function, VaR as quantile may be formulated through different approach. Based on Kuan et al.

[51], VaR1� a

x;nþ1
is the minimizer of the loss function defined by

LðaÞ ¼ E½jð1 � aÞ � IfXnþ1�ag
j � jXnþ1 � aj; given F x;n�:

In this case, the loss function evaluated at our VaR forecast may be relatively compared to

that evaluated at VaR forecast obtained from other method as benchmark. They are called

quantile losses. The value of their ratio below one means that our forecasting method outper-

forms the benchmark.

Result and discussion

Daily returns, innovation distribution and marginal risks

The dynamic daily prices and returns for Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC)

for a period of 730 days in 2017-2018 are given in Figs 3 and 4, respectively. The returns follow

formula in Eq (1). Whilst the three cryptocurrencies seem to have similar prices behavior, Lite-

coin has a dramatic increase in day 350 (December 2017) before the decrease in day 400 (Feb-

ruary 2018), in comparison to Bitcoin (less dramatic) and Ethereum (gradual increase). In

addition, the returns of Litecoin have more high volatility compared to the low and medium

volatility as shown in Bitcoin and Ethereum returns, respectively. The property of dynamic

volatility significantly appears in all of these returns based on the result of hypothesis test for

ARCH effect of Engle [52] in Table 3. This result leads us to assume conditional heteroscedas-

ticity for each of our risk models. Furthermore, the stationarity assumption is also needed

based on the result of ADF test in Table 3. In addition, the existence of (inverse) leverage effect

may also be considered, especially for Bitcoin whose (negative) return is positively correlated

with its squared volatility as visualized in Fig 5. In other words, we also need to assume asym-

metric heteroscedastic model in order to capture the feature of asymmetrical volatility. This is

in line with assumption in Bouri et al. [25] and Klein et al. [26].
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We have assumed a GARCH(1,1), as in Eq (2), for each of our risk models. It consists of

dynamic volatility and innovation. Table 4 gives the summary of statistics for the estimates of

such innovation, defined in Eq (3), for the returns of Bitcoin, Ethereum and Litecoin. It is

observed that the high empirical kurtosis leads us to employ heavy-tailed distribution for

innovation.

Furthermore, we visualize the innovation estimates in histogram, Fig 6. Both standard nor-

mal and standard Student’s t curves for probability function are fitted, where the estimated

Fig 3. Daily closing prices of cryptocurrencies. The cryptocurrecy prices are fPBt g for Bitcoin (BTC), fPEt g for Ethereum (ETH) and fPLt g for Litecoin

(LTC).

https://doi.org/10.1371/journal.pone.0242102.g003

Fig 4. Negative returns of cryptocurrencies. The notations of such returns are {Xt}, {Yt} and {Zt} for BTC, ETH and LTC, respectively.

https://doi.org/10.1371/journal.pone.0242102.g004

Table 3. Summary of test statistics for returns of Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC).

Test Statistic BTC ETH LTC

ARCH PQ 105.3 (0.0000) 120.0 (0.0000) 48.7 (0.0000)

ADF -717.5 (0.0000) -709.1 (0.0000) -717.7 (0.0000)

Note: The Portmanteau-Q (PQ) test statistic is used to test Engle’s ARCH effect or conditional heteroscedasticity

whilst the augmented Dickey–Fuller (ADF) test is for stationarity. The null hypothesis of the tests is rejected due to

low p-value (in parentheses) below 5% significance level.

https://doi.org/10.1371/journal.pone.0242102.t003
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degrees of freedom of standard Student’s t are given in Table 5. In fact, it may be observed that

standard normal distribution is not appropriate for each innovation. This is also described in

Fig 7 for its distribution function. Based on AIC values also given in Table 5, standard Stu-

dent’s t distribution has lower value of AIC than standard normal distribution. This confirms

the appropriateness of standard Student’s t distribution for such innovation, as in Eq (4).

