Introduction
Methane (CH4) is the second most important climate forcing trace gas influenced by anthropogenic activities after carbon dioxide (CO2)–. Wetlands are the largest and most uncertain natural CH4 source, contributing 19–33% of current global terrestrial CH4 emissions ()–. Top-down estimates from atmospheric inversion models and bottom-up estimates from in situ measurements both indicate gradual increases in natural wetland FCH4 from 2000 (147–180 Tg CH4 yr−1; bottom-up vs. top-down) to 2017 (145–194 Tg CH4 yr−1), although FCH4 estimates from both approaches vary widely,. In addition, atmospheric CH4 concentrations have rapidly increased since 2007 (+6.9 ± 2.7 ppb CH4 yr−1 for 2007–2015 vs. +0.5 ± 3.1 ppb CH4 yr−1 for 2000–2006), with increases arising from both biogenic (primarily agriculture and waste sectors) and fossil fuel-related sources,. Observed atmospheric CH4 concentrations have risen consistently with RCP8.5 (Representative Concentration Pathway of 8.5 W m−2) projections since 2007, and are growing relatively faster than observed increases in CO2 concentrations during the same period.
Wetland FCH4 estimates are poorly constrained due to high temporal and spatial variability,, compounded by insufficient measurements of fluxes (e.g., latitudinal data bias) and predictor variables (e.g., soil temperature and moisture), knowledge gaps in CH4 biogeochemistry, and incomplete process representation in biogeochemical models,,–. Several factors have been suggested to regulate wetland FCH4 through effects on methanogenesis (i.e., production), methanotrophy (i.e., oxidation), and CH4 transport, including gross primary productivity (GPP), water table depth (WTD), vegetation composition,, redox conditions, substrate quality and availability,, pore water CH4 solubility, microbial community dynamics and activity, and temperature. At ecosystem scale, some in situ observations indicate that FCH4 are mainly controlled by 20–35 cm depth soil temperatures and are not sensitive to WTD variations as long as anoxic conditions exist–. Although FCH4 appears to be positively correlated with temperature and CH4 production–, how to parameterize CH4 production, oxidation, and emission rates in models remain key uncertainties. Reducing the uncertainties is required to improve global CH4 budget assessments and increase confidence in future climate projections, as the temperature sensitivity of CH4 biogeochemistry is parameterized differently among CH4 models,,. A recent meta-analysis reported that CH4 production temperature sensitivities derived from laboratory cultures are consistent with those of FCH4 inferred from ecosystem-scale measurements and could therefore be used as an empirical basis for FCH4 temperature sensitivity in models.
However, site-specific emergent FCH4 temperature dependencies inferred from different measurement periods show substantial intra-seasonal variability over the course of the year–, highlighting effects from other environmental drivers. For example, intra-seasonal variability may stem from hysteretic (i.e., temporally offset) microbial and abiotic interactions: higher substrate availability increases methanogen biomass and CH4 production and emission later in the frost-free season. Similarly, higher FCH4 for a given GPP later in the frost-free season has been reported, which may be caused by the time required to convert GPP to methanogenesis substrates. Further, changes in WTD can regulate the emergent FCH4 temperature sensitivity through controls on soil redox potential,–, especially when the WTD is below the site-specific rooting depth and critical zone of CH4 production,,.
Here, we evaluated observationally based emergent relationships among FCH4, GPP, WTD, and air (Tair) and soil (Tsoil) temperatures using the global FLUXNET-CH4 database. We analyzed data recorded in eight ecosystem types: bog, fen, marsh, peat plateau, rice paddy, salt marsh, swamp, and wet tundra that spans 207 site-years across 48 wetland and rice paddy sites (Supplemental Fig. and Supplemental Table ). The FLUXNET-CH4 database provides half-hourly ecosystem-scale eddy covariance measurements of FCH4 and other fluxes (e.g., CO2, water vapor, and energy) measured at 83 sites across the globe (including uplands, wetlands, and rice paddy sites). Apparent FCH4 hysteresis has been observed in response to WTD,, GPP, Tair, and Tsoil,, at individual sites, but has not been synthesized across ecosystem types over distinct climate zones. Here, we analyzed intra-seasonal changes in emergent dependencies of FCH4 on these potential controls at each site-year. We focused on relationships of FCH4 with Tair because Tair is directly relevant to climate policy and better characterized in climate models. In addition, the amount of Tair data (207 site-years) in the FLUXNET-CH4 database is about twice than that of Tsoil measured at the shallowest (0–18.3 cm; 112 site-years) and deepest (32–50 cm; 97 site-years) site-specific soil depths. We show that consistent intra-seasonal changes in emergent dependencies of FCH4 were derived with Tair and Tsoil measurements at the sites where both measurements were available.
