PLoS ONE
Home Correction: Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan
Correction: Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan
Correction: Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan

Article Type: Correction Article History
Table of Contents
Shibutami,Ishii,Harada,Kurihara,Kuwabara,Kato,Iida,Akiyama,Sugiyama,Hirayama,Sato,Amano,Sugimoto,Soga,Tomita,and Takebayashi: Correction: Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan

In Table 2, the mean (10th-90th range)a of Rice for Male should be (250–680). Please see the correct Table 2 here.

Table 2
Food classification and population intake status.
Food groupFood item on FFQMean (10th-90th range)a
AllMaleFemale
n = 7,012n = 3,198n = 3,814
Energy-giving foods
RiceRiceg/d394(188-600)485(250-680)317(165-450)
Other grains/potatoesBread, noodles, soba, potatoesg/d129(72-204)131(68-215)127(72-195)
ConfectioneryCake, Japanese traditional sweetsg/d21(7-42)18(7-28)24(10-47)
OilButter, margarine, mayonnaise, oil for deep fried/stir friedg/d14(6-24)12(5-22)15(6-25)
Protein-rich foods
MeatBeef/pork, chicken, liver, ham/sausageg/d41(17-69)39(17-69)42(17-70)
Fish/seafoodFish, shellfish, squid/shrimp/crab/octopus, fish roe, processed fish food, canned tunag/d62(28-98)62(28-100)62(27-97)
EggsEggsg/d19(4-40)18(4-40)19(8-40)
Dairy productsMilk, yogurtg/d122(13-255)99(13-210)142(26-255)
Soy productsSoybeans, tofu, fermented soy food, fried soy productg/d112(41-195)111(41-195)113(42-194)
Fruits/vegetables
Carotenoid-rich vegetablesPumpkin, carrot, broccoli, green leafy vegetables, other carotenoid-rich vegetablesg/d78(27-146)63(22-116)92(34-166)
Other vegetablesCabbage, Japanese radish, dried radish, burdock, other light vegetables, mushroomg/d78(28-140)61(24-111)93(35-157)
SeaweedSeaweedg/d2(1-4)2(1-4)2(1-5)
FruitsMandarin/orange/grapefruit, other fruitsg/d55(13-125)41(13-89)66(17-136)
SeedsPeanuts/almondg/d3(1-4)3(1-4)3(1-4)
Beverages
Green teaGreen teag/d230(11-600)220(11-660)239(10-600)
CoffeeCoffeeg/d146(10-300)134(10-300)156(10-300)
AlcoholbSake, beer, whiskey, wine, shochu, chuhaig/d106(0-377)199(0-480)29(0-93)

FFQ, food frequency questionnaire.

a Values are presented as mean and 10th-90th percentiles in parentheses.

b Values are calculated according to the percentage of ethanol and shown in comparison to sake.

In Table 3, the Q2cumc for Eggs should be (0.02). Please see the correct Table 3 here.