Based on the assumption above, parameter estimates of GARCH(1,1) model are given

in Table 6. By assuming symmetrical volatility, it is observed that the persistence parameters

Fig 5. Correlation between (negative) return and its squared volatility. The significant positive correlation indicates (inverse) leverage effect in the

returns data.

https://doi.org/10.1371/journal.pone.0242102.g005

Table 4. Summary of statistics for innovation estimates of Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC).

Statistic BTC ETH LTC

Minimum -16.8157 -4.3824 -7.9936

Maximum 4.6060 4.2687 4.9401

Mean -0.0724 -0.0615 -0.0404

Median -0.0745 -0.0076 0.0229

Std. Deviation 1.1679 0.9342 0.9326

Kurtosis 61.2525 6.2055 13.987

Note: The high kurtosis (above 3) indicates that the innovation is leptokurtic or heavy-tailed.

https://doi.org/10.1371/journal.pone.0242102.t004

Fig 6. Histogram of innovation estimates. The histogram for BTC (blue), ETH (green) and LTC (yellow) is fitted to standard normal (black dashed)

and standard Student’s t (red) probability functions.

https://doi.org/10.1371/journal.pone.0242102.g006
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d̂x þ b̂x (0.9256), d̂y þ b̂y (0.8178), d̂z þ b̂z (0.9239) are close to one but still lower than one.

These also show stationarity of all processes {Xt}, {Yt} and {Zt}. Meanwhile, for asymmetric

model with considering inverse leverage effect, we need an additional parameter γ to ensure

that the positive-signed returns lead a rise in the volatility. In other words, such volatility is

modeled by

s2
x;t ¼ ox þ dx X2

t� 1
þ bx s

2
x;t� 1
þ gx X2

t� 1
IfXt� 1>0g;

for (instance) Bitcoin returns. From Table 6, the stationarity condition is also satisfied for all

asymmetric processes since the persistence parameters d̂ þ b̂ þ 1

2
ĝ ¼ 0:9247; 0:8207; 0:9239

Table 5. The estimate for degrees of freedom of standard Student’s t distribution along with AIC value.

BTC ETH LTC

Estimate for degrees of freedom 3.6111 2.8916 2.8363

AIC for standard Student’s t 1988.1323 1823.1346 1745.1279

AIC for standard normal 2335.3883 1977.2438 1973.5137

Note: The estimate for degrees of freedom is calculated through maximum likelihood method. Lower value of AIC is in boldface.

https://doi.org/10.1371/journal.pone.0242102.t005

Fig 7. Empirical distribution function of innovations. The distribution function for BTC (blue), ETH (green) and LTC (yellow) is fitted to standard

normal (black dashed) and standard Student’s t (red) distribution functions.

https://doi.org/10.1371/journal.pone.0242102.g007

Table 6. The estimate for parameters of (a)symmetric GARCH(1,1) model.

Model Parameter BTC ETH LTC

Symmetric ω 1.9285 × 10−5 18.432 2 × 10−5 3.1725× 10−5

δ 0.0919 0.1202 0.0758

β 0.8337 0.6976 0.8481

Asymmetric ω 1.9955 × 10−5 18.0567 × 10−5 3.1725 × 10−5

δ 0.0892 0.1105 0.0758

β 0.8320 0.6995 0.8481

γ 0.0070 0.0214 0

Note: The estimation is carried out through conditional maximum likelihood method.

https://doi.org/10.1371/journal.pone.0242102.t006
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are below one. For Litecoin, we obtain ĝz ¼ 0 which means that asymmetric GARCH(1,1) is

equal to symmetric GARCH(1,1).

Dependence among innovations and the best copula selection

Modeling dependence of (εx;t, εy;t, εz;t) is used to compute and to find joint distribution of

ðX�t ;Y
�
t ;Z

�
t Þ ¼ ðXtjF x;t� 1;YtjF y;t� 1;ZtjF z;t� 1Þ. As stated before, suppose that εx ¼ fε̂x;tg,

εy ¼ fε̂y;tg, and εz ¼ fε̂z;tg. We calculate the dependence measure for each pair of innovation

estimates and also calculate maximum of the sum of absolute dependence measures. Then, the

appropriate trivariate copula density cεx;t ;εy;t ;εz;t to determine joint distribution of (εx;t, εy;t, εz;t)

is constructed.