We quantified emergent FCH4–Tair dependencies using a quadratic relationship (Methods; Eq. ) fit to daily measurements reported during the frost-free season (defined by Tair > 0 °C, Methods). This quadratic functional form was chosen because it is consistent with MacroMolecular Rate Theory analyses of the temperature sensitivity of CH4 production and oxidation and produced reliable estimates of FCH4 for our study sites (Supplemental Fig. ). For each frost-free season, seasonal FCH4 hysteresis was quantified as changes in emergent FCH4–Tair dependencies inferred from earlier and later periods separated by the maximum seasonal Tair. We did not consider FCH4 outside the frost-free season, although they can be important in some high-latitude wetlands,. We used two metrics to quantify intra-seasonal changes in emergent FCH4–Tair dependence: (1) Normalized area of seasonal FCH4 hysteresis (HA; i.e., the area enclosed by emergent earlier and later period FCH4–Tair relationships (Fig. 1d) normalized by maximum seasonal FCH4 and Tair; Methods); and (2) Mean seasonal FCH4 hysteresis (Hμ; i.e., the difference between mean daily FCH4 inferred from measurements taken between later and earlier periods of the frost-free season). These two metrics are conceptually similar to those used to quantify temperature hysteresis in soil respiration and soil CO2 concentrations. Positive and negative HA and Hμ values represent higher (e.g., Fig. 1d) and lower (e.g., Supplemental Fig. ) FCH4 later (i.e., after reaching maximum seasonal Tair) in the frost-free season, respectively.
Fig. 1
Daily mean CH4 emissions have hysteretic responses to air temperature.
The quality-controlled daily air temperature (a), CH4 emissions (b), precipitation (c, left axis), and water table depth (c, right axis) measured at the Bibai Mire in Japan (JP-BBY) from 2015 to 2017. CH4 emission-air temperature dependencies (lines) derived from daily estimates (dots) recorded at JP-BBY for 2015 (d), 2016 (e), and 2017 (f). The results inferred from earlier and later parts of the frost-free season, and full frost-free season are colored in red, blue, and black, respectively. Start and end dates represent the beginning and ending of the frost-free season, respectively. Values of HA and Hμ denote the normalized area of seasonal CH4 emission hysteresis (normalized area enclosed by the blue and red lines) and the mean seasonal CH4 emission hysteresis calculated in each site-year, respectively.
Results and discussion
A case study of positive seasonal CH4 emission hysteresis
As an example of seasonal hysteresis, we examined daily estimates obtained from measurements taken at the Bibai Mire in Northern Japan (JP-BBY) where FCH4 is insensitive to the relatively shallow WTD from 2015 to 2017 (Fig. 1b, c). Although the seasonality shown in FCH4 appears to follow Tair (Fig. 1a, b), a time-dependent FCH4-Tair relationship varies from earlier to later parts of the frost-free season (Fig. 1d–f). Specifically, plotting daily FCH4 as a function of Tair results in a counterclockwise loop from beginning to end of the frost-free season. Similar hysteretic patterns were found using Tsoil (Supplemental Fig. ) and gap-filled CH4 emissions (Supplemental Fig. ), indicating that the hysteresis is not caused by time lags between Tsoil and Tair resulting from heat transfer into the soil, and is not driven by biases caused by missing data. These hysteretic patterns suggest that FCH4 should not be represented as a single static function of Tair.