Table 3
Promising food biomarker candidates (n = 7,012).
Food groupMetaboliteSub ClassaPLS-Rbrsd
VIPCoeffQ2cumc
    Meat
 HydroxyprolineAA2.660.070.070.09
 3-MethylhistidineAA2.110.060.08
 beta-AlanineAA2.050.050.04
 2-AminobutyrateAA2.010.050.05
 CreatineAA1.990.060.05
 CarnitineAA1.700.040.03
    Fish/seafood
 CreatineAA3.190.100.210.18
 Trimethylamine-N-oxideAO2.630.090.15
 CystineAA2.260.070.12
 2-HydroxybutyrateAA1.730.040.11
 IsethionateAHA1.550.030.08
 GlucuronateCHO1.430.040.13
 2-AminobutyrateAA1.360.030.07
 UridinePN1.320.030.06
 GuanidinosuccinateAA1.210.020.07
    Eggs
 CholineQA2.880.050.01 (0.02)0.06
 2-AminobutyrateAA2.400.040.04
 BetaineAA2.140.040.05
 AsparagineAA1.660.020.02
    Dairy
 GalactarateCHO2.140.080.330.09
 ThreonateCHO1.970.070.09
 PhenylalanineAA1.950.080.08
 LysineAA1.600.040.05
 TyrosineAA1.530.040.02
 CitrateTCA1.470.070.07
 TryptophanAA1.440.020.03
 2-AminobutyrateAA1.310.050.07
 HippurateBA1.270.050.08
 CreatineAA1.240.030.02
    Soy products
 CystineAA1.730.070.230.08
 BetaineAA1.530.060.07
 IsethionateTCA1.340.020.09
 CreatineAA1.340.050.08
 UridinePN1.300.040.06
 CitrateAA1.250.040.06
 PhenylalanineAA1.250.03-0.02
 GlutamineAA1.250.040.05
    Carotenoid-rich vegetables
 ThreonateCHO2.230.070.280.09
 GalactarateCHO2.060.060.07
 CreatineAA1.800.060.05
 LysineAA1.440.020.03
 CystineAA1.400.040.07
 CitrateTCA1.330.040.06
 HippurateBA1.290.040.07
    Other vegetables
 CreatineAA2.000.070.310.05
 ThreonateCH1.850.050.06
 GalactarateCH1.510.040.02
 CystineAA1.400.040.06
    Fruits
 Proline betaineAA3.800.230.470.27
 ThreonateCHO2.300.090.15
 GalactarateCHO1.950.070.11
 TyrosineAA1.490.030.00
 LysineAA1.430.020.03
 CystineAA1.290.040.06
 CreatineAA1.290.060.04
 CitrateTCA1.210.050.06
    Green tea
 ThreonateCHO3.540.060.050.11
 GalactarateCHO3.150.060.08
 CystineAA1.930.040.07
 CreatineAA1.870.030.06
 2-AminobutyrateAA1.740.030.06
 Trimethylamine-N-oxideAO1.710.030.07
 Proline betaineAA1.680.030.05
 2-HydroxybutyrateAA1.290.020.06
    Coffee
 QuinateALC4.590.290.550.39
 TrigonellineAL3.130.170.28
 HippurateBA1.880.070.17
 LeucineAA1.340.020.01
    Alcohole
 PipecolateAA2.780.170.530.26
 2-AminobutyrateAA1.920.120.17
 CholineQA1.870.090.15
 ThreonineAA1.650.090.10
 CarnitineAA1.410.070.09
 TyrosineAA1.340.060.08
 MalateBHA1.300.080.14
 CreatineAA1.240.040.09

PLS-R, partial least square regression; VIP, variable importance in projection; AA, amino acids, peptides, and analogs; CHO, carbohydrates and carbohydrate conjugates; AO, aminoxides; AHA, alpha-hydroxy acids and derivatives; PN, pyrimidine nucleosides; QA, quaternary ammonium salts; TCA, tricarboxylic acids and derivatives; BA, benzoic acids and derivatives; ALC, alcohols and polyols, and polyols; BHA, beta-hydroxy acids and derivatives.

a Reference: The Human Metabolome Database (https://hmdb.ca)

b Metabolites which indicate VIP scores ≥ 1.2 and positive PLS coefficients ≥ 0.02 are shown.

c Cumulative predicted variation in the Y matrix for optimal factor numbers, calculated as 1 –(the cumulative predicted residual sum of squares / the cumulative sum of squares). The value indicates the predictive performance of the model. For cases with an optimal factor number of less than two, the factor number was set to two and the result was shown in parentheses.

d Partial rank-order Spearman’s correlation coefficients between food consumption and metabolite concentration, controlling for sex, smoking, and physical activity levels.

e Data of male drinkers (n = 2,449) were used in the analysis.

Reference

EShibutami, RIshii, SHarada, AKurihara, KKuwabara, SKato, et al. (2021) Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan. PLoS ONE 16(2): e0246456. 10.1371/journal.pone.0246456