Fig 8 shows scatter plot (three dimension) of innovation estimates fðε̂x;t; ε̂y;t; ε̂z;tÞg whilst

Fig 9 describes scatter plot of each two dimensional pair of innovation estimates: fðε̂x;t; ε̂y;tÞg,
fðε̂x;t; ε̂z;tÞg and fðε̂y;t; ε̂z;tÞg. Note that their dependence measures are k̂x;y ¼ 0:4501, k̂x;z ¼

0:4910 and k̂y;z ¼ 0:5127, respectively. This means that innovation estimates with maximum

of the sum of absolute dependence measures are fðε̂x;t; ε̂z;tÞg and fðε̂y;t; ε̂z;tÞg. Thus, the appro-

priate trivariate copula density cεx;t ;εy;t ;εz;t to determine joint distribution of (εx;t, εy;t, εz;t) is

cεx;t ;εy;t ;εz;t ¼ cεx;t ;εz;t � cεy;t ;εz;t � cεx;t ;εy;t jεz;t :

Note that the first two bivariate copula densities, respectively, correspond to bivariate cop-

ula Cεx;t ;εz;t and Cεy;t ;εz;t for edges of the tree graph T 1 whilst the last one corresponds to condi-

tional copula Cεx;t ;εy;t jεz;t for edge of the next tree graph T 2. The latter copula is defined through

copula Cεx;t ;εz;t and Cεy;t ;εz;t .
According to Aas et al. [11] and Czado et al. [53], copula parameters are estimated through

sequential maximum likelihood method as follows. First, the innovation estimates ε̂x;t; ε̂y;t; ε̂z;t
are transformed through marginal distribution function Fεx;t ; Fεy;t ; Fεz;t that are

ut ¼ Fεx;t ðε̂x;tÞ; vt ¼ Fεy;t ðε̂y;tÞ;wt ¼ Fεz;tðε̂z;tÞ 2 ½0; 1�:

The transformed data are then used to estimate parameter of copula Cεx;t ;εz;tð�; �; yx;zÞ and

Cεy;t ;εz;t ð�; �; yy;zÞ from several classes. The best copulas for Cεx;t ;εz;t and Cεy;t ;εz;t , based on several

criteria, are used to find function Cεx;t jεz;t and Cεy;t jεz;t , respectively. Now, define

uw;t ¼ Ĉεx;t jεz;t
ðutjwt; ŷx;zÞ; vw;t ¼ Ĉεy;t jεz;t

ðvtjwt; ŷy;zÞ 2 ½0; 1�;

so that we have the transformed data {(uw;t, vw;t)}. We then use these data to estimate parame-

ter of copula Cεx;t ;εy;t jεz;tð�; �; yx;yjzÞ.
The scatter plot of the transformed data {(ut, wt)} and {(vt, wt)} is shown in Fig 10. It may be

observed that these transformed data of the estimated innovations show asymmetrical depen-

dence with strong dependence in upper tails. This means that an increase of extremely positive

innovation for BTC (or ETH) returns is followed by an increase of that for LTC returns. This

empirical fact indicates that Gumbel copula is appropriate for such data. This indication is

inline with the result of copula selection based on AIC and goodness-of-fit criteria provided in

Table 7. This is because Gumbel copula has the lowest value of AIC and the highest p-value

(>0.05) of the goodness-of-fit test for both data {(ut, wt)} and {(vt, wt)}.
In addition, graphical approach visualized in Fig 11 explains that Kendall’s distribution

function (and the corresponding function of λ) derived from Gumbel copula seem to be close