Seasonal CH4 emission hysteresis among site-years
Overall, we detect positive seasonal FCH4 hysteresis in most site-years recorded in the FLUXNET-CH4 database, both in terms of HA and Hμ (75–77% of site-years; Fig. 2). Consistent hysteresis patterns and magnitudes were found with monthly FCH4 and Tair estimates (72–74%, Supplemental Fig. ), indicating the observed seasonal FCH4 hysteresis is not sensitive to temporal resolution. The non-zero HA and Hμ values demonstrate intra-seasonal changes in emergent FCH4–Tair dependencies among wetland and rice paddy sites across the globe, and their negatively skewed distribution indicates that the hysteretic responses are not likely to be random. Ignoring seasonal FCH4 hysteresis leads to overestimated (28 ± 46%) and underestimated (−9 ± 35%) FCH4 predictions earlier and later in the frost-free season across wetland and rice paddy sites, and such prediction bias is overlooked by using seasonally invariant Tair dependence models (−4 ± 7%, Supplemental Fig. ). For example, FCH4 predictions made by a seasonally invariant emergent FCH4–Tair dependence at JP-BBY (i.e., black lines in Fig. 1d–f) are generally biased high and low in the earlier and later parts of the frost-free season, respectively.
Fig. 2
Predominantly positive seasonal CH4 emission hysteresis inferred from ecosystem-scale measurements across the globe, i.e., CH4 emissions are generally higher later in the frost-free season at the same temperature.
The distribution of normalized area of seasonal CH4 emission hysteresis (HA; a, b) and mean seasonal CH4 emission hysteresis (Hμ; c, d) to air temperature among site-years derived from the FLUXNET-CH4 database. Positive seasonal CH4 emission hysteresis indicates higher CH4 emissions later in the frost-free season at the same temperature (e.g., Fig. 1d–f). Red dashed lines represent no hysteresis. The corresponding boxplot of site-year specific HA (b) and Hμ (d) derived from the FLUXNET-CH4 database. The red central mark, and the bottom and top edges of the blue box indicate the median, and the 25th and 75th percentiles, respectively. The black whiskers extend to the most extreme data points not considered outliers denoted in red plus symbol.
To examine how potential controls are related to the observed seasonal FCH4 hysteresis, we analyzed the distribution pattern of HA under different site classifications and microclimatic conditions. The majority of site-years show positive seasonal FCH4 hysteresis when HA values are categorized into (1) different ranges of mean Tair measured in the frost-free season (Supplemental Figs. ), (2) different wetness conditions indicated by higher and lower mean WTD later in the frost-free season (Supplemental Fig. ), and (3) different ecosystem types (Supplemental Fig. ). Intra-seasonal changes in emergent GPP–Tair dependencies show about equal site-year proportions of positive and negative HA values (48% and 52%, respectively; Supplemental Fig. ), suggesting that GPP does not directly contribute to the observed seasonal FCH4 hysteresis. Further, predominantly positive seasonal FCH4 hysteresis is detected using Tsoil measured at the shallowest (Supplemental Fig. ) and deepest (Supplemental Fig. ) site-specific soil layers, indicating substantial intra-seasonal variability in the FCH4-Tsoil relationship. Overall, the wetland and rice paddy observations in the current FLUXNET-CH4 database suggest that FCH4 are generally higher later (i.e., after reaching maximum seasonal Tair or Tsoil) in the frost-free season at a given Tair and Tsoil. These hysteretic responses emerged across climate zones with various GPP and frost-free season lengths, and were not directly attributable to intra-seasonal changes in Tair and Tsoil (Supplemental Fig. ).
Divergent temperature responses among sites and years
In terms of the magnitude of seasonal FCH4 hysteresis, intra-seasonal changes in emergent FCH4-Tair dependence vary substantially among site-years within each ecosystem type (Fig. 3), despite being predominantly positive (Fig. 2). For each ecosystem type, the large inter-annual (i.e., different years within the same site) and inter-site (i.e., different site-years within the same ecosystem type) variability highlights the challenge of quantifying a universal and robust emergent FCH4–Tair dependence across wetland and rice paddy sites. For example, using the Boltzmann–Arrhenius function (Methods) to represent the emergent FCH4-Tair dependence of an ecosystem type cannot accurately reflect the site- and time-specific emergent relationships between FCH4 and Tair (Fig. 3). A single static function of Tair thus cannot provide accurate estimates of FCH4, even though meta-analyses using the same functional form suggested that such a representation would lead to consistent emergent FCH4–Tair dependencies among aquatic, wetland, and rice paddy ecosystems. Considering intra-seasonal variability in emergent FCH4–Tair dependence leads to higher and lower apparent activation energies for FCH4 during earlier and later parts of the frost-free season, respectively (Supplemental Fig. ). Our findings indicate that the FCH4 temperature sensitivity is an emergent property that varies substantially with space and time and thus cannot be sufficiently generalized for formulating mechanistic CH4 models, regardless of its functional form.