PLOS ONE Risk dependence and VaR for cryptocurrencies

PLOS ONE | https://doi.org/10.1371/journal.pone.0242102 December 23, 2020 20 / 34

https://doi.org/10.1371/journal.pone.0242102


enough to the empirical Kendall’s distribution function defined in Eq (7) (and the empirical

function of λn defined in Eq (8)). This means that Gumbel copula fits well to the upper-tail

dependent data {(ut, wt)} and {(vt, wt)}.
From the result above, Gumbel copula is the best fitting copula for Cεx;t ;εz;t and Cεy;t ;εz;t . By

employing Gumbel copula for such copulas, we obtain the transformed data {(uw;t, vw;t)}

shown in Fig 12. We now observe that the new transformed data show symmetrical tail depen-

dence. This empirical fact leads us to consider Student’s t copula as the best fitting copula for

Fig 8. Three dimensional scatter plot of innovation estimates. The innovation estimates are fðε̂x;t ; ε̂y;t ; ε̂z;tÞg.

https://doi.org/10.1371/journal.pone.0242102.g008
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Cεx;t ;εy;t jεz;t . This consideration is inline with the result of the best copula selection based on AIC

and goodness-of-fit criteria, see Table 8, as well as graphical approach, see Fig 13.

By merging the results above, the best dependence model for (εx;t, εy;t, εz;t) based on the

data of innovation estimates fðε̂x;t; ε̂y;t; ε̂z;tÞg has joint probability function

fεx;t ;εy;t ;εz;t ¼ fεx;t � fεy;t � fεz;t � c
Gumbel
εx;t ;εz;t

� cGumbelεy;t ;εz;t
� cStudent0s t

εx;t ;εy;t jεz;t
;

where fεx;t , fεy;t , fεz;t are probability function of standard Student’s t with degrees of freedom,

Fig 9. Two dimensional scatter plot of innovation estimates. The innovation estimates are fðε̂x;t ; ε̂y;tÞg, fðε̂x;t ; ε̂z;tÞg and fðε̂y;t; ε̂z;tÞg with the

corresponding dependence measure k̂x;y ¼ 0:4501, k̂x;z ¼ 0:4910 and k̂y;z ¼ 0:5127, respectively.

https://doi.org/10.1371/journal.pone.0242102.g009
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respectively, n̂x, n̂y, n̂z. Fig 14 shows its graph structure. As a consequence, dependence model

ðX�t ;Y
�
t ;Z

�
t Þ through graph structure is presented in Fig 15.

VaR forecast

Now, the one-step-ahead VaR forecasts for Bitcoin, Ethereum and Litecoin returns based on

(a)symmetric GARCH(1,1) model are provided in Table 9. Such VaR forecasts are calculated

at 95%, 97% and 99% confidence levels (CLs) under two assumptions: (i) perfect dependence,

Fig 10. Transformed data for determining the best copulas for the first tree graph. The data are (a) {(ut, wt)} and (b) {(vt, wt)}.

https://doi.org/10.1371/journal.pone.0242102.g010

Table 7. Parameter estimates along with the best copula selection for the first tree graph based on AIC and goodness-of-fit test by using data (a) {(ut, wt)} and (b)

{(vt, wt)}.

Data Copula Estimate (Std. Error) AIC GoF (p-value)

(a) Clayton 0.8202 (0.0680) -208.3876 2.3732 (0.0000)

Gumbel 1.9709 (0.0610) -513.3633 0.0757 (0.2445)

Frank 5.7798 (0.2920) -440.1642 0.5330 (0.0000)

Gaussian 0.6244 (0.0190) -377.3082 0.3657 (0.0000)

Student’s t 0.6894 (0.0210) -484.0637 0.4091 (0.0000)

3.0795 (0.4210)

(b) Clayton 0.7725 (0.0660) -204.8118 3.4415 (0.0000)

Gumbel 2.0281 (0.0630) -531.6440 0.1133 (0.0769)

Frank 6.1585 (0.3040) -473.6364 0.4293 (0.0000)

Gaussian 0.6339 (0.0180) -389.5267 0.6240 (0.0000)

Student’s t 0.7049 (0.0200) -486.3833 0.5506 (0.0000)

3.0055 (0.3880)

Note: The estimation for parameter of Archimedean and elliptical copulas is carried out through maximum likelihood method whilst the goodness-of-fit test uses

Cramér–von Mises statistic. The lowest value of AIC and the highest p-value for certain data are in boldface.

https://doi.org/10.1371/journal.pone.0242102.t007
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as benchmark, and (ii) vine copula-based dependence among different returns. For the former

assumption, we simulate perfectly dependent innovations to calculate the previous returns and

volatility and, hence, to find the individual VaR forecasts. This procedure is similarly applied

for the latter assumption for which the innovations are simulated through vine copula we have

Fig 11. The best copula selection for the first tree graph based on Kendall’s distribution function and the corresponding function

of λ. Such functions for Archimedean and elliptical copulas are compared and fitted to those for empirical copula of the data (a-b) {(ut,
wt)} and (c-d) {(vt, wt)}.

https://doi.org/10.1371/journal.pone.0242102.g011
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Fig 12. Transformed data for determining the best copula for the second tree graph. The data are {(uw;t, vw;t)} with

k̂u;vjw ¼ 0:2301.

https://doi.org/10.1371/journal.pone.0242102.g012

Table 8. Parameter estimates along with the best copula selection for the second tree graph based on AIC and

goodness-of-fit test by using data {(uw;t, vw;t)}.

Copula Estimate (Std. Error) AIC GoF (p-value)

Clayton 0.2376 (0.0920) -43.6005 0.9125 (0.0000)

Gumbel 1.2364 (0.0350) -79.4680 0.2910 (0.0041)

Frank 2.4035 (0.2560) -85.3951 0.1178 (0.0659)

Gaussian 0.2616 (0.0310) -58.7777 0.1691 (0.1644)

Student’s t 0.3221 (0.0370) -107.0723 0.0985 (0.4384)

5.5976 (1.0060)

Note: The estimation for parameter of Archimedean and elliptical copulas is carried out through maximum

likelihood method whilst the goodness-of-fit test uses Cramér–von Mises statistic. The lowest value of AIC and the

highest p-value are in boldface.

https://doi.org/10.1371/journal.pone.0242102.t008
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previously determined. Note that the individual VaR forecasts are found simultaneously by Eq

(16) for one day only.

The forecast accuracy under two assumptions above is assessed and compared through sev-

eral backtesting methods adopted from Syuhada [34] and Jiménez et al. [20]. These methods

include coverage probability (CP), actual over expected (AE) ratio, conditional coverage (CC)

test and quantile loss (QL) ratio.

We find that the VaR forecasts for returns by assuming vine copula-based dependence have

higher forecast accuracy. This is because the CP for these VaR forecasts are closer to the corre-

sponding CL and their AE ratio are closer to one. Furthermore, this assumption successfully

passes the CC test since the resulted p-value is higher than 5% significance level, except for

Litecoin at the 97% CL with p-value 0.0322. The choice of significance level may be relaxed to

1% so that the CC test for Litecoin at such CL is also passed. Such results are obtained based

on both symmetric and asymmetric GARCH(1,1) models. These show the positive impact of

vine copula-based dependence on the VaR forecasts. These are confirmed from the low value

of all QL ratios below one. As the CL increases, the QL ratio is getting lower. Meanwhile, the

consideration of using asymmetric model do not give better impact on the VaR forecasts. This

is because the VaR forecasts derived from both symmetric and asymmetric models do not

obviously differ, but the asymmetric model provides higher value of QL ratio.