Fig. 3
Large differences in intra-seasonal, inter-annual, and inter-site FCH4 emergent temperature dependencies are found for all examined ecosystem types.
Thin lines represent the site- and time-specific emergent dependencies of CH4 emissions on air temperature inferred from daily measurements collected at bog (a), fen (b), marsh (c), peat plateau (d), rice paddy (e), salt marsh (f), swamp (g), and wet tundra (h) sites. Thick black lines represent ecosystem-type specific emergent dependencies of CH4 emission on air temperature inferred from the Boltzmann–Arrhenius function that do not recognize spatial heterogeneity and temporal variability. The results inferred from earlier and later parts of the frost-free season, and full frost-free season are colored in red, blue, and black, respectively.
Factors other than temperature modulate CH4 emissions
We applied two approaches to evaluate factors regulating the emergent FCH4-Tair dependence and examine the degree of complexity needed in FCH4 parameterizations in biogeochemical models. In the first approach, we examined the effects of Tair, ecosystem-type variability (i.e., differences between ecosystem types), inter-site variability, inter-annual variability, and intra-seasonal variability on FCH4 predictions. Specifically, FCH4 estimates obtained from six sets of regression models selectively representing the above-mentioned variability (Methods; Supplemental Table ) were evaluated to investigate how spatial and temporal complexity influences model performance. In the second approach, we trained a random-forest model (Methods) with the FLUXNET-CH4 database to identify factors controlling the hysteresis parameter ahys (Methods) that quantifies the functional relationship between FCH4 and Tair. To assess whether an observationally inferred model can be constructed for FCH4 estimates, we evaluated the predictive power of a hybrid model that uses the random-forest predicted ahys to describe the emergent FCH4–Tair dependence (Methods; Eq. ) in each part of the frost-free season.
The seven Tair dependence models (six regression and one hybrid) can be broadly categorized into three tiers based on the absolute bias relative to the measured FCH4: (1) employing a universal emergent FCH4–Tair dependence inferred from measurements across the globe without representing spatial and temporal variability (76.2% biased); (2) including ecosystem-type variability (i.e., the emergent FCH4–Tair dependence is inferred from measurements collected at the same ecosystem type, so sites within an ecosystem type are uniformly represented; 63.5–63.9% biased); and (3) including ecosystem-site variability (i.e., the emergent FCH4–Tair dependence is inferred from measurements collected at each site; 38.1–45.9% biased) (Fig. 4). Our results suggest that representing ecosystem-type variability does not necessarily improve FCH4 estimates, because the absolute bias of modeled FCH4 is comparable with that estimated by using a universal emergent FCH4–Tair dependence, except for bog, peat plateau, and wet tundra sites (Fig. 4a). For each ecosystem type, the absolute bias of modeled FCH4 is reduced when ecosystem-site variability is represented, demonstrating the need to recognize inter-annual and inter-site variability (e.g., Fig. 3). For each Tair dependence model, the absolute bias of modeled FCH4 is generally higher in rice paddies and salt marshes than in other ecosystem types, suggesting that FCH4 in these systems are sensitive to factors other than Tair. For example, timing of irrigation, drainage, planting, and harvesting can all affect FCH4 dynamics in rice paddies.
Fig. 4
The accuracy of CH4 emission estimates improves with better representation of the large wetland-site variability caused by varying environmental conditions.
The absolute bias relative to measured CH4 emissions estimated by each model class for each ecosystem type (a). Blue and red bars denote the number of sites and quality-controlled daily data points within each ecosystem type, respectively (b). The abbreviations used in each model group represent air temperature (T), ecosystem-type variability (type), intra-seasonal variability (ISV), hybrid model based on random-forest estimated hysteresis parameter (hybrid), inter-site variability (site), and inter-annual variability (IAV).
Results derived from our random-forest model confirm the importance of ecosystem-site variability in regulating ahys and thereby FCH4 predicted by the hybrid model in each part of the frost-free season (Supplemental Fig. ). Our random-forest predictor importance analysis indicates that site-year specific FCH4 and Tair values are more important for ahys estimates than other predictors such as latitude, GPP, and ecosystem type. The weak relationships found between seasonal FCH4 hysteresis and latitude (Supplemental Fig. ) and GPP (Supplemental Fig. ) are consistent with the relatively low predictor importance for ahys found in our random-forest model. Collectively, our results demonstrate the importance of recognizing inter-site, inter-annual, and intra-seasonal variability for the interpretation of emergent FCH4–Tair dependence inferred from measurements across distinct site-years.
When using a universal emergent FCH4-Tair dependence that only represents a generic Tair sensitivity of FCH4 (i.e., the top row in Fig. 4a), the resulting FCH4 predictions substantially underestimate the range of FCH4 measured across wetland and rice paddy sites (Fig. 5a). This generic Tair sensitivity of FCH4 flattens the high temporal and spatial variability, that strongly controls the timing and magnitude of FCH4, reinforcing the need to parameterize factors other than Tair in CH4 models. Including factors other than a generic Tair sensitivity of FCH4 (i.e., the bottom row in Fig. 4a) improves FCH4 predictions (Fig. 5b, c), which suggests that FCH4 and emergent FCH4–Tair dependence strongly depend on site- and time-specific environmental conditions. Therefore, models should mechanistically represent CH4 biogeochemistry, because site- and time-specific emergent FCH4-Tair dependence cannot be accurately parameterized everywhere and all the time. Although many CH4 models parameterize methanogenesis, methanotrophy, and CH4 transport for FCH4 modeling, only three of 40 recently reviewed CH4 models mechanistically represent CH4 biogeochemistry based on explicit microbial dynamics. Consequently, implementing process-based representations of CH4 biogeochemistry in CH4 models is necessary to improve FCH4 predictions across ecosystem and global scales. Such efforts are imperative because the FCH4 prediction error can increase substantially with increased FCH4, especially for the relatively simple parameterization that only represents a generic Tair sensitivity of FCH4 (Fig. 5c).
Fig. 5
CH4 emission prediction error increases substantially as measured CH4 emission increases.
The performance of CH4 emissions modeled by the regression models that only include a universal emergent CH4 emission temperature dependence (a), and those that include site- and time-specific conditions (b). The root mean square errors associated with the regression models used in (a) and (b) (bars, left axis) and number of data points (green line, right axis) for measured CH4 emission bins (c). Two of the 27,130 daily observations have CH4 emission above 1600 mg C m−2 d−1, which are not shown for the ease of representation. Lighter colors in the density scatter plot represent denser data points. Solid blue and dashed black lines represent the linear best-fit and one-to-one lines, respectively. The abbreviations used in each model group represent air temperature (T), intra-seasonal variability (ISV), inter-site variability (site), and inter-annual variability (IAV).
Limitations and implications
Additional measurements and analysis of factors controlling methanogenesis, methanotrophy, and CH4 transport will be needed to investigate the cause of the predominantly positive seasonal FCH4 hysteresis we observed across wetland and rice paddy sites. When anoxic conditions are prevalent and Tsoil is the most important driver regulating FCH4, (e.g., Supplemental Fig. ), the observed positive seasonal FCH4 hysteresis is consistent with the higher FCH4 driven by higher substrate availability later in the frost-free season. We identified some environmental drivers affecting the emergent FCH4–Tair dependence at sites where the necessary measurements were available: (1) When WTD drops below the critical zone of CH4 production later in the frost-free season, the reduced FCH4 may drive negative seasonal FCH4 hysteresis in a given site-year (e.g., the Kopuatai bog in New Zealand (NZ-Kop), Supplemental Fig. ). (2) FCH4 may become more sensitive to Tair changes under higher salinity, and our results indicate that seasonal FCH4 hysteresis shifts from positive to negative with increased salinity (e.g., the Sacramento-San Joaquin Delta of California in USA (US-Myb), Supplemental Fig. ).