Fig 13. The best copula selection for the second tree graph based on Kendall’s distribution function and the corresponding function of λ. Such

functions for Archimedean and elliptical copulas are compared and fitted to those for empirical copula of the data {(uw;t, vw;t)}.

https://doi.org/10.1371/journal.pone.0242102.g013
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Fig 14. Representation of joint distribution for innovations. The joint distribution for fðε̂x;t ; ε̂y;t ; ε̂z;tÞg is

represented through (weighted) graph structure of vine copula ðF;V3;C;KÞ.

https://doi.org/10.1371/journal.pone.0242102.g014

Fig 15. Representation of joint distribution for returns. The joint distribution for ðX�t ;Y�t ;Z�t Þ ¼
ðXtjF x;t� 1;Yt jF y;t� 1;ZtjF z;t� 1Þ is represented through (weighted) graph structure of vine copula ðF;V3;C;KÞ.

https://doi.org/10.1371/journal.pone.0242102.g015
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As mentioned before, we have used the empirical data from 1-1-17 till 31-12-18. Now, we

compare the VaR forecasts for several steps/days to the empirical data from 1-1-19 till 31-12-

19 as visualized in Fig 16. The comparison is made based on (a)symmetric GARCH(1,1)

model where the VaR forecasts are calculated simultaneously by Eq (20) through vine copula.

Table 9. VaR forecasts of marginal risks for one day along with backtesting based on (a)symmetric GARCH(1,1) model under perfect dependence and vine copula-

based dependence assumptions.

Model Currency CL VaR CP AE CC (p-value) QL (Ratio)

Under perfect dependence assumption

Symmetric BTC 95% 0.0237 95.24% 0.9517 0.3417 (0.8429) 0.00199

97% 0.0297 97.52% 0.8276 4.7255 (0.0942) 0.00149

99% 0.0456 99.24% 0.7586 4.2226 (0.1211) 0.00084

ETH 95% 0.0462 96.69% 0.6624 12.6247 (0.0018) 0.00365

97% 0.0617 98.27% 0.5751 12.7249 (0.0017) 0.00280

99% 0.1103 99.45% 0.5521 8.0716 (0.0177) 0.00159

LTC 95% 0.0285 96.41% 0.7177 8.7266 (0.0127) 0.00254

97% 0.0380 98.27% 0.5751 12.7249 (0.0017) 0.00202

99% 0.0680 99.38% 0.6211 6.5150 (0.0385) 0.00127

Asymmetric BTC 95% 0.0238 95.24% 0.9517 0.3417 (0.8429) 0.00200

97% 0.0303 97.52% 0.8276 4.7255 (0.0942) 0.00149

99% 0.0466 99.24% 0.7586 4.2226 (0.1211) 0.00084

ETH 95% 0.0459 96.55% 0.6901 10.5727 (0.0051) 0.00362

97% 0.0613 98.27% 0.5751 12.7249 (0.0017) 0.00278

99% 0.1096 99.45% 0.5521 8.0716 (0.0177) 0.00157

LTC 95% 0.0285 96.41% 0.7177 8.7266 (0.0127) 0.00254

97% 0.0380 98.27% 0.6671 12.7249 (0.0017) 0.00202

99% 0.0680 99.38% 0.6211 6.5150 (0.0385) 0.00127

Under vine copula-based dependence assumption

Symmetric BTC 95% 0.0230 94.98% 1.0041 0.1441 (0.9305) 0.00192 (0.9640)

97% 0.0288 96.97% 1.0087 0.0995 (0.9515) 0.00141 (0.9493)

99% 0.0443 98.97% 1.0316 0.3272 (0.8491) 0.00068 (0.8107)

ETH 95% 0.0458 95.59% 0.8822 1.1211 (0.5709) 0.00362 (0.9910)

97% 0.0611 97.79% 0.7351 3.5742 (0.1674) 0.00271 (0.9657)

99% 0.1091 99.31% 0.6892 1.7278 (0.4215) 0.00135 (0.8469)

LTC 95% 0.0276 96.01% 0.7989 3.3590 (0.1865) 0.00219 (0.8621)

97% 0.0369 98.07% 0.6428 6.8704 (0.0322) 0.00165 (0.8154)

99% 0.0659 99.17% 0.8264 3.4289 (0.1801) 0.00083 (0.6492)

Asymmetric BTC 95% 0.0233 94.98% 1.0041 0.1441 (0.9305) 0.00194 (0.9686)