As for the emergent FCH4–Tsoil dependence, our results suggest that the functional relationship between FCH4 and Tsoil may vary non-monotonically along the soil profile. For example, the positive seasonal FCH4 hysteresis inferred from Tsoil measured at 16 cm depth is stronger than those at 8 and 32 cm depths at US-Myb (Supplemental Fig. ). Such a non-monotonic relationship indicates that the magnitude of seasonal FCH4 hysteresis is not simply caused by time lags between Tsoil and Tair, suggesting that factors other than temperature can strongly control FCH4. Tsoil measured at depths where methanogenesis is occurring will be needed to rigorously examine the emergent dependence of FCH4 on Tsoil across the globe, but such depth-dependent measurements are not yet available among sites in the FLUXNET-CH4 database. To improve understanding of mechanisms leading to seasonal FCH4 hysteresis, we urge further long-term measurements on factors modulating CH4 biogeochemistry (e.g., WTD, Tsoil, microbial activity, and substrate availability), especially in the tropics and the Southern Hemisphere, both of which are sparsely represented in the FLUXNET-CH4 database. Although seasonal FCH4 hysteresis occurs across seasonal climate and latitudinal gradients (Supplemental Fig. ), better-representing ecosystems south of 30 °N could affect the partitioning of negative and positive seasonal FCH4 hysteresis inferred from existing measurements. While our synthesis in tropical and subtropical regions shows intra-seasonal changes in emergent FCH4–Tair dependence (Supplemental Fig. ), future studies are needed to examine seasonal FCH4 hysteresis in wetlands south of 30 °N (that account for about 75% of global wetland FCH4).
The observed seasonal FCH4 hysteresis provides a benchmark to evaluate modeled FCH4 functional responses and should inform and motivate CH4 model development and refinement. Studies have shown that temporal variations in FCH4 are strongly modulated by substrate and microbial dynamics,,, which may explain the substantial seasonal FCH4 hysteresis identified in our wetland and rice paddy sites. For example, a model that explicitly represents substrate and microbial dynamics reproduced the observed hysteretic FCH4 to temperature relationships in several wetlands with different vegetation and hydrological conditions. Such dynamics could be parameterized in the terrestrial components of Earth system models. Our synthesis thus provides observational evidence for incorporating substrate and microbial dynamics into next generation CH4 models.
Using the largest available database of ecosystem-scale CH4 emissions measured by eddy covariance flux towers, we show that the apparent relationships between CH4 emissions and air and soil temperatures are hysteretic and vary strongly with sampling location and measurement period. Approximately 77% of site-years recorded in the wetland and rice paddy subset of the FLUXNET-CH4 database show that CH4 emissions become higher later in the frost-free season at the same air temperature. This predominantly positive seasonal CH4 emission hysteresis may be driven by substrate-mediated higher CH4 production later in the frost-free season. Changes in environmental conditions also modulate seasonal CH4 emission hysteresis and thus ecosystem-scale CH4 emissions.
Our results demonstrate that the relationship between CH4 emissions and temperature is an emergent property that varies substantially across space and time. A direct integration of measurements across the globe (e.g., inferring a generic temperature sensitivity of CH4 emissions) may not improve CH4 model parameterization because such an approach oversimplifies factors controlling CH4 emissions. Therefore, meta-analyses of CH4 biogeochemistry should recognize the large intra-seasonal, inter-annual, and inter-site variability of biotic and abiotic conditions that regulate ecosystem-scale CH4 emissions. Collectively, our analyses highlight the importance of observing and modeling spatial heterogeneity and temporal variability for the modeling of CH4 biogeochemistry. Since most existing CH4 models are developed using empirically based CH4 production or emission temperature dependencies, our study motivates models to mechanistically represent methanogenesis, methanotrophy, and CH4 transport to refine estimates of global CH4 emissions and climate feedbacks.
Methods
FLUXNET-CH4 database
The FLUXNET-CH4 initiative is led by the Global Carbon Project (https://www.globalcarbonproject.org) in coordination with regional flux networks (in particular AmeriFlux and the European Fluxes Database) to compile a global CH4 flux database of eddy covariance and supporting measurements encompassing freshwater, coastal, natural and managed wetlands, and uplands. Database descriptions, including existing sites, data standardization, gap-filling, and partitioning, have been detailed previously in Knox et al.. We used daily mean temperature (air and soil), gross primary productivity as partitioned from net CO2 exchange measurements, precipitation, WTD, wind speed, atmospheric pressure, and CH4 emissions compiled at the 48 wetland and rice paddy sites (Supplemental Table ) currently recorded in the FLUXNET-CH4 database. Soil temperature is often measured at different depths among different sites, and only about half of the wetland sites report WTD in the current FLUXNET-CH4 database. We analyzed the soil temperature reported at the shallowest and deepest measured soil layers at each site to investigate their effects on regulating CH4 emissions. The wetland and rice paddy data (207 site-years with 62,384 site-days as of this publication) were categorized into eight CH4 emitting ecosystem types: bog, fen, marsh, peat plateau, rice paddy, salt marsh, swamp, and wet tundra, based on previous classification,. While gap-filled data are examined, they are not included in our discussion to eliminate potential biases caused by the gap-filling procedure.
Frost-free season
We define the frost-free season as the period when the observed temperature (air or soil) is >0 °C to investigate the emergent temperature responses to CH4 emissions (FCH4) during the biologically active season across distinct climatic zones. Other data sampling thresholds, such as above-zero GPP and above 5% of annual GPP maximum, were examined, and positive seasonal FCH4 hysteresis is identified in 68–81% of site-years (Supplemental Figs. , ), consistent with those inferred from frost-free season. We chose to present the frost-free season results because substantial GPP (e.g., above 5% of annual GPP maximum) is detected when air temperature is well below 0 °C (Supplemental Fig. ) that may complicate our discussion of varying FCH4 led by temperature changes.
Emergent temperature dependence calculation and the hysteresis parameter ahys
Emergent dependence of CH4 emission (FCH4) on temperature (air or soil) is determined by fitting frost-free-season daily measurements of FCH4 and air and soil temperatures with a quadratic equation (Eq. ), the Boltzmann–Arrhenius equation (Eq. ), and first, second, third, and fifth order polynomials. Daily FCH4 estimates made by site- and time-specific emergent FCH4 temperature (air or soil) dependence models based on the above-mentioned functional forms show comparable root mean square errors (Supplemental Fig. ). Results inferred from the quadratic equation (Eq. ) are selected because (1) its functional form is mathematically consistent with the second-order polynomial equation of temperature for methanogenesis inferred from the MacroMolecular Rate Theory,; and (2) it can prescribe seasonal FCH4 hysteresis with a single site- and time- specific parameter (ahys, defined below).
The fits based on the quadratic equation were forced to pass through the origin (assuming zero FCH4 at 0 °C, discussed below) and FCH4 measured at maximum seasonal temperature in each site-year using the Matlab (MathWorks Inc., 2019, version 9.7.0) polyfix function (downloaded from https://www.mathworks.com/matlabcentral/fileexchange/54207-polyfix-x-y-n-xfix-yfix-xder-dydx). The resulting emergent dependence of FCH4 on temperature at any given time period can thus be represented as:
The symbols used in Eq. denote CH4 emission (FCH4T, mg C m−2 d−1), hysteresis parameter (ahys, mg C m−2 d−1 °C−2), daily mean temperature (T, °C; air or soil), maximum seasonal temperature (Tmax, °C), and CH4 emission measured at maximum seasonal temperature (FCH4,Tmax, mg C m−2 d−1). Therefore, the functional relationship between and temperature, described by a quadratic equation (Eq. ), is only determined by the value of hysteresis parameter (ahys) and site-year variables (FCH4,TmaxandTmax).
The two constraints (passing through the origin and FCH4 measured at maximum seasonal temperature) imposed in Eq. are intended to force the two (earlier and later part of the frost-free season) emergent FCH4 temperature (air or soil) dependencies to form a closed apparent hysteresis loop for each frost-free season. By doing so, seasonal FCH4 hysteresis can be quantified as the normalized area enclosed by the two fits, and intra-seasonal changes can be consistently compared among site-years across distinct climate zones. Ignoring FCH4 around 0 °C has small effects on the magnitude and distribution of seasonal FCH4 hysteresis inferred from the current FLUXNET-CH4 database, although substantial FCH4 may continue when air temperature is around or below 0 °C,. To quantify the effect of ignoring FCH4 around 0 °C, we replaced the constraint of zero FCH4 at 0 °C by the mean FCH4 measured between −0.5 and 0.5 °C at 0 °C for each site-year, and found that the resulting patterns of seasonal FCH4 hysteresis (Supplemental Fig. ) are consistent with those assuming zero FCH4 at 0 °C (Fig. 2).