97% 0.0292 96.97% 1.0087 0.0995 (0.9515) 0.00143 (0.9564)

99% 0.0449 98.83% 1.1692 0.8009 (0.6700) 0.00069 (0.8202)

ETH 95% 0.0457 94.70% 1.0599 1.7564 (0.4155) 0.00360 (0.9947)

97% 0.0610 97.25% 0.9176 2.9389 (0.2300) 0.00269 (0.9698)

99% 0.1090 99.24% 0.7571 2.5563 (0.2786) 0.00133 (0.8505)

LTC 95% 0.0276 96.01% 0.7989 3.3590 (0.1865) 0.00219 (0.8621)

97% 0.0369 98.07% 0.6428 6.8704 (0.0322) 0.00165 (0.8154)

99% 0.0659 99.17% 0.8264 3.4289 (0.1801) 0.00083 (0.6492)

Note: The one-step-ahead individual VaR forecasts for BTC, ETH and LTC returns are found simultaneously for one day only based on simulated innovations through

perfect-dependence copula (for the first assumption) and through vine copula (for the second assumption). The resulted p-value of CC test in boldface is higher than 5%

significance level. Meanwhile, the QL ratio in boldface is below one, which means that vine copula-based forecasting procedure performs better.

https://doi.org/10.1371/journal.pone.0242102.t009
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According to the result in Table 9, we now provide, in Table 10, the one-step-ahead forecast

of portfolio risk by using aggregate VaR (aggVaR) through vine copula in comparison to the

simple sum of individual VaRs (simplesumVaR), as the benchmark, for one day only. Their

forecast accuracy is compared in terms of CP, AE ratio, CC test and QL ratio. We may observe

that the aggVaR forecast is lower in value with better accuracy at each CL. The CP as well as

AE ratio are closer to the target and the CC test is successfully passed at 5% significance level.

Meanwhile, in calculating simplesumVaR, the rejection of null hypothesis of the CC test is

only at low level of significance, e.g. 1%, due to the low p-value. Furthermore, the QL ratio

between aggVaR and simplesumVaR is below one and getting lower as the CL increases. These

show that calculating simplesumVaR is too conservative and overestimates the portfolio risk.

In other words, vine copula-based forecasting procedure outperforms perfect dependence

assumption. The use of vine copula also makes the portfolio diversified, with diversification

coefficient (DC) about 18%. Considering diversification typically provides a stable portfolio

Fig 16. VaR forecasts of marginal risks for several steps/days. The forecasts are derived at 95%, 97% and 99% confidence levels (CLs) based on

symmetric (solid line) and asymmetric (dashed line) GARCH(1,1) models for Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC) through vine copula.

They are also compared to the real data.

https://doi.org/10.1371/journal.pone.0242102.g016

Table 10. VaR forecasts of portfolio risk for one day along with backtesting and diversification coefficient based on (a)symmetric GARCH(1,1) model.

Model CL VaR Forecast DC% CP AE CC (p-value) QL (Ratio)

Symmetric 95% simplesum 0.0964 17.95 96.27% 0.7453 7.0780 (0.0290) 0.00812

aggVaR 0.0791 94.73% 1.0548 1.1926 (0.5508) 0.00719 (0.8856)

97% simplesum 0.1267 17.80 97.93% 0.6901 6.8669 (0.0323) 0.00627

aggVaR 0.1042 97.15% 0.9484 0.1473 (0.9290) 0.00534 (0.8517)

99% simplesum 0.2194 17.42 99.38% 0.6211 6.5150 (0.0385) 0.00368

aggVaR 0.1812 98.89% 1.1103 2.0685 (0.3555) 0.00265 (0.7193)

Asymmetric 95% simplesum 0.0966 17.99 96.27% 0.7453 7.0780 (0.0290) 0.00811

aggVaR 0.0792 94.73% 1.0548 1.1926 (0.5508) 0.00719 (0.8872)

97% simplesum 0.1271 17.84 97.93% 0.6901 6.8669 (0.0323) 0.00625

aggVaR 0.1044 97.15% 0.9484 0.1473 (0.9290) 0.00533 (0.8534)