Seasonal CH4 emission hysteresis
We apply a quadratic equation (Eq. ) to calculate the emergent dependence of CH4 emission (FCH4) on temperature at the earlier (FCH4,earlierT) and later (FCH4,laterT) part of the frost-free season separated by maximum seasonal temperature (Tmax). Two metrics are used to quantify the observed seasonal FCH4 hysteresis: (1) Normalized area of seasonal FCH4 hysteresis (HA), defined as the area enclosed by emergent dependencies of FCH4 on temperature inferred from earlier and later parts of the frost-free season (i.e., HA=∫0Tmax(FCH4,later(T)−FCH4,earlier(T))dTmax(abs(FCH4,earlier(T),FCH4,later(T)))⋅Tmax); and (2) mean seasonal FCH4 hysteresis (Hμ), defined as the difference between mean daily FCH4 inferred from measurements taken between later and earlier parts of the frost-free season. In each site-year, positive seasonal FCH4 hysteresis occurs when higher FCH4 are measured later in the frost-free season at a given air or soil temperature. Hysteretic patterns are similar when using either air temperatures (Fig. 1) or soil temperatures (Supplemental Fig. ), and with either gap-filled (Supplemental Fig. ) or non-gap-filled (Fig. 1) FCH4. Results derived from air temperature (Fig. 2), soil temperature measured at the shallowest soil layer (Supplemental Fig. ), and soil temperature measured at the deepest soil layer (Supplemental Fig. ) all indicate predominantly positive seasonal FCH4 hysteresis across the wetland and rice paddy sites. We chose to present results derived from air temperature for its longer and more continuous record in the wetland and rice paddy subset of FLUXNET-CH4 database, although soil temperature has been shown to be a better predictor for FCH4,. Specifically, there are 207, 112, and 97 site-years of measurements of air temperature, soil temperature measured at the sallowest soil layer (0–18.3 cm), and soil temperature measured at the sallowest soil layer (32–50 cm), respectively.
Temperature dependence model groups
The measurements extracted from the FLUXNET-CH4 database were analyzed by seven air temperature (Tair) dependence model groups (six regression models and a hybrid model) to evaluate factors modulating CH4 emission predictions. We design the six regression models to selectively represent the effects of ecosystem-site variability and ecosystem-type variability on CH4 emission prediction by labeling data points into different groups. The relationship between CH4 emission and Tair is analyzed at each part of the frost-free season, each site-year, each site, and each ecosystem type to quantify intra-seasonal, inter-annual, inter-site, and ecosystem-type variability, respectively (Supplemental Table ). For the hybrid model, we use the hysteresis parameter predicted by our random-forest model to inform the quadratic equation (Eq. ) for CH4 emission estimates. The performance of each Tair dependence model group was evaluated to determine the most important model components required for accurate CH4 emission estimates.
Random-forest model selection
We used random-forest model selection to identify the most important predictors of the hysteresis parameter ahys (Eq. ) that determines the functional form of emergent CH4 emission air temperature dependence and thereby wetland CH4 emissions (FCH4). Instead of FCH4, the hysteresis parameter ahys was analyzed, so the results can provide useful information on the source of observed FCH4 hysteresis with an understandable functional form (Eq. ). Moreover, the most important predictors identified by the machine-learning approach can be compared with the results derived from the other approach using a range of temperature dependence model groups (Supplemental Table ).
Ten potential predictors were selected for their relatively high predictor importance to ahys: seasonal branch (i.e., earlier or later part in the frost-free season), GPP cumulated in a seasonal branch, precipitation cumulated in a seasonal branch, maximum seasonal temperature, mean temperature in a seasonal branch, ecosystem type, latitude, site, site-year, and FCH4 measured at maximum seasonal temperature. Other potential predictors, including observational year, mean WTD in a seasonal branch, mean wind speed in a seasonal branch, and mean atmospheric pressure in a seasonal branch were examined and showed limited predictive power on ahys. Four potential predictors (seasonal branch, ecosystem type, site, and site-year) were labeled as categorical data and the rest were labeled as numerical data in our random-forest model. The random-forest model selection was performed by the Statistics and Machine-Learning Toolbox in Matlab (MathWorks Inc., 2019, version 9.7.0).
Apparent activation energy for CH4 emissions
We quantify the apparent activation energy for CH4 emissions by fitting frost-free-season daily measurements of CH4 emission and air temperature with the Boltzmann–Arrhenius equation of the form:
where
FCH4T is the rate of CH
4 emission at absolute air temperature T.
Ea¯ (in eV) and
ε correspond to the fitted apparent activation energy (slope) and base reaction rate (intercept), respectively.
k is the Boltzmann constant (8.62 × 10
−5 eV K
−1). When the large inter-site, inter-annual, and intra-seasonal variability is muted, the apparent activation energy for CH
4 emission inferred from each ecosystem type is within the range reported in recent meta-analyses
.