99% simplesum 0.2198 17.46 99.38% 0.6211 6.5150 (0.0385) 0.00366

aggVaR 0.1815 98.89% 1.1103 2.0685 (0.3555) 0.00264 (0.7207)

Note: The aggregate VaR forecast is calculated for one day only through vine copula and is compared to the simple sum of individual VaR forecasts. The diversification

coefficient is also calculated. The resulted p-value of CC test in boldface is higher than 5% significance level whilst the QL ratio in boldface is below one.

https://doi.org/10.1371/journal.pone.0242102.t010
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since overall risk of the portfolio is properly reduced and, hence, risk allocation is allowed.

However, as shown in Table 10, the DC is getting lower as the CL increases. This means that

the higher the CL, the less stable the portfolio. The results under symmetric and asymmetric

GARCH(1,1) models are in line. However, the asymmetric one performs worse with higher

value of the QL ratio although the resulted DC is higher.

In addition, we calculate the aggVaR forecasts for several steps/days. Such forecasts are

visualized in Fig 17. This figure also provides their comparison to the simplesumVaR and the

real data of aggregated returns from 1-1-19 till 31-12-19. Meanwhile, the corresponding DCs

are displayed in Fig 18.

Fig 17. VaR forecasts of portfolio risk for several steps/days. The aggVaR forecasts are calculated at 95%, 97% and 99% confidence levels (CLs) based

on symmetric (solid line) and asymmetric (dashed line) models through vine copula. They are compared to the simplesumVaR (purple) and to the real

data (blue).

https://doi.org/10.1371/journal.pone.0242102.g017

Fig 18. Diversification coefficients of aggregate VaR forecasts. The diversification coefficients (DCs) are calculated at 95%, 97% and 99% confidence

levels (CLs) based on symmetric (solid line) and asymmetric (dashed line) models through vine copula.

https://doi.org/10.1371/journal.pone.0242102.g018

PLOS ONE Risk dependence and VaR for cryptocurrencies

PLOS ONE | https://doi.org/10.1371/journal.pone.0242102 December 23, 2020 30 / 34

https://doi.org/10.1371/journal.pone.0242102.g017
https://doi.org/10.1371/journal.pone.0242102.g018
https://doi.org/10.1371/journal.pone.0242102


Conclusion

Model for dependent risks that form a portfolio risk has been constructed. Through vine cop-

ula, their marginal risks assumed to follow GARCH(1,1) model are coupled with complete

representation through graph structure. This approach provides high flexible pair-copula

model since it is able to capture dependence structure of all possible pairs of risks by using dif-

ferent bivariate copulas with the best criterion. As we hope, applying this dependence model

to forecast VaR for Bitcoin, Ethereum and Litecoin returns provides good forecast accuracy.

Furthermore, the resulted portfolio VaR forecast is low in value with high accuracy instead of

simply summing the individual VaR forecasts under perfect dependence assumption. As a

consequence, the portfolio is well diversified which means that its overall risk is well managed

and reduced. The results under consideration of both symmetrical volatility and asymmetrical

volatility in the marginal model are in line. However, the asymmetric model does not perform

better although it makes the portfolio more diversified.

For further research, modeling dependence may be carried out for higher-dimensional risk

data due to the increasing number of risks in the cryptocurrency market or other markets

nowadays. Furthermore, the marginal risk model may be extended to another observable vola-

tility models of GARCH. The use of latent volatility model of Stochastic Volatility Autoregres-

sive (SVAR), see e.g. Han et al. [54] and Syuhada [34], perhaps gives more interesting results.

This is due to volatility shock that appears in volatility process. As for risk measure forecast, it

is important to consider (i) expected-based risk measure, namely Expected Shortfall or Tail-

VaR, and (ii) expectile-based risk measure of EVaR [51]. Whilst the former (VaR) is more

probability-based risk measure, the latter (ES/TVaR, EVaR) takes the magnitude of losses into

account.
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